EP2929589B1 - Dualpolarisierte, omnidirektionale antenne - Google Patents
Dualpolarisierte, omnidirektionale antenne Download PDFInfo
- Publication number
- EP2929589B1 EP2929589B1 EP13789186.7A EP13789186A EP2929589B1 EP 2929589 B1 EP2929589 B1 EP 2929589B1 EP 13789186 A EP13789186 A EP 13789186A EP 2929589 B1 EP2929589 B1 EP 2929589B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- antenna
- reflector
- sector
- central axis
- dual
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000009977 dual effect Effects 0.000 title description 10
- 230000010287 polarization Effects 0.000 description 8
- 230000005855 radiation Effects 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 238000003491 array Methods 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/12—Supports; Mounting means
- H01Q1/22—Supports; Mounting means by structural association with other equipment or articles
- H01Q1/24—Supports; Mounting means by structural association with other equipment or articles with receiving set
- H01Q1/241—Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
- H01Q1/246—Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for base stations
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/52—Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
- H01Q1/521—Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure reducing the coupling between adjacent antennas
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q21/00—Antenna arrays or systems
- H01Q21/06—Arrays of individually energised antenna units similarly polarised and spaced apart
- H01Q21/08—Arrays of individually energised antenna units similarly polarised and spaced apart the units being spaced along or adjacent to a rectilinear path
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q21/00—Antenna arrays or systems
- H01Q21/06—Arrays of individually energised antenna units similarly polarised and spaced apart
- H01Q21/20—Arrays of individually energised antenna units similarly polarised and spaced apart the units being spaced along or adjacent to a curvilinear path
- H01Q21/205—Arrays of individually energised antenna units similarly polarised and spaced apart the units being spaced along or adjacent to a curvilinear path providing an omnidirectional coverage
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q21/00—Antenna arrays or systems
- H01Q21/24—Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction
- H01Q21/26—Turnstile or like antennas comprising arrangements of three or more elongated elements disposed radially and symmetrically in a horizontal plane about a common centre
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q25/00—Antennas or antenna systems providing at least two radiating patterns
- H01Q25/005—Antennas or antenna systems providing at least two radiating patterns providing two patterns of opposite direction; back to back antennas
Definitions
- the invention relates to a dual-polarized, omnidirectional antenna according to the preamble of claim 1.
- An omnidirectional antenna for example, from the WO 2011/120090 A1 known.
- Such omnidirectional omnidirectional device comprises, for example, three antenna array arrangements which are each arranged at a 120 ° angle offset from each other about a central axis, resulting in a triangular structure in axial plan view. This allows each antenna array to cover approximately an azimuth angular range of 120 °.
- Corresponding antennas may include a wide variety of emitters and emitter devices according to the prior art, for example dipoles, so-called vector dipoles, patch emitters, etc. So-called dual-polarized vector emitters are known, for example, from US Pat EP 1 057 224 B1 known.
- Each of the three mutually offset antenna arrays comprises, for example, a plurality of dual-polarized radiator devices arranged one above the other at equal intervals. Via a corresponding feed device, the respective dual-polarized radiators are fed.
- the spotlights can also be fed circularly.
- the two polarization planes are not only perpendicular to one another, but are arranged at an angle of + 45 ° or -45 ° with respect to a horizontally or vertically oriented plane.
- the individual sector antennas can be configured to be MIMO-capable, ie they are part of a reception system with a plurality of input and output signals.
- a vertically polarized antenna for example, from the DE 600 19 412 T2 known. It includes a vertical, elongated support structure with multiple dipoles arranged at different heights along the support structure and connected to a coaxial power cable. Along the construction mentioned, only one dipole is provided per level.
- the dipoles are coplanar and arranged exactly colinear, divided into two groups, which are formed successively on said construction.
- the dipoles in the two groups are oriented in the opposite direction to each other, so that the horizontal polarization components of the two groups are opposite.
- the arrangement is such that a small distance arises between the two dipole groups, which offers the possibility of Adjust the phase centers of the dipoles of both groups, so as to compensate for a small shift due to the effect of the ground plane on the dipoles.
- vertically polarized omnidirectional radiators which radiate or receive only in a polarization that is not MIMO-capable.
- These vertically polarized omnidirectional sources with, for example, three or four panels are connected together around a mast in a same plane to form an omnidirectional diagram. For better roundness, several layers can be twisted together.
- the disadvantage here is that good broadcast properties are only possible for a small frequency range (due to the geometric arrangement, this results in phase-dependent cancellations).
- a multi-sector antenna is for example also from the DE 697 34 172 T2 known.
- a plurality of elemental antennas are used, each having a different directivity in a horizontal plane.
- each elementary antenna is arranged in a vertical plane, wherein at least one of the elementary antennas is positioned at a different height than that of the other elemental antennas.
- the elemental antennas are arranged with respect to a vertical axis of the sector antennas, which is defined such that the elementary antennas are arranged axially symmetrically with respect to the said axis.
- a well-known in the prior art omnidirectional antenna is from the US 6,369,774 B1 known.
- This prior publication describes an antenna in which, for example, one dipole antenna is positioned one above the other in three spaced-apart regions along an X-axis, each of which acts on its own as a front radiator.
- the three dipole antennas mentioned are positioned away from each other along the X-axis and are also surrounded by a first medium with a higher impedance, this medium being surrounded with a higher impedance by a second medium. which has a lower impedance compared to the first medium.
- Other examples include a sector antenna in which three patch emitters are each spaced apart 120 degrees apart along the x-axis.
- a single radiator with a vector dipole of the WO 2008/017386 A1 known.
- This single radiator sits in front of a specifically trained, in plan view square reflector, which is surrounded on all four sides by a reflector web, which protrudes in the beam direction transverse to the reflector plane, in particular perpendicular thereto.
- the corresponding Vector radiator in the individual reflector fields arranged one above the other has, which is like the single reflector also on all four sides surrounding each radiator circumferentially surrounded by a reflector web.
- the reflector webs serve for beam shaping.
- a generic omnidirectional antenna is out of the EP 0 802 579 A2 known.
- This publication shows an antenna, which is arranged one above the other in the axial direction and offset from one another in each case three, for example, by 120 ° twisted aligned reflector planes. These reflector planes intersect in axial plan view along the central axis in this central axis. In front of the reflector planes corresponding radiators are arranged. These can also be dual-polarized radiators sitting in a section in front of the reflector, which is bounded by a reflector web extending around the radiator.
- Object of the present invention is to provide an improved dual-polarized while omnidirectional antenna or array antennas, which has over conventional solutions an improved Rundstrahl property with the least possible space.
- the inventive solution is based on the known structure, in which several, for example, three offset by 120 ° to each radiating sector antenna devices, in particular antenna arrays may be provided, not in the same altitude, but in the vertical direction (ie in their cultivation direction) offset from one another lie.
- a phase center is understood as meaning those electronic reference points of an antenna from which the electromagnetic antenna radiation appears to be viewed from the point of reception.
- the reflector plane can usually be referred to at least approximately as a phase center, that is usually the central region of a corresponding reflector arrangement of a sector antenna.
- the invention also proposes that between two adjacent and along the central axis staggered sector antennas between a decoupling device is provided.
- This decoupling device consists of at least one reflector web, which is aligned transversely to the reflector plane of the associated reflector.
- Such transverse webs, which are formed on the reflector are, in principle, for example, from the DE 103 16 787 A1 known.
- this is a conventional single-column mobile radio antenna which comprises at least two reflector modules which can be assembled to form an overall reflector, in each case is characterized by lateral longitudinal webs and between the individual radiator arrangements extending transverse webs.
- the at least one reflector plane of each sector antenna is arranged such that the vertical central axis is arranged to extend at a distance from the reflector plane.
- the reflector walls or the reflector planes lie parallel to the central axis in such a distance that the distance between the reflector plane of a sector antenna and the central axis is smaller than 15% of the column width of an associated antenna column.
- the central axis runs on the side of the reflector plane on which the radiators are also provided.
- the arrangement is such that the central axis passes through the reflector webs.
- phase center of the overall arrangement for the horizontal diagram is identical to the phase center of a single antenna.
- group factor of the overall arrangement is frequency-independent and the omnidirectional diagram thus extremely broadband (it is therefore also suitable for dual-band antennas).
- the roundness of the overall arrangement depends only on the half-width of the individual antenna.
- a decoupling-optimized structure of the individual radiators or directional antennas is also provided.
- This may, for example, circumferential or partially circumferential reflector webs, especially reflector webs, which lie transversely to the respective reflector plane and are formed between the individual, vertically stacked sector antennas.
- an omnidirectional monoband antenna but also, for example, an omnidirectional dual-band antenna or an omnidirectional multiband antenna comprising several bands, which additionally transmit and / or receive dual-polarized or circular-polarized can.
- radiators and radiator devices for example in the form of patch radiators, but also in the form of so-called dipole or vector radiators, as described, for example, in US Pat EP 1 082 728 B1 as well as the EP 1 470 615 B1 are known to be known.
- so-called cup-shaped, slightly larger dimensioned dual-polarized radiator and sitting in the center of smaller sized provided for the higher frequency band range dual polarized radiator can be used.
- a plurality of monoband, dual band or multi-band radiators or radiator devices can also be arranged in each antenna column, usually arranged one above the other in the vertical direction, as in a conventional antenna.
- Each of these antenna columns with the plurality of superimposed radiators are then arranged offset in the circumferential direction about the central axis, that is aligned, ie with different azimuth angles.
- a doubling of the radiator can be effected as explained above, that relative to the respective reflector plane (ie offset by 180 ° lying) oppositely directed radiator devices are provided.
- the common plane in which the phase centers of a column antenna lie or at least approximately may be arranged so that it preferably passes through the central axis or in the vicinity of the central axis.
- the radiator in the one column could be arranged so that their phase centers come to lie exactly or as exactly as possible to the respective central axis of the antenna array, and then that in a for example arranged second antenna column radiating devices in the radial direction, so come to lie in the lateral direction to the central axis, so far as the two columns are not symmetrical to the central axis.
- FIGS. 1 to 3 Reference is made to which a first example is shown.
- FIG. 1 a vertical central axis 1 is shown by dashed lines, which is also referred to below as a mounting axis or cultivation line.
- three sector antennas 5 are arranged one above the other, each offset in the azimuth direction by 120 ° in the circumferential direction to each other, ie radiate offset by 120 ° to each other.
- the three sector antennas 5 are not positioned at the same altitude, relative to their vertical central axis 1 (as is common in the prior art), but offset in the direction of the vertical central axis or cultivation line 1 to each other.
- each of the sector antennas 5 comprises, for example, a dual-polarized emitter 7, for example for a first, higher frequency band (high band) and a further, dual-polarized emitter 9 for a lower frequency band (low band), this sector antenna 5 being arranged in an antenna column 6.
- the vector radiator for the higher frequency band has a structure such as in principle from the EP 1 057 224 B4 or the DE 198 60 121 A1 is known.
- This dual-polarized radiator for the higher frequency band (also referred to below as vector dipole) is arranged, for example, within a so-called cup-shaped dipole, which is likewise designed as a dual-polarized radiator and is suitable for transmission and reception in a low frequency band due to its larger dimensioning.
- a radiator is basically, for example, from EP 1 470 615 B1 to be known as known.
- the two radiators 7 and 9 sit at a same position when viewed from the front perpendicular to the respectively associated reflector 11, which in the example shown in each case a rear reflector to the reflector 13 wall 13, which is arranged in a reflector plane 13 ', wherein in the example shown circumferentially reflector webs 15 are arranged.
- These reflector webs 15 are transversely and preferably in the example shown perpendicular to the reflector plane 13 'and are provided as part of the entire reflector 11 as a circumferential boundary.
- the aforementioned, decoupled reflector structure therefore comprises at least one reflector web 15 ', which is aligned transversely and preferably perpendicular to the reflector plane 13' of the relevant sector antenna 5 and is arranged between two adjacent sector antennas. It should this, especially the decoupling to a adjacent sector antenna serving crosspiece 15 'of the reflector 11 transversely and in particular perpendicular to the connecting line, that is, the central axis 1, aligned.
- an intermediate reflector 17 may be arranged in an intermediate reflector plane 17 'at a parallel distance to the rear reflector wall 13, which is dimensioned smaller than the dual-polarized radiator 9 for the low frequency range, the symmetrization of the corresponding vector radiator 7 a corresponding central opening 17a in this intermediate reflector 17 electrically, without contact penetrates through electrical.
- FIG. 1 in perspective reproduced example includes the mentioned three sector antennas 5, which are aligned in the vertical or central direction 1 offset by 120 ° to each other.
- the structure of all antennas is basically the same, but could also be different from each other.
- Each sector antenna 5, that is, each corresponding antenna system 5 is constructed in the embodiment shown in the manner of a single-column sector antenna, which in the example shown, only one row and thus only a corresponding radiator arrangement for transmission in a higher and lower frequency band.
- two or more sector antennas can also be combined to form a corresponding sector antenna array in the vertical direction in a common antenna column 6.
- additional antenna systems or sector antennas may be provided, which are positioned in a rather laterally, radially or horizontally extending cultivation direction.
- the mentioned vertical central axis 1 is located in each case in the middle of each of the reflector planes 13 'and in the middle of the respective reflector wall 13. This ensures that the phase center of each sector antenna 5, which is approximately centered in the associated reflector plane thirteenth 'or in the reflector wall 13 of each sector antenna 5 is located in an axial plan view of the vertical central axis 1, so that therefore results over the conventional solution significantly improved omnidirectional radiation pattern.
- a double single emitter that is to say a double sector antenna, which in the example shown can each be operated in two frequency bands.
- This double sector antenna 5 comprises a central, in this embodiment, a central reflector 15 which extends perpendicular to the plane of the drawing and has a common reflector wall 13 which lies in said common reflector plane 13 '.
- the two sector antennas 5 are in this example offset by 180 ° to each other and thus positioned symmetrically to the reflector plane 13 '.
- each of the two sector antennas which are rotated by 180 ° relative to one another (as in the preceding example), each have a larger-dimensioned (and eg cup-shaped) dual-polarized one
- Radiator 9 for the lower frequency band and in its central position comprises another, also dual-polarized vector radiator 7, optionally again with the additional in FIG. 4 not visible and from the actual reflector plane 13 'spaced reflector 17, which is also provided again in a reflector plane 17'.
- This structure with a 180 ° offset from each other aligned double sector antenna 5 can now for each of the in FIG. 1 shown three sector antennas can be used, so that can be accommodated in the same high axial structure, but also with the same diameter of the antenna assembly thus formed ultimately six radiators. This not only improves the omnidirectional diagram, but also allows MIMO capability to be realized.
- FIGS. 5 to 7 which, in principle, the example FIGS. 1 to 3 corresponds, with the difference that in deviation to the FIGS. 1 to 3 (Describing an omnidirectional omnidirectional antenna using dual-polarized radiators for a dual-band antenna) vector radiators 7 or 9 are now provided which can only transmit or receive in one frequency band.
- a vector emitter or vector dipole is used, as it is known, for example, from US Pat DE 10 2004 057 774 B4 can be seen for the higher frequency band described there. All shown three, in the vertical direction along the central axis 1 superimposed sector antennas 5 are in a 120 ° angle offset from one another, as is apparent in particular from the view along the central axis according to Figures 6 and 7.
- the arrangement can be such that it can be transmitted and / or received by means of such an omnidirectional antenna in each desired frequency band, specifically for both polarizations.
- suitable radiating means such as patch radiators, may be used instead of the dual polarized vector dipole shown.
- the spacing of the radiators is usually determined as a function of the selected frequency band in which the antenna is to radiate and / or receive. This distance is usually a value between ⁇ / 2 and ⁇ , for example by 0.7 to 0.75 ⁇ , where ⁇ can be the center operating frequency for the frequency band in question.
- this example is a dual-polarized, omnidirectional round radiator for a monoband, in which each sector antenna comprises at least two dual-polarized radiators arranged one above the other in the direction of attachment, as a rule in the direction of the vertical central axis 1.
- each sector antenna comprises at least two dual-polarized radiators arranged one above the other in the direction of attachment, as a rule in the direction of the vertical central axis 1.
- the principle can be developed that three, four, etc. corresponding radiators are arranged one above the other along the central axis. Otherwise, every sector antenna is like the others Examples also, offset at a corresponding angle about the central axis 1 around each other, like the FIGS. 9 and 10 demonstrate.
- the illustrated example according to the FIGS. 8 to 10 is also shown again for a monoband antenna with a plurality of dual polarized emitters arranged one above the other along the central axis 1.
- the individual sector antennas may be formed as dual-polarized dual-band or dual-polarized triband or generally dual-polarized multi-band antennas. If the radiators in the individual sector antennas 5 are to radiate, for example, in two (or more) frequency bands, then a different radiator spacing is usually selected between the individual radiators depending on the operating wavelength, as is generally the case, for example EP 1 082 782 B1 (equals to WO 99/062139 A1 ) is known. This would for example be based on the example according to FIG. 1 or FIG.
- each sector antenna 5 comprises two dual-polarized emitters 9 spaced apart from the central axis 1 for the lower frequency band and, for example, in the same mounting direction, three dual-polarized emitters 7 for the higher frequency band, for example at twice the upper upper frequency band (for example 1800 MHz).
- Band in relation to the lower frequency band (for example, 900 MHz band) two dual polarized radiators 9 for the higher frequency band in the central central position of the two dual polarized radiators for the lower frequency band 9 sit (as in FIG. 1 shown), and that the third dual-polarized radiator 7 for the higher Frequency band between the two centers of the two radiators for the low or higher frequency band can be arranged.
- this omnidirectional omnidirectional comprises not only three sector antennas 5 with dual-polarized radiators, which are arranged only in one antenna column 6, but which are each arranged in two antenna columns 6.
- at least one or a plurality of monoband, dual band or generally multi-band emitters, which are preferably offset in the central direction 1, can be arranged in each antenna column, as was fundamentally explained with reference to the preceding examples.
- the reflector 11 with its reflector wall 13 lies for each of the two antenna columns 6 of each sector antenna 5 in a same reflector plane 13 '.
- Corresponding reflector ribs 15 are provided for each column arrangement which extend around all the radiators 7, 9 belonging to one antenna column, including the mentioned reflector ribs 15 'oriented transversely to the central axis 1 for achieving a decoupling to the next sector antenna.
- transversely extending reflector webs between the individual radiators 7 or 9 may be provided in the individual antenna columns 6.
- the distance between the central longitudinal axes through each of the antenna columns 6 should here again correspond to the usual distance, that is, for example, between ⁇ / 2 and ⁇ with respect to the center operating frequency.
- suitable values are frequently between 0.65 ⁇ and 0.75 ⁇ , that is, for example, around 0.7 ⁇ (relative to the center operating frequency, if it is a Monband antenna, otherwise for dual-band antennas the value of ⁇ is ⁇ ) Center frequency for the lower frequency band as a reference).
- the two antenna columns 6 are each arranged to a vertical plane of symmetry (perpendicular to the reflector plane 13 'standing), so that the vertical central axis 1, the reflector plane 13' passes through, precisely at the separation and connection point between the two antenna columns. 6
- the phase centers of the sector antennas 5 (with the radiators in the two columns 6) seem to be in the central axis 1 or at least approximately there.
- FIGS. 14 to 16 Based on the example according to the FIGS. 14 to 16 is an omnidirectional round radiator with two antenna columns 6 and one or more radiators 7, 9 shown in the individual columns 6, wherein the one antenna column 6, as in the examples according to the FIGS. 1 to 10 with respect to the central axis 1 is arranged so that the three vertically oriented planes of symmetry (which are perpendicular to the respective reflector plane 13 ') of the three in the vertical direction one above the other and twisted arranged sector antennas 5 in the central axis 1 intersect.
- the respective second antenna column 6 is then laterally offset asymmetrically relative to the central axis 1, that is to say arranged radially offset outwards, so that in plan view of FIGS FIGS. 12 and 13 deviating arrangement results.
- the individual sector antennas 5 with the shown at least two antenna columns in the transverse direction, that is to say perpendicular to the central axis 1, can be positioned in different positions, that is to say they do not necessarily have to be inserted only in the antenna FIGS. 11 to 13 or 14 to 16 shown position may be arranged.
- any other deviating relative positions in a different displacement position perpendicular to the central axis are possible.
- an arrangement is preferred in which, in plan view of a corresponding sector antenna with the at least one or the at least two antenna columns, the central axis 1 always lies in an overlapping position relative to the one, two or more column sector antenna 5.
- FIG. 4 It has been shown that at each position of the sector antenna, the number of emitters can be doubled, characterized in that with respect to the reflector 11 and the reflector wall 13, as it were mirror images on both sides a corresponding radiator structure is provided.
- This based on FIG. 4 principle explained in principle can be realized in all examples. This is only an example based on the FIGS. 17 to 19 be shown, which in principle the example of the FIGS. 8 to 10 corresponds, with the peculiarity that the basis of FIG. 4 explained Basic idea is also realized here.
- the antenna structure is basically such that the phase centers of all the column antennas, that is to say at least the column antennas, which are usually mounted consecutively in the vertical direction along the central axis 1, coincide in the central axis 1 or lie at least in the vicinity of the central axis 1.
- the individual sector antennas with their reflectors 11 are arranged around a central axis 1 in such a way that in plan view along the central axis 1, the reflectors 11 and thus also the reflector wall 13 at least partially overlap and overlap.
- this distance is clear and preferably more than half smaller than the usual distance between the phase centers, that is to say in particular the respective reflector plane 13 ', the reflector walls 13 and the central axis X in conventional omnidirectional antenna arrangements which have a triangular structure in plan view, in which the reflector planes are positioned on the sides of an equilateral triangle.
- the reflector walls 13, that is to say the respective reflector plane 13 ' are preferably arranged relative to the central axis 1 such that the radial distance to the central axis 1 of this reflector wall 13 or the reflector plane 13' is smaller than 15%, in particular smaller as 10%, 8%, 6%, 5%, 4%, 3%, 2% and in particular less than 1% of the column width B of the respective antenna column 6 (see FIGS. 1 . 8th or 11 ).
- each sector antenna 5 is arranged so that the central axis 1 lies in the reflector plane 13'.
- the individual sector antennas with their reflectors 11 and the reflector walls can also be arranged offset in a radial distance from the central axis, in order to still realize the advantages described, if this distance is not too large. Therefore, this distance should preferably be less than 15%, in particular less than 10%, 8%, 6%, 5%, 4%, 3%, 2% and in particular less than 1% of the column width B of an antenna column 6.
- FIG. 20 Such an arrangement of the individual reflectors is shown, in which the respective reflector plane 13 'has a small radial offset from the central axis 1 in the aforementioned sense.
- Such an embodiment is considered, inter alia, if, for example, an antenna mast is provided in the free space between the sector antennas arranged in plan view at different elevations should be provided, which is penetrated by the central axis 1.
- the reflector walls 13 are arranged offset with their associated reflector planes 13 'relative to the central axis 1, that the central axis 1 passes through the reflector webs.
- the central axis 1 runs on the side of the reflector plane 13 ', on which the radiators 7 and / or radiators 9 are also provided (in the example according to FIG FIG. 20 the central axis 1 extends on the rear side of the reflector walls 13, ie on the opposite side to the radiators 7/9).
- FIG. 22 For example, to complete the axial top view, there is shown a prior art antenna with three sector antennas, in which the three sector antennas 5 are arranged about the central axis at a 120 ° angle, in which case all sector antennas are mounted at a same elevation since the reflector walls have such a large distance to the central axis 1 that the sector antennas thus formed and in particular their reflectors 11 or reflector walls 13 do not overlap or intersect in plan view.
- the mentioned decoupling-optimized structure of the individual radiator 5 or the directional antennas 5, that is, the one or more sector antennas 5, the mentioned, transversely and in particular perpendicular to the reflector plane 13 'of the reflector wall 13 or the entire reflector 11 extending reflector webs 15 and 15' is provided.
- These reflector webs 15 and 15 ' should preferably have a reflector web height R which is greater than 0.05 ⁇ , where ⁇ is the center frequency in the case of a monoband emitter. In the case of a dual-band or multi-band emitter array, ⁇ is the center frequency of the lowest frequency band.
- the height R of the side wall or the side bars 15, 15 'of the reflector 11 with respect to the reflector plane 13' should not be greater than the height H1, ie the height of the radiator 7 with respect to the reflector plane 13 'and thus not be higher than the height H2, that is, the height of the radiator 9 with respect to the reflector plane 13 '(see FIG. 4 ).
- the reflector web height R of the reflector webs 15, 15 'and 15 is smaller than the height H2 of the dual- or vertical-polarized dipole or vector radiators 9 for the lower frequency band and thus even lower than the height H1 the even higher dual-polar or vertical-polarized dipole or vector radiator 7 for the higher frequency band, as shown in FIGS Figures 2 or 4 can be seen.
- the sector antennas associated with the illustrated omnidirectional radiate or receive in a single polarization may be interconnected via a feed network (this does not apply to the sector operation).
- the sector antennas emitters are provided which transmit and / or receive in two mutually perpendicular polarization planes, all in a common plane of polarization (of, for example, + 45 ° or -45 ° relative to the horizontal) operated emitters can be interconnected via a feed network.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Aerials With Secondary Devices (AREA)
- Variable-Direction Aerials And Aerial Arrays (AREA)
- Details Of Aerials (AREA)
Description
- Die Erfindung betrifft eine dualpolarisierte, omnidirektionale Antenne nach dem Oberbegriff des Anspruchs 1.
- Eine omnidirektionale Antenne (Rundstrahler) ist beispielsweise aus der
WO 2011/120090 A1 bekannt geworden. Ein derartiger omnidirektionaler Rundstrahler umfasst beispielsweise drei Antennenarray-Anordnungen, die jeweils in einem 120° Winkel versetzt zueinander um eine Zentralachse herum angeordnet sind, wodurch sich in axialer Draufsicht ein dreieckförmiger Aufbau ergibt. Dadurch kann jedes Antennenarray ungefähr einen Azimut-Winkelbereich von 120° abdecken. - Entsprechende Antennen können die unterschiedlichsten Strahler und Strahlereinrichtungen nach dem Stand der Technik umfassen, beispielsweise Dipole, sogenannte Vektordipole, Patch-Strahler etc.. Sogenannte dualpolarisierte Vektorstrahler sind beispielsweise aus der
EP 1 057 224 B1 bekannt geworden. - Jede der drei versetzt zueinander vorgesehenen Antennenarrays umfasst beispielsweise mehrere in gleichen Abständen übereinander angeordnete dualpolarisierte Strahlereinrichtungen. Über eine entsprechende Speiseeinrichtung werden die jeweils dualpolarisierten Strahler gespeist. Die Strahler können dabei auch zirkular gespeist werden. Die beiden Polarisationsebenen stehen wie üblich bevorzugt nicht nur senkrecht zueinander, sondern sind in einem Winkelbereich von +45° oder -45° gegenüber einer horizontal oder vertikal ausgerichteten Ebene geneigt angeordnet.
- Ferner können die einzelnen Sektorantennen MIMO-fähig ausgestaltet sein, sind also Teil eines Empfangssystems mit mehreren Eingangs- und Ausgangssignalen.
- Eine vertikal polarisierte Antenne ist beispielsweise auch aus der
DE 600 19 412 T2 bekannt geworden. Sie umfasst eine vertikale, längliche Tragkonstruktion mit mehreren Dipolen, die in verschiedenen Höhen entlang der Tragkonstruktion angeordnet und an einem Koaxial-Stromversorgungskabel angeschlossen sind. Entlang der genannten Konstruktion ist pro Höhenstufe jeweils nur ein Dipol vorgesehen. Dabei sind die Dipole koplanar und exakt kolinear angebracht, und zwar in zwei Gruppen aufgeteilt, die nacheinander auf der genannten Konstruktion ausgebildet sind. Die Dipole in den beiden Gruppen sind in umgekehrter Richtung zueinander ausgerichtet, so dass die horizontalen Polarisationskomponenten der beiden Gruppen entgegengesetzt verlaufen. Die Anordnung ist dabei so, dass zwischen den beiden Dipolgruppen ein geringer Abstand entsteht, der die Möglichkeit bietet die Phasenzentren der Dipole beider Gruppen abzugleichen, um damit eine geringe Verschiebung aufgrund der Wirkung der Erdungsfläche auf die Dipole zu kompensieren. - Daneben sind auch vertikal polarisierte Rundstrahler bekannt, die nur in einer Polarisation strahlen oder empfangen, die nicht MIMO-fähig sind. Diese vertikal polarisierten Rundstrahler mit beispielsweise drei oder vier Panels werden um einen Mast in einer gleichen Ebene zu einem Rundstrahldiagramm zusammengeschaltet. Für eine bessere Rundheit können auch mehrere Ebenen verdreht zusammengeschaltet werden. Der Nachteil dabei ist, dass gute Rundstrahleigenschaften nur für einen kleinen Frequenzbereich möglich sind (aufgrund der geometrischen Anordnung ergeben sich dabei phasenabhängige Auslöschungen) .
- Eine Multisektorantenne ist beispielsweise auch aus der
DE 697 34 172 T2 bekannt geworden. Zur Abstrahlung eines einzigen Strahls in eine gewünschte Richtung wird eine Vielzahl von Elementantennen verwendet, die jeweils eine andere Richtwirkung in einer horizontalen Ebene haben. Dabei ist jede Elementarantenne in einer vertikalen Ebene angeordnet, wobei wenigstens eine der Elementarantennen in einer anderen Höhe als die der anderen Elementarantennen positioniert ist. Dabei sind die Elementarantennen hinsichtlich einer vertikalen Achse der Sektorantennen angeordnet, die so definiert ist, dass die Elementarantennen achsensymmetrisch in Bezug auf die erwähnte Achse angeordnet sind. - Eine nach dem Stand der Technik bekannte omnidirektionale Antenne ist aus der
US 6,369,774 B1 bekannt geworden. Diese Vorveröffentlichung beschreibt eine Antenne, bei der beispielsweise längs einer X-Achse übereinanderliegend in drei beabstandeten Bereichen jeweils eine Dipolantenne positioniert ist, die jeweils für sich alleine genommen als Frontstrahler wirkt. - Um sicherzustellen, dass die einzelnen Antennen voneinander entkoppelt sind, werden die erwähnten drei Dipolantennen längs der X-Achse entfernt voneinander positioniert und sind zudem von einem ersten Medium mit höherer Impedanz umgeben, wobei dieses Medium mit einer höheren Impedanz von einem zweiten Medium umgeben ist, welches eine gegenüber dem ersten Medium niedrigere Impedanz aufweist.
- Andere Beispiele umfassen eine Sektorantenne, bei der drei Patch-Strahler jeweils um 120° unterschiedlich ausgerichtet längs der X-Achse entfernt voneinander angeordnet sind.
- Ferner ist ein Einzelstrahler mit einem Vektordipol aus der
WO 2008/017386 A1 bekannt. Dieser Einzelstrahler sitzt vor einem spezifisch ausgebildeten, in Draufsicht quadratischen Reflektor, der an allen vier Seiten von einem Reflektorsteg umgeben ist, der in Strahlrichtung quer zur Reflektorebene, insbesondere senkrecht dazu vorsteht. - Zudem ist aus dieser Vorveröffentlichung eine einspaltige Antenne als bekannt zu entnehmen, die entsprechende Vektorstrahler in den einzelnen übereinander angeordneten Reflektorfeldern aufweist, die wie der Einzelreflektor ebenfalls an allen vier Seiten um jeden Strahler umlaufend von einem Reflektorsteg umgeben ist. Die Reflektorstege dienen dabei der Strahlformung.
- Eine gattungsbildende omnidirektionale Antenne ist aus der
EP 0 802 579 A2 bekannt geworden. Diese Veröffentlichung zeigt eine Antenne, die in Axialrichtung übereinander angeordnet und versetzt zueinander liegend jeweils drei, beispielsweise um 120° verdreht zueinander ausgerichtete Reflektorebenen aufweist. Diese Reflektorebenen schneiden sich in axialer Draufsicht längs der Zentralachse in dieser Zentralachse. Vor den Reflektorebenen sind entsprechende Strahler angeordnet. Dabei kann es sich auch um dualpolarisierte Strahler handeln, die in einem Abschnitt vor dem Reflektor sitzen, der durch einen um den Strahler herum verlaufenden Reflektorsteg begrenzt ist. - Diese Vorveröffentlichung beschreibt auch jeweils ein Paar von parallel zueinander verlaufenden Reflektorebenen, wobei jedes dieser Paare von Reflektorebenen in unterschiedlichen Azimutwinkeln ausgerichtet sind und in Axialrichtung längs der Zentralachse versetzt zueinander liegen. Dies eröffnet die Möglichkeit, dass an den gegenüberliegenden Seiten der beiden parallel, im Abstand zueinander verlaufenden Reflektoren entsprechende Strahler angeordnet werden können. In diesem Falle sitzen die jeweils beiden parallel zueinander verlaufenden Reflektorebenen eines Reflektor-Paars derart, dass die Zentralachse zwischen diesen Reflektorebenen hindurch verläuft.
- Aufgabe der vorliegenden Erfindung ist es eine verbesserte dualpolarisierte und dabei omnidirektionale Antenne oder Gruppenantennen zu schaffen, die gegenüber herkömmlichen Lösungen eine verbesserte Rundstrahleigenschaft bei möglichst geringem Bauraum aufweist.
- Die Erfindung wird entsprechend den im Anspruch 1 angegebenen Merkmalen gelöst. Vorteilhafte Ausgestaltungen der Erfindung sind in den Unteransprüchen angegeben.
- Die erfindungsgemäße Lösung geht von dem bekannten Aufbau aus, bei welchem mehrere, beispielsweise drei um 120° versetzt zueinander strahlende Sektor-Antenneneinrichtungen, insbesondere Antennenarrays, vorgesehen sein können, die nicht in gleicher Höhenlage, sondern in Vertikalrichtung (also in ihrer Anbaurichtung) versetzt zueinander liegen. Dies eröffnet die Möglichkeit, dass jede einzelne Sektorantenne, bezogen auf ihre Zentral- oder Anbauachse, entgegengesetzt zu ihrer Strahlungsrichtung (in Abweichung zum gattungsbildenden Stand der Technik) versetzt liegend montiert wird, so dass letztlich die Phasenzentren in Draufsicht auf die diversen Sektorantennen deckungsgleich zu liegen kommen. Unter einem Phasenzentrum versteht man dabei jene elektronischen Referenzpunkte einer Antenne, von denen die elektromagnetische Antennenstrahlung vom Empfangsort aus betrachtet auszugehen scheint.
- Dabei kann die Reflektorebene in der Regel zumindest näherungsweise als Phasenzentrum bezeichnet werden, das heißt üblicherweise der mittlere Bereich einer entsprechenden Reflektoranordnung einer Sektorantenne.
- Da somit für alle Sektorantennen dieser Referenzpunkt identisch ist, wird dadurch eine eklatante Verbesserung der Rundstrahleigenschaften realisiert.
- Da dadurch alle Sektorantennen näher an der zentralen Vertikal- oder Anbauachse liegend angeordnet sind, ergibt sich insgesamt - bei zwar vertikal größerer Gesamthöhe - eine vom Durchmesser her schmälere Antennenanordnung. Da der Durchmesser der Gesamtanordnung im Rahmen der Erfindung wesentlich kleiner ist als bei Lösung nach dem Stand der Technik, ist somit auch der optische Einfluss der Gesamtanordnung im Rahmen der Erfindung geringer. Ferner reduziert sich auch die Windlast bei der erfindungsgemäßen Lösung.
- Die Erfindung schlägt ferner vor, dass zwischen zwei benachbarten und längs der Zentralachse versetzt zueinander angeordneten Sektorantennen zwischen eine Entkopplungseinrichtung vorgesehen ist. Diese Entkopplungseinrichtung besteht aus zumindest einem Reflektorsteg, der quer zur Reflektorebene des zugehörigen Reflektors ausgerichtet ist. Derartige Querstege, die am Reflektor ausgebildet sind, sind zwar grundsätzlich beispielsweise aus der
DE 103 16 787 A1 bekannt geworden. Es handelt sich dabei allerdings um eine übliche einspaltige Mobilfunkantenne, die zumindest zwei zu einem Gesamtreflektor zusammenbaubare Reflektormodule umfasst, die jeweils durch seitliche Längsstege und zwischen den einzelnen Strahleranordnungen verlaufende Querstege gekennzeichnet ist. - Gemäß der Erfindung ist dabei die zumindest eine Reflektorebene einer jeden Sektorantenne so angeordnet, dass die vertikale Zentralachse in einem Abstand zur Reflektorebene verlaufend angeordnet ist.
- Die Reflektorwände oder die Reflektorebenen liegen dabei in einem derartigen Abstand parallel zur Zentralachse, dass der Abstand zwischen der Reflektorebene einer Sektorantenne und der Zentralachse kleiner ist als 15% der Spaltenbreite einer zugehörigen Antennenspalte. Dabei verläuft die Zentralachse auf der Seite der Reflektorebene, auf der auch die Strahler vorgesehen sind.
- Dabei ist die Anordnung derart, dass die Zentralachse die Reflektorstege durchsetzt.
- Dadurch ergibt sich ein geringer Bauraum.
- Als Vorteil ergibt sich im Rahmen der Erfindung dabei auch, dass das Phasenzentrum der Gesamtanordnung für das Horizontaldiagramm identisch mit dem Phasenzentrum einer Einzelantenne ist. Dadurch ist der Gruppenfaktor der Gesamtanordnung frequenzunabhängig und das Rundstrahldiagramm somit extrem breitbandig (es ist somit auch für Dualbandantennen geeignet). Die Rundheit der Gesamtanordnung hängt nur noch von der Halbwertsbreite der Einzelantenne ab.
- In einer bevorzugten Ausführungsform der Erfindung ist ferner ein entkopplungsoptimierter Aufbau der Einzelstrahler bzw. Richtantennen vorgesehen. Dieser kann beispielsweise umlaufende oder abschnittsweise umlaufende Reflektorstege aufweisen, vor allem Reflektorstege, die quer zur jeweiligen Reflektorebene liegen und zwischen den einzelnen, vertikal übereinander angeordneten Sektorantennen ausgebildet sind.
- Ebenso ist es im Rahmen der Erfindung möglich, nicht nur eine omnidirektionale Monoband-Antenne zu realisieren, sondern beispielsweise auch eine omnidirektionale Dual-band-Antenne oder eine noch mehrere Bänder umfassende omnidirektionale Multiband-Antenne, die zudem dualpolarisiert oder zirkularpolarisiert senden und/oder empfangen kann.
- Dies kann bevorzugt unter Verwendung geeigneter Strahler und Strahlereinrichtungen realisiert werden, beispielsweise in Form von Patchstrahlern, aber auch in Form von sogenannten Dipol- oder Vektorstrahlern, wie sie beispielsweise aus der
EP 1 082 728 B1 sowie derEP 1 470 615 B1 als bekannt zu entnehmen sind. Insbesondere in der zuletzt genannten Vorveröffentlichung ist gezeigt, dass sogenannte kelchförmige, etwas größer dimensionierte dualpolarisierte Strahler und im Zentrum davon sitzend kleiner dimensionierte für den höheren Frequenzbandbereich vorgesehene dualpolarisierte Strahler verwendet werden können. - Im Rahmen bevorzugter Ausführungsformen und Weiterbildung der Erfindung ist es ebenso möglich, die Anzahl der Strahler auch auf raumsparende Weise zu erhöhen, indem beispielsweise an jeder Stelle, an der eine Sektorantenne vorgesehen ist, bezogen auf die gleiche Reflektorebene, eine weitere in entgegengesetzter Richtung strahlende Sektorantenne eingesetzt wird. Somit ist an jedem Montageort quasi eine doppelte Sektorantenne vorgesehen, die in entgegengesetzten Richtungen strahlt.
- Ebenso können in jeder Antennenspalte in der Regel in Vertikalrichtung übereinander angeordnet auch mehrere Monoband-, Dualband oder Mehrband-Strahler oder -Strahlereinrichtungen angeordnet sein, wie bei einer sonst üblichen Antenne. Jede dieser Antennenspalten mit den mehreren übereinander angeordneten Strahlern sind dann in Umfangsrichtung um die Zentralachse herum versetzt angeordnet, das heißt ausgerichtet, also mit unterschiedlichen Azimutwinkeln. Eine Verdopplung der Strahler kann wie oben erläutert dadurch bewirkt werden, dass bezogen zur jeweiligen Reflektorebene (also um 180° versetzt liegend) entgegengesetzt ausgerichtete Strahlereinrichtungen vorgesehen sind.
- Wenn beispielsweise zwei Antenennspalten mit entsprechenden Strahlereinrichtungen verwendet werden, kann die gemeinsame Ebene, in der die Phasenzentren einer Spaltenantenne liegen oder zumindest näherungsweise liegen, so angeordnet sein, dass diese bevorzugt durch die Zentralachse oder in der Nähe der Zentralachse verläuft.
- In Abweichung davon ist es in einer Weiterbildung der Erfindung aber auch möglich, in gleicher Höhenposition einer Strahlereinrichtung radial nach außen versetzt liegend zur vertikalen Zentralachse noch eine oder eine doppelte weitere Sektorantenne vorzusehen. Mit anderen Worten könnten bei einer derartigen, beispielsweise zweispaltigen Antennenanordnung (wie die Sektorantenne) die Strahler in der einen Spalte so angeordnet sein, dass deren Phasenzentren exakt oder möglichst exakt zur jeweiligen Zentralachse der Antennenanordnung zu liegen kommen, und dass dann die in einer dazu beispielsweise zweiten Antennenspalte angeordneten Strahlereinrichtungen in Radialrichtung, also in Seitenrichtung versetzt zur Zentralachse zu liegen kommen, insoweit also die beiden Spalten nicht symmetrisch zur Zentralachse liegen. Auch dies bietet weitere Vorteile, selbst wenn diese weitere Sektorantenne radial zur vertikalen Zentralachse entfernter positioniert ist. Dadurch lassen sich Mehrspalten-Antennen mit höheren MIMO-Moden realisieren, bei denen die Phasenzentren zwar nicht identisch sind, bei denen sich jedoch gleichwohl eine bestmögliche Rundheit des Strahlungsdiagramms bei hoher Breitbandigkeit ergibt.
- Weitere Vorteile, Einzelheiten und Merkmale der Erfindung ergeben sich aus den nachfolgend erörterten Beispielen im Zusammenhang mit einem erfindungsgemäßen Ausführungsbeispiel. Dabei zeigen im Einzelnen:
- Figur 1:
- eine perspektivische Darstellung eines ersten Beispiels einer omnidirektionalen dualpolarisierten mehrbandfähigen Antenne;
- Figur 2:
- eine schematische axiale Draufsicht auf das Beispiel gemäß
Figur 1 ; - Figur 3:
- eine entsprechende Darstellung zu
Figur 2 , jedoch bei nicht eingezeichneten Reflektoren; - Figur 4a:
- eine perspektivische Ansicht einer abgewandelten Antenne (Sektorantennen-Anordnung) mit zwei entgegengesetzt ausgerichteten Sektorantennen, die bevorzugt einen gemeinsamen, in einer Symmetrieebene liegenden Reflektor umfassen;
- Figur 4b:
- eine Draufsicht auf das Beispiel gemäß
Figur 4a ; - Figur 4c:
- eine entsprechende Darstellung zu
Figur 4b , jedoch ohne eingezeichnete Reflektoren; - Figur 5:
- ein zu
Figur 1 abgewandeltes Beispiel in perspektivischer Darstellung bezüglich einer Antenne (Rundstrahlers) mit drei Sektorantennen, die lediglich in einem Band strahlen und/oder empfangen; - Figur 6:
- eine schematische, axiale Draufsicht auf das Beispiel gemäß
Figur 5 ; - Figur 7:
- eine entsprechende Darstellung zu
Figur 6 , jedoch bei nicht eingezeichneten Reflektoren; - Figur 8:
- ein zu den
Figuren 5 bis 7 abgewandeltes Beispiel mit zwei in Zentralrichtung versetzt zueinander angeordneten Strahlern pro einspaltiger Sektorantenne; - Figur 9:
- eine Draufsicht auf das Beispiel gemäß
Figur 8 ; - Figur 10:
- eine entsprechende Darstellung zu
Figur 9 , jedoch bei nicht eingezeichneten Reflektoren; - Figur 11:
- ein zu
Figur 8 abgewandeltes Beispiel in perspektivischer Darstellung mit zwei Antennenspalten pro Sektorantenne, in der jeweils zwei in Zentralrichtung übereinander angeordnete Strahler vorgesehen sind; - Figur 12:
- eine schematische, axiale Draufsicht auf das Beispiel gemäß
Figur 11 ; - Figur 13:
- eine entsprechende Darstellung zu
Figur 12 , jedoch bei nicht eingezeichneten Reflektoren; - Figur 14:
- ein zu
Figur 11 abgewandeltes Beispiel, bei der die beiden Antennenspalten gegenüber dem Beispiel nachFigur 11 quer zur Zentralachse seitlich positioniert sind; - Figur 15:
- eine schematische, axiale Draufsicht auf das Beispiel gemäß
Figur 14 ; - Figur 16:
- eine entsprechende Darstellung zu
Figur 15 , jedoch bei nicht eingezeichneten Reflektoren; - Figur 17:
- ein zu den vorausgegangenen Beispielen abgewandeltes Beispiel eines Rundstrahlers, bei dem in jedem Höhenbereich bezogen auf die Zentralachse jeweils zwei um 180° versetzt zueinander strahlende Strahler vorgesehen sind, die auf einer gemeinsamen Reflektorwand sitzen;
- Figur 18:
- eine schematische, axiale Draufsicht auf das Beispiel gemäß
Figur 14 ; - Figur 19:
- eine entsprechende Darstellung zu
Figur 15 , jedoch bei nicht eingezeichneten Reflektoren; - Figur 20:
- eine axiale Draufsicht auf ein abgewandeltes Beispiel in Abweichung zu dem Beispiel gemäß
Figur 6 , bei welchem die einzelnen Sektorantennen in Strahlrichtung mit geringem Versatz von der Zentralachse 1 beabstandet angeordnet sind; - Figur 21:
- ein erfindungsgemäßes Ausführungsbeispiel in axialer Drausicht, bei dem im Gegensatz zu den
Figuren 6 und20 die einzelnen Sektorantennen mit leichtem seitlichen Radialversatz zur Zentralachse so angeordnet sind, dass die Zentralachse nicht auf der rückwärtigen Seite der Reflektoren, sondern auf der Strahlerseite der Sektorantennen parallel zur Reflektorwand verläuft; und - Figur 22:
- eine schematische Draufsicht auf eine entsprechende Antennenanordnung mit drei um 120° versetzt zueinander angeordneten Sektorantennen nach dem Stand der Technik, bei der die Sektorantennen in gleicher Höhenlage angeordnet sind.
- Nachfolgend wird auf die
Figuren 1 bis 3 Bezug genommen, in welchen ein erstes Beispiel gezeigt ist. - In
Figur 1 ist eine vertikale Zentralachse 1 strichliert eingezeichnet, die nachfolgend auch als Anbauachse oder Anbaulinie bezeichnet wird. - Im gezeigten Beispiel sind drei Sektorantennen 5 übereinander angeordnet, die jeweils in Azimutrichtung um 120° in Umfangsrichtung versetzt zueinander ausgerichtet sind, also um 120° versetzt zueinander strahlen.
- Dabei ist aus den Zeichnungen zu entnehmen, dass die drei Sektorantennen 5 nicht in gleicher Höhenlage, bezogen auf ihre vertikale Zentralachse 1 (wie im Stand der Technik üblich), sondern in Richtung der vertikalen Zentralachse oder Anbaulinie 1 versetzt zueinander liegend positioniert sind.
- Jede der Sektorantennen 5 umfasst dazu beispielsweise einen dualpolarisierten Strahler 7, beispielsweise für ein erstes, höheres Frequenzband (Highband) sowie einen weiteren, dualpolarisierten Strahler 9 für ein niedrigeres Frequenzband (Lowband), wobei diese Sektorantenne 5 in einer Antennenspalte 6 angeordnet ist.
- Der Vektorstrahler für das höhere Frequenzband weist einen Aufbau auf, wie er grundsätzlich beispielsweise aus der
EP 1 057 224 B4 oder derDE 198 60 121 A1 bekannt ist. - Dieser dualpolarisierte Strahler für das höhere Frequenzband (nachfolgend auch kurz Vektordipol genannt) ist beispielsweise innerhalb eines sogenannten kelchförmigen Dipols angeordnet, der ebenfalls als dualpolarisierter Strahler ausgebildet ist und aufgrund seiner größeren Bemessung zum Senden und Empfangen in einem niedrigen Frequenzband geeignet ist. Ein derartiger Strahler ist grundsätzlich beispielsweise aus der
EP 1 470 615 B1 als bekannt zu entnehmen. - Die beiden Strahler 7 und 9 sitzen an einer gleichen Position bei frontseitiger Betrachtung senkrecht auf dem jeweils zugehörigen Reflektor 11, der im gezeigten Beispiel jeweils eine zum Strahler rückwärtige Reflektorwand 13 umfasst, die in einer Reflektorebene 13' angeordnet ist, wobei im gezeigten Beispiel umlaufend Reflektorstege 15 angeordnet sind. Diese Reflektorstege 15 stehen quer und vorzugsweise im gezeigten Beispiel senkrecht zur Reflektorebene 13' und sind dabei als Teil des gesamten Reflektors 11 als umlaufende Begrenzung vorgesehen. Dadurch lässt sich ein entkopplungsoptimierter Aufbau realisieren, das heißt ein Antennenaufbau, bei dem eine jeweilige Sektorantenne 5 optimal von einer darunter oder darüber befindlichen, benachbarten Sektorantenne entkoppelt ist.
- Der erwähnte, entkoppelte Reflektoraufbau umfasst dazu also zumindest einen Reflektorsteg 15', der quer und vorzugsweise senkrecht zur Reflektorebene 13' der betreffenden Sektorantenne 5 ausgerichtet ist und dabei zwischen zwei benachbarten Sektorantennen angeordnet ist. Dabei soll dieser, vor allem der Entkopplung zu einer benachbarten Sektorantenne dienende Quersteg 15' des Reflektors 11 quer und insbesondere senkrecht zur Verbindungslinie, das heißt der Zentralachse 1, ausgerichtet verlaufen.
- Im gezeigten Beispiel kann noch ein Zwischenreflektor 17 in einer Zwischenreflektorebene 17' in einem parallelen Abstand zur rückwärtigen Reflektorwand 13 angeordnet sein, der kleiner dimensioniert ist als der dualpolarisierte Strahler 9 für den niedrigen Frequenzbereich, wobei die Symmetrierung des entsprechenden Vektorstrahlers 7 eine entsprechende Zentralöffnung 17a in diesem Zwischenreflektor 17 elektrisch, galvanisch kontaktierungsfrei durchragt.
- Das in
Figur 1 perspektivisch wiedergegebene Beispiel umfasst die erwähnten drei Sektorantennen 5, die in Vertikal- oder Zentralrichtung 1 jeweils um 120° versetzt zueinander ausgerichtet sind. Der Aufbau aller Antennen ist grundsätzlich gleich, könnte allerdings auch unterschiedlich zueinander sein. - Jede Sektorantenne 5, das heißt jedes entsprechende Antennensystem 5 ist in der gezeigten Ausführungsform nach Art einer einspaltigen Sektorantenne aufgebaut, die im gezeigten Beispiel auch nur eine Reihe und somit also nur eine entsprechende Strahleranordnung zum Übertragen in ein höheres und niedrigeres Frequenzband umfasst. Wie später noch gezeigt wird, können in Vertikalrichtung in einer gemeinsamen Antennenspalte 6 auch zwei oder mehrere Sektorantennen zu einem entsprechenden Sektor-Antennenarray zusammengefasst sein. Darüber hinaus können auch weitere Antennensysteme oder Sektorantennen vorgesehen sein, die in einer eher seitlich, radial oder horizontal verlaufenden Anbaurichtung positioniert sind.
- Im gezeigten Beispiel liegt die erwähnte vertikale Zentralachse 1 jeweils mittig in jeder der Reflektorebenen 13' bzw. in der Mitte der jeweiligen Reflektorwand 13. Dadurch ist gewährleistet, dass das Phasenzentrum einer jeden Sektorantenne 5, das näherungsweise in der Regel mittig in der zugehörigen Reflektorebene 13' bzw. in der Reflektorwand 13 einer jeder Sektorantenne 5 liegt, in axialer Draufsicht auf der vertikalen Zentralachse 1 liegt, so dass sich von daher ein gegenüber der herkömmlichen Lösung deutlich verbessertes omnidirektionales Strahlungsdiagramm ergibt.
- Anhand von
Figur 4 ist ein doppelter Einzelstrahler gezeigt, das heißt eine doppelte Sektorantenne, die im gezeigten Beispiel jeweils in zwei Frequenzbändern betrieben werden kann. Diese doppelte Sektorantenne 5 umfasst einen senkrecht zur Zeichenebene verlaufenden mittigen, in dieser Ausführungsform gemeinsamen Reflektor 11 mit einer gemeinsamen Reflektorwand 13, der in der erwähnten gemeinsamen Reflektorebene 13' liegt. Mit anderen Worten sind die beiden Sektorantennen 5 in diesem Beispiel um 180° versetzt zueinander liegend und damit symmetrisch zur Reflektorebene 13' positioniert. Der weitere Aufbau ist dabei so realisiert, dass jede der beiden um 180° verdreht zueinander montierten Sektorantennen (wie in dem vorausgegangen Beispiel) jeweils einen größer dimensionierten (und z.B. kelchförmig gestalteten) dualpolarisierten Strahler 9 für das niedrigere Frequenzband und in dessen mittiger Position einen weiteren, ebenfalls dualpolarisierten Vektorstrahler 7 umfasst, gegebenenfalls wieder mit dem zusätzlichen inFigur 4 nicht sichtbaren und von der eigentlichen Reflektorebene 13' beabstandeten Reflektor 17, der ebenfalls wieder in einer Reflektorebene 17' vorgesehen ist. - Dieser Aufbau mit einer um 180° versetzt zueinander ausgerichteten doppelten Sektorantenne 5 kann nunmehr für jede der in
Figur 1 gezeigten drei Sektorantennen verwendet werden, so dass sich dadurch bei gleich hohem axialen Aufbau, wie aber auch bei gleichem Durchmesser der so gebildeten Antennenanordnung letztlich sechs Strahler unterbringen lassen. Dadurch wird nicht nur das Rundstrahldiagramm verbessert, sondern es lässt sich auch eine MIMO-Fähigkeit realisieren. - Nachfolgend wird auf ein Beispiel gemäß den
Figuren 5 bis 7 eingegangen, welches vom Grundsatz her dem Beispiel nach denFiguren 1 bis 3 entspricht, jedoch mit dem Unterschied, dass in Abweichung zu denFiguren 1 bis 3 (die einen omnidirektionalen Rundstrahler unter Verwendung von dualpolarisierten Strahlern für eine Dual-band-Antenne beschreiben) nunmehr Vektorstrahler 7 oder 9 vorgesehen sind, die nur in einem Frequenzband senden oder empfangen können. Verwendet wird dabei ein Vektorstrahler oder Vektordipol, wie er beispielsweise aus derDE 10 2004 057 774 B4 für das dort beschriebene höhere Frequenzband zu entnehmen ist. Alle gezeigten drei, in Vertikalrichtung längs der Zentralachse 1 übereinander angeordnete Sektorantennen 5 sind dabei in einem 120°-Winkel versetzt zueinander angeordnet, wie sich insbesondere aus der Ansicht längs der Zentralachse gemäß Figuren 6 und 7 ergibt. Grundsätzlich kann die Anordnung so sein, dass mittels eines derartigen Rundstrahlers in jedem gewünschten Frequenzband gesendet und/oder empfangen werden kann, und zwar für beide Polarisationen. Auch hier können anstelle des gezeigten dualpolarisierten Vektordipols andere geeignete Strahlereinrichtungen, wie beispielsweise Patchstrahler, eingesetzt werden. - Anhand der
Figuren 8 bis 10 ist nunmehr das vorstehend erläuterte Beispiel insoweit erweitert worden, als nunmehr für jede Sektorantenne 5 zwar weiterhin nur eine Antennenspalte 6 vorgesehen ist, bei der allerdings nunmehr in jeder Antennenspalte 6 längs der Zentralrichtung zwei versetzt zueinander liegende dualpolarisierte Strahler 7 oder 9 angeordnet sind. Der Abstand der Strahler wird üblicherweise in Abhängigkeit des gewählten Frequenzbandes festgelegt, in dem die Antenne strahlen und/oder empfangen soll. Dieser Abstand beträgt üblicherweise einen Wert zwischen λ/2 bis λ, beispielsweise um 0,7 bis 0,75 λ, wobei λ die Mittenbetriebsfrequenz für das betreffende Frequenzband sein kann. Es handelt sich bei diesem Beispiel also um einen dualpolarisierten, omnidirektionalen Rundstrahler für ein Monoband, bei welchem jede Sektorantenne zumindest zwei in Anbaurichtung, in der Regel in Richtung der vertikalen Zentralachse 1 übereinander angeordnete dualpolarisierte Strahler umfasst. Mit anderen Worten kann das Prinzip ausgebaut werden, dass drei, vier usw. entsprechende Strahler längs der Zentralachse übereinander angeordnet sind. Ansonsten ist jede Sektorantenne, wie bei den anderen Beispielen auch, in einem entsprechenden Winkel um die Zentralachse 1 herum versetzt zueinander angeordnet, wie dieFiguren 9 und 10 zeigen. - Das erläuterte Beispiel gemäß den
Figuren 8 bis 10 ist ebenfalls wieder für eine Monoband-Antenne mit mehreren, längs der Zentralachse 1 übereinander angeordneten, dualpolarisierten Strahlern gezeigt. Aber auch hier können die einzelnen Sektorantennen als dualpolarisierte Dual-band- oder dualpolarisierte Triband- oder allgemein dualpolarisierte Mehrband-Antennen ausgebildet sein. Sollen die Strahler in den einzelnen Sektorantennen 5 beispielsweise in zwei (oder mehreren) Frequenzbändern strahlen, wird üblicherweise zwischen den einzelnen Strahlern von der Betriebswellenlänge abhängig ein unterschiedlicher Strahlerabstand gewählt, wie dies grundsätzlich beispielsweise aus derEP 1 082 782 B1 (entspricht derWO 99/062139 A1 Figur 1 oderFigur 8 , dass beispielsweise jede Sektorantenne 5 zwei dualpolarisierte, längs der Zentralachse 1 beabstandete Strahler 9 für das niedrigere Frequenzband und beispielsweise in gleicher Anbaurichtung versetzt liegend drei dualpolarisierte Strahler 7 für das höhere Frequenzband umfasst, wobei beispielsweise bei doppelt so hohem oberen Frequenzband (beispielsweise 1800 MHz-Band) im Verhältnis zum unteren Frequenzband (beispielsweise 900 MHz-Band) zwei dualpolarisierte Strahler 9 für das höhere Frequenzband in der mittigen Zentralposition der beiden dualpolarisierten Strahler für das niedrigere Frequenzband 9 sitzen (wie inFigur 1 gezeigt), und dass der dritte dualpolarisierte Strahler 7 für das höhere Frequenzband zwischen den beiden Zentren der beiden Strahler für das niedrige bzw. höhere Frequenzband angeordnet sein kann. - Nachfolgend wird auf ein nochmalig abgewandeltes Beispiel gemäß den
Figuren 11 bis 13 eingegangen, welches vom Grundsatz her drei in 120°-Winkeln verdreht zueinander angeordnete Sektorantennen 5 beschreibt, die wie bei allen anderen Beispielen längs der Zentralachse 1 versetzt zueinander liegen. In Abweichung zu den vorausgegangenen Beispielen umfasst dieser omnidirektionale Rundstrahler nicht nur drei Sektorantennen 5 mit dualpolarisierten Strahlern, die nur in einer Antennenspalte 6 angeordnet sind, sondern die jeweils in zwei Antennenspalten 6 angeordnet sind. In jeder Antennenspalte können dabei zumindest ein oder mehrere, vorzugsweise in Zentralrichtung 1 versetzt zueinander liegende Monoband-, Dualband- oder allgemein Mehrband-Strahler angeordnet sein, wie dies anhand der vorausgegangenen Beispielen grundsätzlich erläutert wurde. - Der Reflektor 11 mit seiner Reflektorwand 13 liegt dabei für jeweils beide Antennenspalten 6 jeder Sektorantenne 5 in einer gleichen Reflektorebene 13'. Entsprechende Reflektorstege 15 sind für jede Spaltenanordnung vorgesehen, die um alle zu einer Antennenspalte gehörenden Strahler 7, 9 herum verlaufen, einschließlich der erwähnten quer zur Zentralachse 1 ausgerichteten Reflektorstege 15' zur Erzielung einer Entkopplung zur nächsten Sektorantenne. In Abweichung beispielsweise von Figur 8 oder von
Figur 11 könnten bei Bedarf noch quer verlaufende Reflektorstege zwischen den einzelnen Strahlern 7 oder 9 in den einzelnen Antennenspalten 6 vorgesehen sein. - Bei der Variante gemäß der
Figur 11 ist ein in zentraler Axialrichtung 1 verlaufender Antennensteg 15" auch zwischen den beiden Antennenspalten vorgesehen. - Der Abstand zwischen den Mittellängsachsen durch jede der Antennenspalten 6 sollte auch hier wieder dem üblichen Abstand entsprechen, also beispielsweise zwischen λ/2 und λ bezüglich der Mittenbetriebsfrequenz liegen. Entsprechend geeignete Werte liegen häufig zwischen 0,65 λ bis 0,75 λ, also beispielsweise um 0,7 λ (bezogen auf die Mittenbetriebsfrequenz, wenn es sich um eine Monband-Antenne handelt; andernfalls bei Dualband-Antennen ist für λ der Wert der Mittenfrequenz für das niedrigere Frequenzband als Bezugsgröße heranzuziehen).
- Bei dem erläuterten Beispiel sind die beiden Antennenspalten 6 jeweils zu einer vertikalen Symmetrieebene (senkrecht zur Reflektorebene 13' stehend) angeordnet, so dass die vertikale Zentralachse 1 die Reflektorebene 13' durchläuft, und zwar genau an der Trenn- und Verbindungsstelle zwischen den beiden Antennenspalten 6. Das heißt, dass die jeweilige vertikale Symmetrieachse 1 zwischen den Antennenspalten 6 parallel zur zugehörigen Reflektorebene 13' verläuft. Die ergibt, dass im Fernfeld die Phasenzentren der Sektorantennen 5 (mit den Strahlern in den beiden Spalten 6) scheinbar in der Zentralachse 1 liegen oder zumindest näherungsweise dort liegen.
- Anhand des Beispiels gemäß den
Figuren 14 bis 16 ist ein omnidirektionaler Rundstrahler mit zwei Antennenspalten 6 und einem oder mehreren Strahlern 7, 9 in den einzelnen Spalten 6 gezeigt, bei der die eine Antennenspalte 6, wie bei den Beispielen gemäß denFiguren 1 bis 10 bezüglich der Zentralachse 1 so angeordnet ist, dass sich die drei vertikal ausgerichteten Symmetrieebenen (die senkrecht zur jeweiligen Reflektorebene 13' stehen) der drei in Vertikalrichtung übereinander und verdreht zueinander angeordneten Sektorantennen 5 in der Zentralachse 1 schneiden. Die dazu jeweils zweite Antennenspalte 6 ist dann asymmetrisch zur Zentralachse 1 jeweils seitlich versetzt, das heißt radial nach außen versetzt liegend angeordnet, so dass sich in Draufsicht auf die Figuren 15 und 16 eine zu denFiguren 12 und 13 abweichende Anordnung ergibt. Mit anderen Worten ist auch bei diesem Beispiel, wie in dem vorausgegangenen Beispiel sichergestellt, dass zumindest ein zusätzlicher weiterer, in einer weiteren Antennenspalte 6 angeordneter Strahler 7, 9 vorgesehen ist, also zumindest ein zusätzlicher seitlich oder radial versetzt liegender Strahler 7, 9 vorgesehen ist. Bei dem Beispiel gemäß denFiguren 11 bis 13 wie bei dem Beispiel nach denFiguren 14 bis 16 können dabei die einzelnen Sektorantennen 5 mit den gezeigten zumindest beiden Antennenspalten in Querrichtung, das heißt senkrecht zur Zentralachse 1 in unterschiedlichen Stellungen positioniert werden, also müssen nicht zwingend nur in der in denFiguren 11 bis 13 bzw. 14 bis 16 gezeigten Stellung angeordnet sein. Beliebige andere abweichende Relativpositionen in einer unterschiedlichen Verschiebestellung senkrecht zur Zentralachse sind möglich. Bevorzugt ist jedoch eine Anordnung, bei der in Draufsicht auf eine entsprechende Sektorantenne mit den zumindest einen oder den zumindest beiden Antennenspalten die Zentralachse 1 stets in einer überlappenden Position zu der ein-, zwei- oder mehrspaltigen Sektorantenne 5 liegt. - Genauso sind aber auch in weiten Bereichen Zwischenpositionen möglich, in denen die beispielsweise beiden Antennenspalten 6 in Horizontalrichtung relativ zur Zentralachse 1 in unterschiedlicher Lage positioniert werden können.
- Bei den vorausgehend erläuterten Beispielen unter Verwendung mehrerer Strahler pro Sektorantenne, insbesondere auch bei Verwendung eines zwei- oder mehrspaltigen Antennenaufbaus (Antennenarray) lässt sich vor allem eine MIMO-Fähigkeit des omnidirektionalen Rundstrahlers realisieren bzw. weiter ausbauen und verbessern. Diese verbesserte MIMO-Fähigkeit lässt sich dabei bei bestmöglicher Rundheit des Strahlungsdiagramms sicherstellen.
- Anhand von
Figur 4 ist gezeigt worden, dass an jeder Position der Sektorantenne die Strahleranzahl verdoppelt werden kann, dadurch, dass bezogen auf den Reflektor 11 bzw. die Reflektorwand 13 quasi dazu spiegelbildlich auf beiden Seiten eine entsprechende Strahlerstruktur vorgesehen ist. Dieses anhand vonFigur 4 grundsätzlich erläuterte Prinzip lässt sich aber bei allen Beispielen realisieren. Dies soll nur beispielhaft anhand derFiguren 17 bis 19 gezeigt werden, welches vom Prinzip her dem Beispiel nach denFiguren 8 bis 10 entspricht, mit der Besonderheit, dass der anhand vonFigur 4 erläuterte Grundgedanke auch hier realisiert ist. Dadurch ergibt sich eine doppelte Strahleranordnung, bei der in jedem der drei Höhenbereiche quasi eine doppelte Sektorantenne 5 vorgesehen ist, die in 180° Richtung versetzt, also entgegengesetzt zueinander ausgerichtete und eine oder mehrere Einband- oder Mehrbandstrahler in einer, zwei oder mehreren Spalten umfassen kann, und dies stets bei Verwendung von dualpolarisierten oder zirkular polarisierten Strahlern. - Wie erwähnt ist der Antennenaufbau grundsätzlich so, dass die Phasenzentren aller Spaltenantennen, das heißt zumindest der Spaltenantennen, die längs der Zentralachse 1 in der Regel in Vertikalrichtung aufeinanderfolgend angebaut sind, in der Zentralachse 1 zusammenfallen oder zumindest in der Nähe der Zentralachse 1 liegen. Diese Phasenzentren liegen dabei in der Regel in der Reflektorebene 13' der Reflektorwand 13. Allgemein gesprochen sind die einzelnen Sektorantennen mit ihren Reflektoren 11 so um eine Zentralachse 1 herum angeordnet, dass sich in Draufsicht längs der Zentralachse 1 die Reflektoren 11 und damit auch die Reflektorwand 13 zumindest teilweise überlappen und überschneiden. Dieser Abstand ist jedenfalls deutlich und bevorzugt mehr als die Hälfte kleiner als der übliche Abstand zwischen den Phasenzentren, das heißt insbesondere der jeweiligen Reflektorebene 13', der Reflektorwände 13 und der Zentralachse X bei herkömmlichen Rundstrahlantennenanordnungen, die einen in Draufsicht dreieckförmigen Aufbau aufweisen, bei welchem die Reflektorebenen an den Seiten eines gleichseitigen Dreiecks positioniert sind.
- Bevorzugt sind also im Rahmen der Erfindung die Reflektorwände 13, das heißt die jeweilige Reflektorebene 13' bezogen auf die Zentralachse 1 so angeordnet, dass der radiale Abstand zur Zentralachse 1 dieser Reflektorwand 13 oder der Reflektorebene 13' kleiner ist als 15%, insbesondere kleiner ist als 10%, 8%, 6%, 5%, 4%, 3%, 2% und insbesondere auch kleiner ist als 1% der Spaltenbreite B der jeweiligen Antennenspalte 6 (siehe
Figuren 1 ,8 oder11 ). - Die erläuterten Beispiele sind allesamt so beschrieben worden, dass die jeweilige Reflektorebene 13' einer Reflektorwand 13 eines Reflektors 11 einer jeden Sektorantenne 5 so angeordnet ist, dass die Zentralachse 1 in der Reflektorebene 13' liegt. Die einzelnen Sektorantennen mit ihren Reflektoren 11 und den Reflektorwänden können aber auch in einem radialen Abstand zur Zentralachse versetzt angeordnet werden, um immer noch die beschriebenen Vorteile zu realisieren, wenn dieser Abstand nicht zu groß wird. Von daher soll dieser Abstand bevorzugt kleiner als 15%, insbesondere kleiner als 10%, 8%, 6%, 5%, 4%, 3%, 2% und insbesondere auch kleiner als 1% der Spaltenbreite B einer Antennenspalte 6 sein.
- In
Figur 20 ist eine derartige Anordnung der einzelnen Reflektoren gezeigt, in der die jeweilige Reflektorebene 13' einen in dem vorstehend genannten Sinne geringen Radialversatz zur Zentralachse 1 aufweist. Eine solche Ausbildungsform kommt unter anderem dann in Betracht, wenn in dem so gebildeten Freiraum zwischen den in Draufsicht drei in unterschiedlicher Höhenlage angeordneten Sektorantennen beispielsweise ein Antennenmast vorgesehen sein soll, der von der Zentralachse 1 durchsetzt wird. - Bei der erfindungsgemäßen Anordnung gemäß
Figur 21 ist ein Versatz der einzelnen Sektorantennen in negativer Richtung vorgenommen worden. Dort sind also die Reflektorwände 13 mit ihren zugehörigen Reflektorebenen 13' relativ zur Zentralachse 1 versetzt angeordnet, dass die Zentralachse 1 die Reflektorstege durchsetzt. Mit anderen Worten verläuft also hier die Zentralachse 1 auf der Seite der Reflektorebene 13', auf der auch die Strahler 7 und/oder Strahler 9 vorgesehen sind (bei dem Beispiel gemäßFigur 20 verläuft die Zentralachse 1 auf der Rückseite der Reflektorwände 13, also auf der gegenüberliegenden Seite zu den Strahlern 7/9). - Anhand von
Figur 22 ist nur zur Vervollständigung in axialer Draufsicht eine Antenne mit drei Sektorantennen nach dem Stand der Technik gezeigt, bei der die drei Sektorantennen 5 um die Zentralachse herum um einen 120°-Winkel angeordnet sind, wobei in diesem Fall alle Sektorantennen in einer gleichen Höhenlage montiert sind, da die Reflektorwände einen so großen Abstand zur Zentralachse 1 aufweisen, dass sich die so gebildeten Sektorantennen und insbesondere deren Reflektoren 11 oder Reflektorwände 13 in Draufsicht nicht überlappen oder schneiden. - Um den erwähnten entkopplungsoptimierten Aufbau der Einzelstrahler 5 bzw. der Richtantennen 5, also der einen oder mehreren Sektorantennen 5 zu realisieren, sind die erwähnten, quer und insbesondere senkrecht zu der Reflektorebene 13' der Reflektorwand 13 oder des gesamten Reflektors 11 verlaufenden Reflektorstege 15 bzw. 15' vorgesehen. Diese Reflektorstege 15 bzw. 15' sollen bevorzugt eine Reflektorsteg-Höhe R aufweisen, die größer als 0,05 λ ist, wobei λ die Mittenfrequenz im Falle eines Monoband-Strahlers ist. Im Falle einer Dualband- oder Multiband-Strahleranordnung ist λ die Mittenfrequenz des niedrigsten Frequenzbandes. Allgemein gesprochen soll die Höhe R der Seitenwand oder der Seitenstege 15, 15' des Reflektors 11 gegenüber der Reflektorebene 13' nicht größer sein als die Höhe H1, also die Höhe der Strahler 7 gegenüber der Reflektorebene 13' und damit aber auch nicht höher sein als die Höhe H2, das heißt die Höhe der Strahler 9 gegenüber der Reflektorebene 13' (siehe
Figur 4 ). - Mit anderen Worten ist also im gezeigten Beispiel die Reflektorsteg-Höhe R der Reflektorstege 15, 15' sowie 15" kleiner als die Höhe H2 der dual- oder vertikalpolarisierten Dipol- oder Vektorstrahler 9 für das niedrigere Frequenzband und damit auch noch niedriger als die Höhe H1 der noch höher bauenden dual- oder vertikalpolarisierten Dipol- oder Vektorstrahler 7 für das höhere Frequenzband, wie dies aus den
Figuren 2 oder4 zu ersehen ist. - In den erwähnten Beispielen und dem an Hand von
Figur 21 erläuterten erfindungsgemäßen Ausführungsbeispiel ist auf das Speisesystem nicht mehr einzeln eingegangen worden. Üblicherweise werden die entsprechenden Strahler und Antennen bzgl. der beiden senkrecht zueinander stehenden Polarisationsebenen sowie für die einen oder mehreren Frequenzbänder über Koaxialleitungen jeweils getrennt gespeist. Ebenso verwendet werden können aber auch Combiner/Verteiler, worüber die gemeinsam zugeführten Frequenzen aufgeteilt bzw. zusammengefasst werden können. Es wird insoweit auf bekannte Lösungen verwiesen, was ebenso für den Betrieb der Sektorantennen 5 zur Realisierung eines MIMO-Betriebs gilt. - Ferner wird angemerkt, dass die zu dem erläuterten Rundstrahler gehörenden Sektorantennen, die in einer einzigen Polarisation strahlen oder empfangen, über ein Speise-netzwerk zusammengeschaltet sein können (dies gilt nicht für den Sektorbetrieb). Soweit für die Sektorantennen Strahler vorgesehen sind, die in zwei senkrecht zueinander stehenden Polarisationsebenen senden und/oder empfangen, können alle in einer gemeinsamen Polarisationsebene (von beispielsweise +45° oder -45° gegenüber der Horizontalen ausgerichtet) betriebene Strahler über ein Speisenetzwerk zusammengeschaltet sein.
Claims (15)
- Dualpolarisierte, omnidirektionale Antenne mit zumindest drei separaten in Umfangsrichtung um eine Zentralachse (1) versetzt zueinander liegenden Sektorantennen (5) mit folgenden Merkmalen:- jede Sektorantenne (5) umfasst zumindest eine Antennenspalte (6) mit einem zugehörigen Reflektor (11), der zumindest teilweise in einer Reflektorebene (13') angeordnet ist, wobei in der Antennenspalte (6) vor dem Reflektor (11) zumindest ein dualpolarisierter Strahler (7, 9) angeordnet ist,- mit einer Speiseeinrichtung, die mit der Sektorantenne (5) gekoppelt ist,- die Sektorantennen (5) sind zusätzlich längs ihrer Zentralachse (1) versetzt zueinander angeordnet,- die Sektorantennen (5) sind so angeordnet, dass sich in axialer Ansicht längs der Zentralachse (1) die Reflektoren (11) mit ihrer in einer jeweiligen Reflektorebene (13') angeordneten Reflektorwand (13) schneiden,- zwischen zwei benachbarten und längs der Zentralachse (1) versetzt zueinander angeordneten Sektorantennen (5) ist eine Entkopplungseinrichtung vorgesehen,- die Entkopplungseinrichtung besteht aus zumindest einem Reflektorsteg (15, 15'), der quer zur Reflektorebene (13') des zugehörigen Reflektors (11) ausgerichtet ist,- die Reflektorwände (13) oder die Reflektorebenen (13') liegen in einem Abstand parallel zur Zentralachse (1),- die Reflektorwände (13) oder die Reflektorebenen (13') liegen in einem derartigen Abstand parallel zur Zentralachse (1), dass der Abstand zwischen der Reflektorebene (13') einer Sektorantenne (5) und der Zentralachse (1) kleiner ist als 15% der Spaltenbreite (B) einer zugehörigen Antennenspalte (6), wobei die Spaltenbreite (B) der Breite der Reflektorwand (13) entspricht, und- die Zentralachse (1) verläuft dabei derart auf der Seite der Reflektorebene (13'), auf der auch die Strahler (7, 9) vorgesehen sind, dass die Zentralachse (1) die Reflektorstege (15, 15') durchsetzt.
- Antenne nach Anspruch 1, dadurch gekennzeichnet, dass die Höhe des Reflektorstegs (15, 15', 15") größer ist als 0,05 λ bezogen auf die Mittenfrequenz in einer Monoband-Antenne oder bezogen auf die tiefere Mittenfrequenz in einer Dualband- oder Multiband-Antenne und kleiner ist als eine Höhe (H1) der dualpolarisierten Strahler (7) und/oder kleiner ist als die Höhe (H2) der dualpolarisierten Strahler (9), jeweils gegenüber der Reflektorebene (13') des zugehörigen Reflektors (11) einer Sektorantenne (5).
- Antenne nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass jede Sektorantenne (5) einen umlaufend geschlossenen oder unterbrochenen Reflektorsteg (15) aufweist, wodurch der Reflektor (11), mit der innerhalb des Reflektorsstegs (15, 15') sitzenden Sektorantenne (5) umfasst ist.
- Antenne nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Reflektorwände (13) oder die Reflektorebenen (13') derart parallel zur Zentralachse liegen, dass der Abstand zwischen der Reflektorebene (13') einer Sektorantenne (5) und der Zentralachse (1) kleiner ist als 10%, insbesondere kleiner ist als 8%, 6%, 5%, 4%, 3%, 2% und insbesondere kleiner ist als 1% der Spaltenbreite (B) einer zugehörigen Antennenspalte (6) .
- Antenne nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Sektorantennen (5) so angeordnet sind, dass die Zentralachse (1) durch die Phasenzentren hindurch verläuft oder einen Abstand dazu aufweist, der kleiner ist als 15%, insbesondere kleiner ist als 10%, 8%, 6%, 5%, 4%, 3%, 2% und insbesondere kleiner ist als 1% der Spaltenbreite (B) einer zugehörigen Antennenspalte (6).
- Antenne nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass jede Sektorantenne (5) als Monoband-Antenne, als Dualband-Antenne oder als Multiband-Antenne ausgebildet ist.
- Antenne nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass im Bereich jeder Sektorantenne (5) eine um 180°, das heißt entgegengesetzt ausgerichtete zweite Sektorantenne (5) vorgesehen ist, die vorzugsweise einen gemeinsamen Reflektor (11), insbesondere eine gemeinsame Reflektorwand (13) mit einer gemeinsamen Reflektorebene (13') umfasst.
- Antenne nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass jede Sektorantenne (5) mehrere in der Antennenspalte (6) liegende und in Richtung der Zentralachse (1) versetzt zueinander angeordnete dualpolarisierte Strahler (7, 9) umfasst.
- Antenne nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass die Sektorantennen (5) zumindest zwei parallel zueinander angeordnete Antennenspalten (6) umfasst, wobei in jeder Antennenspalte zumindest ein dualpolarisierter Strahler (7, 9) und vorzugsweise mehrere dualpolarisierte Strahler (7,9) in Richtung der Antennenspalte (6) beabstandet zueinander angeordnet sind.
- Antenne nach Anspruch 9, dadurch gekennzeichnet, dass die dualpolarisierten Strahler (7, 9) in den einzelnen Antennenspalten (6) einer Sektorantenne (5) in gleicher Höhenlage angeordnet sind.
- Antenne nach Anspruch 9 oder 10, dadurch gekennzeichnet, dass der Abstand der Antennenspalten (6) zwischen 0,65 λ und 0,75 λ liegt, wobei λ die Mittenbetriebsfrequenz für das niedrigste Frequenzband ist.
- Antenne nach einem der Ansprüche 9 bis 11, dadurch gekennzeichnet, dass jede Sektorantenne (5) mit ihren zumindest beiden Antennenspalten (6) symmetrisch zur Zentralachse (1) angeordnet ist.
- Antenne nach einem der Ansprüche 9 bis 11, dadurch gekennzeichnet, dass die Sektorantennen (5) so angeordnet sind, dass jeweils eine Antennenspalte (6) symmetrisch zur Zentralachse (1) positioniert ist, wohingegen die zumindest eine weitere Antennenspalte (6) dazu radial, seitlich oder quer zur Zentralachse (1) versetzt liegt.
- Antenne nach einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, dass mehrere in einer oder in unterschiedlichen Antennenspalten (6) angeordnete dualpolarisierte Strahler (7, 9) als MIMO-Antennen betreibbar sind.
- Antenne nach einem der Ansprüche 1 bis 14, dadurch gekennzeichnet, dass die dualpolarisierten Strahler (7, 9) monoband-, dualband- oder mehrbandfähig sind.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102012023938.6A DE102012023938A1 (de) | 2012-12-06 | 2012-12-06 | Dualpolarisierte, omnidirektionale Antenne |
PCT/EP2013/003355 WO2014086452A1 (de) | 2012-12-06 | 2013-11-07 | Dualpolarisierte, omnidirektionale antenne |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2929589A1 EP2929589A1 (de) | 2015-10-14 |
EP2929589B1 true EP2929589B1 (de) | 2018-09-05 |
Family
ID=49554198
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP13789186.7A Active EP2929589B1 (de) | 2012-12-06 | 2013-11-07 | Dualpolarisierte, omnidirektionale antenne |
Country Status (6)
Country | Link |
---|---|
EP (1) | EP2929589B1 (de) |
JP (1) | JP6014774B2 (de) |
KR (1) | KR101672502B1 (de) |
CN (1) | CN105379006B (de) |
DE (1) | DE102012023938A1 (de) |
WO (1) | WO2014086452A1 (de) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3644440B1 (de) * | 2017-08-24 | 2023-08-23 | Samsung Electronics Co., Ltd. | Elektronische vorrichtung mit antenne |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9843096B2 (en) | 2014-03-17 | 2017-12-12 | Ubiquiti Networks, Inc. | Compact radio frequency lenses |
DE102014014434A1 (de) * | 2014-09-29 | 2016-03-31 | Kathrein-Werke Kg | Multiband-Strahlersystem |
US10164332B2 (en) * | 2014-10-14 | 2018-12-25 | Ubiquiti Networks, Inc. | Multi-sector antennas |
WO2016137938A1 (en) | 2015-02-23 | 2016-09-01 | Ubiquiti Networks, Inc. | Radio apparatuses for long-range communication of radio-frequency information |
CN107040294B (zh) | 2015-10-09 | 2020-10-16 | 优倍快公司 | 同步多无线电天线系统和方法 |
GB2563574B (en) | 2017-06-05 | 2021-08-04 | International Electric Company Ltd | A phased array antenna and apparatus incorporating the same |
GB201803433D0 (en) | 2018-03-02 | 2018-04-18 | Secr Defence | Dual polarised antenna |
KR102133095B1 (ko) * | 2018-10-30 | 2020-07-13 | 서울특별시 | 다기능 소방 호스 |
CN110970736A (zh) * | 2019-12-02 | 2020-04-07 | 东软睿驰汽车技术(沈阳)有限公司 | 一种微带天线阵 |
EP3883051A1 (de) | 2020-03-19 | 2021-09-22 | Maritime IoT Solutions BV | Gruppenantennenmodul |
WO2021217219A1 (en) * | 2020-05-01 | 2021-11-04 | Fleet Space Technologies Pty Ltd | Antenna and antenna systems for leo satellite communication |
USD989048S1 (en) | 2021-01-15 | 2023-06-13 | Fleet Space Technologies Pty Ltd | Patch antenna |
Family Cites Families (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4737796A (en) * | 1986-07-30 | 1988-04-12 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Ground plane interference elimination by passive element |
JP3456507B2 (ja) * | 1996-04-15 | 2003-10-14 | 日本電信電話株式会社 | セクタアンテナ |
US5969689A (en) * | 1997-01-13 | 1999-10-19 | Metawave Communications Corporation | Multi-sector pivotal antenna system and method |
DE19818772C2 (de) | 1998-04-27 | 2000-05-31 | Siemens Ag | Verfahren zum Abbau der Radioaktivität eines Metallteiles |
DE19823749C2 (de) | 1998-05-27 | 2002-07-11 | Kathrein Werke Kg | Dualpolarisierte Mehrbereichsantenne |
DE19860121A1 (de) | 1998-12-23 | 2000-07-13 | Kathrein Werke Kg | Dualpolarisierter Dipolstrahler |
FR2794290B1 (fr) | 1999-05-10 | 2007-04-20 | Cit Alcatel | Antenne a polarisation verticale |
FR2795240B1 (fr) * | 1999-06-18 | 2003-06-13 | Nortel Matra Cellular | Antenne de station de base de radiocommunication |
JP4300724B2 (ja) * | 2001-09-05 | 2009-07-22 | 日立電線株式会社 | 偏波ダイバーシチ無指向性アンテナ |
GB2383689A (en) * | 2001-11-07 | 2003-07-02 | William Hislop Dobbie | Antenna assembly |
DE10203873A1 (de) | 2002-01-31 | 2003-08-14 | Kathrein Werke Kg | Dualpolarisierte Strahleranordnung |
DE10316787A1 (de) * | 2003-04-11 | 2004-11-11 | Kathrein-Werke Kg | Reflektor, insbesondere für eine Mobilfunk-Antenne |
CN2727987Y (zh) * | 2004-07-28 | 2005-09-21 | 西安海天天线科技股份有限公司 | 一种四极化阵列全向天线 |
CN2752984Y (zh) * | 2004-09-23 | 2006-01-18 | 西安海天天线科技股份有限公司 | 三棱柱八端口phs基站天线 |
DE102004057774B4 (de) | 2004-11-30 | 2006-07-20 | Kathrein-Werke Kg | Antenne, insbesondere Mobilfunkantenne |
KR100807321B1 (ko) * | 2005-12-13 | 2008-02-28 | 주식회사 케이엠더블유 | 이동통신 기지국용 가변 빔 제어 안테나 |
DE102006037517A1 (de) * | 2006-08-10 | 2008-02-21 | Kathrein-Werke Kg | Antennenanordnung, insbesondere für eine Mobilfunk-Basisstation |
DE102006037518B3 (de) * | 2006-08-10 | 2008-03-06 | Kathrein-Werke Kg | Antennenanordnung, insbesondere für eine Mobilfunk-Basisstation |
DE102007060083A1 (de) * | 2007-12-13 | 2009-06-18 | Kathrein-Werke Kg | Mehrspalten-Multiband-Antennen-Array |
JP4611401B2 (ja) * | 2008-05-30 | 2011-01-12 | 日本電業工作株式会社 | アンテナ装置 |
JP5307651B2 (ja) * | 2009-06-26 | 2013-10-02 | Kddi株式会社 | アンテナ装置 |
US9590317B2 (en) * | 2009-08-31 | 2017-03-07 | Commscope Technologies Llc | Modular type cellular antenna assembly |
CN101714701B (zh) * | 2009-12-21 | 2013-06-19 | 京信通信系统(中国)有限公司 | 双频双极化阵列天线 |
WO2011120090A1 (en) | 2010-03-31 | 2011-10-06 | Argus Technologies (Australia) Pty Ltd | Omni-directional multiple-input multiple-output antenna system |
KR20120082279A (ko) * | 2011-01-13 | 2012-07-23 | 주식회사 에이스테크놀로지 | 무도금 방사체를 포함하는 안테나 |
-
2012
- 2012-12-06 DE DE102012023938.6A patent/DE102012023938A1/de not_active Withdrawn
-
2013
- 2013-11-07 KR KR1020157014674A patent/KR101672502B1/ko active IP Right Grant
- 2013-11-07 EP EP13789186.7A patent/EP2929589B1/de active Active
- 2013-11-07 JP JP2015545682A patent/JP6014774B2/ja active Active
- 2013-11-07 CN CN201380063614.8A patent/CN105379006B/zh active Active
- 2013-11-07 WO PCT/EP2013/003355 patent/WO2014086452A1/de active Application Filing
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3644440B1 (de) * | 2017-08-24 | 2023-08-23 | Samsung Electronics Co., Ltd. | Elektronische vorrichtung mit antenne |
Also Published As
Publication number | Publication date |
---|---|
KR101672502B1 (ko) | 2016-11-04 |
JP6014774B2 (ja) | 2016-10-25 |
DE102012023938A1 (de) | 2014-06-12 |
KR20150093680A (ko) | 2015-08-18 |
WO2014086452A1 (de) | 2014-06-12 |
EP2929589A1 (de) | 2015-10-14 |
JP2016504843A (ja) | 2016-02-12 |
CN105379006B (zh) | 2018-07-06 |
CN105379006A (zh) | 2016-03-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2929589B1 (de) | Dualpolarisierte, omnidirektionale antenne | |
EP1470615B1 (de) | Dualpolarisierte strahleranordnung | |
EP0848862B1 (de) | Antennenarray | |
EP1327287B1 (de) | Dualpolarisiertes antennenarray | |
EP1964205B1 (de) | Dual polarisierte antenne mit längs- oder querstegen | |
EP1277252B1 (de) | Dualpolarisierte dipolgruppenantenne | |
EP3025395B1 (de) | Breitband-antennenarray | |
DE202021106120U1 (de) | Strahlerelemente mit abgewinkelten Einspeiseschäften und Basisstationsantennen einschließlich derselben | |
EP1082781A1 (de) | Antennenarray mit mehreren vertikal übereinander angeordneten primärstrahler-modulen | |
EP3482450B1 (de) | Antennenanordnung mit zumindest einer dipolförmigen strahleranordnung | |
EP1749331B1 (de) | Mobilfunkantenne mit strahlformungselement | |
DE102007047741A1 (de) | Speisenetzwerk für eine Gruppenantenne | |
DE102007060083A1 (de) | Mehrspalten-Multiband-Antennen-Array | |
EP3306742A1 (de) | Mobilfunk-antenne | |
EP3220480A1 (de) | Dipolförmige strahleranordnung | |
WO2016050336A1 (de) | Multiband-strahlersystem | |
EP3533110B1 (de) | Dual polarisierter hornstrahler | |
EP1525642B1 (de) | Zweidimensionales antennen-array | |
EP3756235A1 (de) | Multibandantennenanordnung für mobilfunkanwendungen | |
EP2514027B1 (de) | Dualpolarisierte gruppenantenne, insbesondere mobilfunkantenne | |
DE112014006505T5 (de) | Antennenaufbauten | |
DE9307415U1 (de) | Gruppenantenne | |
WO2009065951A1 (de) | Kompakte richtantennenanordnung mit mehrfachnutzung von strahlerelementen |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20150429 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAX | Request for extension of the european patent (deleted) | ||
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20170329 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20180412 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1038927 Country of ref document: AT Kind code of ref document: T Effective date: 20180915 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502013011033 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R081 Ref document number: 502013011033 Country of ref document: DE Owner name: ERICSSON AB, SE Free format text: FORMER OWNER: KATHREIN-WERKE KG, 83022 ROSENHEIM, DE Ref country code: DE Ref legal event code: R081 Ref document number: 502013011033 Country of ref document: DE Owner name: TELEFONAKTIEBOLAGET LM ERICSSON (PUBL), SE Free format text: FORMER OWNER: KATHREIN-WERKE KG, 83022 ROSENHEIM, DE Ref country code: DE Ref legal event code: R081 Ref document number: 502013011033 Country of ref document: DE Owner name: KATHREIN SE, DE Free format text: FORMER OWNER: KATHREIN-WERKE KG, 83022 ROSENHEIM, DE |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20180905 |
|
RAP2 | Party data changed (patent owner data changed or rights of a patent transferred) |
Owner name: KATHREIN SE |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180905 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180905 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181205 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181205 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181206 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180905 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180905 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180905 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180905 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180905 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190105 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180905 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180905 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180905 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180905 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180905 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180905 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190105 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180905 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502013011033 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180905 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181107 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180905 |
|
26N | No opposition filed |
Effective date: 20190606 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20181130 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20181205 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181130 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180905 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181130 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181130 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181107 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181130 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181205 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 1038927 Country of ref document: AT Kind code of ref document: T Effective date: 20181107 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181107 Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180905 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 502013011033 Country of ref document: DE Representative=s name: FLACH BAUER STAHL PATENTANWAELTE PARTNERSCHAFT, DE Ref country code: DE Ref legal event code: R081 Ref document number: 502013011033 Country of ref document: DE Owner name: ERICSSON AB, SE Free format text: FORMER OWNER: KATHREIN SE, 83022 ROSENHEIM, DE Ref country code: DE Ref legal event code: R081 Ref document number: 502013011033 Country of ref document: DE Owner name: TELEFONAKTIEBOLAGET LM ERICSSON (PUBL), SE Free format text: FORMER OWNER: KATHREIN SE, 83022 ROSENHEIM, DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180905 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 502013011033 Country of ref document: DE Representative=s name: FLACH BAUER STAHL PATENTANWAELTE PARTNERSCHAFT, DE Ref country code: DE Ref legal event code: R081 Ref document number: 502013011033 Country of ref document: DE Owner name: TELEFONAKTIEBOLAGET LM ERICSSON (PUBL), SE Free format text: FORMER OWNER: ERICSSON AB, STOCKHOLM, SE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180905 Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20131107 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180905 |
|
REG | Reference to a national code |
Ref country code: FI Ref legal event code: PCE Owner name: TELEFONAKTIEBOLAGET LM ERICSSON (PUBL) |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20221127 Year of fee payment: 10 Ref country code: FI Payment date: 20221125 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20231129 Year of fee payment: 11 |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: EUG |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20231107 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20231108 |