EP3993921B1 - Schmelzezuführung für bandgussanlagen - Google Patents
Schmelzezuführung für bandgussanlagen Download PDFInfo
- Publication number
- EP3993921B1 EP3993921B1 EP20734983.8A EP20734983A EP3993921B1 EP 3993921 B1 EP3993921 B1 EP 3993921B1 EP 20734983 A EP20734983 A EP 20734983A EP 3993921 B1 EP3993921 B1 EP 3993921B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- casting
- aluminium
- strip
- molten metal
- gap
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000005266 casting Methods 0.000 title claims description 304
- 229910052751 metal Inorganic materials 0.000 claims description 170
- 239000002184 metal Substances 0.000 claims description 170
- 239000000155 melt Substances 0.000 claims description 47
- 238000000034 method Methods 0.000 claims description 33
- 229910052782 aluminium Inorganic materials 0.000 claims description 29
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 29
- 229910000838 Al alloy Inorganic materials 0.000 claims description 24
- 239000004411 aluminium Substances 0.000 claims description 22
- 230000005484 gravity Effects 0.000 claims description 19
- 230000001105 regulatory effect Effects 0.000 claims description 6
- 238000005086 pumping Methods 0.000 claims description 5
- 230000008569 process Effects 0.000 description 24
- 238000007711 solidification Methods 0.000 description 10
- 230000008023 solidification Effects 0.000 description 10
- 230000015572 biosynthetic process Effects 0.000 description 6
- 238000003825 pressing Methods 0.000 description 6
- 230000003647 oxidation Effects 0.000 description 5
- 238000007254 oxidation reaction Methods 0.000 description 5
- 239000000919 ceramic Substances 0.000 description 4
- 238000001816 cooling Methods 0.000 description 4
- 238000013461 design Methods 0.000 description 4
- 238000009826 distribution Methods 0.000 description 4
- 230000004888 barrier function Effects 0.000 description 3
- 238000005097 cold rolling Methods 0.000 description 3
- 230000007547 defect Effects 0.000 description 3
- 239000011261 inert gas Substances 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 229910000831 Steel Inorganic materials 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 238000007654 immersion Methods 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 238000012432 intermediate storage Methods 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- 239000011777 magnesium Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 230000035484 reaction time Effects 0.000 description 2
- 238000005096 rolling process Methods 0.000 description 2
- 239000000523 sample Substances 0.000 description 2
- 238000005204 segregation Methods 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 238000009827 uniform distribution Methods 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 238000004512 die casting Methods 0.000 description 1
- 238000005098 hot rolling Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 230000002028 premature Effects 0.000 description 1
- 238000003303 reheating Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D11/00—Continuous casting of metals, i.e. casting in indefinite lengths
- B22D11/10—Supplying or treating molten metal
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D11/00—Continuous casting of metals, i.e. casting in indefinite lengths
- B22D11/06—Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D11/00—Continuous casting of metals, i.e. casting in indefinite lengths
- B22D11/06—Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars
- B22D11/0622—Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars formed by two casting wheels
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D11/00—Continuous casting of metals, i.e. casting in indefinite lengths
- B22D11/16—Controlling or regulating processes or operations
- B22D11/18—Controlling or regulating processes or operations for pouring
- B22D11/181—Controlling or regulating processes or operations for pouring responsive to molten metal level or slag level
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D41/00—Casting melt-holding vessels, e.g. ladles, tundishes, cups or the like
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27B—FURNACES, KILNS, OVENS OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
- F27B14/00—Crucible or pot furnaces
- F27B14/04—Crucible or pot furnaces adapted for treating the charge in vacuum or special atmosphere
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27B—FURNACES, KILNS, OVENS OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
- F27B14/00—Crucible or pot furnaces
- F27B14/08—Details specially adapted for crucible or pot furnaces
- F27B14/0806—Charging or discharging devices
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27B—FURNACES, KILNS, OVENS OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
- F27B14/00—Crucible or pot furnaces
- F27B2014/008—Continuous casting
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27B—FURNACES, KILNS, OVENS OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
- F27B14/00—Crucible or pot furnaces
- F27B14/08—Details specially adapted for crucible or pot furnaces
- F27B14/0806—Charging or discharging devices
- F27B2014/0818—Discharging
Definitions
- the invention relates to a strip casting plant comprising at least one casting furnace and at least one rotating mold with a casting gap, in particular a pair of rollers, rolls, caterpillars or strips.
- the invention further relates to a method for feeding an aluminum or aluminum alloy melt to the casting gap in a strip casting plant.
- Strip casting using strip casting systems is an economical and energy-efficient alternative to the conventional production of metal strips via ingot casting, reheating and hot rolling.
- a hot strip is produced close to the final dimension directly from a molten metal.
- the molten metal is cast in a strip casting system in which the casting area or solidification area in which the cast strip is formed is delimited on at least one long side by a barrier that is continuously moved and cooled during the casting process. This barrier moves along with the solidifying strip, so that a so-called traveling mold is provided. Traveling molds allow a high casting and solidification speed. In industrial production, there are a large number of designs of such traveling molds, for example casting wheel processes or single-roll processes.
- travelling mold in the form of caterpillar molds (block casting) are also used, in which cooling blocks, usually made of copper, are arranged on chain segments. These are usually tilted slightly against the horizontal.
- the problem with the known strip casting processes is that a variable solidification front can arise across the width of the strip produced, which can lead to non-uniform product properties. For example, surface defects, segregation of alloy elements or a non-uniform grain structure can arise. Locally unsolidified molten metal can even get through the casting gap and cause the strip to break and thus the process to be terminated. These problematic effects become more critical with larger strip widths, which are particularly relevant for high process efficiency. For all strip casting processes, the uniform supply of the melt into the casting gap or the solidification zone of the rotating mold is therefore very important.
- the molten metal which is usually fed via an open channel system from a higher-lying casting furnace, is therefore calmed down in an open tundish (intermediate vessel) before the casting gap.
- the molten metal is first collected in the tundish and then fed from the tundish to the casting gap by gravity.
- the level of the melt pool in the casting area in front of the mold can be regulated via the tundish, for example by means of a plug provided in the bottom of the tundish.
- Such a strip casting plant for carrying out a vertical two-roll process is known, for example, from WO 2004-000487 known.
- a strip casting plant with tundish is in the EP 0 433 204 A1 described.
- the present invention therefore has the object of providing a strip casting plant which, on the one hand, enables improved control of the volume flow of the aluminum or aluminum alloy melt to the casting gap, improved productivity and improved strip quality and, at the same time, allows for increased safety.
- a corresponding method is to be proposed.
- this object is achieved in a strip casting plant according to the invention in that the strip casting plant has at least one active means for transporting molten metal from the casting furnace to the casting gap.
- an active means for transporting molten metal from the casting furnace to the casting gap is understood to be a means that is designed to use energy to transport the molten metal so that the transport of the molten metal can be controlled via the active means.
- the active means for transporting molten metal can transfer energy to the molten metal mechanically, electrically or electromagnetically, for example.
- the drive work of the pump can be converted into kinetic energy of the molten metal by means of a pump, or energy can be transferred to the molten metal by applying pressure and converted into kinetic energy of the molten metal.
- Active means for transporting molten metal are suitable, for example, for moving the molten metal at least partially against the direction of gravity.
- the volume flow of the molten metal can be controlled very precisely.
- the molten metal can be fed into a controlled, continuous solidification process.
- the molten metal can be fed very smoothly and in a controlled manner, in particular the breaking up of an oxide layer in the feeding process and thus the introduction of impurities into the melt can be avoided.
- the costly use of inert gas to prevent the formation of an oxide layer can therefore be dispensed with.
- a tundish can be provided, a tundish, which is generally provided in conventional melt feeding to calm the molten metal, can preferably be dispensed with.
- the productivity of the strip casting plant according to the invention can be increased compared to a conventional strip casting plant, since the strip speed is usually set as slow as the hottest point in the strip allows for safety reasons.
- the strip casting plant according to the invention thus allows the production of a high-quality aluminum alloy strip close to the final dimension.
- the active means for transporting the molten metal can also improve the safety of operating the strip casting plant.
- the travelling mould of the strip casting plant according to the invention can, for example, be a travelling mould of one of the conventional processes described at the beginning.
- the travelling mould is thus a pair of rollers, rollers, tracks or belts.
- a pair of rollers arranged parallel to one another on the axis of a vertical twin roll caster a pair of rollers arranged parallel to one another on the axis of arranged pair of rollers of a horizontal or tilted twin roll caster, two casting chains rotating one above the other (e.g. Hazelett) or caterpillar molds, which are held by a machine frame or arranged in a housing.
- the rotating mold has a casting gap as described above.
- the casting gap can, for example, be up to 2.5 m wide, so that particularly wide metal strips over 1.6 m wide can be produced; the possible strip width can therefore be close to one roll width, for example around 2.5 m.
- the casting gap can, for example, be 1 to 6 mm high, so that metal strips of a corresponding thickness can be produced.
- the molten metal is cooled in contact with the rotating mold at a cooling rate of in particular at least 20 K/s, preferably 50 K/s.
- significantly higher cooling rates can be set, particularly preferably a cooling rate of at least 100 K/s and/or up to 8000 K/s.
- the high solidification rate can further reduce segregation processes that have a detrimental effect on the material properties.
- the strip speeds at which the cast metal strip emerges from the casting gap can be set in the range of 0.06 to 3.0 m/s.
- the metal strip can then be wound up in a coil, for example, and fed to a subsequent cold rolling process on a cold rolling stand, or it can be hot and/or cold rolled in-line without intermediate winding.
- the metal strip can also be aged between strip casting and cold rolling.
- the casting furnace can be designed as a container for the temporary storage of molten metal or the casting furnace can be designed as a melting furnace for melting molten metal.
- the casting furnace can be heated and/or controlled.
- the at least one active means for transporting molten metal comprises a means for pressurizing and/or a means for pumping the molten metal.
- a means for applying pressure is understood to mean a means that is designed to apply pressure to the molten metal in order to transport the molten metal from the casting furnace to the casting gap.
- the surface of a molten metal pool in a storage facility for molten metal can be subjected to pressure.
- a means for applying pressure can therefore comprise a pressure chamber, for example.
- a pressure chamber is in particular a preheated or heatable closed, i.e. pressure-tight chamber in which molten metal can be provided and subjected to pressure.
- the pressure chamber can be provided by a low-pressure furnace in which the molten metal can be heated and pressed into a riser pipe, for example by applying pressure. This design enables a particularly smooth and gentle melt flow and a simple control of the volume flow of the molten metal, for example via the set overpressure on the surface of the molten metal pool.
- a means for pumping the molten metal can be provided.
- a means for pumping the molten metal can comprise, for example, a metal pump.
- a metal pump can transport the molten metal mechanically, for example by means of a screw.
- an electromagnetic metal pump is used in order to transport the molten metal as quietly and evenly as possible.
- strip casting plant fails, for example due to a power failure, no further molten metal is pumped and run-on can also be avoided.
- the at least one active means for transporting molten metal comprises a pressure furnace, in particular a low-pressure furnace.
- a pressure furnace is in particular a closed furnace that provides a heatable chamber that can be pressurized. If the chamber is pressurized with low pressure, it is a low-pressure furnace. The use of low pressure enables the molten metal to be guided and regulated safely and smoothly.
- a low-pressure furnace is designed, for example, to allow a pressurization of 0.1 to 1.0 bar. Preferably a pressurization of 0.3 to 0.6 bar for the smoothest possible transport of the molten metal or 0.5 to 1.0 bar for a faster supply of the molten metal to the casting gap.
- the pressure or low-pressure furnace also has a riser pipe, a particularly safe strip casting system is provided because the molten metal can automatically sink back into the pressure chamber through the riser pipe if the pressurization fails.
- the casting furnace can be designed separately from the active means for transporting molten metal.
- the casting furnace is designed as a low-pressure furnace.
- Further active means for transporting the molten metal can then be dispensed with, for example.
- the simpler design also enables simplified and therefore improved control of the volume flow and increased safety of the strip casting system.
- the strip casting plant is a vertical strip casting plant. It has been found that the supply of molten metal to the casting gap provided according to the invention can be used particularly advantageously for vertically aligned strip casting plants in which a casting area or casting gusset is arranged above the casting gap. In vertical strip casting plants in particular, the conventional supply of molten metal from above to the casting gap leads to the uncontrolled formation of oxides in the upstream tundish, which can enter the casting gap uncontrolled via the outlet from the tundish.
- the strip casting plant has means for regulating the volume flow of the molten metal to the casting gap and/or the height of the melt level in the casting gap.
- the supply of the molten metal via active means for transporting the molten metal can be used advantageously to enable precise and rapid control of the volume flow of the molten metal to the casting gap.
- the volume flow can be controlled very precisely.
- the volume flow of the molten metal can then be set and controlled very precisely by measuring the pressure and regulating the pressure accordingly.
- a control circuit can have a computer that is set up to regulate the pressure for optimal operation, for example according to a known or determined correlation of pressure and required volume flow for a strip casting speed to be achieved.
- pressure sensors can be provided to measure the pressure in a pressure chamber or a low-pressure furnace.
- the volume flow by measuring the fill level of the molten metal, for example in the casting area or casting gusset.
- both the fill level of the molten metal in the casting area or casting gusset and the pressure in a pressure chamber can be measured.
- a fast, closed control loop can be set up using such a combined measurement.
- the casting area or casting gusset can have at least one fill level sensor and a low-pressure furnace can have at least one pressure sensor.
- existing pressure sensors can also be used, for example in low-pressure furnaces.
- the fill level or level of molten metal can be detected, for example, using non-contact eddy current distance sensors, induction probes, image-optical methods, contact probes or immersion sensors.
- the level is preferably determined using laser measurement, for example the casting area can have at least one laser distance sensor.
- the strip casting plant has a casting area arranged in front of the casting gap.
- the casting area is arranged in front of the moving mold and is limited by the moving mold.
- the casting area is, for example, a casting gusset and/or a distributor nozzle.
- the casting area can be designed as a casting gusset, whereby the casting area or the casting gusset is limited by the moving mold and at least one side dam is formed, preferably two side dams, which are arranged opposite each other on either side of the moving mold.
- a melt pool is formed during the production of a metal strip, from which molten metal flows or is drawn into the roll gap.
- the casting area or casting gusset is arranged essentially above the casting gap and is limited by the upper area of the moving mold.
- the casting area is arranged to the side of and in particular slightly higher than the casting gap.
- the pouring area or pouring gusset enables a particularly uniform distribution of the molten metal over the entire width of the rotating mold as well as the continuous supply of the molten metal to the pouring gap via the melt pool formed in the pouring area.
- a distribution nozzle can also be provided, through which the molten metal can be fed to the casting gap and distributed over the entire width of the casting gap.
- the distribution nozzle is closed, for example, until just before the casting gap, so that the molten metal is only briefly exposed to the air or not at all.
- the casting area is essentially formed by the rotating mold and the ends of the distribution nozzle or only by the distribution nozzle, so that additional side dams can be completely or partially dispensed with.
- the casting furnace is connected to the casting area by a pipe system.
- the casting furnace is connected to the casting gusset and/or the distributor nozzle by a pipe system.
- the closed connection between the casting furnace and the casting area in the form of a pipe system ensures that the molten metal is guided to the casting area does not lead to uncontrolled oxidation of the surface of the molten metal.
- the pipe system also enables particularly smooth and controllable guidance of the molten metal from the casting furnace to the casting area. If the pipe system is also an essentially air-tight and/or gas-tight pipe system, uncontrolled oxidation of the molten metal can be avoided even better.
- molten metal can also be guided at least partially against gravity in a safety-related manner.
- the strip casting plant or the pipe system preferably comprises at least one heatable pipe and/or at least one ceramic pipe, particularly preferably at least one heatable ceramic pipe. Premature solidification of the molten metal can thus be avoided. Even more preferably, the pipe system only has heatable pipes, in particular heatable ceramic pipes.
- the strip casting plant comprises means for feeding the molten metal into the casting area, via which the molten metal can be fed to the casting area below the surface of a melt pool formed in the casting area.
- the means for feeding the molten metal into the casting area are designed in such a way that the molten metal can be fed into the casting area below the surface of a melt pool, the surface of the melt pool can be kept even calmer. Breaking through the surface of the melt pool is avoided. On the one hand, this can prevent uncontrolled formation of oxides. On the other hand, uncontrolled mixing of oxides can also be effectively avoided because turbulence on the surface or movement of the surface can be avoided. This can prevent an oxide layer that has formed from being drawn in and mixed in in an uncontrolled manner.
- the casting area has at least one side dam, wherein the at least one side dam has at least one feed opening for molten metal.
- the pouring area is a pouring gusset.
- the at least one feed opening is also advantageously arranged in such a way that it is below the surface of the melt pool formed in the casting nip during operation of the strip casting system, breaking through the surface of the melt pool, disruptions to the surface of the melt pool and turbulences can be particularly successfully avoided.
- This form of feed has proven to be particularly advantageous in vertical strip casting systems in particular.
- the casting area has at least two, preferably three feed openings for a metal melt.
- the formation of a pronounced temperature gradient parallel to the casting gap can be avoided in a melt pool, so that a particularly uniform solidification of the metal melt in the casting gap can be achieved.
- the at least two, preferably three feed openings can preferably be arranged in the bottom of the casting area, so that the metal melt can be fed to the casting area from below, essentially against the direction of gravity. More preferably, the at least two feed openings are arranged essentially at opposite ends of the casting area in the width direction.
- a third feed opening is arranged, for example, centrally between two other feed openings.
- the pouring area can also be pressurized with inert gas to prevent the formation of oxides on the surface of the melt pool.
- the above-mentioned object is achieved in a method according to the invention for feeding a molten metal to the casting gap in a strip casting plant in that the molten metal is actively transported into the casting gap.
- the volume flow of the molten metal can be regulated very precisely. This allows the molten metal to be fed into a controlled, continuous solidification process.
- the molten metal can in particular be fed very smoothly and in a controlled manner, in particular the breaking up of an oxide layer in the feeding process and thus the introduction of impurities into the melt can be avoided.
- the molten metal can for example be fed to the melt pool in such a way that the surface of the melt pool is not broken through or disturbed by bath movements.
- the method can be carried out with a strip casting plant according to the invention.
- the at least one casting furnace is pressurized to transport the molten metal.
- the surface of a melt pool in the casting furnace can be pressurized.
- the casting furnace is preferably a low-pressure furnace in which the molten metal is heated and pressed into a riser pipe, for example, by applying pressure. This embodiment enables particularly smooth and gentle melt flow and simple control of the volume flow of the molten metal, for example via the set overpressure.
- the molten metal is transported at least in sections against the direction of gravity. Guiding the molten metal at least in sections against the direction of gravity enables a particularly controllable and adjustable volume flow of the molten metal. In addition, if the system fails, the molten metal can fall back in the direction of gravity, for example into a riser pipe and/or a casting furnace, so that the molten metal can no longer flow and work safety can be increased.
- the strip casting system has a pouring gusset and/or a distributor nozzle arranged in front of the casting gap and the casting furnace is connected to the pouring gusset and/or the distributor nozzle by a pipe system, whereby the pipe system is or will be essentially completely filled with molten metal.
- a pipe system whereby the pipe system is or will be essentially completely filled with molten metal.
- the molten metal is fed into the melt pool below the surface of the melt pool.
- a melt pool is or will be formed in front of the casting gap and the molten metal is fed into this melt pool below the surface of the melt pool. This can prevent the surface of the melt pool from being broken through and/or swirled, which could lead to uncontrolled mixing of oxides into the molten metal.
- the molten metal can also be fed into the melt pool from the side and/or from below.
- the molten metal is preferably fed into the melt pool or continuously fed into the casting gap, i.e. in particular without intermediate storage of molten metal in a tundish.
- Fig.1 shows a strip casting plant 1 comprising a moving mold 2 with a casting gap 21, wherein the moving mold 2 is formed by two rollers 22, 23, and a casting furnace 3, wherein the strip casting plant 1 has an active means 4 for transporting molten metal 5 from the casting furnace 3 to the casting gap 21.
- the strip casting plant 1 here is a vertical strip casting plant 1.
- the active means 4 for transporting molten metal 5 in this example comprises a means 4 for pressurizing the molten metal 5 so that it can be actively transported from the casting furnace 3 to the casting gap 21 by the active means 4.
- the casting furnace 3 is designed as active means 4, in particular designed as a low-pressure furnace 4.
- the exemplary strip casting plant 1 has a casting area 6 arranged in front of the casting gap 21, which is designed as a casting gusset 6 and is arranged above the casting gap 21.
- the casting furnace 3, 4 is connected to the casting gusset 6 by a pipe system 42, 43, which comprises heatable ceramic pipes 42, 43.
- the casting gusset 6 has two side dams 62, wherein one side dam 62 has a feed opening 46 for the molten metal 5.
- the feed opening 46 is provided as a means 46 for feeding the molten metal 5 into the casting gusset 6, via which the molten metal 5 can be fed to the casting area 6 below the surface of the melt pool 52 formed in the casting area.
- the exemplary strip casting plant 1 thus comprises means 46 for feeding the molten metal 5 into the casting area 6, which can feed the molten metal 5 to the casting area 6 below the surface of a melt pool 52 formed in the casting area 6.
- the molten metal 5 here is, for example, an aluminum melt 5.
- the molten metal 5 can be transported via the riser pipe 43 and the heated pipe 41 to the casting area 6 against the direction of gravity G. This enables a particularly quiet and gentle melt flow to the melt pool 52, without the surface of the melt pool 52 being broken or disturbed by movements of the surface or turbulence of the molten metal. Because the molten metal 5 is transported against gravity, the exemplary strip casting system 1 is designed to be very safe, since the molten metal 5 falls back into the low-pressure furnace 3, 4 in particular through the riser pipe 43 in the event of a system failure.
- the exemplary strip casting plant 1 has means for controlling the volume flow of the molten metal 5 into the casting gap 21 and/or the height of the melt level in the casting gap 21 in the form of a control loop.
- the control loop uses measured values from a fill level sensor 61, which measures the fill level or Level of the melt pool 52 in the casting area 6 and also to a pressure sensor 31, which measures the pressure in the low-pressure furnace 3,4. If, for example, a drop in the fill level of the melt pool 52 is detected by the fill level sensor 61, the pressure in the low-pressure furnace 3,4 can be increased in a controlled manner in order to adjust the fill level to an optimal fill level again.
- the exemplary strip casting system 1 can thus be actively and precisely controlled with fast response times.
- Fig.2 shows in a perspective view the casting area 6 of the exemplary vertical strip casting plant 1 from Fig.1
- the rotating mold 2 of the exemplary strip casting system 1 is formed by two rollers 22, 23.
- the casting area 6 is designed here as a casting gusset 6 and is formed by the rollers 22, 23 of the rotating mold 2 and two side dams 62.
- a side dam 62 has a feed opening 46 through which a metal melt 5 can be fed to the casting area 6 below the surface of a melt pool 52 formed in the casting area.
- the tundish can be dispensed with, which in turn leads to oxide formation and the negative effects described, such as uncontrolled oxide entry into the melt.
- Fig.3 shows a strip casting plant 1 not according to the invention comprising a travelling mold 2 with a casting gap 21, wherein the travelling mold 2 is formed by two (insulating block) chains 25, 26, and a casting furnace 3, wherein the strip casting plant 1 has an active means 4 for transporting molten metal 5 from the casting furnace 3 to the casting gap 21.
- the strip casting plant 1 is here a horizontal or tilted strip casting plant 1.
- the active means 4 for transporting molten metal 5 comprises in this example a means 4 for pumping the molten metal 5 in the form of an electromagnetic metal pump 4, so that the Metal melt 5 can be transported from the casting furnace 3 from below into the distributor nozzle 63.
- the casting area 6 is formed, for example, by the closed distributor nozzle 63.
- Fig.4 shows a further strip casting plant 1 according to the invention comprising a casting furnace 3 and a moving mold 2 with a casting gap 21, wherein the moving mold 2 is formed by two rollers 22, 23, wherein the strip casting plant 1 has an active means 4 for transporting molten metal 5 from the casting furnace 3 to the casting gap 21.
- the strip casting plant 1 here is a horizontal or tilted strip casting plant 1.
- the molten metal 5 is actively transported from below through the feed opening 46 into the casting area 6 via the metal pump 4.
- a melt pool 52 is formed in the casting area 6 here.
- Fig.5 shows an exemplary strip casting system, wherein the casting area 6 has at least three feed openings 46 for molten metal.
- Two feed openings 46 are arranged in the width direction essentially at opposite ends of the casting area 6.
- a third feed opening 46 is arranged centrally between the two other feed openings 46.
- the molten metal 5 is actively transported from the casting furnace 3 via the metal pump 4 from below through the feed opening 46 into the casting area 6.
- the feed from the furnace can be branched into several strands via the pipe 41 and fed through several pipes perpendicular thereto via several feed openings 46 to the casting area 6, in particular a casting gusset and/or a distributor nozzle, against the direction of gravity G.
- melt can be fed into the distributor system at several points at the same time, for example, at the same temperature and speed, thus ensuring that a homogeneous, isothermal melt flows across the entire width in the outlet into the casting gap 21.
- the described embodiments of the strip casting plant 1 enable the uniform supply of aluminum melt 5 into casting areas 6 or to casting gaps 21, so that the casting and rolling processes are stabilized, productivity is improved and material defects can be avoided.
- This is achieved by feeding the molten metal 5 to the casting roll gap 21 below the surface of a molten metal pool 52, so that the surface of the existing molten metal pool 52 is not broken through or disturbed by bath movement. This avoids oxygen contact of the incoming molten metal 5 and thus reduces the total amount of oxides formed.
- there is then, for example, an intact, calm oxide layer 54 on the surface of the molten metal pool 52 which is not mixed into the molten metal and which protects the molten metal pool 52 from further oxidation. This makes it possible to avoid non-metallic inclusions in the strip produced.
- strip casting system 1 This allows the strip casting system 1 to be operated at optimum speed without the risk of local melt breakouts.
- the strip quality can be kept consistent across the entire width. Uneven solidification across the width of the casting gap and, as a result, local melt breakouts through the casting gap, for example, can thus be avoided. This also prevents surface defects, cracks in the strip or casting breakages.
- a melt introduced from below or from the side can be distributed in individual strands across the casting width, i.e. the width of the casting gap, so that a more homogeneous inflow with a uniform temperature and/or uniform speed to the casting gap can be achieved.
- This can improve the uniformity of the product properties across the width of the strip and the productivity of the system can be further increased because the risk of local melt breakthroughs is reduced.
- the exemplary embodiments described can also be advantageous for reasons of occupational safety. If problems occur in the molten area of the system, the transport system can be switched off and the residual melt in the system immediately falls with gravity G through the riser pipe 42 into the furnace. There is no further flow of melt into the casting area.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Continuous Casting (AREA)
Description
- Die Erfindung betrifft eine Bandgussanlage umfassend mindestens einen Gießofen und mindestens eine mitlaufende Kokille mit einem Gießspalt, insbesondere ein Rollen-, Walzen-, Raupen- oder Bandpaar. Ferner betrifft die Erfindung ein Verfahren zur Zuführung einer Aluminium- oder Aluminiumlegierungsschmelze zum Gießspalt in einer Bandgussanlage.
- Der Bandguss mittels Bandgussanlagen ist eine wirtschaftliche und energieeffiziente Alternative zur herkömmlichen Fertigung von Metallbändern über Barrenguss, Wiederaufwärmen und Warmwalzen. Beim Bandguss wird ein Warmband endabmessungsnah direkt aus einer Metallschmelze erzeugt. Hierzu wird die Metallschmelze in einer Bandgussanlage vergossen, bei der der Gießbereich bzw. Erstarrungsbereich, in dem das gegossene Band geformt wird, an mindestens einer Längsseite durch eine während des Gießvorgangs kontinuierlich fortbewegte und gekühlte Barriere begrenzt ist. Diese Barriere läuft dabei mit dem erstarrenden Band mit, sodass hierdurch eine sogenannte mitlaufende Kokille bereitgestellt wird. Mitlaufende Kokillen erlauben eine hohe Gieß- und Erstarrungsgeschwindigkeit. In der industriellen Fertigung gibt es eine Vielzahl an Ausgestaltungen solcher mitlaufenden Kokillen, beispielsweise Gießradverfahren oder Ein-Rollen Verfahren. Aufgrund der benötigten Breiten von Metallbändern und weiteren Effizienzverbesserungen haben sich, insbesondere im Bereich des Aluminium- oder Stahlbandgusses, Verfahren mit zwei gegenüber angeordneten gekühlten mitlaufenden Barrieren etabliert, zwischen denen ein Gießspalt ausgebildet ist. Insbesondere hat sich einerseits das Gießwalzen mittels eines Zwei-Rollen Verfahrens (Twin Roll Casting) in horizontaler oder gekippter Richtung insbesondere in der Aluminiumindustrie etabliert, das vertikale Verfahren wird auch in der Stahlindustrie eingesetzt. Bei diesem wird die Metallschmelze insbesondere in ein innengekühltes Walzen- bzw. Rollenpaar eingeführt und erstarrt im Gießspalt zwischen den beiden Walzen bzw. Rollen zunächst, wird dann umgeformt, als Band abgezogen und beispielsweise aufgewickelt. Andererseits hat sich das zumeist horizontal betriebene Zwei-Ketten-Verfahren (Twin Belt Casting bzw. Hazelett Verfahren) etabliert, bei dem die mitlaufende Kokille durch gegenüberliegende Seiten zweier gekühlter (Dämmblock-)Ketten gebildet wird, zwischen denen ein Gießspalt ausgebildet ist, in dem die Metallschmelze erstarrt. Daneben finden auch mitlaufende Kokillen in Form von Raupenkokillen (Blockcasting) Anwendung, bei dem zumeist aus Kupfer bestehende Kühlblöcke auf Kettensegmenten angeordnet sind. Diese sind in der Regel leicht gegen die Horizontale gekippt.
- Problematisch bei den bekannten Bandgussverfahren ist, dass sich über die Breite des erzeugten Bandes eine variable Erstarrungsfront ergeben kann, wodurch ungleichförmige Produkteigenschaften entstehen können. Beispielsweise können so Oberflächendefekte, Seigerungen von Legierungselementen oder eine ungleichförmige Kornstruktur entstehen. Es kann sogar lokal nicht erstarrte Metallschmelze durch den Gießspalt gelangen und so zum Bandabriss und damit zum Prozessabbruch führen. Diese problematischen Effekte werden kritischer mit größeren Bandbreiten, welche aber gerade für eine hohe Prozesseffizienz relevant sind. Für alle Bandgussverfahren kommt der gleichförmigen Zuführung der Schmelze in den Gießspalt bzw. die Erstarrungszone der mitlaufenden Kokille daher eine sehr große Bedeutung zu. Konventionell wird die in der Regel über ein offenes Rinnensystem von einem höher gelegenen Gießofen geführte Metallschmelze deshalb vor dem Gießspalt in einen offenen Tundish (Zwischengefäß) beruhigt. Hierbei wird die Metallschmelze zunächst im Tundish aufgefangen und dann vom Tundish mittels der Schwerkraft dem Gießspalt zugeführt. Gleichzeitig kann über den Tundish der Pegelstand des Schmelzepools im Gießbereich vor der Kokille reguliert werden, beispielsweise durch einen im Boden des Tundish vorgesehenen Stopfen.
- Eine solche Bandgussanlage zur Durchführung eines vertikalen Zwei-Rollen-Verfahren ist beispielsweise aus der
WO 2004-000487 bekannt. Für ein horizontales Verfahren mit mitlaufender Kokille ist eine solche Bandgussanlage mit Tundish etwa in derEP 0 433 204 A1 beschrieben. - Aus der
JP 2016 147298 A US 2011/033332 A1 sind jeweils Bandgussanlagen für Magnesium mit Zuführung ohne Tundish bekannt. - Nachteilig an diesen bekannten Verfahren ist jedoch, dass einerseits die Regelung der Zuführung der Metallschmelze zum Gießspalt schwer kontrollierbar und wenig dynamisch ist. Andererseits strömt bei einem Anlagenausfall weiterhin Metallschmelze durch die Schwerkraft in Richtung Gießspalt, sodass Sicherheitsprobleme entstehen können. Ferner neigt die Metallschmelze zur Oxidation. Insbesondere eine Aluminiumschmelze oxidiert bei Sauerstoffkontakt sehr schnell an der Oberfläche, vor allem bei den prozessbedingt hohen Temperaturen, und bildet eine relativ stabile Oxidschicht. Beim konventionellen Verfahren kann die Metallschmelze daher im Tundish eine solche Oxidschicht ausbilden. Durch die prozessbedingt unruhige Führung kann diese jedoch wiederholt aufbrechen, sodass Oxide oder andere Verunreinigungen, die sich auf der Oxidschicht absetzen, durch Verwirbelungen unter die Metallschmelze gemischt werden. Dies führt im produzierten Metallband jedoch zu nichtmetallischen Einschlüssen in Form von Oxidagglomeraten mit weiteren eingebundenen Legierungselementen wie bspw. Mg, Si oder Cr. Diese Einschlüsse verschlechtern die Qualität des Bandes erheblich und führen beispielsweise zu einem verschlechterten Umformvermögen. Um dies zu vermeiden ist bekannt, die Metallschmelze unter dem kostspieligen Einsatz von Inertgas abzuschirmen und so vor Oxidation zu schützen.
- Die vorliegende Erfindung hat sich daher zur Aufgabe gemacht, eine Bandgussanlage bereitzustellen, die einerseits eine verbesserte Regelung des Volumenstroms der Aluminium- oder Aluminiumlegierungsschmelze zum Gießspalt, eine verbesserte Produktivität und eine verbesserte Bandqualität ermöglicht und gleichzeitig eine Erhöhung der Sicherheit erlaubt. Zudem soll ein entsprechendes Verfahren vorgeschlagen werden.
- Der Gegenstand der vorliegenden Anmeldung wird durch die unabhängigen Ansprüche definiert. Die abhängigen Ansprüche beschreiben bevorzugte Ausführungsformen.
- Gemäß einer ersten Lehre wird diese Aufgabe bei einer erfindungsgemäßen Bandgussanlage dadurch gelöst, dass die Bandgussanlage mindestens ein aktives Mittel zum Transport von Metallschmelze vom Gießofen zum Gießspalt aufweist.
- Unter einem aktiven Mittel zum Transport von Metallschmelze vom Gießofen zum Gießspalt wird, im Gegensatz zu passiven, z.B. ausschließlich die Schwerkraft nutzenden passiven Mitteln, ein Mittel verstanden, das dazu ausgestaltet ist, zum Transport der Metallschmelze Energie aufzuwenden, so dass der Transport der Metallschmelze über die aktiven Mittel kontrollierbar wird. Die aktiven Mittel zum Transport von Metallschmelze können Energie beispielsweise mechanisch, elektrisch oder elektromagnetisch an die Metallschmelze übertragen. Beispielsweise kann mittels einer Pumpe die Antriebsarbeit der Pumpe in Bewegungsenergie der Metallschmelze umgewandelt werden oder Energie durch Druckbeaufschlagung auf die Metallschmelze übertragen und in Bewegungsenergie der Metallschmelze umgewandelt werden. Aktive Mittel zum Transport von Metallschmelze sind beispielsweise dazu geeignet, die Metallschmelze zumindest teilweise entgegen der Schwerkraftrichtung zu bewegen.
- Wenn im Vorherigen oder Folgenden von Metallschmelze die Rede ist, ist eine Aluminium- bzw. Aluminiumlegierungsschmelze gemeint.
- Es wurde erkannt, dass durch die Verwendung von aktiven Mitteln zum Transport von Metallschmelze der Volumenstrom der Metallschmelze zum Gießspalt sehr exakt und direkt gesteuert werden kann. Bei konventionellen Zufuhrsystemen, die Metallschmelze dem Gießspalt passiv mittels der Schwerkraft zuführen, ist lediglich eine indirekte Regelung möglich. Die Reaktionszeiten sind daher bei passiven Mitteln, beispielsweise einem Tundish mit Zustellung zu lang, um in einem schnell laufenden Prozess eine echte Regelung zu ermöglichen. Insbesondere die herkömmliche Zwischenspeicherung der Metallschmelze in einem Tundish sorgt dafür, dass beispielsweise auf Füllstandsänderungen des Schmelzepools vor dem Gießspalt nur mit einem gewissen Zeitversatz reagiert werden kann. Wird die Metallschmelze hingegen erfindungsgemäß aktiv transportiert, beispielsweise durch Überdruck entgegen der Schwerkraft, kann der Volumenstrom der Metallschmelze sehr genau geregelt werden. Dadurch kann die Metallschmelze einem kontrollierten kontinuierlichen Erstarrungsprozess zugeführt werden. Die Metallschmelze kann insbesondere sehr ruhig und kontrolliert geführt werden, insbesondere kann das Aufbrechen einer Oxidschicht im Zuführprozess und damit der Eintrag von Verunreinigungen in die Schmelze vermieden werden. Auf den kostspieligen Einsatz von Inertgas, um das Bilden einer Oxidschicht zu vermeiden, kann also verzichtet werden. Zwar kann ein Tundish vorgesehen sein, bevorzugt kann aber auf einen Tundish, der bei der konventionellen Schmelzezuführung im Allgemeinen zur Beruhigung der Metallschmelze vorgesehen wird, verzichtet werden. Zudem kann die Produktivität der erfindungsgemäßen Bandgussanlage gegenüber einer konventionellen Bandgussanlagen erhöht werden, da die Bandgeschwindigkeit aus Sicherheitsgründen in der Regel so langsam eingestellt wird, wie es die heißeste Stelle im Band erlaubt.
- Die erfindungsgemäße Bandgussanlage erlaubt somit die endabmessungsnahe Herstellung eines qualitativ hochwertigen Aluminiumlegierungsbandes. Durch die aktiven Mittel zum Transport der Metallschmelze kann ferner die Sicherheit beim Betrieb der Bandgussanlage verbessert werden.
- Die mitlaufende Kokille der erfindungsgemäßen Bandgussanlage kann beispielsweise eine mitlaufende Kokille eines der eingangs beschriebenen konventionellen Verfahren sein. Erfindungsgemäß ist die mitlaufende Kokille somit ein Rollen-, Walzen-, Raupen- oder Bandpaar. Beispielsweise ein achsparallel nebeneinander angeordnetes Rollenpaar eines vertikalen Twin Roll Casters, ein achsparallel übereinander angeordnetes Rollenpaar eines horizontalen oder gekippten Twin Roll Casters, zwei übereinander umlaufende Gießketten (z.B. Hazelett) oder Raupenkokillen, welche von einem Maschinenrahmen gehalten werden oder in einem Gehäuse angeordnet sind. Die mitlaufende Kokille weist dabei wie eingangs beschrieben einen Gießspalt auf. Der Gießspalt kann beispielsweise bis 2,5 m breit sein, sodass auch besonders breite Metallbänder mit über 1,6 m Breite hergestellt werden können, die mögliche Bandbreite kann daher nahe einer Walzenbereite, also auch z.B. ungefähr 2,5 m betragen. Der Gießspalt kann beispielsweise 1 bis 6 mm hoch sein, sodass Metallbänder mit einer entsprechenden Stärke hergestellt werden können. Darüber hinaus ist es vorteilhaft, wenn die Metallschmelze in Kontakt mit der mitlaufenden Kokille mit einer Abkühlrate von insbesondere mindestens 20 K/s, vorzugsweise 50 K/s gekühlt wird. Durch die Verwendung von aktiven Mitteln zum Transport von Metallschmelze und insbesondere die dadurch mögliche präzise Regelung der Zuführung von Metallschmelze können auch deutlich höhere Abkühlraten, besonders bevorzugt eine Abkühlrate von mindestens 100 K/s und/oder bis zu 8000 K/s eingestellt werden. Durch die hohe Erstarrungsgeschwindigkeit können Seigerungsvorgänge, die sich nachteilig auf die Werkstoffeigenschaften auswirken, weiter verringert werden. Die Bandgeschwindigkeiten, mit denen das gegossene Metallband aus dem Gießspalt austritt können im Bereich von 0,06 bis 3,0 m/s eingestellt werden.
- Anschließend kann das Metallband beispielsweise in einem Coil aufgewickelt und einem anschließenden Kaltwalzen an einem Kaltwalzgerüst zugeführt werden oder auch direkt ohne ein zwischenzeitliches Aufwickeln in-line warm- und/oder kaltgewalzt werden. Weiterhin kann das Metallband zwischen dem Bandgießen und dem Kaltwalzen warmausgelagert werden.
- Der Gießofen kann als Behälter zur Zwischenspeicherung von Metallschmelze ausgestaltet sein oder der Gießofen kann als Schmelzofen zum Erschmelzen einer Metallschmelze ausgestaltet sein. Insbesondere ist der Gießofen beheizbar und/oder regelbar.
- In einer weiteren Ausgestaltung der Bandgussanlage umfasst das mindestens eine aktive Mittel zum Transport von Metallschmelze ein Mittel zum Druckbeaufschlagen und/oder ein Mittel zum Pumpen der Metallschmelze.
- Unter einem Mittel zum Druckbeaufschlagen wird ein Mittel verstanden, dass dazu ausgebildet ist, die Metallschmelze mit Druck zu beaufschlagen, um die Metallschmelze vom Gießofen zum Gießspalt zu transportieren. Beispielsweise kann die Oberfläche eines Schmelzepools in einem Speicher für Metallschmelze, beispielsweise in Form einer Druckkammer, mit Druck beaufschlagt werden. Ein Mittel zum Druckbeaufschlagen kann daher beispielsweise eine Druckkammer umfassen. Eine Druckkammer ist dabei insbesondere eine vorgeheizte oder beheizbare geschlossene, d.h. druckdichte Kammer, in der Metallschmelze bereitgestellt und mit Druck beaufschlagt werden kann. Insbesondere kann die Druckkammer durch einen Niederdruckofen bereitgestellt werden, in dem die Metallschmelze geheizt und durch Druckbeaufschlagung beispielsweise in ein Steigrohr gedrückt werden kann. Diese Ausgestaltung ermöglicht eine besonders ruhige und sanfte Schmelzeführung sowie eine einfache Regelung des Volumenstroms der Metallschmelze, beispielsweise über den eingestellten Überdruck auf die Oberfläche des Schmelzepools.
- Alternativ oder zusätzlich kann ein Mittel zum Pumpen der Metallschmelze vorgesehen sein. Hierzu kann ein Mittel zum Pumpen der Metallschmelze beispielsweise eine Metallpumpe umfassen. Eine Metallpumpe kann die Metallschmelze beispielsweise mechanisch transportieren, etwa mittels einer Schnecke. Bevorzugt wird eine elektromagnetische Metallpumpe eingesetzt, um die Metallschmelze möglichst ruhig und gleichmäßig zu transportieren.
- Bei einem Ausfall der Bandgussanlage, beispielsweise durch einen Stromausfall, wird somit keine weitere Metallschmelze gefördert und auch ein Nachlaufen kann vermieden werden.
- Gemäß einer weiteren Ausgestaltung der Bandgussanlage umfasst das mindestens eine aktive Mittel zum Transport von Metallschmelze einen Druckofen, insbesondere einen Niederdruckofen.
- Ein Druckofen ist insbesondere ein geschlossener Ofen, der eine beheizbare Kammer bereitstellt, die mit Druck beaufschlagt werden kann. Wird die Kammer mit Niederdruck beaufschlagt handelt es sich um einen Niederdruckofen. Der Einsatz von Niederdruck ermöglicht ein sicheres und ruhiges Führen und Regeln der Metallschmelze. Ein Niederdruckofen ist beispielsweise dazu ausgestaltet, eine Druckbeaufschlagung mit 0,1 bis 1,0 bar zu ermöglichen. Bevorzugt eine Druckbeaufschlagung mit 0,3 bis 0,6 bar für eine möglichst ruhigen Transport der Metallschmelze oder 0,5 bis 1,0 bar für eine schnellere Zuführung der Metallschmelze zum Gießspalt.
- Vorteilhafterweise können beispielsweise kommerziell erhältliche, für den Niederdruck-Kokillenguss eingesetzte Niederdrucköfen bzw. entsprechend skalierten Versionen davon eingesetzt werden.
- Weist der Druck- oder Niederdruckofen zudem ein Steigrohr auf, wird eine besonders sichere Bandgussanlage bereitgestellt, weil die Metallschmelze bei Ausfall der Druckbeaufschlagung insbesondere automatisch durch das Steigrohr zurück in die Druckkammer sinken kann.
- Der Gießofen kann zwar separat von den aktiven Mitteln zum Transport von Metallschmelze ausgebildet sein. Eine besonders einfache und wirtschaftliche Bandgussanlage ergibt sich jedoch, wenn gemäß einer nächsten Ausgestaltung der Bandgussanlage der Gießofen als Niederdruckofen ausgestaltet ist. Auf weitere aktive Mittel zum Transport der Metallschmelze kann dann beispielsweise verzichtet werden. Die einfachere Ausführungsform ermöglicht darüber hinaus eine vereinfachte und dadurch verbesserte Regelung des Volumenstroms und eine erhöhte Sicherheit der Bandgussanlage.
- In einer nächsten Ausgestaltung der Bandgussanlage ist die Bandgussanlage eine vertikale Bandgussanlage. Es hat sich herausgestellt, dass die erfindungsgemäß vorgesehene Zuführung von Metallschmelze zum Gießspalt besonders vorteilhaft für vertikal ausgerichtete Bandgussanlagen eingesetzt werden kann, bei denen ein Gießbereich bzw. Gießzwickel oberhalb des Gießspalts angeordnet ist. Insbesondere bei vertikalen Bandgussanlagen kommt es bei der konventionellen Zuführung von Metallschmelze von oben zum Gießspalt zur ungeregelten Bildung von Oxiden im vorgelagerten Tundish, die über den Abfluss aus dem Tundish ungeregelt mit in den Gießspalt gelangen können. Selbst wenn der Abfluss des Tundish denkbarerweise als Tauchrohr mit einem Ende unterhalb des Badspiegels des Schmelzepools ausgelegt wäre, könnte es immer noch zu Verwirbelungen kommen, sodass die Oxide nicht kontrolliert aus dem Tundish abgeführt werden. Dies stellt insbesondere für Aluminiumschmelzen ein Problem dar, welches jedoch bei einer vertikalen Bandgussanlage mit der oben vorgeschlagenen Führung der Metallschmelze vermieden werden kann.
- In einer weiteren Ausgestaltung der Bandgussanlage weist die Bandgussanlage Mittel zur Regelung des Volumenstroms der Metallschmelze zum Gießspalt und/oder der Höhe des Schmelzspiegels im Gießspalt auf.
- Es wurde erkannt, dass die Zufuhr der Metallschmelze über aktive Mittel zum Transport der Metallschmelze vorteilhaft genutzt werden kann, um eine präzise und schnelle Regelung des Volumenstroms der Metallschmelze zum Gießspalt zu ermöglichen. Wird die Metallschmelze beispielsweise durch eine Druckbeaufschlagung entgegen der Schwerkraft bewegt, so kann der Volumenstrom sehr genau gesteuert werden. Über eine Druckmessung und entsprechende Druckregulierung kann dann der Volumenstrom der Metallschmelze sehr präzise eingestellt und geregelt werden. Beispielsweise kann ein Regelkreis einen Computer aufweisen, der dazu eingerichtet ist, den Druck für einen optimalen Betrieb zu regeln, beispielsweise entsprechend einer bekannten oder ermittelten Korrelation von Druck und benötigtem Volumenstrom für eine zu erreichende Bandgussgeschwindigkeit. Beispielsweise können Drucksensoren zur Messung des Drucks in einer Druckkammer oder einem Niederdruckofen vorgesehen werden. Möglich ist auch die Regelung des Volumenstroms über die Messung des Füllstandes der Metallschmelze beispielsweise im Gießbereich oder Gießzwickel. Beispielsweise kann sowohl der Füllstand der Metallschmelze im Gießbereich bzw. Gießzwickel und der Druck in einer Druckkammer gemessen werden. Durch eine solche kombinierte Messung kann ein schneller geschlossener Regelkreis eingerichtet werden. Beispielsweise kann hierfür der Gießbereich oder Gießzwickel mindestens einen Füllstandssensor aufweisen und ein Niederdruckofen mindestens einen Drucksensor. Insbesondere können auch schon vorhandene Drucksensoren beispielsweise in Niederdrucköfen genutzt werden. Der Füllstand bzw. Pegelstand von Metallschmelze kann beispielsweise mit berührungslosen Wirbelstrom-Abstandssensoren, Induktionssonden, bildoptischen Verfahren, Kontaktsonden oder Tauchsensoren erfasst werden. Bevorzugt wird der Pegelstand mittels Lasermessung bestimmt, beispielsweise kann der Gießbereich mindestens einen Laser-Abstandssensor aufweisen.
- Im Gegensatz zu konventionellen Zufuhrsystemen bei denen wegen der Versorgung des Gießspaltes über einen Tundish lediglich eine indirekte Regelung bzw. wegen der langen Reaktionszeiten ein sehr langsames Regeln denkbar ist, kann also eine aktive und schnelle Regelung des Volumenstroms realisiert werden. Da insbesondere vertikale Bandgussprozesse sehr schnell laufen, ist gerade bei diesen eine schnelle Regelung sehr wichtig.
- Gemäß der Erfindung weist die Bandgussanlage einen vor dem Gießspalt angeordneten Gießbereich auf.
- Der Gießbereich ist vor der mitlaufenden Kokille angeordnet und wird durch die mitlaufende Kokille begrenzt. Der Gießbereich ist beispielsweise ein Gießzwickel und/oder eine Verteilerdüse. Der Gießbereich kann als Gießzwickel ausgebildet sein, wobei der Gießbereich bzw. der Gießzwickel durch die mitlaufende Kokille und mindestens einen Seitendamm ("side dam") gebildet wird, bevorzugt zwei Seitendämme, die gegenüberliegend zu beiden Seiten der mitlaufenden Kokille angebracht sind. Im Gießbereich wird bei der Herstellung eines Metallbandes ein Schmelzepool ausgebildet, von dem Metallschmelze in den Walzspalt strömt oder gezogen wird. Bei vertikalen Bandgussanlagen ist der Gießbereich bzw. Gießzwickel im Wesentlichen oberhalb des Gießspaltes angeordnet und durch den oberen Bereich der mitlaufenden Kokille begrenzt. Bei horizontalen oder gekippten Bandgussanlagen ist der Gießbereich seitlich von und insbesondere leicht erhöht gegenüber dem Gießspalt angeordnet.
- Der Gießbereich oder Gießzwickel ermöglicht eine besonders gleichmäßige Verteilung der Metallschmelze über die gesamte Breite der mitlaufenden Kokille sowie die kontinuierliche Zuführung der Metallschmelze zum Gießspalt über den im Gießbereich gebildeten Schmelzepool.
- Insbesondere bei horizontalen oder gekippten Bandgussanlagen kann auch eine Verteilerdüse vorgesehen sein, über die die Metallschmelze dem Gießspalt zugeführt und über die gesamte Breite des Gießspaltes verteilt werden kann. Die Verteilerdüse ist dabei beispielsweise bis kurz vor dem Gießspalt geschlossen, sodass die Metallschmelze nur kurz oder gar nicht der Luft ausgesetzt ist. In diesem Fall wird der Gießbereich beispielsweise im Wesentlichen von der mitlaufenden Kokille und den Enden der Verteildüse oder nur von der Verteilerdüse gebildet, sodass auf zusätzliche Seitendämme ganz oder teilweise verzichtet werden kann.
- Erfindungsgemäß ist der Gießofen mit dem Gießbereich durch ein Rohrsystem verbunden. Insbesondere ist der Gießofen mit dem Gießzwickel und/oder der Verteilerdüse durch ein Rohrsystem verbunden.
- Im Gegensatz zum konventionell eingesetzten offenen Rinnensystem kann durch die geschlossene Verbindung zwischen Gießofen und Gießbereich in Form eines Rohrsystems erreicht werden, dass es bei der Führung der Metallschmelze zum Gießbereich nicht zu einer ungeregelten Oxidation der Oberfläche der Metallschmelze kommt. Das Rohrsystem ermöglicht zudem eine besonders ruhige und regelbare Führung der Metallschmelze vom Gießofen zum Gießbereich. Ist das Rohrsystem zudem ein im Wesentlichen luft- und/oder gasdichtes Rohrsystem, kann eine ungeregelte Oxidation der Metallschmelze noch besser vermieden werden. Zudem kann durch die Verwendung von geschlossenen Rohren, Metallschmelze sicherheitstechnisch vorteilhaft auch zumindest teilweise entgegen der Schwerkraft geführt werden. Bevorzugt umfasst die Bandgussanlage bzw. das Rohrsystem mindestens ein beheizbares Rohr und/oder mindestens ein Keramikrohr, besonders bevorzugt mindestens ein beheizbares Keramikrohr. Ein vorzeitiges Erstarren der Metallschmelze kann somit vermieden werden. Noch weiter bevorzugt weist das Rohrsystem nur beheizbare Rohre, insbesondere beheizbare Keramikrohre auf.
- Erfindungsgemäß umfasst die Bandgussanlage Mittel zum Zuführen der Metallschmelze in den Gießbereich, über welche die Metallschmelze dem Gießbereich unterhalb der Oberfläche eines im Gießbereich ausgebildeten Schmelzepools zugeführt werden kann.
- Sind die Mittel zum Zuführen der Metallschmelze in den Gießbereich derart ausgestaltet, dass die Metallschmelze dem Gießbereich unterhalb der Oberfläche eines Schmelzepools zugeführt werden kann, kann die Oberfläche des Schmelzepools noch ruhiger gehalten werden. Ein Durchbrechen der Oberfläche des Schmelzepools wird hierbei vermieden. Einerseits kann so eine ungeregelte Bildung von Oxiden vermieden werden. Andererseits kann auch die ungeregelte Untermischung von Oxiden effektiv vermieden werden, weil Verwirbelungen der Oberfläche bzw. eine Bewegung der Oberfläche vermieden werden können. Somit kann vermieden werden, dass eine gebildete Oxidschicht unkontrolliert eingezogen und untergemischt wird.
- In einer weiteren Ausgestaltung der Bandgussanlage, weist der Gießbereich mindestens einen Seitendamm auf, wobei der mindestens eine Seitendamm mindestens eine Zufuhröffnung für Metallschmelze aufweist. Insbesondere ist der Gießbereich hierbei ein Gießzwickel.
- Es hat sich gezeigt, dass wenn die Metallschmelze dem Schmelzepool über die Seitenplatte zugeführt wird, Störungen und Verwirbelungen der Oberfläche des Schmelzepools reduziert oder vermieden werden können. Ist vorteilhaft die mindestens eine Zufuhröffnung zudem derart angeordnet, dass sie im laufenden Betrieb der Bandgussanlage unterhalb der Oberfläche des im Gießzwicke ausgebildeten Schmelzepools liegt, können ein Durchbrechen der Oberfläche des Schmelzepools, Störungen der Oberfläche des Schmelzepools bzw. Verwirbelungen besonders erfolgreich vermieden werden. Insbesondere bei vertikalen Bandgussanlagen hat sich diese Form der Zuführung als besonders vorteilhaft herausgestellt.
- In einer weiteren Ausgestaltung der Bandgussanlage weist der Gießbereich mindestens zwei, bevorzugt drei Zufuhröffnung für eine Metallschmelze auf. Hierdurch kann insbesondere eine noch gleichmäßigere Verteilung der Metallschmelze im Gießbereich erreicht werden. Insbesondere kann so in einem Schmelzepool die Ausbildung eines ausgeprägten Temperaturgefälles parallel zum Gießspalt vermieden werden, sodass eine besonders gleichmäßige Erstarrung der Metallschmelze im Gießspalt erreicht werden kann. Bei horizontalen oder gekippten Bandgussanlagen können die mindestens zwei, bevorzugt drei Zufuhröffnungen bevorzugt im Boden des Gießbereichs angeordnet sind, sodass die Metallschmelze dem Gießbereich im Wesentlichen entgegen der Schwerkraftrichtung von unten zugeführt werden kann. Weiter bevorzugt sind die mindestens zwei Zufuhröffnungen in Breitenrichtung im Wesentlichen an entgegengesetzten Enden des Gießbereichs angeordnet. Eine dritte Zufuhröffnung ist beispielsweise mittig zwischen zwei anderen Zufuhröffnungen angeordnet.
- Dies ermöglicht ein besonders gleichmäßiges Beschicken des Gießspaltes mit Metallschmelze und das Bereitstellen von homogener isothermer Metallschmelze mit konstanter Geschwindigkeit am Gießspalt.
- Der Gießbereich kann auch mit Inertgas beaufschlagt werden, um so die Bildung von Oxiden an der Oberfläche des Schmelzepools zu vermeiden.
- Gemäß einer zweiten Lehre wird die oben angeben Aufgabe bei einem erfindungsgemäßen Verfahren zur Zuführung einer Metallschmelze zum Gießspalt in einer Bandgussanlage dadurch gelöst, dass die Metallschmelze aktiv in den Gießspalt transportiert wird. Wird die Metallschmelze erfindungsgemäß aktiv transportiert, beispielsweise durch Überdruck entgegen der Schwerkraft, kann der Volumenstrom der Metallschmelze sehr genau geregelt werden. Dadurch kann die Metallschmelze einem kontrollierten kontinuierlichen Erstarrungsprozess zugeführt werden. Die Metallschmelze kann insbesondere sehr ruhig und kontrolliert geführt werden, insbesondere kann das Aufbrechen einer Oxidschicht im Zuführprozess und damit der Eintrag von Verunreinigungen in die Schmelze vermieden werden. Die Metallschmelze kann dem Schmelzepool beispielsweise derart zugeführt werden, dass die Oberfläche des Schmelzepools nicht durchbrochen oder durch Badbewegungen gestört wird.
- Insbesondere kann das Verfahren mit einer erfindungsgemäßen Bandgussanlage durchgeführt werden.
- In einer weiteren Ausgestaltung des Verfahrens wird der mindestens eine Gießofen zum Transport der Metallschmelze mit Druck beaufschlagt. Beispielsweise kann die Oberfläche eines Schmelzepools im Gießofen mit Druck beaufschlagt werden. Bevorzugt ist der Gießofen ein Niederdruckofen, in dem die Metallschmelze geheizt und durch Druckbeaufschlagung beispielsweise in ein Steigrohr gedrückt wird. Diese Ausgestaltung ermöglicht eine besonders ruhige und sanfte Schmelzeführung sowie eine einfache Regelung des Volumenstroms der Metallschmelze, beispielsweise über den eingestellten Überdruck.
- In einer nächsten Ausgestaltung der Verfahrens wird die Metallschmelze mindestens abschnittsweise entgegen der Schwerkraftrichtung transportiert. Eine Führung der Metallschmelze mindestens abschnittsweise entgegen der Schwerkraftrichtung ermöglicht einen besonders kontrollierbaren und regelbaren Volumenstrom der Metallschmelze. Zudem kann bei einem Ausfall der Anlage die Metallschmelze in Schwerkraftrichtung beispielsweise in ein Steigrohr und/oder einen Gießofen zurückfallen, sodass ein Nachlaufen der Metallschmelze vermieden und die Arbeitssicherheit erhöht werden kann.
- Wird die Metallschmelze vom Gießofen zum Schmelzepool im Wesentlichen unter Luft- und/oder Gasausschluss geführt, so kann eine ungeregelte Oxidation der Metallschmelze noch besser vermieden werden. Beispielswiese weist die Bandgussanlage einen vor dem Gießspalt angeordneten Gießzwickel und/oder eine Verteilerdüse auf und der Gießofen ist mit dem Gießzwickel und/oder der Verteilerdüse durch ein Rohrsystem verbunden, wobei das Rohrsystem im Wesentlichen vollständig mit Metallschmelze gefüllt ist oder wird. Im Wesentlichen vollständig bezieht sich hier darauf, dass unvermeidbare Verunreinigungen vorhanden sein können.
- Erfindungsgemäß wird die Metallschmelze in den Schmelzepool unterhalb der Oberfläche des Schmelzepools zugeführt. Beispielsweise ist oder wird vor dem Gießspalt ein Schmelzepool ausgebildet und die Metallschmelze diesem Schmelzepool unterhalb der Oberfläche des Schmelzepools zugeführt. Hierdurch kann vermieden werden, dass die Oberfläche des Schmelzepools durchbrochen und/oder verwirbelt wird und es so zum ungeregelten Untermischen von Oxiden in die Metallschmelze kommen kann.
- Vorteilhaft kann zudem die Metallschmelze dem Schmelzepool seitlich und/oder von unten zugeführt wird. Bevorzugt wird die Metallschmelze dem Schmelzepool bzw. dem Gießspalt kontinuierlich zugeführt, d.h. insbesondere ohne eine Zwischenspeicherung von Metallschmelze in einem Tundish.
- Weitere Ausgestaltungen und Vorteile der Erfindung sind der folgenden detaillierten Beschreibung einiger beispielhafter Ausführungsformen der vorliegenden Erfindung, insbesondere in Verbindung mit der Zeichnung, zu entnehmen. Die Zeichnung zeigt in
- Fig. 1
- eine schematische Schnittansicht eines Ausführungsbeispiels einer erfindungsgemäßen vertikalen Bandgussanlage,
- Fig. 2
- eine perspektivische Darstellung des Gießbereichs des Ausführungsbeispiels aus
Fig. 1 , - Fig. 3
- eine schematische Schnittansicht eines weiteren Ausführungsbeispiels einer nicht erfindungsgemäßen horizontalen Bandgussanlage,
- Fig. 4
- eine schematische Schnittansicht eines weiteren Ausführungsbeispiels einer erfindungsgemäßen horizontalen Bandgussanlage und
- Fig. 5
- eine schematische Darstellung eines weiteren Ausführungsbeispiels einer erfindungsgemäßen horizontalen Bandgussanlage.
-
Fig. 1 zeigt eine Bandgussanlage 1 umfassend eine mitlaufende Kokille 2 mit einem Gießspalt 21, wobei die mitlaufende Kokille 2 durch zwei Rollen 22, 23 gebildet wird, und einen Gießofen 3, wobei die Bandgussanlage 1 ein aktives Mittel 4 zum Transport von Metallschmelze 5 vom Gießofen 3 zum Gießspalt 21 aufweist. Die Bandgussanlage 1 ist hier eine vertikale Bandgussanlage 1. Das aktive Mittel 4 zum Transport von Metallschmelze 5 umfasst in diesem Beispiel ein Mittel 4 zum Druckbeaufschlagen der Metallschmelze 5, so dass diese durch die aktiven Mittel 4 aktiv vom Gießofen 3 zum Gießspalt 21 transportiert werden kann. In diesem Beispiel ist der Gießofen 3 als aktives Mittel 4, insbesondere als Niederdruckofen 4 ausgestaltet. Die beispielhafte Bandgussanlage 1 weist einen vor dem Gießspalt 21 angeordneten Gießbereich 6 auf, der als Gießzwickel 6 ausgestaltet und oberhalb des Gießspaltes 21 angeordnet ist. Der Gießofen 3,4 ist mit dem Gießzwickel 6 durch ein Rohrsystem 42, 43 verbunden, welches beheizbare Keramikrohre 42, 43 umfasst. Ferner weist der Gießzwickel 6 zwei Seitendämme 62 auf, wobei ein Seitendamm 62 eine Zufuhröffnung 46 für die Metallschmelze 5 aufweist. Die Zufuhröffnung 46 ist hierbei als Mittel 46 zum Zuführen der Metallschmelze 5 in den Gießzwickel 6 vorgesehen, über welche die Metallschmelze 5 dem Gießbereich 6 unterhalb der Oberfläche des im Gießbereich ausgebildeten Schmelzepools 52 zugeführt werden kann. Die beispielhafte Bandgussanlage 1 umfasst somit Mittel 46 zum Zuführen der Metallschmelze 5 in den Gießbereich 6 umfasst, welche die Metallschmelze 5 dem Gießbereich 6 unterhalb der Oberfläche eines im Gießbereich 6 ausgebildeten Schmelzepools 52 zuführen können. Die Metallschmelze 5 ist hier beispielsweise eine Aluminiumschmelze 5. - Wird die Oberfläche des Schmelzepools 53 im Niederdruckofen 3, 4 beispielsweise über eine Luft- oder Gaszuführung 32 mit Druck beaufschlagt, beispielsweise mit 0,1 bis 1,0 bar, bevorzugt 0,5 und 0,6 bar, kann die Metallschmelze 5 über das Steigrohr 43 und das beheizte Rohr 41 zum Gießbereich 6 entgegen der Schwerkraftrichtung G transportiert werden. Dies ermöglicht eine besonders ruhige und sanfte Schmelzeführung zum Schmelzepool 52, ohne dass die Oberfläche des Schmelzepools 52 durchbrochen oder durch Bewegungen der Oberfläche oder Verwirbelungen der Metallschmelze gestört wird. Dadurch dass die Metallschmelze 5 entgegen der Schwerkraft transportiert wird, ist die beispielhafte Bandgussanlage 1 sehr sicher ausgestaltet, da die Metallschmelze 5 bei einem Ausfall der Anlage insbesondere durch das Steigrohr 43 wieder in den Niederdruckofen 3,4 zurückfällt. Zudem wird eine einfache Regelung des Volumenstroms der Metallschmelze zum Gießspalt ermöglicht. Dazu weist die beispielhafte Bandgussanlage 1 Mittel zur Regelung des Volumenstroms der Metallschmelze 5 in den Gießspalt 21 und/oder der Höhe des Schmelzspiegels im Gießspalt 21 in Form eines Regelkreises auf. Der Regelkreis greift dazu auf Messwerte eines Füllstandssensors 61 zurück, der den Füllstand oder Pegelstand des Schmelzepools 52 im Gießbereich 6 misst und zudem auf einen Drucksensor 31, der den Druck im Niederdruckofen 3,4 misst. Wird beispielsweise ein Absenken des Füllstands des Schmelzepools 52 mittels des Füllstandssensors 61 festgestellt, kann beispielsweise der Druck im Niederdruckofen 3,4 kontrolliert erhöht werden, um den Füllstand wieder einem optimalen Füllstand anzugleichen. Im Gegensatz zum schwerkraftbasierten konventionellen Zufuhrsystem lässt sich die beispielhafte Bandgussanlage 1 damit aktiv und präzise mit schnellen Reaktionszeiten regeln.
-
Fig. 2 zeigt in einer perspektivischen Ansicht den Gießbereich 6 der beispielhaften vertikalen Bandgussanlage 1 ausFig. 1 . Die mitlaufende Kokille 2 der beispielhaften Bandgussanlage 1 wird dabei durch zwei Rollen 22, 23 gebildet. Der Gießbereich 6 ist hier als Gießzwickel 6 ausgebildet und wird von den Rollen 22, 23 der mitlaufenden Kokille 2 und zwei Seitendämmen 62 gebildet. Ein Seitendamm 62 weist hierbei eine Zufuhröffnung 46 auf, über welche eine Metallschmelze 5 dem Gießbereich 6 unterhalb der Oberfläche eines im Gießbereich ausgebildeten Schmelzepools 52 zugeführt werden kann. Gegenüber konventionellen Verfahren, die mit einem Tauchrohr aus einem über der Schmelze liegenden Tundish arbeiten, kann auf den Tundish verzichtet werden, in dem es seinerseits zu Oxidbildung und den geschilderten negativen Effekten, wie unkontrollierten Oxideintrag in die Schmelze kommt. -
Fig. 3 zeigt eine nicht erfindungsgemäße Bandgussanlage 1 umfassend eine mitlaufende Kokille 2 mit einem Gießspalt 21, wobei die mitlaufende Kokille 2 durch zwei (Dämmblock-)Ketten 25, 26 gebildet wird, und einen Gießofen 3, wobei die Bandgussanlage 1 ein aktives Mittel 4 zum Transport von Metallschmelze 5 vom Gießofen 3 zum Gießspalt 21 aufweist. Die Bandgussanlage 1 ist hier eine horizontale bzw. gekippte Bandgussanlage 1. Das aktive Mittel 4 zum Transport von Metallschmelze 5 umfasst in diesem Beispiel ein Mittel 4 zum Pumpen der Metallschmelze 5 in Form einer elektromagnetischen Metallpumpe 4, sodass die Metallschmelze 5 vom Gießofen 3 von unten in die Verteilerdüse 63 transportiert werden kann. Der Gießbereich 6 wird hierbei beispielsweise durch die geschlossene Verteilerdüse 63 gebildet. -
Fig. 4 zeigt eine weitere erfindungsgemäße Bandgussanlage 1 umfassend einen Gießofen 3 und eine mitlaufende Kokille 2 mit einem Gießspalt 21, wobei die mitlaufene Kokille 2 durch zwei Rollen 22, 23 gebildet wird, wobei die Bandgussanlage 1 ein aktives Mittel 4 zum Transport von Metallschmelze 5 vom Gießofen 3 zum Gießspalt 21 aufweist. Die Bandgussanlage 1 ist hier eine horizontale bzw. gekippte Bandgussanlage 1. Die Metallschmelze 5 wird über die Metallpumpe 4 aktiv von unten durch die Zufuhröffnung 46 in den Gießbereich 6 transportiert. Im Gießbereich 6 ist hier ein Schmelzepool 52 ausgebildet.. -
Fig. 5 zeigt eine beispielhafte Bandgussanlage, wobei der Gießbereich 6 mindestens drei Zufuhröffnungen 46 für Metallschmelze aufweist. Zwei Zufuhröffnungen 46 sind in Breitenrichtung im Wesentlichen an entgegengesetzten Enden des Gießbereichs 6 angeordnet. Eine dritte Zufuhröffnung 46 ist mittig zwischen den zwei anderen Zufuhröffnungen 46 angeordnet. Die Metallschmelze 5 wird vom Gießofen 3 über die Metallpumpe 4 aktiv von unten durch die Zufuhröffnung 46 in den Gießbereich 6 transportiert. Wie beispielhaft in Fig. 6 gezeigt, kann die Zufuhr aus dem Ofen über das Rohr 41 in mehrere Stränge aufgezweigt und durch mehrere dazu senkrechte Rohre über mehrere Zufuhröffnungen 46 dem Gießbereich 6, insbesondere einem Gießzwickel und/oder einer Verteilerdüse entgegen der Schwerkraftrichtung G zugeführt werden. Damit kann in das Verteilersystem beispielsweise an mehreren Stellen gleichzeitig Schmelze mit gleicher Temperatur und Geschwindigkeit zugeführt und somit erreicht werden, dass im Auslass in den Gießspalt 21 über die gesamte Breite eine homogene isotherme Schmelze strömt. - Die beschriebenen Ausführungsbeispiele der Bandgussanlage 1 ermöglichen jeweils die gleichmäßige Zuführung von Aluminiumschmelze 5 in Gießbereiche 6 bzw. zu Gießspalten 21, sodass die Gießwalzprozesse stabilisiert, die Produktivität verbessert und Materialfehler vermieden werden können. Dies wird dadurch erreicht, dass die Metallschmelze 5 unter der Oberfläche eines Schmelzepools 52 zum Gießwalzspalt 21 zugeführt wird, so dass die Oberfläche des existierenden Schmelzepools 52 nicht durchbrochen oder durch Badbewegung gestört wird. Dies vermeidet einen Sauerstoffkontakt der zufließenden Metallschmelze 5 und reduziert somit die Gesamtmenge an gebildeten Oxiden. Ferner liegt dann beispielsweise auf der Oberfläche des Schmelzepools 52 eine intakte ruhige Oxidschicht 54, die nicht in die Schmelze eingemischt wird und die den Schmelzepool 52 vor weiterer Oxidation schützt. Dadurch können nichtmetallische Einschlüsse im produzierten Band vermieden werden.
- Damit kann die Bandgussanlage 1 auf optimaler Geschwindigkeit gefahren werden, ohne Gefahr von lokalen Schmelzedurchbrüchen. Die Bandqualität kann dabei über der gesamten Breite konsistent gehalten werden. Eine ungleichförmige Erstarrung über die Breite des Gießspaltes und dadurch beispielsweise lokale Durchbrüchen von Schmelze durch den Gießspalt können somit vermieden werden. Damit können zudem Oberflächenfehler, Anrisse im Band oder Gussabbrüche vermieden werden.
- Des Weiteren kann eine von unten oder seitlich eingeführte Schmelze in Einzelsträngen über der Gießbreite, d.h. die Breite des Gießspaltes, verteilt werden, so dass ein homogenerer Zufluss mit gleichförmiger Temperatur und/oder gleichförmiger Geschwindigkeit zum Gießspalt erreicht werden kann. Dadurch kann die Gleichmäßigkeit der Produkteigenschaften über die Bandbreite verbessert werden und die Produktivität der Anlage kann weiter gesteigert werden, da die Gefahr von lokalen Schmelzedurchbrüchen gemindert wird.
- Die beschriebenen beispielhaften Ausführungsformen können auch aus Gründen der Arbeitssicherheit vorteilhaft sein. Kommt es zu Problemen im schmelzflüssigen Bereich der Anlage, kann das Transportsystem abgeschaltet werden und die Restschmelze im System fällt mit der Schwerkraft G durch das Steigrohr 42 sofort in den Ofen zurück. Es kommt nicht zu weiterem Nachfließen der Schmelze in den Gießbereich.
Claims (11)
- Bandgussanlage (1) für Aluminium und/oder Aluminiumlegierungen umfassend mindestens einen Gießofen (3) und mindestens eine mitlaufende Kokille (2, 22, 23, 25, 26) mit einem Gießspalt (21), wobei die mindestens eine mitlaufende Kokille (2, 22, 23, 25, 26) als Rollen- (22, 23), Walzen-, Raupen- oder Bandpaar (25, 26) ausgebildet ist, wobei die Bandgussanlage (1) mindestens ein aktives Mittel (4) zum Transport von Aluminium- oder Aluminiumlegierungsschmelze (5) vom Gießofen (3) zum Gießspalt (21) aufweist,
wobei die Bandgussanlage (1) einen vor dem Gießspalt (21) angeordneten Gießbereich (6) aufweist, wobei der Gießbereich (6) an mindestens einer Seite durch die mitlaufende Kokille (2, 22, 23, 25, 26) begrenzt wird und der Gießbereich (6) derart ausgebildet ist, dass im Gießbereich (6) ein Aluminium- oder Aluminiumlegierungsschmelzepool (52) ausgebildet wird, von dem Aluminium- oder Aluminiumlegierungsschmelze (5) in den Gießspalt (21) strömt oder gezogen wird, wobei der Gießofen (3) mit dem Gießbereich (6) durch ein Rohrsystem (41, 42, 43) verbunden ist, wobei die Bandgussanlage (1) Mittel (46) zum Zuführen der Aluminium- oder Aluminiumlegierungsschmelze (5) in den Gießbereich (6) umfasst, welche die Aluminium- oder Aluminiumlegierungsschmelze (5) dem Gießbereich (6) unterhalb der Oberfläche des im Gießbereich (6) ausgebildeten Aluminium- oder Aluminiumlegierungsschmelzepools (52) zuführen können. - Bandgussanlage (1) nach Anspruch 1
dadurch gekennzeichnet, dass
das mindestens eine aktive Mittel (4) zum Transport von Metallschmelze (5) ein Mittel (4) zum Druckbeaufschlagen und/oder ein Mittel (4) zum Pumpen der Metallschmelze umfasst. - Bandgussanlage (1) nach Anspruch 1 oder 2
dadurch gekennzeichnet, dass
das mindestens eine aktive Mittel (4) zum Transport von Aluminium- oder Aluminiumlegierungsschmelze (5) einen Druckofen (4), insbesondere einen Niederdruckofen (4) umfasst. - Bandgussanlage (1) nach einem der Ansprüche 1 bis 3
dadurch gekennzeichnet, dass
der Gießofen (3) als Niederdruckofen (4) ausgestaltet ist. - Bandgussanlage (1) nach einem der Ansprüche 1 bis 4,
dadurch gekennzeichnet, dass
die Bandgussanlage (1) eine vertikale Bandgussanlage (1) ist. - Bandgussanlage (1) nach einem der Ansprüche 1 bis 5,
dadurch gekennzeichnet, dass
die Bandgussanlage (1) Mittel zur Regelung des Volumenstroms der Aluminium- oder Aluminiumlegierungsschmelze zum Gießspalt (21) und/oder der Höhe des Schmelzspiegels im Gießspalt (21) aufweist. - Bandgussanlage (1) nach einem der Ansprüche 1 bis 6,
dadurch gekennzeichnet, dass
der Gießbereich (6) mindestens einen Seitendamm (62) aufweist, wobei der mindestens eine Seitendamm (62) mindestens eine Zufuhröffnung (46) für Aluminium- oder Aluminiumlegierungsschmelze (5) aufweist. - Bandgussanlage (1) nach einem der Ansprüche 1 bis 7,
dadurch gekennzeichnet, dass
der Gießbereich (6) mindestens zwei, bevorzugt drei Zufuhröffnungen (46) für Aluminium- oder Aluminiumlegierungsschmelze (5) aufweist. - Verfahren zur Zuführung einer Aluminium- oder Aluminiumlegierungsschmelze (5) zum Gießspalt (21) in einer Bandgussanlage (1) für Aluminium und/oder Aluminiumlegierungen umfassend mindestens einen Gießofen (3) und mindestens eine als Rollen- (22, 23), Walzen-, Raupen- oder Bandpaar (25, 26) ausgebildete, mitlaufende Kokille (2, 22, 23, 25, 26) mit einem Gießspalt (21), insbesondere durchgeführt mit einer Bandgussanlage (1) gemäß einem der Ansprüche 1 bis 8, wobei die Aluminium- oder Aluminiumlegierungsschmelze (5) aktiv in einen vor dem Gießspalt (21) angeordneten Gießbereich (6) transportiert wird, wobei der Gießbereich (6) an mindestens einer Seite durch die mitlaufende Kokille (2, 22, 23, 25, 26) begrenzt wird und der Gießbereich (6) derart ausgebildet ist, dass im Gießbereich (6) ein Aluminium- oder Aluminiumlegierungsschmelzepool (52) ausgebildet wird, von dem Aluminium- oder Aluminiumlegierungsschmelze (5) in den Gießspalt (21) strömt oder gezogen wird, wobei die Aluminium- oder Aluminiumlegierungsschmelze (5) dem Gießbereich (6) unterhalb der Oberfläche des im Gießbereich (6) ausgebildeten Aluminium- oder Aluminiumlegierungsschmelzepools (52) aktiv zugeführt wird.
- Verfahren nach Anspruch 9,
dadurch gekennzeichnet, dass
der mindestens eine Gießofen (3) zum Transport der Aluminium- oder Aluminiumlegierungsschmelze (5) mit Druck beaufschlagt wird. - Verfahren nach Anspruch 9 oder 10,
dadurch gekennzeichnet, dass
die Aluminium- oder Aluminiumlegierungsschmelze (5) mindestens abschnittsweise entgegen der Schwerkraftrichtung (G) transportiert wird.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP19184161 | 2019-07-03 | ||
PCT/EP2020/068713 WO2021001495A1 (de) | 2019-07-03 | 2020-07-02 | Schmelzezuführung für bandgussanlagen |
Publications (3)
Publication Number | Publication Date |
---|---|
EP3993921A1 EP3993921A1 (de) | 2022-05-11 |
EP3993921C0 EP3993921C0 (de) | 2024-04-10 |
EP3993921B1 true EP3993921B1 (de) | 2024-04-10 |
Family
ID=67145718
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP20734983.8A Active EP3993921B1 (de) | 2019-07-03 | 2020-07-02 | Schmelzezuführung für bandgussanlagen |
Country Status (5)
Country | Link |
---|---|
US (1) | US11673184B2 (de) |
EP (1) | EP3993921B1 (de) |
JP (1) | JP7265654B2 (de) |
CN (1) | CN114269492B (de) |
WO (1) | WO2021001495A1 (de) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114269492B (zh) * | 2019-07-03 | 2023-05-09 | 斯佩拉有限公司 | 带材连铸设备的熔体供给 |
CN115106494B (zh) * | 2022-05-27 | 2023-08-18 | 燕山大学 | 一种螺旋槽管的柔性成型装置及方法 |
Family Cites Families (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4913775Y1 (de) * | 1971-11-24 | 1974-04-05 | ||
JPS5516709A (en) * | 1978-07-20 | 1980-02-05 | Furukawa Electric Co Ltd:The | Continuous casting and rolling apparatus |
JPS561251A (en) * | 1979-06-19 | 1981-01-08 | Furukawa Electric Co Ltd:The | Continuous casting method |
US4449568A (en) | 1980-02-28 | 1984-05-22 | Allied Corporation | Continuous casting controller |
JPS5877746A (ja) | 1981-11-04 | 1983-05-11 | Hitachi Ltd | 薄板製造装置の溶融金属噴出ノズル |
FR2655579A1 (fr) | 1989-12-11 | 1991-06-14 | Siderurgie Fse Inst Rech | Dispositif de coulee continue de metal liquide a deux cylindres paralleles a alimentation laterale. |
JPH041031U (de) | 1990-04-20 | 1992-01-07 | ||
JPH0560645U (ja) * | 1992-01-16 | 1993-08-10 | 日立造船株式会社 | ツインロール型薄板連続鋳造設備の注湯装置 |
DE4234259C1 (de) * | 1992-10-10 | 1994-03-17 | Sundwiger Eisen Maschinen | Bandgießmaschine, bestehend aus mindestens einem Gießrad mit vorgeordneter Gießdüse oder Zwischenbehälter |
DE4306863C1 (de) | 1993-03-05 | 1994-06-16 | Wieland Werke Ag | Gießvorrichtung zur kontinuierlichen Herstellung von Metallband |
JP3495278B2 (ja) * | 1999-01-26 | 2004-02-09 | 株式会社神戸製鋼所 | ベルト式連続鋳造装置およびベルト式連続鋳造方法 |
US6732890B2 (en) * | 2000-01-15 | 2004-05-11 | Hazelett Strip-Casting Corporation | Methods employing permanent magnets having reach-out magnetic fields for electromagnetically pumping, braking, and metering molten metals feeding into metal casting machines |
KR100584751B1 (ko) * | 2001-12-22 | 2006-05-30 | 주식회사 포스코 | 쌍롤식 박판주조기의 주조롤표면 가스층두께 조절장치 |
AT412195B (de) | 2002-06-25 | 2004-11-25 | Voest Alpine Ind Anlagen | Verfahren zur erzeugung eines metallbandes mit einer zweiwalzengiesseinrichtung |
AU2002951075A0 (en) * | 2002-08-29 | 2002-09-12 | Commonwealth Scientific And Industrial Research Organisation | Twin roll casting of magnesium and magnesium alloys |
DE10349400B3 (de) * | 2003-10-21 | 2005-06-16 | Thyssenkrupp Nirosta Gmbh | Verfahren zum Herstellen von gegossenem Stahlband |
EP1777022B1 (de) * | 2004-06-30 | 2013-08-07 | Sumitomo Electric Industries, Ltd. | Verfahren zur herstellung von magnesiumlegierungsprodukten |
CN100368120C (zh) * | 2005-12-02 | 2008-02-13 | 重庆大学 | 双辊连铸镁合金薄带浇铸装置 |
JP2008161875A (ja) * | 2006-12-27 | 2008-07-17 | Mitsubishi Alum Co Ltd | 表面性状に優れる鋳造材を得るのに最適な鋳造用ノズル、およびそれを用いた鋳造材の製造方法とマグネシウム合金 |
JP2008161894A (ja) * | 2006-12-27 | 2008-07-17 | Mitsubishi Alum Co Ltd | 連続鋳造圧延装置および連続鋳造圧延方法 |
CN101269406B (zh) * | 2008-05-26 | 2010-06-02 | 重庆大学 | 铝合金薄带坯的连铸工艺 |
DE102009038974B3 (de) * | 2009-08-21 | 2010-11-25 | Salzgitter Flachstahl Gmbh | Verfahren zum Erzeugen von Warmband mittels Bandgießen mit über den Bandquerschnitt einstellbaren Werkstoffeigenschaften |
WO2016129344A1 (ja) * | 2015-02-13 | 2016-08-18 | 株式会社Ihi | 連続鋳造装置 |
JP6524689B2 (ja) * | 2015-02-13 | 2019-06-05 | 株式会社Ihi | 連続鋳造装置 |
JP6511968B2 (ja) * | 2015-06-03 | 2019-05-15 | 日産自動車株式会社 | 双ロール式縦型鋳造装置及び双ロール式縦型鋳造方法 |
CN114269492B (zh) * | 2019-07-03 | 2023-05-09 | 斯佩拉有限公司 | 带材连铸设备的熔体供给 |
-
2020
- 2020-07-02 CN CN202080048798.0A patent/CN114269492B/zh active Active
- 2020-07-02 EP EP20734983.8A patent/EP3993921B1/de active Active
- 2020-07-02 JP JP2021578108A patent/JP7265654B2/ja active Active
- 2020-07-02 WO PCT/EP2020/068713 patent/WO2021001495A1/de active Search and Examination
-
2021
- 2021-12-28 US US17/563,768 patent/US11673184B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN114269492B (zh) | 2023-05-09 |
US20220118507A1 (en) | 2022-04-21 |
WO2021001495A1 (de) | 2021-01-07 |
EP3993921C0 (de) | 2024-04-10 |
US11673184B2 (en) | 2023-06-13 |
CN114269492A (zh) | 2022-04-01 |
JP7265654B2 (ja) | 2023-04-26 |
EP3993921A1 (de) | 2022-05-11 |
JP2022530716A (ja) | 2022-06-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE69602633T2 (de) | Giessen eines Stahlbandes | |
DE69700737T2 (de) | Kontaktlose wärmeabsorber für das bandgiessen | |
EP0035675B2 (de) | Verfahren und Einrichtung zum Horizontalstranggiessen von flüssigen Metallen, insbesondere von Stahl | |
DE69604825T2 (de) | Verfahren und vorrichtung zur herstellung von verformbarem stahl | |
DE69528954T2 (de) | Stranggiessanlage für stahl | |
EP3993921B1 (de) | Schmelzezuführung für bandgussanlagen | |
DE19637402C2 (de) | Bandgießen | |
EP1181997A1 (de) | Verfahren und Vorrichtung zum kontinuierlichen Giessen von Stahlband aus Stahlschmelze | |
DE2414514A1 (de) | Stranggiessverfahren | |
DE2043882A1 (en) | Flat cast object formed with a spray of - atomised metal | |
DE3440236C2 (de) | ||
DE60000858T2 (de) | Verfahren und vorrichtung zum stranggiessen mit hoher geschwindigkeit | |
DE69323922T2 (de) | Verfahren und Vorrichtung zum kontinuierlichen Giessen eines metallischen Bandes | |
EP3016762B1 (de) | Giesswalzanlage und verfahren zum herstellen von metallischem walzgut | |
DE2548939C2 (de) | Verfahren und Vorrichtung zum Stranggießen von Bändern | |
EP1132161B1 (de) | Verfahren zum Stranggiessen von Brammen, und insbesondere von Dünnbrammen | |
EP2025432A1 (de) | Verfahren zur Erzeugung von Stahl-Langprodukten durch Stranggiessen und Walzen | |
DE2853868C2 (de) | Verfahren zum Stranggießen von Stahl sowie dementsprechend hergestellter Stahlstrang | |
AT522265B1 (de) | Umbau einer stranggiessanlage für knüppel- oder vorblockstränge | |
DE3440235C2 (de) | Verfahren und Vorrichtung zum Bandstranggießen von Metallen, insbesondere von Stahl | |
DE60316568T3 (de) | Bandtemperaturregelvorrichtung in einer kontinuierlichen bandgiessanlage | |
DE3856161T2 (de) | Verfahren und vorrichtung zum direkten giessen von metall zur bildung langer körper | |
DE60113231T2 (de) | Vorrichtung und verfahren für kontinuierliches oder halbkontinuierliches giessen von aluminium | |
DE3406730A1 (de) | Verfahren und vorrichtung zum stranggiessen von metallen, insbesondere von stahl | |
DE2406252B2 (de) | Verfahren und Vorrichtung zum Stranggießen und Weiterverarbeiten des gegossenen Strangs |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: UNKNOWN |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20211222 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20230526 |
|
GRAJ | Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted |
Free format text: ORIGINAL CODE: EPIDOSDIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
INTC | Intention to grant announced (deleted) | ||
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20231121 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502020007639 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
U01 | Request for unitary effect filed |
Effective date: 20240507 |
|
U07 | Unitary effect registered |
Designated state(s): AT BE BG DE DK EE FI FR IT LT LU LV MT NL PT SE SI Effective date: 20240516 |
|
U20 | Renewal fee paid [unitary effect] |
Year of fee payment: 5 Effective date: 20240723 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240810 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240410 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240711 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20240723 Year of fee payment: 5 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240410 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20240801 Year of fee payment: 5 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240410 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240410 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240710 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240810 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240410 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240711 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240410 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240710 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240410 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240410 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240410 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240410 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240410 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240410 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240410 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240410 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240410 |