EP3707424B1 - Cuve etanche et thermiquement isolante - Google Patents
Cuve etanche et thermiquement isolante Download PDFInfo
- Publication number
- EP3707424B1 EP3707424B1 EP18804368.1A EP18804368A EP3707424B1 EP 3707424 B1 EP3707424 B1 EP 3707424B1 EP 18804368 A EP18804368 A EP 18804368A EP 3707424 B1 EP3707424 B1 EP 3707424B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- insulating
- tank
- flat
- support surface
- dihedral
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000002184 metal Substances 0.000 claims description 79
- 229910052751 metal Inorganic materials 0.000 claims description 79
- 230000004888 barrier function Effects 0.000 claims description 70
- 238000004873 anchoring Methods 0.000 claims description 65
- 239000012528 membrane Substances 0.000 claims description 50
- 238000007789 sealing Methods 0.000 claims description 45
- 238000009434 installation Methods 0.000 claims description 15
- 238000007667 floating Methods 0.000 claims description 13
- 238000003860 storage Methods 0.000 claims description 13
- 239000012530 fluid Substances 0.000 claims description 12
- 239000006260 foam Substances 0.000 claims description 12
- 229920000642 polymer Polymers 0.000 claims description 12
- 238000004519 manufacturing process Methods 0.000 claims description 11
- 238000000034 method Methods 0.000 claims description 9
- 239000011810 insulating material Substances 0.000 claims description 5
- 230000000717 retained effect Effects 0.000 claims description 3
- 238000003825 pressing Methods 0.000 claims 9
- 238000009413 insulation Methods 0.000 description 25
- 229910000746 Structural steel Inorganic materials 0.000 description 22
- 239000003949 liquefied natural gas Substances 0.000 description 17
- 238000002955 isolation Methods 0.000 description 7
- 238000010276 construction Methods 0.000 description 6
- 238000004078 waterproofing Methods 0.000 description 5
- 239000011120 plywood Substances 0.000 description 4
- 230000000284 resting effect Effects 0.000 description 4
- 238000005520 cutting process Methods 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 238000003780 insertion Methods 0.000 description 3
- 230000037431 insertion Effects 0.000 description 3
- 239000002131 composite material Substances 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 238000003466 welding Methods 0.000 description 2
- 229910001374 Invar Inorganic materials 0.000 description 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 1
- 240000008042 Zea mays Species 0.000 description 1
- 238000004026 adhesive bonding Methods 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 238000012550 audit Methods 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 235000000396 iron Nutrition 0.000 description 1
- 239000012263 liquid product Substances 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 239000000088 plastic resin Substances 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 238000004080 punching Methods 0.000 description 1
- 239000007779 soft material Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C3/00—Vessels not under pressure
- F17C3/02—Vessels not under pressure with provision for thermal insulation
- F17C3/025—Bulk storage in barges or on ships
- F17C3/027—Wallpanels for so-called membrane tanks
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C3/00—Vessels not under pressure
- F17C3/02—Vessels not under pressure with provision for thermal insulation
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2201/00—Vessel construction, in particular geometry, arrangement or size
- F17C2201/01—Shape
- F17C2201/0147—Shape complex
- F17C2201/0157—Polygonal
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2201/00—Vessel construction, in particular geometry, arrangement or size
- F17C2201/05—Size
- F17C2201/052—Size large (>1000 m3)
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2203/00—Vessel construction, in particular walls or details thereof
- F17C2203/03—Thermal insulations
- F17C2203/0304—Thermal insulations by solid means
- F17C2203/0358—Thermal insulations by solid means in form of panels
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2221/00—Handled fluid, in particular type of fluid
- F17C2221/03—Mixtures
- F17C2221/032—Hydrocarbons
- F17C2221/033—Methane, e.g. natural gas, CNG, LNG, GNL, GNC, PLNG
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2223/00—Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
- F17C2223/01—Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
- F17C2223/0146—Two-phase
- F17C2223/0153—Liquefied gas, e.g. LPG, GPL
- F17C2223/0161—Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2223/00—Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
- F17C2223/03—Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
- F17C2223/033—Small pressure, e.g. for liquefied gas
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2260/00—Purposes of gas storage and gas handling
- F17C2260/01—Improving mechanical properties or manufacturing
- F17C2260/013—Reducing manufacturing time or effort
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2270/00—Applications
- F17C2270/01—Applications for fluid transport or storage
- F17C2270/0102—Applications for fluid transport or storage on or in the water
- F17C2270/0105—Ships
- F17C2270/0107—Wall panels
Definitions
- the invention relates to the field of tanks, sealed and thermally insulating, with membranes, for the storage and/or transport of fluid, such as a cryogenic fluid.
- Sealed and thermally insulating tanks with membranes are used in particular for the storage of liquefied natural gas (LNG), which is stored, at atmospheric pressure, at around -162°C.
- LNG liquefied natural gas
- These tanks can be installed on land or on a floating structure. In the case of a floating structure, the tank may be intended for the transport of liquefied natural gas or to receive liquefied natural gas serving as fuel for the propulsion of the floating structure.
- the secondary insulation barrier consists essentially of secondary insulating blocks juxtaposed on the polyhedral internal surface of the support structure
- the secondary sealing barrier consists of a corrugated metal membrane arranged on an internal surface secondary insulating blocks
- the primary insulating barrier essentially consists of primary insulating blocks juxtaposed on the secondary metal membrane and anchored to the secondary insulating barrier by anchoring members carried by the secondary insulating blocks
- the barrier of The primary seal consists of a corrugated metal membrane arranged on an internal surface of the primary insulating blocks.
- the primary and secondary insulating blocks are made of prefabricated corner structures.
- FIG 1 partially illustrates an insulation barrier essentially consisting of insulating blocks juxtaposed on a polyhedral support surface 1 having two flat regions 2 and 3 forming an angle between them and meeting at an edge 4.
- the insulating blocks comprise a structure of angle 5 arranged along the edge which has two sides respectively parallel to each of the two flat regions 2 and 3 and flat insulating panels 6 arranged on the flat regions of the support surface on either side of the structure corner 5.
- an insulation barrier with insulating blocks that are as standardized as possible in order to reduce manufacturing costs.
- the construction of a large load-bearing structure such as the hull of a ship is subject to high dimensional tolerances, for example several centimeters, which prevent the dimensions of a vessel from being fully planned before its construction. It follows that it may be necessary to construct at least some of the insulating blocks to measure according to the actual dimensions of the load-bearing structure.
- One idea at the basis of the invention is to propose a sealed and thermally insulating tank with a multilayer structure which makes it easier to take into account at least some of the aforementioned constraints.
- Another idea underlying the invention is to provide a waterproof and insulating multilayer structure which is easy to produce over large surfaces.
- the anchoring member can thus be used to retain an element of the insulation barrier on the support surface, for example a flat insulating panel adjacent to the row of corner structures or a dihedral insulating block of the row of corner structures.
- such a tank may comprise one or more of the following characteristics.
- said at least one of the two successive corner structures has a cutout formed in the projecting portion of the metal bracket in line with said anchoring member disposed between the dihedral insulating blocks, to provide access to said connecting member. 'anchoring.
- the anchoring member placed between the two dihedral insulating blocks remains accessible after the row of corner structures has been put in place, despite the presence of a protruding portion of one or both metal angles which at least partially covers the spacing between the two dihedral insulating blocks.
- This access makes it easy to act on the anchoring member from the inner surface of the angle iron, for example by means of a screwing tool
- a metal angle can have the projecting portion at a single end or two projecting portions at its two opposite ends in the direction of the edge zone.
- the cutout formed in line with the anchoring member may extend in the projecting portion of a single metal angle iron or in the two projecting portions facing each other of the two successive metal angle irons.
- said spacing is partially covered by two protruding portions facing each other belonging respectively to the metal angles of the two successive corner structures, each of the two protruding portions facing each other comprising a cutout formed in line with said anchoring member. Thanks to these characteristics, an access of satisfactory size can be achieved while using a cutout having a relatively small section in each of the two projecting portions, which limits the influence of these cutouts on the mechanical strength of the metal angles.
- the metal angle iron of a corner structure has two projecting portions which project relative to the dihedral insulating block at two opposite ends of the metal angle iron in the direction of the edge zone. Thanks to these characteristics, corner structures can be built identically, which reduces manufacturing costs.
- said or each cutout is formed in an end edge of said protruding portion oriented transversely to the edge zone. Thanks to these characteristics, the manufacture of blanks is facilitated.
- said metal bracket connects the two sides of the dihedral insulating block to one another.
- the anchoring member disposed between the dihedral insulating blocks of the two successive corner structures cooperates with the dihedral insulating blocks of the two corner structures to retain said dihedral insulating blocks on the support surface.
- the anchoring member arranged between the dihedral insulating blocks of the two successive corner structures cooperates with a flat insulating panel adjacent to the row of corner structures to retain said flat insulating panel on the surface of support.
- this arrangement also has the advantage of making it possible to position these anchoring members relatively close to the edge area, especially on secondary corner structures.
- the secondary flat insulating panels adjacent to the secondary corner structures do not need to carry these anchoring members for the primary flat insulating panels, the custom dimensioning of these secondary flat insulating panels can be facilitated.
- the planar insulating panel adjacent to the row of corner structures comprises a layer of insulating polymer foam sandwiched between a rigid bottom plate and a rigid cover plate, the rigid cover plate and the of insulating polymer foam having a recess made in the thickness of the insulating panel to uncover a support zone on the internal surface of the rigid base plate, said recess opening onto an edge of the flat insulating panel parallel to the edge zone and facing the row of corner structures, the anchoring member, in particular the second portion of the support bar, being in engagement with said support zone of the bottom plate.
- the recess formed in the thickness of the insulating panel is a groove oriented perpendicular to said edge of the flat insulating panel.
- Such grooves can be provided at different locations, for example at the ends of the edge of the flat insulating panel facing the row of corner structures and/or in a central portion of this edge of the flat insulating panel.
- the flat insulating panel has the shape of a rectangular parallelepiped, the recess being formed in a corner of the flat insulating panel.
- the support surface carries a plurality of anchoring members distributed along the edge zone and each arranged between two dihedral insulating blocks of successive corner structures and each cooperating with a respective zone of the planar insulation panel adjacent to the row of corner structures to retain said planar insulation panel on the support surface.
- the support surface comprises a third planar region transverse to the edge zone at one end of the edge zone
- a last corner structure of the row of corner structures comprises, in addition said dihedral insulating block, a third face parallel to the third planar region and forming angles with said two faces of the dihedral insulating block, and the metal angle of said last corner structure extends over the flat inner surface of said third panel to form said sealing barrier at right angles to the end of the edge zone of the support surface, said metal angle linking said third face to the dihedral insulating block, said protruding portion of the metal angle protruding opposite the third face in the direction of a penultimate corner structure of the row of corner structures.
- said dihedral insulating block of the penultimate corner structure of the row of corner structures has a greater dimension in the direction of the edge zone than corner structures located along a central portion of the edge zone, the metal angle iron of the said penultimate angle structure being composed of two segments of angle iron juxtaposed along the direction of the edge zone and fixed to the flat interior surfaces of the dihedral insulating block.
- a first segment of angle iron of said penultimate angle structure has orifices for the passage of anchoring members serving to fix said dihedral insulating block on the support surface and a second segment of angle iron of said penultimate corner structure located on the side of the end of the edge zone has a continuous surface.
- the penultimate corner structure can quite easily be adjusted to the dimension of the support structure in the direction of the edge zone, to take account of the manufacturing tolerances of this support structure.
- a block of insulating material is placed in the spacing between the dihedral insulating blocks, between the projecting portion of the metal angle iron and the support surface.
- the block of insulating material has a passage between said cutout formed in the projecting portion of the metal bracket and said anchoring member arranged between the dihedral insulating blocks. Thanks to such a passage, access to the anchoring member remains possible after the installation of the block of insulating material, which facilitates the assembly of the vessel wall.
- the sealing barrier comprises a closure piece arranged astride the metal angles of the two successive corner structures so as to connect the metal angles of the two corner structures in a sealed manner, said closure piece covering a gap located between the metal angles and the cutout of said or each protruding portion which covers the spacing between the dihedral insulating blocks.
- the sealing barrier in line with one or each planar region of the support surface comprises a metal membrane bearing undulations parallel to the edge zone and undulations perpendicular to the edge zone and flat areas located between said undulations, an edge of the metal membrane parallel to the edge area being welded to the metal angles of the successive corner structures, said undulations perpendicular to the edge area being aligned with interstices located between the metal angles of the successive angle structures.
- the closure part comprises a corrugation perpendicular to the edge zone aligned with a corrugation of the metal membrane and two flat portions located on either side of the corrugation and welded respectively to the metal angles of the two corner structures.
- the above features may be employed in the construction of an isolation barrier constructed directly over a supporting structure providing the supporting surface, or in the construction of a primary isolation barrier constructed over a pre-existing secondary barrier providing said supporting surface. support.
- said insulation barrier is a primary insulation barrier and said sealing barrier is a primary sealing barrier, the vessel further comprising a secondary insulation barrier having a substantially polyhedral internal surface covered of a secondary sealing barrier and forming said support surface.
- Such a tank can be part of an onshore storage facility, for example to store LNG or be installed in a floating, coastal or deep water structure, in particular an LNG carrier, a floating storage and regasification unit (FSRU) , a floating production and remote storage unit (FPSO) and others.
- LNG carrier for example to store LNG
- FSRU floating storage and regasification unit
- FPSO floating production and remote storage unit
- a vessel for the transport of a cold liquid product comprises a double hull and a aforementioned tank placed in the double hull.
- the invention also provides a method for loading or unloading such a ship, in which a fluid is routed through insulated pipes from or to a floating or terrestrial storage installation to or from the tank of the ship.
- the invention also provides a transfer system for a fluid, the system comprising the aforementioned vessel, insulated pipes arranged so as to connect the tank installed in the hull of the vessel to a floating or terrestrial storage installation and a pump for driving fluid through the insulated pipelines from or to the floating or onshore storage facility to or from the vessel's tank.
- Each wall of the tank comprises, from the outside towards the inside of the tank, a secondary thermally insulating barrier comprising secondary insulating elements juxtaposed and anchored to a supporting structure by secondary anchoring members, a secondary sealing membrane carried by the secondary insulating elements, a primary thermally insulating barrier comprising primary insulating elements juxtaposed and anchored to the secondary insulating elements by primary anchoring members 19 and a primary sealing membrane carried by the primary insulating elements and intended to be in contact with the liquefied natural gas contained in the tank.
- the load-bearing structure can in particular be formed of self-supporting metal sheets or, more generally, of any type of rigid partition having suitable mechanical properties.
- the load-bearing structure can in particular be formed by the hull or the double hull of a ship.
- the support structure comprises a plurality of walls defining the general shape of the tank, usually a polyhedral shape.
- the flat areas of the tank can be made in different ways, for example according to the teaching of WO-A-2016046487 or of WO-A-2017006044 .
- a corner zone of the tank along an edge of the supporting structure will be described below more particularly.
- the angle formed between the first bearing wall 11 and the second bearing wall 12 is approximately 90° in the embodiment shown.
- the angle can however have any other value, for example of the order of 135°.
- the secondary thermally insulating barrier comprises a row of secondary angle structures 13 arranged along the edge 10, a single secondary angle structure 13 being represented on the figure 2 And 3 .
- the secondary corner structure 13 and the secondary sealing membrane 15 arranged on its internal surface 14 can be produced in different ways, for example according to the teaching of WO-A-2017006044 .
- the secondary corner structure 13 here comprises a sandwich structure consisting of a layer of insulating polymer foam 16 sandwiched between two rigid plates 17, 18, for example made of plywood.
- the inner plate 18 has a network of perpendicular grooves 19 intended to receive the corrugations 24 of the secondary sealing membrane 15.
- the corrugations 24 protrude outwards from the tank in the direction of the supporting structure and are each received in a groove 19.
- the orientation of the undulations of the secondary sealing membrane is towards the inside of the tank.
- the inner plate 18 is also equipped with a plurality of metal plates 20, for example made of stainless steel or an alloy with a low coefficient of thermal expansion, in particular invar ® , intended for anchoring the edges of the membrane of secondary sealing.
- the metal plates 20 are fixed in recesses made in the inner plate 18 and fixed thereto, by screws, rivets or staples for example.
- the metal plates 20 are fixed directly to the layer of insulating polymer foam 16, for example by gluing.
- the internal plate 18 is also equipped with anchoring plates 21 intended to ensure the fixing of primary angle structures 30 against the secondary angle structure 13.
- the anchoring plates 21 are for example glued on the internal plate 18 and / or fixed thereto, by screws, rivets or staples for example.
- the secondary sealing membrane 15 has a plurality of orifices through each of which passes an anchoring member making it possible to anchor the primary corner structures 30.
- a cap nut 22 passes through each of the orifices and is present on its outer periphery a thread cooperating with a threaded bore 23 formed in one of the anchoring plates 21.
- the blind nut 22 has a threaded blind bore intended to receive a fixing stud for the primary angle structures 30
- the blind nut 22 further comprises a collar making it possible to sandwich the secondary sealing membrane 15 between said collar and the anchoring plate 21. The periphery of this collar is welded to the secondary sealing membrane 15 in order to to ensure sealing.
- the primary thermally insulating barrier comprises along the edge 10 of the vessel a plurality of primary corner structures 30.
- the primary corner structure 30 is a preassembled assembly comprising a dihedral insulating block 31 and an angle iron 32.
- the block dihedral insulator 31 has an inner face on which the angle iron 32 rests and an outer face resting against the secondary sealing membrane 15.
- the dihedral insulating block 31 has a composite structure in its thickness, comprising a layer of insulating polymer foam 33 taken into sandwich between two plywood plates 34, 35 glued to said layer of polymer foam 33.
- the angles 32 are metal angles, for example, made of stainless steel.
- the angle 32 has two wings resting against the inner face of the dihedral insulating block 31.
- Each wing of an angle 32 has studs, not shown, which are welded to the outer face of said wing and project towards the inside of the tank to fix the angle iron 32 to the dihedral insulating block 31, before mounting the primary angle structure 30 in the tank.
- Each wing of the bracket 32 also has a stud 36 on its internal face, projecting towards the inside of the tank.
- the dowels 36 make it possible to anchor welding equipment during the welding of the elements of the primary waterproofing membrane to the angles 32.
- the angle iron 32 is provided with orifices 37, for example eight in number per angle iron 32, making it possible to mount nuts on studs (not shown) carried by the plates 21, in order to ensure the fixing of the structure of primary angle 30 to secondary angle structure 13.
- the primary angle structures 30 are arranged on the secondary angle structures 13 in the form of a row along the edge 10.
- two successive primary angle structures 30 have a space 38 between the two dihedral insulating blocks 31.
- joint insulating elements 39 are inserted into the space 38 between the two dihedral insulating blocks 31, so as to ensure continuity of the thermal insulation.
- the secondary corner structure 13 can carry an anchoring member intended to cooperate with a primary insulating element. This case will be described more precisely with reference to the figures 3 to 5 .
- the anchoring member as a whole is cut in its median plane of symmetry on the figure 4 , so that the half-view is enough to understand its structure.
- the anchoring member comprises a plate 40 fixed on the internal surface of the secondary angle structure 13 between two plates 21.
- the plate 40 can be fixed on the secondary angle structure 13 of different ways like the plates 21. It has a tapped hole 41 intended to receive a cap nut 42 shown in half view on the figure 4 .
- the plate 40 can be present in line with each space 38 or in line with some, for example one in three, of the spaces 38.
- the blind nut 42 passes through an orifice of the secondary sealing membrane, not shown, and has on its outer periphery a thread 43 cooperating with the tapped hole 41 formed in the plate 40. Furthermore, the blind nut 42 has a blind bore threaded 44 receiving a stud 45.
- the cap nut 42 further comprises a collar 46 allowing the secondary sealing membrane to be sandwiched between said collar and the plate 40. The periphery of this collar is welded to the sealing membrane secondary 15 to ensure sealing.
- the pin 45 protrudes inwardly into the space 38 between the two dihedral insulating blocks 31 and serves to fix a support bar 50 oriented perpendicular to the edge 10.
- the support bar 50 here has a section U-shaped whose base is turned towards the supporting structure. In the mounted state as shown, a first portion of the support bar 50 extends into the space 38 between the two dihedral insulating blocks 31 and has a slot 58 through which the stud 45 passes.
- a nut 47 screwed onto the pin 45 makes it possible to tighten the support bar 50 towards the internal surface of the secondary corner structure 13.
- a second portion 51 of the support bar 50 protrudes beyond the row of primary corner structures 30 to bear on a flat primary insulating panel 29 adjacent to the row of primary corner structures 30.
- the length of the slot 58 allows adjustment of the length of the second portion 51 projecting beyond the row of primary corner structures 30.
- the slot 58 whose two ends 58a and 58b are indicated on the sectional view of the figure 4 , is long enough to allow the support bar 50 to be completely retracted into the space 38 between the two dihedral insulating blocks 31.
- the support bar can be slid 50 between this retracted position (shown on the figure 6 ), which facilitates the installation of the flat primary insulating panel 29 by completely freeing its location indicated in dashed line at the number 99, and the deployed position illustrated on the figure 4 .
- the deployment movement of the support bar 50 is schematized by the arrow 98 on the figure 6 .
- the length of the planar primary insulation panel 29 is nine times the width of the primary corner structure 30, so that four mutually spaced grab bars at an interval of three times the width of the primary corner structure 30 engages the flat primary insulating panel 29 along its edge facing the edge, namely two support bars 50 at the two ends of this edge, that is to say at two corners of the flat primary insulating panel 29, and two support bars in a central zone of the edge of the flat primary insulating panel 29. This central zone is represented on the picture 3 .
- the flat primary insulating panel 29 has the general shape of a rectangular parallelepiped with a longitudinal edge 26 parallel to the edge 10.
- the flat primary insulating panel 29 has for example a composite structure consisting of a layer of insulating polymer foam sandwiched between a rigid bottom plate, of which an uncovered area 28 is visible, and a rigid cover plate 25.
- the rigid cover plate 25 and the layer of insulating polymer foam are hollowed out with a groove 27 extending perpendicular to the edge 10 to the right of the plate 20 and leading to the longitudinal edge 26 to discover the uncovered zone 28 of the rigid bottom plate.
- the second portion 51 of the support bar 50 is engaged in the groove 27 and rests on the uncovered zone 28 of the rigid bottom plate, possibly by means of a shim. 48.
- Another shim 49 can be inserted between the other end of the support bar 50 and the secondary membrane (not shown).
- the shims 48 and 49 are sized to ensure parallelism between the support bar 50 and the bottom plate of the flat primary insulating panel 29. They are made of a sufficiently soft material to avoid the risk of punching, marking or damage the secondary sealing membrane 15. For example, they can be made of plywood, plastic or epoxy resin.
- the support bar 50 mounted in this way has several advantages: the second portion 51 is a length cantilevered substantially parallel to the flat wall of the tank which rests on the flat primary insulating panel 29, preferably distance from the edge of this panel. It therefore makes it possible to retain the flat primary insulating panel 29 on the secondary membrane without requiring any development complex on the flat primary insulating panel 29: it suffices to clear a flat portion of the bottom plate.
- the length of the second portion 51 is easily adjustable by sliding the stud 45 in the length of the slot 58.
- This arrangement therefore adapts easily to flat primary insulating panels having different dimensions or grooves 27 having different lengths.
- the length of the groove 27 can in particular be shortened following a cutting of the edge 26 to reduce the width of the insulating panel 29.
- each angle iron 32 has two projecting flanges 53 which project relative to the dihedral insulating block 31 at two opposite ends of the angle iron 32 in the direction of the edge 10.
- the space 38 between the two dihedral insulating blocks 31 is partially covered by the two projecting rims 53 on either side thereof.
- each of the two projecting edges 53 on either side of the anchoring member is provided with a cutout 54 which is located plumb with the pin 45 and which is formed in the end edge 55 oriented transversely to the edge 10.
- all the projecting edges 53 of all the angles 32 can have this cutout 54 to standardize the manufacture.
- the cutouts 54 are used to provide sufficient space between the two projecting edges 53 for the passage of a tightening tool 60, for example a socket wrench having a cylindrical head 61 or a screwdriver.
- the depth of the cutout 54 in the direction of the edge 10 can therefore be dimensioned to provide a distance D slightly greater than the diameter of the cylindrical head 61 between the bottoms of the two cutouts 54 facing each other.
- There length of cutout 54 along end edge 55 may be substantially equal to the same distance D, for example approximately 30mm.
- the construction of the flat portions of the vessel wall located on both sides of an edge can be made in the same way or in a different way, and in a symmetrical or asymmetrical way. Furthermore, if a single corner of the tank has been described above, the other corners of the tank may have the same or different arrangement.
- the three walls which are represented here respectively constitute a bottom wall, an end wall and a lower oblique wall.
- the lower oblique wall forms an angle of 135° with the bottom wall.
- the lower oblique wall and the bottom wall are perpendicular to the end wall.
- Such an arrangement corresponds for example to a tank which has a generally polyhedral shape and which comprises two end walls of octagonal shape which are connected to each other by eight walls, namely a bottom wall and a back wall.
- the row of secondary corner structures 13 ends with a last secondary corner structure 113 which is formed of a set of three insulating panels which are respectively fixed against the supporting structure of each of the three supporting walls.
- the three insulating panels of the last secondary corner structure 113 each have a sandwich structure identical to that of the secondary corner structures 13, namely consisting of a layer of insulating polymer foam 116 sandwiched between two rigid plates 117, 118 for example plywood.
- the rigid plate 118 On each of the three insulating panels of the last secondary corner structure 113, the rigid plate 118 carries anchoring plates 121 and 140 whose structures and functions are identical to those of the anchoring plates 21 and 40 described above in relationship with the secondary corner structure 13.
- the anchor plates 121 make it possible to fix a final primary corner structure 130 ( Fig. 7 ) on the last secondary corner structure 113.
- the plate 40 makes it possible to fix an anchor member in a space between the last primary corner structure 130 and a penultimate primary corner structure 230 ( Fig. 7 ) of the row of primary corner structures.
- This anchoring member comprises a pin 145 engaged in a slot 158 of a support bar 150 visible on the figure 9 .
- FIG 8 is also a view of the edge end area, additionally showing the primary corner structures mounted on the secondary corner structures of the figure 7 .
- the secondary waterproofing membrane is entirely omitted to simplify the representation.
- the last primary corner structure 130 of the row is made up of three insulating blocks resting respectively against each of the three insulating panels of the last secondary corner structure 113. Furthermore, the insulating blocks of the last primary angle 130 each have an internal face on which rests a three-sided angle iron 132 whose general structure is similar to the metal angle iron 32 of the primary angle structure 30, except for the presence of a third wing 100 parallel to the wall inferior oblique.
- the three-sided angle iron 132 notably comprises studs 136, orifices 137 and flanges 153 whose structures and functions are similar to those of the studs 36, orifices 37 and flanges 53 described above.
- the penultimate primary corner structure 230 is shown using reference numerals increased by 200 for elements analogous or identical to those of the primary corner structure 30.
- the dihedral insulating block 231 is longer than the insulating block dihedral 31 and carries on its inner surface two successive metal angles in the direction of the edge.
- the metal angle 232 is substantially identical to the metal angle 32 of the primary corner structure 30 but, because the dihedral insulating block 231 is elongated in the direction of the last primary corner structure 130, it can have a larger dimension. long along the edge 10 and it protrudes only on one side (not shown) of the dihedral insulating block 231.
- the metal angle 65 is placed next to the metal angle 232 with a small gap between them and attached to the dihedral insulating block 231 in the same way as the metal angle 32 of the primary corner structure 30.
- the metal angle 65 has a projecting flange 253 which projects with respect to the dihedral insulating block 231 in the direction of the edge 10 above the space 138.
- the space 138 is partially covered by the two projecting flanges 153 and 253 on either side other of it.
- the protruding rim 153 and/or the protruding rim 253 can include a cutout to facilitate access to the anchor member located in the space 138.
- a cutout 254 is present only in the protruding rim 253.
- the fixing of the penultimate primary corner structure 230 on the secondary insulating barrier is carried out only at the level of the portion farthest from the last primary corner structure 130, namely the portion bearing the angle iron metal 232 which is fixed on an underlying penultimate secondary corner structure 13 in the same way as described previously For this, the metal angle 232 also has the holes 237.
- the metal bracket 65 does not have any orifices and can be continuous, since the portion of the dihedral insulating block 231 facing the last primary corner structure 130 spans the gap 66 between the penultimate structure of secondary corner 13 and the last secondary corner structure 113 and extends over the last secondary corner structure 113 without being fixed thereto.
- This arrangement has the advantage of being independent of the precise size of the gap 66 in the secondary isolation barrier, which can be easily adjusted to compensate for manufacturing tolerances.
- FIG 9 shows the same area of the tank as the figure 8 , but with the addition of a last flat primary insulating panel 129 adjacent to the penultimate primary corner structure 230.
- This flat primary insulating panel 129 has, analogously to the groove 27 of the picture 3 , a recess 127 made in line with a corner zone of the rigid bottom plate (not shown) to uncover said corner zone.
- grab bar 150 which is engaged in the recess 127 and rests on the uncovered area in the manner previously described.
- the primary sealing membrane is for example a membrane having two series of mutually perpendicular undulations. It can be done essentially as described in WO-A-2017006044 .
- Metal sheets 67 of the primary sealing membrane bordering an edge are welded along their edge directed towards the edge on the metal angles 32, 232, 65, 132.
- angle pieces 68,168, 268 metal are welded astride each interface between two successive metal angles 32, 232, 65, 132.
- corner pieces 68,168, 268 cover the orifices 37, 137, 237 and the cutouts 54, 254 of the metal angles provide continuity of the undulations of the primary sealing membrane oriented perpendicular to the edge 10.
- FIG 11 illustrates another embodiment of the vessel wall along the edge 10.
- the primary and secondary sealing membranes are omitted to simplify the representation.
- Elements similar or identical to those of the figures 2 to 4 bear the same reference numeral increased by 300 and will only be described insofar as they differ from those of the figures 2 to 4 .
- the primary angle structure 330 is fixed to the secondary angle structure 313 by means of studs 345 arranged in each space 338 between two dihedral insulating blocks 331.
- the rigid plate 334 is slightly more wider than the layer of polymer foam 333 so as to uncover two side edges of the rigid plate 334.
- a support bar 350 has a hole, which may be oblong, through which the stud 345 passes and rests on the side edges of the rigid plate 334 of the two primary corner structures 330 between which the stud 345 is arranged.
- each primary corner structure 330 is retained by two support bars 350 engaged with the two side edges of its rigid plate 334.
- a nut, not shown, is screwed onto each stud 345 to tighten the support bar 350 in direction of the supporting structure.
- the 354 cutouts in the edges of the angles metal 332 facilitate the mounting of the stud 345 then the establishment of the nut in the manner previously described.
- a row of studs 69 may be provided on either side of the row of primary corner structures 330. This may require the provision of a wider secondary corner structure 313, as shown.
- the secondary insulating barrier and the secondary sealing membrane are eliminated and the studs which anchor the primary insulating barrier are carried directly by the load-bearing walls 11, 12.
- the technique described above for making a sealed and thermally insulating tank for storing a fluid can be used in different types of tanks, for example to constitute an LNG tank in an onshore installation or in a floating structure such as an LNG carrier. Or other.
- edge zone is used to designate the connection between two planar portions in both contexts and can correspond to a real edge or to a rounded portion between the two planar portions.
- a cutaway view of an LNG carrier 70 shows a sealed and insulated tank 71 of generally prismatic shape mounted in the double hull 72 of the ship.
- the wall of the tank 71 comprises a primary leaktight barrier intended to be in contact with the LNG contained in the tank, a secondary leaktight barrier arranged between the primary leaktight barrier and the double hull 72 of the ship, and two insulating barriers arranged respectively between the primary waterproof barrier and the secondary waterproof barrier and between the secondary waterproof barrier and the double hull 72.
- loading/unloading pipes 73 arranged on the upper deck of the ship can be connected, by means of appropriate connectors, to a maritime or port terminal to transfer a cargo of LNG from or to the tank 71.
- FIG 12 represents an example of a maritime terminal comprising a loading and unloading station 75, an underwater pipeline 76 and an installation on land 77.
- the loading and unloading station 75 is a fixed offshore installation comprising a mobile arm 74 and a tower 78 which supports the mobile arm 74.
- the mobile arm 74 carries a bundle of insulated flexible pipes 79 which can be connected to the loading/unloading pipes 73.
- the orientable mobile arm 74 adapts to all sizes of LNG carriers.
- a connecting pipe, not shown, extends inside the tower 78.
- the loading and unloading station 75 allows the loading and unloading of the LNG carrier 70 from or to the shore installation 77.
- This comprises liquefied gas storage tanks 80 and connecting pipes 81 connected by the underwater pipe 76 to the loading or unloading station 75.
- the underwater pipe 76 allows the transfer of the liquefied gas between the loading or unloading station 75 and the shore installation 77 over a great distance, for example 5 km, which makes it possible to keep the LNG carrier 70 at a great distance from the coast during loading and unloading operations.
- pumps on board the ship 70 and/or pumps fitted to the shore installation 77 and/or pumps fitted to the loading and unloading station 75 are used.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Filling Or Discharging Of Gas Storage Vessels (AREA)
- Packages (AREA)
Description
- L'invention se rapporte au domaine des cuves, étanches et thermiquement isolantes, à membranes, pour le stockage et/ou le transport de fluide, tel qu'un fluide cryogénique.
- Des cuves étanches et thermiquement isolantes à membranes sont notamment employées pour le stockage de gaz naturel liquéfié (GNL), qui est stocké, à pression atmosphérique, à environ -162°C. Ces cuves peuvent être installées à terre ou sur un ouvrage flottant. Dans le cas d'un ouvrage flottant, la cuve peut être destinée au transport de gaz naturel liquéfié ou à recevoir du gaz naturel liquéfié servant de carburant pour la propulsion de l'ouvrage flottant.
- On connaît différentes techniques pour la construction d'une cuve étanche et thermiquement isolante à membranes intégrée dans une structure porteuse présentant une surface interne sensiblement polyédrique et comportant successivement, dans une direction d'épaisseur, une barrière d'isolation secondaire, une barrière d'étanchéité secondaire, une barrière d'isolation primaire et une barrière d'étanchéité primaire.
- On connaît, par exemple par
WO-A-2014167214 ouWO-A-2017006044 , une paroi de cuve dans laquelle la barrière d'isolation secondaire est essentiellement constituée de blocs isolants secondaires juxtaposés sur la surface interne polyédrique de la structure porteuse, la barrière d'étanchéité secondaire est constituée d'une membrane métallique ondulée disposée sur une surface interne des blocs isolants secondaires, la barrière d'isolation primaire est essentiellement constituée de blocs isolants primaires juxtaposés sur la membrane métallique secondaire et ancrés à la barrière d'isolation secondaire par des organes d'ancrage portés par les blocs isolants secondaires, et la barrière d'étanchéité primaire est constituée d'une membrane métallique ondulée disposée sur une surface interne des blocs isolants primaires. Le long des arêtes de la structure porteuse, les blocs isolants primaires et secondaires sont constitués de structures d'angle préfabriquées. - Certains aspects de l'invention vont maintenant être expliqués en référence à la
figure 1 . Lafigure 1 illustre partiellement une barrière d'isolation essentiellement constituée de blocs isolants juxtaposés sur une surface de support polyédrique 1 présentant deux régions planes 2 et 3 formant un angle entre elles et se rejoignant au niveau d'une arête 4. Les blocs isolants comportent une structure d'angle 5 disposée le long de l'arête qui présente deux pans respectivement parallèles à chacune des deux régions planes 2 et 3 et des panneaux isolants plans 6 disposés sur les régions planes de la surface de support de part et d'autre de la structure d'angle 5. - Comme visible sur la
figure 1 , si les panneaux isolants plans 6 ont été montés en premier, il peut se produire un problème d'encombrement empêchant de placer la structure d'angle 5 le long de l'arête, comme indiqué par la flèche 7. Il s'ensuit qu'il peut être préférable de construire la barrière d'isolation en finissant par une région plane. Toutefois, une fois que la structure d'angle 5 a été placée le long de l'arête, toute une zone de la surface de support proche de l'arête 4 n'est plus accessible. - Par ailleurs, il est préférable de réaliser une barrière d'isolation avec des blocs isolants aussi standardisés que possible pour réduire les coûts de fabrication. Toutefois, la construction d'une structure porteuse de grande taille telle que la coque d'un navire est soumise à des tolérances dimensionnelles élevées, par exemple plusieurs centimètres, qui empêchent de planifier entièrement les dimensions d'une cuve avant sa construction. Il s'ensuit qu'il peut être nécessaire de construire au moins certains des blocs isolants sur mesure en fonction des dimensions réelles de la structure porteuse.
- Une idée à la base de l'invention est de proposer une cuve étanche et thermiquement isolante à structure multicouche qui facilite la prise en compte d'au moins certaines des contraintes susmentionnées. Une autre idée à la base de l'invention est de fournir une structure multicouche étanche et isolante qui soit facile à réaliser sur des surfaces étendues.
- Pour cela, l'invention fournit une cuve étanche et thermiquement isolante destinée au stockage d'un fluide, la cuve étanche et thermiquement isolante comportant une barrière d'isolation et une barrière d'étanchéité disposée sur une surface intérieure de la barrière d'isolation, la barrière d'isolation étant disposée sur une surface de support, par exemple sensiblement polyédrique, portant des organes d'ancrage et retenue sur la surface de support par lesdits organes d'ancrage, la surface de support présentant au moins deux régions planes formant un angle entre elles et se rejoignant au niveau d'une zone d'arête,
- dans laquelle la barrière d'isolation comporte une rangée de structures d'angle disposées le long de ladite zone d'arête de la surface de support et des panneaux isolants plans disposés sur les régions planes de la surface de support de part et d'autre de la rangée de structures d'angle,
- dans laquelle au moins une ou chaque dite structure d'angle comporte :
- un bloc isolant diédrique présentant deux pans respectivement parallèles aux régions planes et formant un angle entre eux, ledit ou chaque pan comportant une surface extérieure plane en appui contre la région plane correspondante de la surface de support et une surface intérieure plane parallèle à ladite région plane correspondante et espacée de ladite surface extérieure plane dans une direction d'épaisseur, et
- une cornière métallique fixée sur les surfaces intérieures planes du bloc isolant diédrique pour former ladite barrière d'étanchéité au droit de la zone d'arête de la surface de support, la cornière métallique présentant une portion saillante qui fait saillie par rapport au bloc isolant diédrique selon la direction de la zone d'arête,
- dans laquelle deux structures d'angle successives dans ladite rangée sont disposées de manière à présenter un espacement selon la direction de la zone d'arête entre les blocs isolants diédriques, ledit espacement étant au moins partiellement recouvert par la portion saillante de la cornière métallique d'au moins une des deux structures d'angle successives,
- dans laquelle la surface de support porte un dit organe d'ancrage disposé entre les blocs isolants diédriques des deux structures d'angle.
- L'organe d'ancrage peut ainsi être employé à retenir un élément de la barrière d'isolation sur la surface de support, par exemple un panneau isolant plan adjacent à la rangée de structures d'angle ou un bloc isolant diédrique de la rangée de structures d'angle.
- Selon des modes de réalisation, une telle cuve peut comporter une ou plusieurs des caractéristiques suivantes.
- Selon un mode de réalisation, ladite au moins une des deux structures d'angle successives présente une découpe formée dans la portion saillante de la cornière métallique au droit dudit organe d'ancrage disposé entre les blocs isolants diédriques, pour ménager un accès audit organe d'ancrage.
- Grâce à une telle découpe, l'organe d'ancrage disposé entre les deux blocs isolants diédriques reste accessible après la mise en place de la rangée de structures d'angle, malgré la présence d'une portion saillante de l'une ou des deux cornières métalliques qui recouvre au moins partiellement l'espacement entre les deux blocs isolants diédriques. Cet accès permet d'agir facilement sur l'organe d'ancrage depuis la surface intérieure de la cornière, par exemple au moyen d'un outil de vissage
- La portion saillante des cornières métalliques permet de limiter l'espacement entre les cornières métalliques des structures d'angle successives, ce qui facilite la fermeture étanche de la barrière d'étanchéité au moyen de pièces de fermeture et améliore le portage de ces pièces de fermeture et de la membrane d'étanchéité en général. Une cornière métallique peut présenter la portion saillante à une seule extrémité ou deux portions saillante à ses deux extrémités opposées selon la direction de la zone d'arête. La découpe formée au droit de l'organe d'ancrage peut s'étendre dans la portion saillante d'une seule cornière métallique ou dans les deux portions saillantes tournées l'une vers l'autre des deux cornières métalliques successives.
- Selon un mode de réalisation, ledit espacement est partiellement recouvert par deux portions saillantes tournées l'une vers l'autre appartenant respectivement aux cornières métalliques des deux structures d'angle successives,
chacune des deux portions saillantes tournées l'une vers l'autre comportant une découpe formée au droit dudit organe d'ancrage. Grâce à ces caractéristiques, un accès de taille satisfaisante peut être réalisé tout en utilisant une découpe ayant une section relativement petite dans chacune des deux portions saillantes, ce qui limite l'influence de ces découpes sur la résistance mécanique des cornières métalliques. - Selon un mode de réalisation, la cornière métallique d'une structure d'angle présente deux portions saillantes qui font saillie par rapport au bloc isolant diédrique à deux extrémités de la cornière métallique opposées selon la direction de la zone d'arête. Grâce à ces caractéristiques, les structures d'angle peuvent être construites de manière identique, ce qui réduit les coûts de fabrication.
- Selon un mode de réalisation, ladite ou chaque découpe est formée dans un bord d'extrémité de ladite portion saillante orienté transversalement à la zone d'arête. Grâce à ces caractéristiques, la fabrication des découpes est facilitée.
- Selon un mode de réalisation, ladite cornière métallique lie les deux pans du bloc isolant diédrique l'un à l'autre.
- Selon un mode de réalisation, l'organe d'ancrage disposé entre les blocs isolants diédriques des deux structures d'angle successives coopère avec les blocs isolants diédriques des deux structures d'angle pour retenir lesdits blocs isolants diédriques sur la surface de support.
- Dans ce cas l'organe d'ancrage peut comporter :
- un goujon fixé à la surface de support et faisant saillie vers l'intérieur dans l'espace entre les blocs isolants diédriques,
- une barre d'appui engagée sur ledit goujon et présentant deux portions latérales respectivement en prise avec les deux blocs isolants diédriques, et
- un écrou vissé sur le goujon pour serrer la barre d'appui en direction de la surface de support.
- Selon un mode de réalisation, la barre d'appui présente une fente traversée par le goujon, de sorte que, lorsque l'écrou ne serre pas la barre d'appui, la barre d'appui peut être coulissée dans une direction transverse à la zone d'arête entre :
- une position escamotée dans laquelle la barre d'appui est logée dans l'espacement entre les blocs isolants diédriques des deux structures d'angle successives pour laisser libre l'emplacement dudit panneau isolant plan, et
- des positions déployées dans lesquelles la deuxième portion faisant saillie au-delà des blocs isolants diédriques dans une direction opposée à la zone d'arête pour venir en prise avec ledit panneau isolant plan,
- Selon un mode de réalisation, l'organe d'ancrage disposé entre les blocs isolants diédriques des deux structures d'angle successives coopère avec un panneau isolant plan adjacent à la rangée de structures d'angle pour retenir ledit panneau isolant plan sur la surface de support.
- Grâce à ces caractéristiques, il est possible de réaliser l'ancrage d'un panneau isolant plan adjacent à la rangée de structures d'angle au moyen d'un ou plusieurs organes d'ancrage situés entre les structures d'angle successives. Cet agencement simplifie le positionnement et la mise en oeuvre des organes d'ancrage, notamment lorsque le panneau isolant plan adjacent à la rangée de structures d'angle doit être dimensionné sur mesure et ne peut donc pas être standardisé.
- Dans le cas où la surface de support est fournie par une barrière secondaire elle-même constitué de structures d'angle secondaires et de panneaux isolants plans secondaires, cet agencement présente également l'avantage de permettre de positionner ces organes d'ancrage relativement près de la zone d'arête, notamment sur les structures d'angle secondaires. Ainsi, du fait que les panneaux isolants plans secondaires adjacents aux structures d'angle secondaires n'ont pas besoin de porter ces organes d'ancrage pour les panneaux isolants plans primaires, le dimensionnement sur mesure de ces panneaux isolants plans secondaires peut être facilité.
- Dans ce cas l'organe d'ancrage peut comporter :
- un goujon fixé à la surface de support et faisant saillie vers l'intérieur dans l'espace entre les blocs isolants diédriques,
- une barre d'appui présentant une première portion tournée vers la zone d'arête engagée sur ledit goujon et une deuxième portion faisant saillie au-delà des blocs isolants diédriques dans une direction opposée à la zone d'arête en prise avec ledit panneau isolant plan, et
- un écrou vissé sur le goujon pour serrer la barre d'appui en direction de la surface de support.
- Selon un mode de réalisation, le panneau isolant plan adjacent à la rangée de structures d'angle comporte une couche de mousse polymère isolante prise en sandwich entre une plaque de fond rigide et une plaque de couvercle rigide, la plaque de couvercle rigide et la couche de mousse polymère isolante présentant un évidement ménagé dans l'épaisseur du panneau isolant pour découvrir une zone d'appui sur la surface interne de la plaque de fond rigide, ledit évidement débouchant sur un bord du panneau isolant plan parallèle à la zone d'arête et tourné vers la rangée de structures d'angle, l'organe d'ancrage, notamment la deuxième portion de la barre d'appui, étant en prise avec ladite zone d'appui de la plaque de fond.
- Selon un mode de réalisation, l'évidement ménagé dans l'épaisseur du panneau isolant est une rainure orientée perpendiculairement audit bord du panneau isolant plan. De telles rainures peuvent être ménagées à différents emplacements, par exemple aux extrémités du bord du panneau isolant plan tourné vers la rangée de structures d'angle et/ou dans une portion centrale de ce bord du panneau isolant plan.
- Selon un mode de réalisation, le panneau isolant plan présente une forme de parallélépipède rectangle, l'évidement étant ménagé dans un coin du panneau isolant plan.
- Selon un mode de réalisation, la surface de support porte une pluralité d'organes d'ancrage distribués le long de la zone d'arête et disposés chacun entre deux blocs isolants diédriques de structures d'angle successives et coopérant chacun avec une zone respective du panneau isolant plan adjacent à la rangée de structures d'angle pour retenir ledit panneau isolant plan sur la surface de support.
- Selon un mode de réalisation, la surface de support comporte une troisième région plane transverse à la zone d'arête à une extrémité de la zone d'arête, et une dernière structure d'angle de la rangée de structures d'angle comporte, outre ledit bloc isolant diédrique, un troisième pan parallèle à la troisième région plane et formant des angles avec lesdits deux pans du bloc isolant diédrique, et
la cornière métallique de ladite dernière structure d'angle se prolonge sur la surface intérieure plane dudit troisième pan pour former ladite barrière d'étanchéité au droit de l'extrémité de la zone d'arête de la surface de support, ladite cornière métallique liant ledit troisième pan au bloc isolant diédrique, ladite portion saillante de la cornière métallique faisant saillie à l'opposé du troisième pan en direction d'une avant-dernière structure d'angle de la rangée de structures d'angle. - Selon un mode de réalisation, ledit bloc isolant diédrique de l'avant-dernière structure d'angle de la rangée de structures d'angle présente une plus grande dimension selon la direction de la zone d'arête que des structures d'angle situées le long d'une portion centrale de la zone d'arête, la cornière métallique de ladite avant-dernière structure d'angle étant composé de deux segments de cornière juxtaposés selon la direction de la zone d'arête et fixés sur les surfaces intérieures planes du bloc isolant diédrique.
- Selon un mode de réalisation, un premier segment de cornière de ladite avant-dernière structure d'angle présente des orifices pour le passage d'organes d'ancrage servant à fixer ledit bloc isolant diédrique sur la surface de support et un deuxième segment de cornière de ladite avant-dernière structure d'angle situé du côté de l'extrémité de la zone d'arête présente une surface continue.
- Grâce à ces caractéristiques, l'avant-dernière structure d'angle peut assez facilement être ajustée à la dimension de la structure de support selon la direction de la zone d'arête, pour tenir compte des tolérances de fabrication de cette structure de support.
- Selon un mode de réalisation, un bloc de matière isolante est disposé dans l'espacement entre les blocs isolants diédriques, entre la portion saillante de la cornière métallique et la surface de support, Selon un mode de réalisation, le bloc de matière isolante présente un passage entre ladite découpe formée dans la portion saillante de la cornière métallique et ledit organe d'ancrage disposé entre les blocs isolants diédriques. Grâce à un tel passage, l'accès à l'organe d'ancrage reste possible après la mise en place du bloc de matière isolante, ce qui facilite le montage de la paroi de cuve.
- Selon un mode de réalisation, la barrière d'étanchéité comporte une pièce de fermeture disposée à cheval sur les cornières métalliques des deux structures d'angle successives de manière à relier de manière étanche les cornières métalliques des deux structures d'angle,
ladite pièce de fermeture recouvrant un interstice situé entre les cornières métalliques et la découpe de ladite ou chaque portion saillante qui recouvre l'espacement entre les blocs isolants diédriques. - Selon un mode de réalisation, la barrière d'étanchéité au droit d'une ou chaque région plane de la surface de support comporte une membrane métallique portant des ondulations parallèles à la zone d'arête et des ondulations perpendiculaires à la zone d'arête et des zones planes situées entre lesdites ondulations, un bord de la membrane métallique parallèle à la zone d'arête étant soudé sur les cornières métalliques des structures d'angle successives, lesdites ondulations perpendiculaires à la zone d'arête étant alignées avec des interstices situés entre les cornières métalliques des structures d'angle successives.
- Selon un mode de réalisation, la pièce de fermeture comporte une ondulation perpendiculaire à la zone d'arête alignée avec une ondulation de la membrane métallique et deux portions planes situées de part et d'autre de l'ondulation et soudées respectivement sur les cornières métalliques des deux structures d'angle.
- Les caractéristiques précitées peuvent être employées dans la construction d'une barrière d'isolation construite directement sur une structure porteuse fournissant la surface de support, ou dans la construction d'une barrière d'isolation primaire construite sur une barrière secondaire préexistante fournissant ladite surface de support.
- Selon un mode de réalisation, ladite barrière d'isolation est une barrière d'isolation primaire et ladite barrière d'étanchéité est une barrière d'étanchéité primaire, la cuve comportant en outre une barrière d'isolation secondaire présentant une surface interne sensiblement polyédrique recouverte d'une barrière d'étanchéité secondaire et formant ladite surface de support.
- Une telle cuve peut faire partie d'une installation de stockage terrestre, par exemple pour stocker du GNL ou être installée dans une structure flottante, côtière ou en eau profonde, notamment un navire méthanier, une unité flottante de stockage et de regazéification (FSRU), une unité flottante de production et de stockage déporté (FPSO) et autres.
- Selon un mode de réalisation, un navire pour le transport d'un produit liquide froid comporte une double coque et une cuve précitée disposée dans la double coque.
- Selon un mode de réalisation, l'invention fournit aussi un procédé de chargement ou déchargement d'un tel navire, dans lequel on achemine un fluide à travers des canalisations isolées depuis ou vers une installation de stockage flottante ou terrestre vers ou depuis la cuve du navire.
- Selon un mode de réalisation, l'invention fournit aussi un système de transfert pour un fluide, le système comportant le navire précité, des canalisations isolées agencées de manière à relier la cuve installée dans la coque du navire à une installation de stockage flottante ou terrestre et une pompe pour entraîner un fluide à travers les canalisations isolées depuis ou vers l'installation de stockage flottante ou terrestre vers ou depuis la cuve du navire.
- Selon un mode de réalisation, l'invention fournit aussi un procédé de fabrication pour fabriquer une cuve étanche et thermiquement isolante susmentionnée, le procédé comportant :
- fournir une surface de support,
- monter un organe d'ancrage sur la surface de support,
- monter une rangée de structures d'angle le long d'une zone d'arête de la surface de support, de manière que ledit organe d'ancrage soit disposé entre les blocs isolants diédriques de deux structures d'angle successives dans ladite rangée,
- accéder audit organe d'ancrage à travers la découpe formée dans la portion saillante de la cornière métallique au droit dudit organe d'ancrage, pour placer ledit organe d'ancrage dans un état de prise dans lequel ledit organe d'ancrage retient un élément de la barrière d'isolation sur la surface de support.
- L'invention sera mieux comprise, et d'autres buts, détails, caractéristiques et avantages de celle-ci apparaîtront plus clairement au cours de la description suivante de plusieurs modes de réalisation particuliers de l'invention, donnés uniquement à titre illustratif et non limitatif, en référence aux dessins annexés.
- La
figure 1 est une vue schématique en section d'une barrière d'isolation thermique construite de manière modulaire avec des modules globalement parallélépipédiques sur une surface de support polyédrique, au niveau d'une arête. - La
figure 2 est une vue en perspective d'une paroi de cuve étanche et thermiquement isolante au niveau d'une zone d'angle de la cuve, la membrane d'étanchéité primaire étant omise. - La
figure 3 est une vue analogue à lafigure 2 , dans laquelle une structure d'angle primaire est omise mais des panneaux isolants plans primaires adjacents à la structure d'angle primaire sont montrés. - La
figure 4 est une vue en perspective agrandie représentant une rangée de structures d'angle primaires, vue depuis un plan de coupe IV-IV de lafigure 3 et pour une autre valeur d'angle. - La
figure 5 est une vue en perspective agrandie d'un détail de la rangée de structures d'angle primaires. - La
figure 6 est une vue de dessus d'une paroi de cuve étanche et thermiquement isolante au niveau d'une zone d'angle de la cuve, montrant l'emplacement d'un panneau isolant plan lorsque des barres d'appui sont escamotées. - La
figure 7 est une vue en perspective représentant une disposition des structures d'angle secondaires à l'intersection entre trois parois de la cuve. - La
figure 8 est une vue en perspective représentant une disposition des structures d'angle primaires sur les structures d'angle secondaires de lafigure 7 . - La
figure 9 est une vue en perspective de la cuve à l'intersection entre trois parois de la cuve, représentant partiellement la membrane d'étanchéité primaire et un panneau isolant plan primaire. - La
figure 10 est une vue analogue à lafigure 9 , dans laquelle la membrane d'étanchéité primaire recouvrant le panneau isolant plan primaire est représentée. - La
figure 11 est une vue en perspective d'une paroi de cuve étanche et thermiquement isolante selon un autre mode de réalisation, au niveau d'une zone d'angle de la cuve et dans laquelle les membranes d'étanchéité sont omises. - La
figure 12 est une représentation schématique écorchée d'une cuve de navire méthanier et d'un terminal de chargement/déchargement de cette cuve. - Par convention, les termes «externe » et « interne » sont utilisés pour définir la position relative d'un élément par rapport à un autre, par référence à l'intérieur et à l'extérieur de la cuve.
- On va décrire ci-dessous la structure multicouche d'une cuve étanche et thermiquement isolante de stockage de de gaz naturel liquéfié. Chaque paroi de la cuve comporte, depuis l'extérieur vers l'intérieur de la cuve, une barrière thermiquement isolante secondaire comportant des éléments isolants secondaires juxtaposés et ancrés à une structure porteuse par des organes d'ancrage secondaires, une membrane d'étanchéité secondaire portée par les éléments isolants secondaires, une barrière thermiquement isolante primaire comportant des éléments isolants primaires juxtaposés et ancrés aux éléments isolants secondaires par des organes d'ancrage primaires 19 et une membrane d'étanchéité primaire portée par les éléments isolants primaires et destinée à être en contact avec le gaz naturel liquéfié contenu dans la cuve.
- La structure porteuse peut notamment être formée de tôles métalliques autoporteuses ou, plus généralement, de tout type de cloison rigide présentant des propriétés mécaniques appropriées. La structure porteuse peut notamment être formée par la coque ou la double coque d'un navire. La structure porteuse comporte une pluralité de parois définissant la forme générale de la cuve, habituellement une forme polyédrique.
- Les zones planes de la cuve peuvent être réalisées de différentes manières, par exemple selon l'enseignement de
WO-A-2016046487 ou deWO-A-2017006044 . On décrira ci-dessous plus particulièrement une zone d'angle de la cuve le long d'une arête de la structure porteuse. - Aux
figures 2 et3 , on observe la structure des parois de la cuve au niveau d'une arête 10 entre une première paroi porteuse 11 et une deuxième paroi porteuse 12. - L'angle formé entre la première paroi porteuse 11 et la deuxième paroi porteuse 12 est d'environ 90° dans le mode de réalisation représenté. L'angle peut toutefois présenter toute autre valeur, par exemple de l'ordre de 135°.
- La barrière thermiquement isolante secondaire comporte une rangée de structures d'angle secondaires 13 disposée le long de l'arête 10, une seule structure d'angle secondaire 13 étant représentée sur les
figures 2 et3 . La structure d'angle secondaire 13 et la membrane d'étanchéité secondaire 15 disposée sur sa surface interne 14 peuvent être réalisées de différentes manières, par exemple selon l'enseignement deWO-A-2017006044 . - La structure d'angle secondaire 13 comporte ici une structure sandwich constituée d'une couche de mousse polymère isolante 16 en sandwich entre deux plaques rigides 17, 18, par exemple en bois contreplaqué. La plaque interne 18 présente un réseau de rainures 19 perpendiculaires destinées à recevoir les ondulations 24 de la membrane d'étanchéité secondaire 15. Les ondulations 24 font saillie vers l'extérieur de la cuve en direction de la structure porteuse et sont chacune reçues dans une rainure 19.
- Dans une variante de réalisation non représentée, l'orientation des ondulations de la membrane d'étanchéité secondaire est vers l'intérieur de la cuve.
- La plaque interne 18 est en outre équipée d'une pluralité de platines métalliques 20, par exemple en acier inoxydable ou en alliage à faible coefficient de dilatation thermique, notamment l'invar®, destinées à l'ancrage de bords de la membrane d'étanchéité secondaire. Les platines métalliques 20 sont fixées dans des évidements ménagés dans la plaque interne 18 et fixées à celle-ci, par des vis, des rivets ou des agrafes par exemple. Alternativement, les platines métalliques 20 sont fixées directement sur la couche de mousse polymère isolante 16, par exemple par collage.
- La plaque interne 18 est également équipée de platines d'ancrage 21 destinées à assurer la fixation de structures d'angle primaires 30 contre la structure d'angle secondaire 13. Les platines d'ancrage 21 sont par exemples collées sur la plaque interne 18 et/ou fixées à celle-ci, par des vis, des rivets ou des agrafes par exemple.
- Par ailleurs, la membrane d'étanchéité secondaire 15 présente une pluralité d'orifices au travers de chacun desquels passe un organe d'ancrage permettant d'ancrer les structures d'angle primaires 30. Un écrou borgne 22 traverse chacun des orifices et présente sur sa périphérie extérieure un filetage coopérant avec un alésage fileté 23 ménagé dans l'une des platines d'ancrage 21. Par ailleurs, l'écrou borgne 22 présente un alésage borgne fileté destiné à recevoir un goujon de fixation des structures d'angle primaires 30. L'écrou borgne 22 comporte en outre une collerette permettant de prendre en sandwich la membrane d'étanchéité secondaire 15 entre ladite collerette et la platine d'ancrage 21. La périphérie de cette collerette est soudée sur la membrane d'étanchéité secondaire 15 afin d'assurer l'étanchéité.
- La barrière thermiquement isolante primaire comporte le long de l'arête 10 de la cuve une pluralité de structures d'angle primaires 30. La structure d'angle primaire 30 est un ensemble préassemblé comprenant un bloc isolant diédrique 31 et une cornière 32. Le bloc isolant diédrique 31 présente une face interne sur laquelle repose la cornière 32 et une face externe reposant contre la membrane d'étanchéité secondaire 15. Le bloc isolant diédrique 31 présente une structure composite dans son épaisseur, comportant une couche de mousse polymère isolante 33 prise en sandwich entre deux plaques de bois contreplaqués 34, 35 collées sur ladite couche de mousse polymère 33.
- Les cornières 32 sont des cornières métalliques, par exemple, réalisées en acier inoxydable. La cornière 32 présente deux ailes reposant contre la face interne du bloc isolant diédrique 31. Chaque aile d'une cornière 32 présente des goujons non représentés qui sont soudés sur la face externe de ladite aile et font saillie vers l'intérieur de la cuve pour fixer la cornière 32 au bloc isolant diédrique 31, avant le montage de la structure d'angle primaire 30 dans la cuve.
- Chaque aile de la cornière 32 présente également un goujon 36 sur sa face interne, faisant saillie vers l'intérieur de la cuve. Les goujons 36 permettent d'ancrer un équipement de soudage lors du soudage des éléments de la membrane d'étanchéité primaire sur les cornières 32.
- Comme décrit dans
WO-A-2017006044 , la cornière 32 est pourvue d'orifices 37, par exemple au nombre de huit par cornière 32, permettant de monter des écrous sur des goujons (non représentés) portés par les platines 21, afin d'assurer la fixation de la structure d'angle primaire 30 à la structure d'angle secondaire 13. - Comme mieux visible sur les
figures 2 et4 , les structures d'angle primaires 30 sont disposées sur les structures d'angle secondaire 13 sous la forme d'une rangée longeant l'arête 10. Dans cette rangée, deux structures d'angle primaires 30 successives présentent un espace 38 entre les deux blocs isolants diédriques 31. Généralement, des éléments isolants de jointure 39 sont insérés dans l'espace 38 entre les deux blocs isolants diédriques 31, de manière à assurer une continuité de l'isolation thermique. - Dans au moins certains des espaces 38, la structure d'angle secondaire 13 peut porter un organe d'ancrage destiné à coopérer avec un élément isolant primaire. Ce cas va être décrit plus précisément en référence aux
figures 3 à 5 . L'organe d'ancrage dans son ensemble est coupé dans son plan médian de symétrie sur lafigure 4 , de sorte que la demi-vue suffit à en comprendre la structure. - Dans ce mode de réalisation, l'organe d'ancrage comporte une platine 40 fixée sur la surface interne de la structure d'angle secondaire 13 entre deux platines 21. La platine 40 peut être fixée sur la structure d'angle secondaire 13 de différentes manières comme les platines 21. Elle présente un trou taraudé 41 destiné à recevoir un écrou borgne 42 représenté en demi-vue sur la
figure 4 . La platine 40 peut être présente au droit de chaque espace 38 ou au droit de certains, par exemple un sur trois, des espaces 38. - L'écrou borgne 42 traverse un orifice de la membrane d'étanchéité secondaire non représentée et présente sur sa périphérie extérieure un filetage 43 coopérant avec le trou taraudé 41 ménagé dans la platine 40. Par ailleurs, l'écrou borgne 42 présente un alésage borgne fileté 44 recevant un goujon 45. L'écrou borgne 42 comporte en outre une collerette 46 permettant de prendre en sandwich la membrane d'étanchéité secondaire entre ladite collerette et la platine 40. La périphérie de cette collerette est soudée sur la membrane d'étanchéité secondaire 15 afin d'assurer l'étanchéité.
- Comme visible sur la
figure 4 , le goujon 45 fait saillie vers l'intérieur dans l'espace 38 entre les deux blocs isolants diédriques 31 et sert à fixer une barre d'appui 50 orientée perpendiculairement à l'arête 10. La barre d'appui 50 présente ici une section en forme de U dont la base est tournée vers la structure porteuse. A l'état monté tel que représenté, une première portion de la barre d'appui 50 s'étend dans l'espace 38 entre les deux blocs isolants diédriques 31 et présente une fente 58 traversée par le goujon 45. Un écrou 47 visé sur le goujon 45 permet de serrer la barre d'appui 50 vers la surface interne de la structure d'angle secondaire 13. - Une deuxième portion 51 de la barre d'appui 50 fait saillie au-delà de la rangée de structures d'angle primaires 30 pour venir en appui sur un panneau isolant primaire plan 29 adjacent à la rangée de structures d'angle primaires 30. La longueur de la fente 58 permet un réglage de longueur de la deuxième portion 51 faisant saillie au-delà de la rangée de structures d'angle primaires 30.
- De préférence, la fente 58 dont les deux extrémités 58a et 58b sont indiquées sur la vue en coupe de la
figure 4 , est assez longue pour permettre d'escamoter complètement la barre d'appui 50 dans l'espace 38 entre les deux blocs isolants diédriques 31. Ainsi, avant que l'écrou 47 ne soit serré, on peut faire coulisser la barre d'appui 50 entre cette position escamotée (représentée sur lafigure 6 ), qui facilite la pose du panneau isolant primaire plan 29 en libérant complètement son emplacement indiqué en trait mixte au chiffre 99, et la position déployée illustrée sur lafigure 4 . Le mouvement de déploiement de la barre d'appui 50 est schématisé par la flèche 98 sur lafigure 6 . - Dans un mode de réalisation, la longueur du panneau isolant primaire plan 29 est égale à neuf fois la largeur de la structure d'angle primaire 30, de sorte que quatre barres d'appui mutuellement espacées d'un intervalle de trois fois la largeur de la structure d'angle primaire 30 viennent en prise avec le panneau isolant primaire plan 29 le long de son bord tourné vers l'arête, à savoir deux barres d'appui 50 aux deux extrémités de ce bord, c'est-à-dire au niveau de deux coins du panneau isolant primaire plan 29, et deux barres d'appui dans une zone centrale du bord du panneau isolant primaire plan 29. Cette zone centrale est représentée sur la
figure 3 . - Comme partiellement représenté sur la
figure 3 , le panneau isolant primaire plan 29 présente une forme générale de parallélépipède rectangle avec un bord longitudinal 26 parallèle à l'arête 10. Le panneau isolant primaire plan 29 présente par exemple une structure composite constituée d'un couche de mousse polymère isolante prise en sandwich entre un plaque de fond rigide, dont une zone découverte 28 est apparente, et une plaque de couvercle rigide 25. La plaque de couvercle rigide 25 et la couche de mousse polymère isolante sont creusées d'une rainure 27 s'étendant perpendiculairement à l'arête 10 au droit de la platine 20 et débouchant sur le bord longitudinal 26 pour découvrir la zone découverte 28 de la plaque de fond rigide. - A l'état monté, la deuxième portion 51 de la barre d'appui 50 est engagée dans la rainure 27 et prend appui sur la zone découverte 28 de la plaque de fond rigide, éventuellement par l'intermédiaire d'une cale d'épaisseur 48. Une autre cale d'épaisseur 49 peut être intercalée entre l'autre extrémité de la barre d'appui 50 et la membrane secondaire (non représentée). Les cales d'épaisseur 48 et 49 sont dimensionnées pour assurer le parallélisme entre la barre d'appui 50 et la plaque de fond du panneau isolant primaire plan 29. Elles sont faites en un matériau suffisamment tendre pour éviter le risque de poinçonner, marquer ou endommager la membrane d'étanchéité secondaire 15. Par exemple, elles peuvent être faites en contreplaqué, en matière plastique ou en résine époxy.
- La barre d'appui 50 montée de cette manière présente plusieurs avantages : la deuxième portion 51 est une longueur en porte-à-faux sensiblement parallèle à la paroi plane de la cuve qui prend appui sur le panneau isolant primaire plan 29, de préférence à distance du bord de ce panneau. Elle permet donc de retenir le panneau isolant primaire plan 29 sur la membrane secondaire sans nécessiter d'aménagement complexe sur le panneau isolant primaire plan 29 : il suffit de dégager une portion plane de la plaque de fond.
- De plus, la longueur de la deuxième portion 51 est facilement ajustable par coulissement du goujon 45 dans la longueur de la fente 58. Cette disposition s'adapte donc facilement à des panneaux isolants primaires plans ayant différentes dimensions ou des rainures 27 ayant différentes longueurs. La longueur de la rainure 27 peut notamment être raccourcie suite à un découpage du bord 26 pour réduire la largeur du panneau isolant 29.
- De plus, étant donné que la barre d'appui 50 est ancrée sur un goujon porté par la structure d'angle secondaire 13, sa position n'est pas sensible au dimensionnement des panneaux isolants secondaires plans (non représentés) adjacents à la structure d'angle secondaire 13. Cette disposition s'adapte donc facilement à des panneaux isolants secondaires plans de différentes dimensions.
- Comme visible sur la
figure 4 , chaque cornière 32 présente deux rebords saillants 53 qui font saillie par rapport au bloc isolant diédrique 31 à deux extrémités de la cornière 32 opposées selon la direction de l'arête 10. Ainsi, l'espace 38 entre les deux blocs isolants diédriques 31 est partiellement recouvert par les deux rebords saillants 53 de part et d'autre de celui-ci. - Pour préserver l'accès à l'organe d'ancrage disposé dans l'espace 38, au moins chacun des deux rebords saillants 53 de part et d'autre de l'organe d'ancrage est muni d'une découpe 54 qui est située à l'aplomb du goujon 45 et qui est formée dans le bord d'extrémité 55 orienté transversalement à l'arête 10.
- Optionnellement, comme esquissé sur la
figure 2 , tous les rebords saillants 53 de toutes les cornières 32 peuvent présenter cette découpe 54 pour uniformiser la fabrication. - Comme mieux visible sur la
figure 5 , les découpes 54 servent à ménager un espace suffisant entre les deux rebords saillants 53 pour le passage d'un outil de serrage 60, par exemple une clé à pipe présentant une tête cylindrique 61 ou un tournevis. La profondeur de la découpe 54 dans la direction de l'arête 10 peut donc être dimensionnée pour ménager une distance D légèrement supérieure au diamètre de la tête cylindrique 61 entre les fonds des deux découpes 54 en vis-à-vis. La longueur de la découpe 54 le long du bord d'extrémité 55 peut être sensiblement égale à la même distance D, par exemple environ 30mm. - La séquence de montage de la zone d'angle de la cuve va être maintenant brièvement décrite :
- montage de la barrière isolante secondaire et de la membrane étanche secondaire 15, y compris les écrous borgnes 42
- mise en place des barres d'appui 50 en position rétractée, la fente 58 de la barre d'appui étant positionnée au droit de l'écrou borgne 42.
- Insertion et vissage du goujon 45 dans l'écrou borgne 42 à travers la fente 58 de la barre d'appui 50, mise en place de l'écrou 47 sur le goujon 45 en position non serrée
- mise en place des jointures isolantes 39 entre les emplacements des structures d'angle primaires 30. Là où la barre d'appui 50 est présente, la jointure isolante 39 présente à sa base un tenon inséré dans la section creuse en forme de U de la barre d'appui 50. La jointure isolante 39 présente aussi un puits cylindrique 56 au droit de l'écrou borgne 42 pour recevoir le goujon 45 et l'écrou 47.
- fixation des structures d'angle primaires 30 sur les structures d'angle secondaires 13, de part et d'autre des jointures isolantes 39.
- pose des panneaux isolants primaires plans 29 adjacents à la rangée de structures d'angle primaires 30
- Déplacement des barres d'appui 50 en position déployée, la jointure isolante 39 restant immobilisée par le goujon 45 engagé dans le puits cylindrique 56
- Vissage de l'écrou 47 sur le goujon 45 à travers les découpes 54 des cornières 32 et le puits cylindrique 56 de la jointure isolante 39, pour réaliser le serrage de la barre d'appui 50
- Insertion d'un bouchon cylindrique 57 dans le puits cylindrique 56 pour l'obturer.
- Mise en place de la membrane d'étanchéité primaire.
- La construction des portions planes de la paroi de cuve situées des deux côtés d'une arête peut être réalisée de manière identique ou de manière différente, et de manière symétrique ou dissymétrique. Par ailleurs, si un seul angle de la cuve a été décrit ci-dessus, les autres angles de la cuve peuvent présenter un agencement identique ou différent.
- En référence aux
figures 7 à 10 , on va maintenant décrire la structure de la paroi de cuve à une extrémité de l'arête 10, c'est-à-dire à l'intersection entre trois parois planes. Les trois parois qui sont ici représentées constituent respectivement une paroi de fond, une paroi d'extrémité et une paroi oblique inférieure. La paroi oblique inférieure forme un angle de 135 ° avec la paroi de fond. La paroi oblique inférieure et la paroi de fond sont perpendiculaires à la paroi d'extrémité. Un tel agencement correspond par exemple à une cuve qui présente une forme générale polyédrique et qui comporte deux parois d'extrémité de forme octogonales qui sont reliées l'une à l'autre par huit parois, à savoir une paroi de fond et une paroi de plafond horizontales, deux parois latérales verticales, deux parois obliques supérieures reliant chacune l'une des parois latérales à la paroi de plafond et deux parois obliques inférieures reliant chacune l'une des parois latérales à la paroi de fond. - Dans cette zone, comme représenté sur la
figure 7 , la rangée de structures d'angle secondaires 13 se termine par une dernière structure d'angle secondaire 113 qui est formée d'un jeu de trois panneaux isolants qui sont respectivement fixés contre la structure porteuse de chacune des trois parois porteuses. Les trois panneaux isolants de la dernière structure d'angle secondaire 113 présentent chacun une structure sandwich identique à celle des structures d'angle secondaires 13, à savoir constituée d'une couche de mousse polymère isolante 116 en sandwich entre deux plaques rigides 117, 118 par exemple en bois contreplaqué. - Sur chacun des trois panneaux isolants de la dernière structure d'angle secondaire 113, la plaque rigide 118 porte des platines d'ancrage 121 et 140 dont les structures et fonctions sont identiques à celles des platines d'ancrage 21 et 40 décrites plus haut en relation avec la structure d'angle secondaire 13. En particulier, les platines d'ancrage 121 permettent de fixer une dernière structure d'angle primaire 130 (
Fig. 7 ) sur la dernière structure d'angle secondaire 113. - La platine 40 permet de fixer un organe d'ancrage dans un espace entre la dernière structure d'angle primaire 130 et une avant-dernière structure d'angle primaire 230 (
Fig. 7 ) de la rangée de structures d'angle primaires. Cet organe d'ancrage comporte un goujon 145 engagé dans une fente 158 d'une barre d'appui 150 visibles sur lafigure 9 . - La
figure 8 est aussi une vue de la zone d'extrémité de l'arête, montrant en plus les structures d'angle primaires montées sur les structures d'angle secondaires de lafigure 7 . La membrane d'étanchéité secondaire est entièrement omise pour simplifier la représentation. - Comme représenté, la dernière structure d'angle primaire 130 de la rangée est constituée de trois blocs isolants reposant respectivement contre chacun des trois panneaux isolants de la dernière structure d'angle secondaire 113. Par ailleurs, les blocs isolants de la dernière structure d'angle primaire 130 comportent chacun une face interne sur laquelle repose une cornière à trois pans 132 dont la structure générale est similaire à la cornière métallique 32 de la structure d'angle primaire 30, hormis la présence d'une troisième aile 100 parallèle à la paroi oblique inférieure. La cornière à trois pans 132 comporte notamment des goujons 136, des orifices 137 et des rebords 153 dont les structures et fonctions sont similaires à celles des goujons 36, orifices 37 et rebords 53 décrits plus hauts.
- L'avant-dernière structure d'angle primaire 230 est représentée en employant des chiffres de référence augmentés de 200 pour des éléments analogues ou identiques ceux de la structure d'angle primaire 30. Le bloc isolant diédrique 231 est plus long que le bloc isolant diédrique 31 et porte sur sa surface interne deux cornières métalliques successives dans la direction de l'arête. La cornière métallique 232 est sensiblement identique à la cornière métallique 32 de la structure d'angle primaire 30 mais, du fait que le bloc isolant diédrique 231 est allongé en direction de la dernière structure d'angle primaire 130, elle peut présenter une dimension plus longue le long de l'arête 10 et elle ne dépasse que d'un seul côté (non illustré) du bloc isolant diédrique 231.
- La cornière métallique 65 est placée à côté de la cornière métallique 232 avec un petit interstice entre elles et fixée sur le bloc isolant diédrique 231 de la même manière que la cornière métallique 32 de la structure d'angle primaire 30. La cornière métallique 65 présente un rebord saillant 253 qui fait saillie par rapport au bloc isolant diédrique 231 selon la direction de l'arête 10 au-dessus de l'espace 138. L'espace 138 est partiellement recouvert par les deux rebords saillants 153 et 253 de part et d'autre de celui-ci.
- Le rebord saillant 153 et/ou le rebord saillant 253 peut comporter une découpe pour faciliter l'accès à l'organe d'ancrage situé dans l'espace 138. Ici, une découpe 254 est présente uniquement dans le rebord saillant 253.
- Par ailleurs, la fixation de l'avant-dernière structure d'angle primaire 230 sur la barrière isolante secondaire est réalisée uniquement au niveau de la portion la plus éloignée de la dernière structure d'angle primaire 130, à savoir la portion portant la cornière métallique 232 qui est fixée sur une avant-dernière structure d'angle secondaire 13 sous-jacente de la même manière que décrite précédemment Pour cela, la cornière métallique 232 présente aussi les orifices 237.
- A contrario, la cornière métallique 65 ne comporte pas d'orifices et peut être continue, puisque la portion du bloc isolant diédrique 231 tournée vers la dernière structure d'angle primaire 130 enjambe l'interstice 66 entre l'avant-dernière structure d'angle secondaire 13 et la dernière structure d'angle secondaire 113 et se prolonge sur la dernière structure d'angle secondaire 113 sans être fixée à celle-ci.
- Cet agencement présente l'avantage d'être indépendant de la dimension précise de l'interstice 66 dans la barrière d'isolation secondaire, lequel peut être ajusté facilement pour compenser les tolérances de fabrication.
- De plus, pour ajuster la barrière d'isolation primaire aux tolérances dimensionnelles de fabrication de la structure porteuse, il est possible de découper sur mesure l'avant-dernière structure d'angle primaire 230, à savoir découper l'extrémité du bloc isolant diédrique 231 et l'extrémité de la cornière métallique 65 tournées vers la dernière structure d'angle primaire 130. Compte tenu de l'absence de fixation de cette portion d'extrémité à la barrière d'isolation secondaire, ce découpage n'entraine aucune complication. Dans ce cas la découpe 254 est ajoutée après découpage de la cornière métallique 65 à la longueur souhaitée.
- La
figure 9 montre la même zone de la cuve que lafigure 8 , mais avec l'ajout d'un dernier panneau isolant primaire plan 129 adjacent à l'avant-dernière structure d'angle primaire 230. Ce panneau isolant primaire plan 129 présente, de manière analogue à la rainure 27 de lafigure 3 , un évidement 127 réalisé au droit d'une zone de coin de la plaque de fond rigide (non représentée) pour découvrir ladite zone de coin. Lafigure 9 montre également la barre d'appui 150 qui est engagée dans l'évidement 127 et prend appui sur la zone découverte de la manière précédemment décrite. - En référence aux
figures 9 et 10 , on va maintenant décrire la structure de la membrane d'étanchéité primaire au niveau des angles de la cuve. - La membrane d'étanchéité primaire est par exemple une membrane présentant deux séries d'ondulations mutuellement perpendiculaires. Elle peut être réalisée essentiellement comme décrit dans
WO-A-2017006044 . Des tôles métalliques 67 de la membrane d'étanchéité primaire bordant une arête sont soudées le long de leur bord dirigé vers l'arête sur les cornières métalliques 32, 232, 65, 132. Par ailleurs, des pièces d'angle 68,168, 268 métalliques, sont soudées à cheval sur chaque interface entre deux cornières métalliques successives 32, 232, 65, 132. - Les pièces d'angle 68,168, 268 recouvrent les orifices 37, 137, 237 et les découpes 54, 254 des cornières métalliques réalisent la continuité des ondulations de la membrane d'étanchéité primaire orientées perpendiculairement à l'arête 10.
- La
figure 11 illustre un autre mode de réalisation de la paroi de cuve le long de l'arête 10. Les membranes d'étanchéité primaire et secondaire sont omises pour simplifier la représentation. Des éléments analogues ou identiques à ceux desfigures 2 à 4 portent le même chiffre de référence augmenté de 300 et ne seront décrits que dans la mesure où ils différent de ceux desfigures 2 à 4 . - Dans ce mode de réalisation, la structure d'angle primaire 330 est fixée sur la structure d'angle secondaire 313 au moyen de goujons 345 disposés dans chaque espace 338 entre deux blocs isolants diédriques 331. Pour cela, la plaque rigide 334 est légèrement plus large que la couche de mousse polymère 333 de manière à découvrir deux rebords latéraux de la plaque rigide 334.
- Une barre d'appui 350 présente un perçage, pouvant être oblong, traversé par le goujon 345 et prend appui sur les rebords latéraux de la plaque rigide 334 des deux structure d'angle primaire 330 entre lesquels le goujon 345 est disposé. Ainsi, chaque structure d'angle primaire 330 est retenue par deux barres d'appui 350 en prise avec les deux rebords latéraux de sa plaque rigide 334. Un écrou non représenté est vissé sur chaque goujon 345 pour serrer la barre d'appui 350 en direction de la structure porteuse. Les découpes 354 dans les bords des cornières métalliques 332 facilitent le montage du goujon 345 puis la mise en place de l'écrou de la manière précédemment décrite.
- Du fait de ce mode de fixation des structures d'angle primaires 330, les orifices sont supprimés dans la cornière métallique 332, qui peut donc être continue.
- Pour l'ancrage du panneau isolant primaire plan 329 adjacent à la rangée de structures d'angle primaires 330 sur la barrière secondaire, une rangée de goujons 69 peut être prévue de chaque côté de la rangée de structures d'angle primaires 330. Ceci peut nécessiter de prévoir une structure d'angle secondaire 313 plus large, comme représenté.
- Dans un mode de réalisation, la barrière isolante secondaire et la membrane d'étanchéité secondaire sont supprimées et les goujons qui ancrent la barrière isolante primaire sont portés directement par les parois porteuses 11, 12.
- La technique décrite ci-dessus pour réaliser une cuve étanche et thermiquement isolante de stockage d'un fluide peut être utilisée dans différents types de réservoirs, par exemple pour constituer un réservoir de GNL dans une installation terrestre ou dans un ouvrage flottant comme un navire méthanier ou autre.
- La technique illustrée ci-dessus dans le cadre d'une surface de support réellement polyédrique, dans laquelle des portions planes se rejoignent au niveau d'arêtes, est aussi applicable à une surface de support approximativement polyédrique qui, à la place des arêtes, présenterait des portions arrondies réalisant une liaison entre des portions planes. Le terme zone d'arête est employé pour désigner la liaison entre deux portions planes dans les deux contextes et peut correspondre à une arête réelle ou à une portion arrondie entre les deux portions planes.
- En référence à la
figure 12 , une vue écorchée d'un navire méthanier 70 montre une cuve étanche et isolée 71 de forme générale prismatique montée dans la double coque 72 du navire. La paroi de la cuve 71 comporte une barrière étanche primaire destinée à être en contact avec le GNL contenu dans la cuve, une barrière étanche secondaire agencée entre la barrière étanche primaire et la double coque 72 du navire, et deux barrières isolante agencées respectivement entre la barrière étanche primaire et la barrière étanche secondaire et entre la barrière étanche secondaire et la double coque 72. - De manière connue en soi, des canalisations de chargement/déchargement 73 disposées sur le pont supérieur du navire peuvent être raccordées, au moyen de connecteurs appropriées, à un terminal maritime ou portuaire pour transférer une cargaison de GNL depuis ou vers la cuve 71.
- La
figure 12 représente un exemple de terminal maritime comportant un poste de chargement et de déchargement 75, une conduite sous-marine 76 et une installation à terre 77. Le poste de chargement et de déchargement 75 est une installation fixe off-shore comportant un bras mobile 74 et une tour 78 qui supporte le bras mobile 74. Le bras mobile 74 porte un faisceau de tuyaux flexibles isolés 79 pouvant se connecter aux canalisations de chargement/déchargement 73. Le bras mobile 74 orientable s'adapte à tous les gabarits de méthaniers. Une conduite de liaison non représentée s'étend à l'intérieur de la tour 78. Le poste de chargement et de déchargement 75 permet le chargement et le déchargement du méthanier 70 depuis ou vers l'installation à terre 77. Celle-ci comporte des cuves de stockage de gaz liquéfié 80 et des conduites de liaison 81 reliées par la conduite sous-marine 76 au poste de chargement ou de déchargement 75. La conduite sous-marine 76 permet le transfert du gaz liquéfié entre le poste de chargement ou de déchargement 75 et l'installation à terre 77 sur une grande distance, par exemple 5 km, ce qui permet de garder le navire méthanier 70 à grande distance de la côte pendant les opérations de chargement et de déchargement. - Pour engendrer la pression nécessaire au transfert du gaz liquéfié, on met en oeuvre des pompes embarquées dans le navire 70 et/ou des pompes équipant l'installation à terre 77 et/ou des pompes équipant le poste de chargement et de déchargement 75.
- Bien que l'invention ait été décrite en liaison avec plusieurs modes de réalisation particuliers, il est bien évident qu'elle n'y est nullement limitée et qu'elle comprend tous les équivalents techniques des moyens décrits ainsi que leurs combinaisons si celles-ci entrent dans le cadre de l'invention. Le cadre de l'invention est celui tel que défini par les revendications
- L'usage du verbe « comporter », « comprendre » ou « inclure » et de ses formes conjuguées n'exclut pas la présence d'autres éléments ou d'autres étapes que ceux énoncés dans une revendication. L'usage de l'article indéfini « un » ou « une » pour un élément ou une étape n'exclut pas, sauf mention contraire, la présence d'une pluralité de tels éléments ou étapes.
- Dans les revendications, tout signe de référence entre parenthèses ne saurait être interprété comme une limitation de la revendication.
Claims (24)
- Cuve étanche et thermiquement isolante destinée au stockage d'un fluide, la cuve étanche et thermiquement isolante comportant une barrière d'isolation et une barrière d'étanchéité disposée sur une surface intérieure de la barrière d'isolation, la barrière d'isolation étant disposée sur une surface de support portant des organes d'ancrage et retenue sur la surface de support par lesdits organes d'ancrage, la surface de support présentant au moins deux régions planes formant un angle entre elles et se rejoignant au niveau d'une zone d'arête (10),dans laquelle la barrière d'isolation comporte une rangée de structures d'angle (30, 130, 230, 330) disposées le long de ladite zone d'arête de la surface de support et des panneaux isolants plans (29, 129, 329) disposés sur les régions planes de la surface de support de part et d'autre de la rangée de structures d'angle,dans laquelle au moins une dite structure d'angle comporte :- un bloc isolant diédrique (31, 231, 331) présentant deux pans respectivement parallèles aux régions planes et formant un angle entre eux, ledit pan comportant une surface extérieure plane en appui contre la région plane correspondante de la surface de support et une surface intérieure plane parallèle à ladite région plane correspondante et espacée de ladite surface extérieure plane dans une direction d'épaisseur, et- une cornière métallique (32, 65, 132, 232, 332) fixée sur les surfaces intérieures planes du bloc isolant diédrique pour former ladite barrière d'étanchéité au droit de la zone d'arête de la surface de support, la cornière métallique présentant une portion saillante (53, 153, 253, 353) qui fait saillie par rapport au bloc isolant diédrique selon la direction de la zone d'arête,dans laquelle deux structures d'angle successives dans ladite rangée sont disposées de manière à présenter un espacement (38, 138, 338) selon la direction de la zone d'arête entre les blocs isolants diédriques, ledit espacement étant au moins partiellement recouvert par la portion saillante (53, 153, 253, 353) de la cornière métallique d'au moins une des deux structures d'angle successives,caractérisée en ce que la surface de support porte un dit organe d'ancrage (45, 145, 345) disposé entre les blocs isolants diédriques des deux structures d'angle, ladite au moins une des deux structures d'angle successives présentant une découpe (54, 254, 354) formée dans la portion saillante de la cornière métallique au droit dudit organe d'ancrage disposé entre les blocs isolants diédriques, pour ménager un accès audit organe d'ancrage (45, 145, 345).
- Cuve selon la revendication 1, dans laquelle ledit espacement est partiellement recouvert par deux portions saillantes (53, 153, 253, 353) tournées l'une vers l'autre appartenant respectivement aux cornières métalliques des deux structures d'angle successives,
chacune des deux portions saillantes tournées l'une vers l'autre comportant une découpe (54, 254, 354) formée au droit dudit organe d'ancrage. - Cuve selon l'une quelconque des revendications 1 à 2, dans laquelle ladite découpe (54, 254, 354) est formée dans un bord d'extrémité de ladite portion saillante orienté transversalement à la zone d'arête.
- Cuve selon l'une quelconque des revendications 1 à 3, dans laquelle l'organe d'ancrage (345, 350) disposé entre les blocs isolants diédriques (331) des deux structures d'angle (330) successives coopère avec les blocs isolants diédriques des deux structures d'angle pour retenir lesdits blocs isolants diédriques (331) sur la surface de support.
- Cuve selon la revendication 4, dans laquelle l'organe d'ancrage comporte :un goujon (345) fixé à la surface de support et faisant saillie vers l'intérieur dans l'espace entre les blocs isolants diédriques,une barre d'appui (350) engagée sur ledit goujon et présentant deux portions latérales respectivement en prise avec les deux blocs isolants diédriques (331), etun écrou vissé sur le goujon (345) pour serrer la barre d'appui (350) en direction de la surface de support.
- Cuve selon l'une quelconque des revendications 1 à 5, dans laquelle l'organe d'ancrage disposé entre les blocs isolants diédriques (31, 231) des deux structures d'angle successives coopère avec un panneau isolant plan (29, 129) adjacent à la rangée de structures d'angle pour retenir ledit panneau isolant plan sur la surface de support.
- Cuve selon la revendication 6, dans laquelle l'organe d'ancrage comporte :un goujon (45, 145) fixé à la surface de support et faisant saillie vers l'intérieur dansl'espace entre les blocs isolants diédriques,une barre d'appui (50, 150) présentant une première portion tournée vers la zone d'arête engagée sur ledit goujon et une deuxième portion (51) faisant saillie au-delà des blocs isolants diédriques (31, 231) dans une direction opposée à la zone d'arête en prise avec ledit panneau isolant plan (29, 129), etun écrou (47) vissé sur le goujon et apte à serrer la barre d'appui (50, 150) en direction de la surface de support.
- Cuve selon la revendication 7, dans laquelle la barre d'appui présente une fente traversée par le goujon, de sorte que, lorsque l'écrou ne serre pas la barre d'appui, la barre d'appui peut être coulissée dans une direction transverse à la zone d'arête entre :- une position escamotée dans laquelle la barre d'appui est logée dans l'espacement entre les blocs isolants diédriques (31, 231) des deux structures d'angle successives pour laisser libre l'emplacement dudit panneau isolant plan (29, 129), et- des positions déployées dans lesquelles la deuxième portion (51) faisant saillie au-delà des blocs isolants diédriques (31, 231) dans une direction opposée à la zone d'arête pour venir en prise avec ledit panneau isolant plan (29, 129).
- Cuve selon l'une quelconque des revendications 6 à 8, dans laquelle le panneau isolant plan (29,129) adjacent à la rangée de structures d'angle comporte une couche de mousse polymère isolante prise en sandwich entre une plaque de fond rigide et une plaque de couvercle rigide (25), la plaque de couvercle rigide et la couche de mousse polymère isolante présentant un évidement (27, 127) ménagé dans l'épaisseur du panneau isolant pour découvrir une zone d'appui (28) sur la surface interne de la plaque de fond rigide, ledit évidement débouchant sur un bord (26) du panneau isolant plan parallèle à la zone d'arête et tourné vers la rangée de structures d'angle, l'organe d'ancrage étant en prise avec ladite zone d'appui (28) de la plaque de fond.
- Cuve selon la revendication 9, dans laquelle l'évidement ménagé dans l'épaisseur du panneau isolant est une rainure (27) orientée perpendiculairement audit bord (26) du panneau isolant plan.
- Cuve selon la revendication 9 ou 10, dans laquelle le panneau isolant plan présente une forme de parallélépipède rectangle, l'évidement (127) étant ménagé dans un coin du panneau isolant plan.
- Cuve selon l'une quelconque des revendications 6 à 11, dans laquelle la surface de support porte une pluralité d'organes d'ancrage (45, 145) distribués le long de la zone d'arête (10) et disposés chacun entre deux blocs isolants diédriques de structures d'angle successives (30, 130, 230) et coopérant chacun avec une zone respective du panneau isolant plan (29, 129) adjacent à la rangée de structures d'angle pour retenir ledit panneau isolant plan sur la surface de support.
- Cuve selon l'une quelconque des revendications 1 à 12, dans laquelle la surface de support comporte une troisième région plane transverse à la zone d'arête à une extrémité de la zone d'arête (10), dans laquelle une dernière structure d'angle (130) de la rangée de structures d'angle comporte, outre ledit bloc isolant diédrique, un troisième pan (100) parallèle à la troisième région plane et formant des angles avec lesdits deux pans du bloc isolant diédrique (130), et
dans laquelle la cornière métallique (132) de ladite dernière structure d'angle (130) se prolonge sur la surface intérieure plane dudit troisième pan pour former ladite barrière d'étanchéité au droit de l'extrémité de la zone d'arête de la surface de support, ladite cornière métallique liant ledit troisième pan au bloc isolant diédrique, ladite portion saillante (153) de la cornière métallique (132) faisant saillie à l'opposé du troisième pan(100) en direction d'une avant-dernière structure d'angle (230) de la rangée de structures d'angle. - Cuve selon la revendication 13, dans laquelle ledit bloc isolant diédrique(231) de l'avant-dernière structure d'angle (230) de la rangée de structures d'angle présente une plus grande dimension selon la direction de la zone d'arête que des structures d'angle situées le long d'une portion centrale de la zone d'arête, la cornière métallique de ladite avant-dernière structure d'angle étant composé de deux segments de cornière (232, 65) juxtaposés selon la direction de la zone d'arête et fixés sur les surfaces intérieures planes du bloc isolant diédrique (231).
- Cuve selon la revendication 14, dans laquelle un premier segment de cornière (232) de ladite avant-dernière structure d'angle présente des orifices (237) pour le passage d'organes d'ancrage servant à fixer ledit bloc isolant diédrique (231) sur la surface de support et un deuxième segment de cornière (65) de ladite avant-dernière structure d'angle situé du côté de l'extrémité de la zone d'arête présente une surface continue.
- Cuve selon l'une quelconque des revendications 1 à 15, dans laquelle un bloc de matière isolante (39) est disposé dans l'espacement (38, 138, 338) entre les blocs isolants diédriques entre la portion saillante (53, 153, 253, 353) de la cornière métallique et la surface de support, le bloc de matière isolante (39) présentant un passage (56) entre ladite découpe (54, 254, 354) formée dans la portion saillante de la cornière métallique et ledit organe d'ancrage disposé entre les blocs isolants diédriques.
- Cuve selon l'une quelconque des revendications 1 à 16, dans laquelle la barrière d'étanchéité comporte une pièce de fermeture (68) disposée à cheval sur les cornières métalliques (32, 132, 232, 65) des deux structures d'angle successives de manière à relier de manière étanche les cornières métalliques des deux structures d'angle,
ladite pièce de fermeture (68) recouvrant un interstice situé entre les cornières métalliques et la découpe (54, 254, 354) de ladite ou chaque portion saillante qui recouvre l'espacement entre les blocs isolants diédriques. - Cuve selon l'une quelconque des revendications 1 à 17, dans laquelle la barrière d'étanchéité au droit d'une ou chaque région plane de la surface de support comporte une membrane métallique (67) portant des ondulations parallèles à la zone d'arête et des ondulations perpendiculaires à la zone d'arête et des zones planes situées entre lesdites ondulations, un bord de la membrane métallique (67) parallèle à la zone d'arête étant soudé sur les cornières métalliques (32, 232, 65) des structures d'angle successives, lesdites ondulations perpendiculaires à la zone d'arête étant alignées avec des interstices situés entre les cornières métalliques des structures d'angle successives.
- Cuve selon les revendications 18 et 17 prises en combinaison, dans laquelle la pièce de fermeture (68, 168) comporte une ondulation perpendiculaire à la zone d'arête alignée avec une ondulation de la membrane métallique et deux portions planes situées de part et d'autre de l'ondulation et soudées respectivement sur les cornières métalliques des deux structures d'angle.
- Cuve selon l'une quelconque des revendications 1 à 19, dans laquelle ladite barrière d'isolation est une barrière d'isolation primaire et ladite barrière d'étanchéité est une barrière d'étanchéité primaire, la cuve comportant en outre une barrière d'isolation secondaire (13, 113, 213) présentant une surface interne sensiblement polyédrique recouverte d'une barrière d'étanchéité secondaire (15) et formant ladite surface de support.
- Navire (70) pour le transport d'un fluide, le navire comportant une double coque (72) et une cuve (71) selon l'une quelconque des revendications 1 à 20 disposée dans la double coque.
- Système de transfert pour un fluide, le système comportant un navire (70) selon la revendication 21, des canalisations isolées (73, 79, 76, 81) agencées de manière à relier la cuve (71) installée dans la coque du navire à une installation de stockage flottante ou terrestre (77) et une pompe pour entraîner un fluide à travers les canalisations isolées depuis ou vers l'installation de stockage flottante ou terrestre vers ou depuis la cuve du navire.
- Procédé de chargement ou déchargement d'un navire (70) selon la revendication 21, dans lequel on achemine un fluide à travers des canalisations isolées (73, 79, 76, 81) depuis ou vers une installation de stockage flottante ou terrestre (77) vers ou depuis la cuve du navire (71).
- Procédé de fabrication pour fabriquer une cuve étanche et thermiquement isolante selon l'une des revendications 1 à 20, le procédé comportant :fournir une surface de support,monter un organe d'ancrage (45, 145, 345) sur la surface de support,monter une rangée de structures d'angle (30, 130, 230, 330) le long d'une zone d'arête de la surface de support, de manière que ledit organe d'ancrage (45, 145, 345) soit disposé entre les blocs isolants diédriques de deux structures d'angle successives dans ladite rangée,accéder audit organe d'ancrage (45, 145, 345) à travers la découpe (54, 254, 354) formée dans la portion saillante de la cornière métallique au droit dudit organe d'ancrage, pour placer ledit organe d'ancrage dans un état de prise dans lequel ledit organe d'ancrage retient un élément de la barrière d'isolation sur la surface de support.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1760383A FR3073272B1 (fr) | 2017-11-06 | 2017-11-06 | Cuve etanche et thermiquement isolante |
PCT/FR2018/052671 WO2019086790A1 (fr) | 2017-11-06 | 2018-10-26 | Cuve etanche et thermiquement isolante |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3707424A1 EP3707424A1 (fr) | 2020-09-16 |
EP3707424B1 true EP3707424B1 (fr) | 2023-07-05 |
Family
ID=61027908
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP18804368.1A Active EP3707424B1 (fr) | 2017-11-06 | 2018-10-26 | Cuve etanche et thermiquement isolante |
Country Status (9)
Country | Link |
---|---|
EP (1) | EP3707424B1 (fr) |
JP (1) | JP7154292B2 (fr) |
KR (1) | KR102501626B1 (fr) |
CN (1) | CN111527340B (fr) |
ES (1) | ES2958660T3 (fr) |
FR (1) | FR3073272B1 (fr) |
RU (1) | RU2761702C1 (fr) |
SG (1) | SG11202004102RA (fr) |
WO (1) | WO2019086790A1 (fr) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20230228378A1 (en) * | 2020-07-31 | 2023-07-20 | Hyundai Heavy Industries Co., Ltd. | Liquefied gas storage tank and ship comprising same |
CN112918634B (zh) * | 2021-03-04 | 2022-03-15 | 江南造船(集团)有限责任公司 | 一种船舶锚系结构的精度控制方法 |
KR102519039B1 (ko) * | 2021-04-08 | 2023-04-10 | 에이치디현대중공업 주식회사 | 액화가스 저장탱크 및 이를 포함하는 선박 |
KR20230000309A (ko) * | 2021-06-24 | 2023-01-02 | 한국가스공사 | 비대칭형 멤브레인 및 상기 비대칭형 멤브레인을 이용한 멤브레인 배열구조, 그리고 상기 멤브레인 배열구조를 포함하는 액화가스 저장탱크 |
CN117048799B (zh) * | 2023-10-13 | 2024-02-09 | 沪东中华造船(集团)有限公司 | 一种薄膜型围护系统的建造方法 |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR1554714A (fr) * | 1967-10-12 | 1969-01-24 | ||
SU1432307A1 (ru) * | 1987-01-19 | 1988-10-23 | Всесоюзный Научно-Исследовательский И Проектный Институт "Теплопроект" | Теплоизол ционна конструкци изотермического резервуара |
FR2798358B1 (fr) * | 1999-09-14 | 2001-11-02 | Gaz Transport & Technigaz | Cuve etanche et thermiquement isolante integree dans une structure porteuse de navire, a structure d'angle simplifiee |
KR100499710B1 (ko) * | 2004-12-08 | 2005-07-05 | 한국가스공사 | 선박 내부에 설치되는 액화천연가스 저장용 탱크 구조 및 탱크 제조방법 |
KR100553017B1 (ko) * | 2005-04-20 | 2006-02-15 | 이성욱 | 히팅패드를 이용한 2차 가스배리어 접착방법 |
JP5342889B2 (ja) | 2009-02-03 | 2013-11-13 | Hoya株式会社 | 医療用プローブ、および医療用観察システム |
FR3004510B1 (fr) * | 2013-04-12 | 2016-12-09 | Gaztransport Et Technigaz | Cuve etanche et thermiquement isolante de stockage d'un fluide |
FR3004509B1 (fr) * | 2013-04-12 | 2016-11-25 | Gaztransport Et Technigaz | Structure d'angle d'une cuve etanche et thermiquement isolante de stockage d'un fluide |
FR3004511B1 (fr) | 2013-04-15 | 2016-12-30 | Gaztransport Et Technigaz | Cuve etanche et thermiquement isolante |
FR3026459B1 (fr) | 2014-09-26 | 2017-06-09 | Gaztransport Et Technigaz | Cuve etanche et isolante comportant un element de pontage entre les panneaux de la barriere isolante secondaire |
FR3038690B1 (fr) * | 2015-07-06 | 2018-01-05 | Gaztransport Et Technigaz | Cuve etanche et thermiquement isolante ayant une membrane d'etancheite secondaire equipee d'un arrangement d'angle a toles metalliques ondulees |
RU2600419C1 (ru) * | 2015-08-13 | 2016-10-20 | Общество с ограниченной ответственностью проектно-конструкторское бюро "БАЛТМАРИН" | Мембранный танк для сжиженного природного газа (тип вм) |
KR101751839B1 (ko) * | 2015-08-21 | 2017-06-28 | 대우조선해양 주식회사 | 멤브레인형 저장탱크의 단열시스템 및 이를 포함하는 멤브레인형 저장탱크 |
KR101792479B1 (ko) * | 2016-03-04 | 2017-11-03 | 삼성중공업 주식회사 | 코너벽체 및 그를 이용한 액화가스 화물창의 시공방법 |
KR102060706B1 (ko) * | 2018-06-12 | 2020-02-11 | 삼성중공업 주식회사 | 코너벽체, 코너벽체를 포함하는 액화천연가스 화물창 및 액화천연가스 화물창의 시공 방법 |
-
2017
- 2017-11-06 FR FR1760383A patent/FR3073272B1/fr active Active
-
2018
- 2018-10-26 WO PCT/FR2018/052671 patent/WO2019086790A1/fr unknown
- 2018-10-26 ES ES18804368T patent/ES2958660T3/es active Active
- 2018-10-26 KR KR1020207015680A patent/KR102501626B1/ko active IP Right Grant
- 2018-10-26 CN CN201880084641.6A patent/CN111527340B/zh active Active
- 2018-10-26 SG SG11202004102RA patent/SG11202004102RA/en unknown
- 2018-10-26 JP JP2020524505A patent/JP7154292B2/ja active Active
- 2018-10-26 RU RU2020114668A patent/RU2761702C1/ru active
- 2018-10-26 EP EP18804368.1A patent/EP3707424B1/fr active Active
Also Published As
Publication number | Publication date |
---|---|
WO2019086790A1 (fr) | 2019-05-09 |
CN111527340A (zh) | 2020-08-11 |
SG11202004102RA (en) | 2020-06-29 |
CN111527340B (zh) | 2021-11-23 |
JP2021501858A (ja) | 2021-01-21 |
FR3073272B1 (fr) | 2019-11-01 |
KR102501626B1 (ko) | 2023-02-21 |
JP7154292B2 (ja) | 2022-10-17 |
ES2958660T3 (es) | 2024-02-13 |
RU2761702C1 (ru) | 2021-12-13 |
EP3707424A1 (fr) | 2020-09-16 |
FR3073272A1 (fr) | 2019-05-10 |
KR20200088360A (ko) | 2020-07-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3198186B1 (fr) | Cuve étanche et isolante comportant un élément de pontage entre les panneaux de la barrière isolante secondaire | |
EP3707424B1 (fr) | Cuve etanche et thermiquement isolante | |
EP3320256B1 (fr) | Cuve etanche et thermiquement isolante ayant une membrane d'etancheite secondaire equipee d'un arrangement d'angle a toles metalliques ondulees | |
EP2984384B1 (fr) | Structure d'angle d'une cuve etanche et thermiquement isolante de stockage d'un fluide | |
EP2984383B1 (fr) | Cuve etanche et thermiquement isolante de stockage d'un fluide | |
EP3286489B1 (fr) | Cuve etanche et thermiquement isolante equipee d'un element traversant | |
EP3283813B1 (fr) | Cuve équipée d'une paroi présentant une zone singulière au travers de laquelle passe un élément traversant | |
EP4108976A1 (fr) | Cuve etanche et thermiquement isolante | |
FR3058498B1 (fr) | Structure d'angle d'une cuve etanche et thermiquement isolante et son procede d'assemblage | |
EP3473915B1 (fr) | Cuve etanche et thermiquement isolante | |
FR2973098A1 (fr) | Cuve etanche et thermiquement isolante | |
FR3049678A1 (fr) | Bloc de bordure thermiquement isolant pour la fabrication d'une paroi de cuve | |
EP3365592B1 (fr) | Cuve comprenant des blocs isolants de coin equipes de fentes de relaxation | |
WO2017207938A1 (fr) | Bloc isolant et cuve etanche et thermiquement isolante integree dans une structure porteuse polyedrique | |
EP3707423B1 (fr) | Cuve etanche et thermiquement isolante | |
EP3807567A1 (fr) | Cuve etanche et thermiquement isolante | |
EP3526512B1 (fr) | Cuve étanche et thermiquement isolante |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: UNKNOWN |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20200507 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20230206 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1585139 Country of ref document: AT Kind code of ref document: T Effective date: 20230715 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602018052919 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: FRENCH |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20230705 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1585139 Country of ref document: AT Kind code of ref document: T Effective date: 20230705 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230705 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231006 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20231124 Year of fee payment: 6 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231105 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230705 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230705 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231106 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231005 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230705 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230705 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231105 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230705 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231006 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230705 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230705 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20231023 Year of fee payment: 6 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2958660 Country of ref document: ES Kind code of ref document: T3 Effective date: 20240213 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20240111 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230705 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602018052919 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230705 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230705 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230705 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230705 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230705 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230705 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 602018052919 Country of ref document: DE |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230705 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230705 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
26N | No opposition filed |
Effective date: 20240408 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20231031 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20231026 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20231026 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20231026 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20231026 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20231031 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20231026 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20240501 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20231031 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230705 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20231031 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20231026 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20231026 |