[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP2491181B1 - Procédé et installation de production d'enrobé asphaltique - Google Patents

Procédé et installation de production d'enrobé asphaltique Download PDF

Info

Publication number
EP2491181B1
EP2491181B1 EP09806080.9A EP09806080A EP2491181B1 EP 2491181 B1 EP2491181 B1 EP 2491181B1 EP 09806080 A EP09806080 A EP 09806080A EP 2491181 B1 EP2491181 B1 EP 2491181B1
Authority
EP
European Patent Office
Prior art keywords
low oxygen
asphalt
gases
drum
oxygen gases
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP09806080.9A
Other languages
German (de)
English (en)
Other versions
EP2491181A1 (fr
Inventor
Julia Aretz
Christian Barczus
Wladimir Garber
Stefan Wolber
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Loesche GmbH
Original Assignee
Loesche GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Loesche GmbH filed Critical Loesche GmbH
Priority to PL09806080T priority Critical patent/PL2491181T3/pl
Publication of EP2491181A1 publication Critical patent/EP2491181A1/fr
Application granted granted Critical
Publication of EP2491181B1 publication Critical patent/EP2491181B1/fr
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C19/00Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving
    • E01C19/02Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving for preparing the materials
    • E01C19/10Apparatus or plants for premixing or precoating aggregate or fillers with non-hydraulic binders, e.g. with bitumen, with resins, i.e. producing mixtures or coating aggregates otherwise than by penetrating or surface dressing; Apparatus for premixing non-hydraulic mixtures prior to placing or for reconditioning salvaged non-hydraulic compositions
    • E01C19/1004Reconditioning or reprocessing bituminous mixtures, e.g. salvaged paving, fresh patching mixtures grown unserviceable; Recycling salvaged bituminous mixtures; Apparatus for the in-plant recycling thereof
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C19/00Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving
    • E01C19/02Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving for preparing the materials
    • E01C19/10Apparatus or plants for premixing or precoating aggregate or fillers with non-hydraulic binders, e.g. with bitumen, with resins, i.e. producing mixtures or coating aggregates otherwise than by penetrating or surface dressing; Apparatus for premixing non-hydraulic mixtures prior to placing or for reconditioning salvaged non-hydraulic compositions
    • E01C19/1013Plant characterised by the mode of operation or the construction of the mixing apparatus; Mixing apparatus
    • E01C19/1027Mixing in a rotary receptacle
    • E01C19/1036Mixing in a rotary receptacle for in-plant recycling or for reprocessing, e.g. adapted to receive and reprocess an addition of salvaged material, adapted to reheat and remix cooled-down batches
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C19/00Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving
    • E01C19/02Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving for preparing the materials
    • E01C19/10Apparatus or plants for premixing or precoating aggregate or fillers with non-hydraulic binders, e.g. with bitumen, with resins, i.e. producing mixtures or coating aggregates otherwise than by penetrating or surface dressing; Apparatus for premixing non-hydraulic mixtures prior to placing or for reconditioning salvaged non-hydraulic compositions
    • E01C2019/1081Details not otherwise provided for
    • E01C2019/109Mixing containers having a counter flow drum, i.e. the flow of material is opposite to the gas flow
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C19/00Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving
    • E01C19/02Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving for preparing the materials
    • E01C19/10Apparatus or plants for premixing or precoating aggregate or fillers with non-hydraulic binders, e.g. with bitumen, with resins, i.e. producing mixtures or coating aggregates otherwise than by penetrating or surface dressing; Apparatus for premixing non-hydraulic mixtures prior to placing or for reconditioning salvaged non-hydraulic compositions
    • E01C2019/1081Details not otherwise provided for
    • E01C2019/1095Mixing containers having a parallel flow drum, i.e. the flow of material is parallel to the gas flow

Definitions

  • the invention relates to a process for the production of bituminous mixtures according to the preamble of claim 1 and to a plant for the production of bituminous mixtures according to the preamble of claim 11.
  • the invention is particularly directed to the reuse of reclaimed asphalt, which accrues during the reconstruction and dismantling of asphalt roads and due to legal requirements, including the Kreislauf insects- and waste law, an orderly reuse is supplied.
  • the reuse should be carried out at least as a building material, but primarily with reactivation of the binder bitumen in newly mixed asphalt.
  • Degraded asphalt for example, mastic asphalt or demolition asphalt, is thereby comminuted into asphalt granulate and mixed with a predefinable particle size distribution and according to the classification in a defined amount together with aggregates and bitumen.
  • fresh solids such as gravel, sand and mineral powder, also referred to as fillers or fillers, understood, which have a defined grain size composition and are used with a predetermined amount.
  • asphalt granules are heated and dried by contact with fresh aggregates in the mixer.
  • the aggregates must therefore be heated correspondingly higher, usually heated above 200 ° C, in order to achieve the heating and drying of the asphalt granules and the required for the installation and compaction of the asphalt mix mixed product temperature of about 160 to 180 ° C.
  • the addition amount of the asphalt granules is a maximum of 30%.
  • the asphalt granules can be added via a center addition or an addition device on the drum outlet.
  • the mixture of aggregates and asphalt granules is then fed through a sieve bypass bag to the mixing device, for example a mixing tower.
  • a sieve bypass bag to the mixing device, for example a mixing tower.
  • a separate heating of asphalt granules can be carried out separately from the aggregates in a parallel drum.
  • a maximum temperature of 130 ° C should be maintained.
  • a warming to about 110 ° C is preferred.
  • Higher temperatures in the drum devices or mixers cause an intensive aging of the bitumen and a deterioration of its thermoplastic properties.
  • a method and a drying drum for heating and drying asphalt granules are known in which a separate hot gas generation is carried out in a hot gas generator. This should set a maximum hot gas temperature of 600C.
  • a special Guiding the hot gas and the asphalt granules within the drum a gentle warming sought, which should prevent cracking of the bitumen-containing asphalt granules and minimize the accumulation of pollutants.
  • EP 0 216 316 A2 describes a process for the recycling of asphalt granules, in which aggregates and asphalt granules are heated and dried in two separate drum dryers and then mixed together with additional filler and bitumen in a mixer to form recycling mix. The recycled mix is immediately fed to further processing or caching for on-demand removal. Temperatures are not specified in this document. Reference is made only to the relevant provisions and to a significant increase in the viscosity of the bitumen as a result of overheating of the aggregates. The heating of the asphalt granulate in the drying drum with directly connected burner takes place in cocurrent, and the exhaust gases are fed back to the burner of the drum dryer for the aggregates as secondary and tertiary air.
  • A1 known method is heated expansion asphalt in a separate drum by flue gas.
  • Gentle heating of the spent asphalt to prevent thermal overheating of the bitumen is to be achieved by passing the hot flue gas co-currently with the expansion asphalt material stream through the drum and also part of the flue gas of the drum exiting the drum at about 170 ° C burner side is fed back to lower the flue gas temperature and thus the temperature difference between the dismantling asphalt and flue gas can continue.
  • the non-recirculated flue gas is passed through a second drum in which the aggregates are transported in countercurrent.
  • a plant for drying and heating granulated material for asphalt production which comprises a rotary drying drum for drying and heating the aggregates and the asphalt granulate and a hot gas generator for supplying a hot gas flow.
  • a hot gas generator for supplying a hot gas flow.
  • the particles and fines from the exhaust gas to be deposited in a sedative drum and then added to the material flow of recycled asphalt and aggregates.
  • the exhaust gas flow, which is returned to the hot gas generator, should preferably be enriched with oxygen-rich fresh air.
  • the reduced plasticity of the bitumen in the expansion asphalt by thermal aging adjusted by a plasticizer.
  • a curing agent preferably in the warm phase of the mixture.
  • reclaimed asphalt is usually heated up to 130 to 140 ° C in compliance with the air conditioning environmental specifications and the aggregates or the new minerals would have to be heated significantly above 200 ° C with the addition of about 50% expansion asphalt.
  • the degree of oxidation (aging) of the bitumen in the reclaimed asphalt is related to the heating degree of the asphalt granules limited to 140 ° C considered in the reuse of spent asphalts and production of asphalt blends.
  • the burners and / or hot gas generators used in the drying drums are operated with burners with fossil fuels, and an exhaust gas recycling is carried out, in which up to 50% of the exhaust gas flow is fed back to a hot gas generator.
  • the invention has for its object to provide a method and a system which ensure the production of asphalt mix in the required quality even with reuse of up to 100% expansion asphalt and greatly improve the efficiency of asphalt production, in particular by saving raw materials and heating energy ,
  • the drying and heating of the asphalt granules and / or the aggregates carried out in an oxygen-poor atmosphere.
  • the oxygen-poor atmosphere is characterized by an oxygen content of 0 to 10%, preferably by an oxygen content of 0 to a maximum of 5%.
  • the invention is based on the recognition that by a low-oxygen atmosphere in the drying and heating of the asphalt granules and / or the aggregates, even in the promotion of heated and dried asphalt granulate or the heated and dried mixture of asphalt granules and aggregates and when mixed with bitumen prevents in a mixing device, oxidation of the bitumen in the asphalt granules and also in the fresh bitumen, but at least reduced, so that the thermoplastic properties of the bitumen are not adversely affected.
  • an increase in temperature of the asphalt granulate or of the mixture of asphalt granulate and aggregates is observed to a temperature level in the range of 180 to 200 ° C, and this temperature level advantageously ensures the production of bituminous mixtures, even with the sole reuse of recycling asphalt or with 100% asphalt granulate, with less addition of new bitumen, and without fresh aggregates.
  • oxygen-poor atmosphere according to the invention during drying and heating in at least one drum device and in the promotion and also when mixing with new bitumen in a mixing device is achieved by means of oxygen-poor gases, which according to the invention an oxygen content of not more than 10% and preferably an oxygen content of not more than 5 %, so that the oxygen content may preferably be 1, 2, 3, 4 or 5% or 6, 7, 8, 9 or 10%.
  • oxygen-poor gases are understood in the context of the invention, in particular low-oxygen process gases or exhaust gases of various technical processes.
  • asphalt granules and / or aggregates are heated and dried with the aid of oxygen-poor gases having a temperature in the range of 500 to 1000 ° C and then conveyed to a mixing device and that to ensure a low-oxygen atmosphere in the promotion and the Mixing by means of cold oxygen-poor gases having a temperature in the range of about 20 to about 150 ° C, or by means of cooled oxygen-poor gases having a temperature of about 150 to 300 ° C, mixing the hot oxygen-poor gases with cold oxygen-poor gases or a Cooling of the hot oxygen-poor gases is performed.
  • the storage bin or silos before and / or after the mixing device are charged with oxygen-poor gases.
  • combustion air can be mixed with oxygen-poor gases, for example exhaust gas, up to 100%.
  • hot low-oxygen gases which have been produced by combustion indirectly, for example in heat exchangers, and / or directly by mixing with cold oxygen-poor gases up to a temperature in the range from 1000 to 400 ° C., preferably 900 to 600 ° C. to cool.
  • the cold and hot oxygen-poor gases can come from different sources or production sites.
  • Particularly efficient and environmentally advantageous is the use of low-oxygen gases, which in technical processes as by-product or waste product, expediently incurred outside the production of asphalt.
  • the nitrogen obtained in metallurgical processes from air separation plants or oxygen-poor gases from gas-tight boiler plants, oxy-fuel plants and furnaces, for example glass or metal production can be used for the production of the oxygen-poor atmosphere according to the invention in the production of asphalt mixtures.
  • Cold oxygen-poor gases can advantageously be brought to a higher temperature indirectly, for example in heat exchangers, or directly by mixing with hot, oxygen-poor gases.
  • the use of low-oxygen gases from processes and production facilities outside the production of asphalt is not only advantageous for the production of asphalt, but also means an improved economic efficiency of the technical processes and plants in which the oxygen-poor gases are produced.
  • An improved efficiency in the production of asphalt is advantageously achieved in that the partial flows of oxygen-poor gases from the individual facilities can be combined and fed to an exhaust gas purification and that a return to the equipment before and / or after the exhaust gas purification can take place.
  • cold, oxygen-poor gases are advantageously supplied for sealing the drum devices and / or conveying devices and / or silo devices and / or mixing devices and the connection points between these devices and in the area of the material inlet and outlet devices, in particular the drum devices. Seals of this type are especially in areas between the rotating and fixed parts of the drum devices.
  • the oxygen-poor gases are formed and / or used at a positive pressure, for example at about 0.005 to 300 mbar, in particular up to 100 mbar, in a drum device and hot gas generator with burner, wherein a gas suction is carried out in the sealing and connecting regions can be and the extracted gas can be supplied to the burner of the drum device as a primary air fraction and / or the exhaust gas purification and / or a chimney.
  • a positive pressure for example at about 0.005 to 300 mbar, in particular up to 100 mbar
  • the oxygen-lean gases are at least partially supplied to an exhaust gas purification with dewatering and then used as cold oxygen-poor gases and used for example for sealing the drum devices, conveyors, mixing devices and / or silo devices.
  • the plant according to the invention for the production of bituminous mixtures which has at least one drum device for heating and drying asphalt granules of expanded asphalt and / or virgin material in the form of aggregates and a mixing device for mixing the heated and dried asphalt granules and / or aggregates with bitumen, is provided with at least one Equipped for low-oxygen gases, in which the oxygen-poor gases having an oxygen content of at most 10%, advantageously formed with a maximum oxygen content of 5% and / or from which the oxygen-poor gases of at least one drum device can be supplied.
  • At least the drum devices and advantageously also the conveying devices, silo devices and the mixing device are gas-tight and provided with seals which prevent false air volumes and a higher oxygen content in the devices.
  • the system of the invention differs from the known system variants, which have an oxygen content of 10% to about 16% due to high amounts of false air in the exhaust gases.
  • a drying and heating drum which asphalt granules and / or the aggregates are fed in countercurrent or in parallel to the hot oxygen-poor gases
  • a countercurrent drum for the asphalt granules and / or the aggregates or a parallel drum are used for the asphalt granulate
  • the mixing devices may be mixing towers, drum mixers or continuous mixers.
  • the source of the low-oxygen gases used may be the off-gas from the asphalt mixing plant or waste and by-products from technical processes and operations outside the asphalt mixing plant.
  • the low-oxygen gases from the asphalt production process and the low-oxygen gases from coal milling and drying can be used at least proportionally and be used both in the plant for asphalt production and coal milling, for example, for firing the asphalt production plant. This increases the economic efficiency of both processes.
  • a hot gas generator in particular with a steel combustion chamber, for the production of hot, oxygen-poor gases.
  • This may have a burner for gaseous, liquid and / or solid fuels.
  • the hot gas generator may have a gas mixer for mixing cold, low-oxygen gases, for example, from the exhaust gas purification, and the hot, low-oxygen gases of the burner.
  • the hot gas generator is a Loesche LOMA furnace which is provided with a Loesche perforated jacket (LOMA) furnace
  • cold, low-oxygen gases may be supplied to the shell for mixing with the generated hot, low-oxygen exhaust gases.
  • a hot gas generator with Lochmantelfeuerung is connected to a countercurrent drum as a drum means for drying and heating for asphalt granules and / or aggregates.
  • the hot, low-oxygen gases from the Loesche hot gas generator are transported countercurrent to the asphalt granules and / or aggregates in the countercurrent drum and an internal recirculation circuit of the volatile hydrocarbon compounds forms from the bitumen.
  • concentrations of the volatile hydrocarbon compounds in the drum increase 5 to 15 times as compared to a parallel drum.
  • Fig. 1 is shown a plant scheme for the production of asphalt mix, which is fed with cold oxygen-poor gases from a source 3.
  • the cold oxygen-poor gases 2 have an oxygen content in the range of 0 to 5%, for example 2% oxygen.
  • the cold, oxygen-poor gases 2 can arise in technical processes outside of asphalt production, and be, for example, exhaust gases from glass or metal production.
  • a drying and heating drum 4 as one of the possible drum means for heating and drying asphalt granules 5 from reclaimed asphalt and / or virgin material in the form of aggregates 7, a conveyor 6, for example a heat elevator, silo devices 18, 19 and a mixer 8 - recognize.
  • the dried and heated material from the drying and heating drum 4 is fed to a silo device 18, from which the mixture of asphalt granules 5 and / or aggregates 7 in a defined proportion with bitumen 9, which heats with the aid of an oiler 31 is, mixed.
  • the installable asphalt mixture 10 can be installed immediately or initially fed to a silo 19.
  • a portion of the cold oxygen-poor gases 2 is heated in a gas heater 15 by means of a heat source 37 to a temperature in the range of 500 to 1000 ° C and proportionally abandoned the drying and heating drum 4.
  • the flow guidance in the drying and heating drum 4 takes place in countercurrent to the asphalt granulate 5 and / or aggregates 7.
  • a portion of the hot oxygen-poor gases 12 from the gas heater 15 thus provides in the drying and heating drum 4 for a low-oxygen atmosphere, while another proportion is mixed with a partial flow of the cold oxygen-poor gases 2 and the conveyor 6, the silo devices 18, 19 and the mixing device 8 for producing a low-oxygen atmosphere in these investment facilities is supplied.
  • the flow guidance within the silo devices 18, 19 and in the mixing device 8 takes place in parallel flow.
  • the heat source 37 for example, an electric heater can be used. It is also a direct or indirect heating of the cold oxygen-poor gases 2 in hot oxygen-poor gases 12 possible.
  • the oxygen-poor gases from the conveyor 6, the Silo devices 18, 19 and the mixing device 8 are collected and fed to an exhaust gas purification 11.
  • Fig. 2 shows the plant schematic of an alternative plant for producing asphalt mix 10, wherein asphalt granules 5 and / or aggregates 7 are in turn transported in a drying and heating drum 4 in countercurrent to hot oxygen-poor gases 12.
  • the conveying device 6, silo devices 18, 19, mixing device 8, the oil heater 31 for the temperature control of the bitumen 9 before mixing in the mixing device 8 are in line with the device of the system Fig. 1 match.
  • the hot low-oxygen gases 32 from a source 13 outside the asphalt mixing plant have a temperature> 1000 ° C and are either directly or, as in Fig. 2 shown, cooled in a gas cooler 16 to a temperature in the range of 1000 to 500 ° C and then proportionally abandoned the drying and heating drum 4 and passed in countercurrent to the transport of the asphalt granules 5 and / or aggregates 7.
  • the gas cooler 16 can be operated, for example, with a cooling medium, for example water.
  • a proportion of the hot oxygen-poor gases 12 from the gas cooler 16 is as cooled oxygen-poor gases 22 having a temperature in the range of 150 to 300 ° C the conveyor 6, the silo devices 18, 19 and the mixing device 8 for producing a low-oxygen atmosphere having an oxygen content of a maximum of 10%, in particular 5% supplied. After these facilities, the partial flows of the oxygen-poor gases are collected and passed to the exhaust gas purification 11.
  • the plant after Fig. 3 is based on hot oxygen-poor gases 32 having an oxygen content of at most 5% and a temperature of about 1400 ° C.
  • hot oxygen-poor gases 32 are technical processes outside the asphalt production and asphalt mixing plant in question, especially a combustion of fossil fuels.
  • the hot oxygen-poor gases 32 are mixed in a gas mixer 17 with cold oxygen-poor gases 2 and passed as hot oxygen-poor gases 12 at a temperature in the range of 500 to 1000 ° C proportionately in the drying and heating drum 4.
  • Another part of the hot oxygen-poor gases 12 is mixed with a proportion of the cold oxygen-poor gases 2 and the conveyor 6 in countercurrent, the silo devices 18, 19 and fed to the mixing device 8 in parallel flow.
  • Parts of the oxygen-poor gases from the conveyor 6, the silo devices 18, 19 and the mixing device 8 and from the exhaust gas purification 11, which are denoted by Q1, Q2 and Q3, are returned to the gas mixer 17, whereby the energy efficiency is increased.
  • the remaining gas streams from the devices 4, 6, 18, 19, 8 and 10 are combined and fed to the exhaust gas purification 11.
  • the exhaust gases from the exhaust gas purification 11 are used, preferably after a first purification stage, as source 3 for cold oxygen-poor gases 2.
  • An exhaust gas recycling value of 50 to 100% is achieved.
  • the hot oxygen-poor gases 12 are used with an overpressure of about 0.01 mbar to about 50 mbar.
  • the temperature of the cold oxygen-poor gases 2 is preferably in the range of 100 to 150 ° C. This is associated with reduced emissions in the production of asphalt mix and at the same time efficient heat utilization.
  • Fig. 4 shows a plant for the production of bituminous mixture with a source 3 for cold oxygen-poor gases 2, which are supplied by means of a blower 38 a hot gas generator 20.
  • the hot gas generator 20 comprises a burner 21 for gaseous, liquid and / or solid fuels and a combustion chamber 28 for the production of hot oxygen-poor gases 32 having an oxygen content of about 3% and a temperature of about 1400 ° C.
  • These hot oxygen-poor gases 32 are mixed in a gas mixer 17 with cold oxygen-poor gases 2 and cooled to hot oxygen-poor gases 12 to a temperature in the range of 1000 to 500 ° C. After the gas mixer 17, the hot oxygen-poor gases 12 are fed to the drying and heating drum 4.
  • a partial flow is branched off and mixed with the cold oxygen-poor gases 2 and fed to the conveyor 6, the silo devices 18, 19 and the mixing device 8. Subsequently, all partial flows of the oxygen-poor gases are collected again and fed to the exhaust gas purification 11.
  • hot low-oxygen gases 32 are produced in a hot gas generator 20.
  • the low-oxygen gases 32 produced in the hot gas generator 20 are mixed in a gas mixer 17 with cold oxygen-poor gases 2 from a source 3, and the hot oxygen-poor gases 12 from the gas mixer 17 become part of the drying and heating drum 4 and another part cold oxygen-poor gases 2 mixed and then fed to the conveyor 6 and the other means for securing a low-oxygen atmosphere.
  • the entire drying and heating process takes place at an overpressure of about 20 mbar, which is why the drying and heating drum 4 is equipped with seals 35, for example drum seals, from which the oxygen-poor gases sucked off and the blower 40 for combustion in the burner 21 of the hot gas generator 20 are supplied.
  • seals 35 for example drum seals
  • the system according to Fig. 6 is operated with cold oxygen-poor gases 2 from a source 3, which are heated or mixed in a hot gas generator 20 with gas mixer 17 to hot oxygen-poor gases 12.
  • a portion of the cold oxygen-poor gases 2 from the source 3 is supplied to the seals 35 of the drying and heating drum 4, which is operated by means of a blower 41 in the negative pressure with 0.5 to 2 mbar.
  • the drying and heating drum 4 is driven in the negative pressure and the seals 35 are also acted upon with cold oxygen-poor gases 2, a false air intrusion is prevented.
  • the drying and heating drum 4 and the other equipment are gas-tight.
  • material inlet 33 and material outlet 34 rotary valves can be used (see also Fig. 7 ), which in vacuum operation of the drying and heating drum 4 a supply and in the overpressure operation of the drying and heating drum 4 ensure extraction of oxygen-poor gases 2.
  • Fig. 7 shows a system with a drying and heating drum 4, which is operated at an overpressure of 0.005 to 3 mbar.
  • a blower 40 for supplying the burner 21 of the hot gas generator 20 in addition to fresh air 39 sucks oxygen-poor gases 2 from the seals 35 of the drying and heating drum 4 and from the material inlet 33 and material outlet 34 and supplies them to the combustion process in the hot gas generator 20.
  • Both the hot gas generator 20 and the drying and heating drum 4 operate in the overpressure mode.
  • source 3 for the cold oxygen poor Gases 2 is the exhaust gas of the system after at least one stage of the exhaust gas purification 11th
  • the system according to Fig. 8 shows a gas-tight drying and heating drum 4, which is operated by means of a blower 41 at a negative pressure of 0.5 to 2 mbar.
  • the seals 35 and the material inlet 33 and material outlet 34 are supplied with oxygen-poor gases 2 in order to prevent a false air entry.
  • the cold oxygen-poor gases 2 from a source 3 are supplied by means of a blower 38 to the gas mixer 17 of the hot gas generator 20 and the hot oxygen-poor gases 12 proportionately fed to the drying and heating drum 4. Another part is mixed with cold oxygen-poor gases 2 and then passed to the other facilities 6, 8, 18, 19 of the system.
  • Fig. 9 shows a system diagram in which cold oxygen-poor gases 2 after the exhaust gas purification 11 by means of a blower 38 a hot gas generator 20 with gas mixer 17 are supplied. 20 to 30% of the cold oxygen-poor gases 2, preferably 25 to 30%, are fed to a muffle 28 of the hot gas generator 20 and 10 to 20% of the cold oxygen-poor gases 2, preferably 15 to 20%, are fed to the primary air 39 of the burner 21. This is advantageously associated with a reduction in NO x emissions.
  • the blower 40 for the burner 21 of the hot gas generator 20 sucks in addition to the combustion air 39 and oxygen-poor gases 2, 12 from the seals 35 of the drying and heating drum 4 and from the material inlet 33 and material outlet 34 at.
  • a second stage 23 of the exhaust gas purification, the remaining exhaust gases can be supplied.
  • the plant after Fig. 10 is operated with two drum devices 14, 24. Both drum devices 14, 24 operate in an oxygen-poor atmosphere.
  • hot low-oxygen gases from a source 13 with a temperature in the range of 500 to 1000 ° C and an oxygen content of about 3% of a countercurrent drum 24 in countercurrent to asphalt granules 5 and 7 aggregates supplied.
  • the heated and dried material from the counterflow drum 24 is fed by means of a conveyor 6, such as a H facedelevators, the mixing device 8.
  • asphalt granules 5 which in a parallel drum 14 with help is heated by hot oxygen-poor gases 12 from a source 43 and at a temperature in the range of 300 to 1000 ° C and dried, in the mixing device 8 and is mixed with bitumen 9 to form a mountable asphalt mixture 10.
  • the partial flows of the oxygen-poor gases from the installation devices 6, 8, 18, 19 are in turn fed to an exhaust gas purification 11.
  • the plant after Fig. 11 comprises two drum means 14, 24, namely a countercurrent drum 24 for heating and drying asphalt granules 5 and aggregates 7 and a parallel drum 14 for heating and drying 100% asphalt granules 5.
  • the parallel drum 14 is like the plant after Fig. 10 operated with hot oxygen-poor gases 12 at a temperature of 500 to 1000 ° C in the vacuum, the corresponding seals and loading of the material inlet and material outlet are not shown.
  • the hot oxygen-lean gases 12 from a source 13 are proportionally mixed with cold oxygen-poor gases 2 from the exhaust gas purification 11 and cooled to a temperature in the range of 100 to 200 ° C, then to produce the oxygen-poor atmosphere in the conveyor 6, in the silo devices 18, 19 and mixing device 8 to serve.
  • the partial flows of the oxygen-poor gases from the facilities of the system are collected and fed to a cooler 27 for water separation and then an exhaust gas purification 11, which serves as a source for the cold oxygen-poor gases 2 and thus ensures a favorable exhaust gas recycling.
  • Fig. 12 shows as part of a plant for the production of bituminous mixture a countercurrent drum 24 in which asphalt granules 5 and aggregates 7 are heated in countercurrent with hot oxygen-poor gases 12 and dried.
  • the hot oxygen lean gases 12 may preferably be generated in a hot gas generator 20 with Loesche-Lochmantel (LOMA) firing.
  • LOMA Loesche-Lochmantel
  • the countercurrent causes an internal circulation of the volatile bitumen constituents from the asphalt granulate 5, in that these constituents evaporate at the hot end of the drum and condense at the cold end of the drum.
  • the internal concentration of volatile bitumen constituents increases to 5 to 15 times compared to a parallel drum.
  • Advantageous is an improved contact between the bitumen and the solids, which increases the quality of the new ready-to-install asphalt mixture 10.
  • a seal 35 is provided, which is designed in such a way that it can be exposed to cold, oxygen-poor gases 2.
  • the exhaust gases from the countercurrent drum 24 and from the seals 35 are fed to an exhaust gas purification 11.
  • the outlet 34 for the ready-to-install asphalt mixture 10 takes place in the feed area of the hot oxygen-poor gases 12.
  • asphalt granulate 5 can be heated and dried from expansion asphalt, thus achieving 100% asphalt recycling.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Road Paving Machines (AREA)
  • Working-Up Tar And Pitch (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Claims (15)

  1. Procédé pour la fabrication d'un mélange asphaltique au cours duquel de l'asphalte concassé sous forme de granulat d'asphalte (5) et/ou des matériaux neufs sous forme de gravillons (7) sont chauffés et séchés, ensemble ou séparément, dans des dispositifs à tambour (4, 14, 24) puis mélangés dans un dispositif de mélange (8) avec du bitume (9) pour constituer un mélange asphaltique (10) prêt à être utilisé, le mélange du granulat d'asphalte (5) chauffé et séché et/ou des gravillons (7) étant exécuté dans une atmosphère pauvre en oxygène ayant une teneur en oxygène de 10 % maximum,
    caractérisé en ce que
    le séchage et le chauffage du granulat d'asphalte (5) et/ou des gravillons (7) dans les dispositifs à tambour (4, 14, 24) à l'aide de gaz pauvres en oxygène (12) présentant une température comprise entre 500 et 1 000° C sont effectués dans une atmosphère pauvre en oxygène ayant une teneur en oxygène de 10 % maximum et qu'ensuite a lieu un transport jusqu'au dispositif de mélange (8),
    le transport ainsi que le mélange sont exécutés dans une atmosphère pauvre en oxygène, des gaz froids pauvres en oxygène (2) présentant une température comprise entre environ 20 et environ 150° C ou des gaz refroidis pauvres en oxygène (22) présentant une température comprise entre environ 150 et environ 300° C étant introduits dans un dispositif de transport (6) et dans le dispositif de mélange (8), et,
    également, en ce qu'un ensilage, avant le mélange avec le bitume (9), du granulat d'asphalte (5) chauffé et séché et/ou des gravillons (7) et/ou un ensilage du mélange asphaltique (10) prêt à être utilisé sont exécutés dans une atmosphère pauvre en oxygène.
  2. Procédé selon la revendication 1
    caractérisé en ce que
    des gaz froids pauvres en oxygène (2), des gaz chauds pauvres en oxygène (12) et/ou des gaz refroidis pauvres en oxygène (22) ayant une teneur en oxygène comprise entre 0 et 5 % et une température comprise entre 500° C et 1 000° C sont introduits dans les dispositifs à tambour (4, 14, 24), les dispositifs de transport (6) et le dispositif de mélange (8).
  3. Procédé selon la revendication 1 ou 2
    caractérisé en ce que
    le granulat d'asphalte (5) est sorti des dispositifs à tambour (4, 14, 24) avec une température comprise entre environ 130 et environ 250° C.
  4. Procédé selon une des revendications précédentes
    caractérisé en ce que
    des gaz froids pauvres en oxygène (2) et/ou des gaz chauds pauvres en oxygène (12, 32) sont introduits, lesquels sont générés lors de la combustion de combustibles fossiles avec un rapport air-carburant λ = 1,0 à 2,0, plus particulièrement λ = 1,0 à 1,4, dans le cadre et/ou en dehors du cadre de la fabrication de l'asphalte.
  5. Procédé selon l'une des revendications précédentes
    caractérisé en ce que
    des gaz froids pauvres en oxygène (2) sont chauffés dans des dispositifs de chauffage de gaz (15) jusqu'à ce qu'ils atteignent une température comprise entre environ 500 et environ 1 000° C et sont introduits, en tant que gaz chauds pauvres en oxygène (12), dans les dispositifs à tambour (4, 14, 24) (fig. 1) ou que des gaz chauds pauvres en oxygène (12) sont refroidis jusqu'à ce qu'ils atteignent une température comprise entre environ 1 000 et environ 500° C dans des dispositifs de refroidissement de gaz (16) et introduits dans les dispositifs à tambour (4, 14, 24) (fig. 2) ou
    les gaz froids pauvres en oxygène (2) et les gaz pauvres en oxygène (32), lesquels présentent une température > 1 000° C, par exemple d'environ 1 400° C, sont mélangés, dans un mélangeur de gaz (17), pour constituer des gaz chauds pauvres en oxygène (12) ayant une température comprise entre environ 500 et environ 1 000° C, puis introduits dans les dispositifs à tambour (4, 14, 24) (fig. 3) et
    une partie des gaz chauds (12), après le dispositif de chauffage de gaz (15) ou le mélangeur de gaz (17), est mélangée aux gaz froids pauvres en oxygène (2), lesquels sont ensuite introduits dans les dispositifs de transport (6) et les dispositifs de mélange (8) (fig. 1)
    ou
    une partie des gaz chauds (12) provenant du dispositif de refroidissement de gaz (16) continuent à être refroidis et sont conduits, en tant que gaz refroidis pauvres en oxygène (22) ayant une température comprise entre environ 150 et environ 300° C dans les dispositifs de transport (6) et les dispositifs de mélange (8). (fig. 2)
  6. Procédé selon l'une des revendications précédentes
    caractérisé en ce que
    le séchage et le chauffage du granulat d'asphalte (5) et/ou des gravillons (7) et/ou le transport et/ou le mélange pour constituer le mélange asphaltique prêt à être utilisé (10) et/ou l'ensilage sont exécutés en présence d'une surpression des gaz pauvres en oxygène comprise entre environ 0,005 et 300 mbar ou en présence d'une dépression des gaz pauvres en oxygène comprise entre 0,005 et 20 mbar.
  7. Procédé selon une des revendications précédentes
    caractérisé en ce que
    des gaz froids pauvres en oxygène (2) sont chauffés dans un générateur de gaz chaud (20) puis refroidis dans un mélangeur de gaz (17) avec des gaz froids pauvres en oxygène (2) pour constituer des gaz chauds pauvres en oxygène (12) ayant une température comprise entre environ 1 000 et environ 500° C et sont introduits dans des dispositifs à tambour (4, 14, 24) et/ou continuent d'être refroidis grâce à des gaz froids pauvres en oxygène (2) et sont introduits dans des dispositifs de transport, de mélange et d'ensilage (6, 8, 18, 19).
  8. Procédé selon une des revendications précédentes
    caractérisé en ce que
    des gaz pauvres en oxygène générés lors de la fabrication de l'asphalte sont au moins en partie conduits vers un épurateur de gaz d'échappement (11) et drainés, puis chauffés pour constituer des gaz chauds pauvres en oxygène (12) et placés dans les dispositifs à tambour (4, 14, 24) ou utilisés, en tant que gaz froids pauvres en oxygène (2), pour étanchéiser les dispositifs à tambour (4, 14, 24), les dispositifs de transport (6), les dispositifs de mélange (8) et/ou les dispositifs d'ensilage (18, 19).
  9. Procédé selon une des revendications précédentes
    caractérisé en ce que
    le granulat d'asphalte (5) et/ou les gravillons (7) sont introduits à contre-courant ou en courant parallèle aux gaz chauds pauvres en oxygène (12) dans un tambour de séchage ou de chauffage (4) en tant que dispositif à tambour et séchés et chauffés en présence d'une dépression comprise entre environ 0,005 et environ 20 mbar ou d'une surpression comprise entre environ 0,005 et 300 mbar.
  10. Procédé selon une des revendications 1 à 9
    caractérisé en ce que
    le granulat d'asphalte (5) et/ou les gravillons (7) sont transportés, chauffés et séchés à contre-courant des gaz chauds pauvres en oxygène (12) dans un tambour à contre-courant (24) en tant que dispositif à tambour.
  11. Installation pour la fabrication d'un mélange asphaltique
    avec au moins un dispositif à tambour (4, 14, 24) pour le chauffage et le séchage de granulat d'asphalte (5) issu d'asphalte concassé et/ou de matériaux neufs sous forme de gravillons (7) et un dispositif de mélange (8) pour le mélange du granulat d'asphalte (5) chauffé et séché et/ou des gravillons (7) avec du bitume (9) ainsi qu'au moins une source (3, 13, 43) de gaz pauvres en oxygène (2, 12, 32) ayant une teneur en oxygène de 10 % maximum, lesquels peuvent être introduits dans le dispositif de mélange (8), en particulier pour l'exécution du procédé selon les revendications 1 à 10,
    caractérisée en ce que
    l'au moins une source (3, 13, 43) de gaz pauvres en oxygène (2, 12, 32) ayant une teneur en oxygène de 10 % maximum, desquelles relèvent les gaz pauvres en oxygène (2, 12, 32) et/ou à partir desquelles les gaz pauvres en oxygène (2, 12, 32) peuvent être introduits, sont liées avec le dispositif à tambour (4, 14, 24) ainsi qu'avec un dispositif de transport (6) pour le granulat d'asphalte (5) chauffé et séché et/ou des gravillons (7) et avec des dispositifs d'ensilage (18, 19) avant et/ou après le dispositif de mélange (8) pour l'introduction des gaz pauvres en oxygène (2, 12, 32) ayant une teneur en oxygène de 10 % maximum.
  12. Installation selon la revendication 10
    caractérisée en ce que
    le dispositif à tambour (4, 14, 24) est formé pour être étanche au gaz en présence d'une surpression de gaz pauvres en oxygène (2, 12) comprise entre 0,005 et 300 mbar ou en présence d'une dépression des gaz pauvres en oxygène (2, 12) comprise entre 0,005 et 20 mbar.
  13. Installation selon les revendications 11 ou 12
    caractérisée en ce que
    une entrée de matériau (33) et une sortie de matériau (34) du dispositif à tambour (4, 14, 24) sont formées pour être étanches au gaz et présentent des garnitures d'étanchéité (35), par exemple les garnitures d'étanchéité des dispositifs à tambour, lesquelles peuvent laisser entrer, lors d'une dépression dans le dispositif à tambour (4, 12, 24), des gaz froids pauvres en oxygène (2) et à partir desquelles peuvent être aspirés, lors d'une surpression dans le dispositif à tambour (4, 12, 24), des gaz froids pauvres en oxygène (2).
  14. Installation selon les revendications 11 à 13
    caractérisée en ce que
    les gaz d'échappement provenant d'un épurateur de gaz d'échappement (11) de l'installation de mélange d'asphalte sont une source (3) de gaz froids pauvres en oxygène (2) et qu'une valeur de recyclage des gaz d'échappement d'environ 50 à environ 100 % peut être atteinte.
  15. Installation selon les revendications 11 à 14
    caractérisée en ce que
    des chauffeurs de gaz (15), des refroidisseurs de gaz (16) ou des mélangeurs de gaz (17) sont agencés pour la fabrication de gaz froids pauvres en oxygène (2) avec une température comprise entre 20 et 150° C, des gaz chauds pauvres en oxygène (12) avec une température comprise entre 500 et 1 000° C et des gaz refroidis pauvres en oxygène (22) avec une température comprise entre 150 et 300° C.
EP09806080.9A 2009-10-23 2009-12-28 Procédé et installation de production d'enrobé asphaltique Not-in-force EP2491181B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL09806080T PL2491181T3 (pl) 2009-10-23 2009-12-28 Sposób i instalacja do produkcji mieszanki asfaltu

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102009050506 2009-10-23
PCT/EP2009/009292 WO2011047705A1 (fr) 2009-10-23 2009-12-28 Procédé et installation de production d'enrobé asphaltique

Publications (2)

Publication Number Publication Date
EP2491181A1 EP2491181A1 (fr) 2012-08-29
EP2491181B1 true EP2491181B1 (fr) 2015-02-25

Family

ID=42245971

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09806080.9A Not-in-force EP2491181B1 (fr) 2009-10-23 2009-12-28 Procédé et installation de production d'enrobé asphaltique

Country Status (13)

Country Link
US (1) US8882899B2 (fr)
EP (1) EP2491181B1 (fr)
JP (1) JP5606540B2 (fr)
CN (1) CN102666993B (fr)
AR (1) AR078671A1 (fr)
BR (1) BR112012011348A2 (fr)
CA (1) CA2776894A1 (fr)
DK (1) DK2491181T3 (fr)
ES (1) ES2536883T3 (fr)
IN (1) IN2012DN03398A (fr)
PL (1) PL2491181T3 (fr)
RU (1) RU2509838C2 (fr)
WO (1) WO2011047705A1 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT201600124444A1 (it) * 2016-12-07 2018-06-07 Marini Spa Impianto di produzione e distribuzione di conglomerati bituminosi
CN111364320B (zh) * 2020-04-14 2024-02-27 西安建筑科技大学 基于微波技术的高品质沥青混合料粗骨料再生装置及方法

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU424941A1 (ru) 1969-09-22 1974-04-25 П. К. Симоненко, О. В. Монастырский , В. И. Соломатин Устройство для приготовления асфальтобетонных смесей
US3971666A (en) * 1972-09-05 1976-07-27 Mendenhall Robert Lamar Process for recycle of asphalt-aggregate compositions
US3866888A (en) * 1973-01-26 1975-02-18 Baldwin Thomas I Apparatus for making hot asphalt paving material
GB1526360A (en) 1976-12-08 1978-09-27 Mendenhall R Apparatus and method for producing asphalt-aggregate compositions
US4249890A (en) * 1978-06-21 1981-02-10 K. P. Graham & Associates Pty. Ltd. Production of heated bituminous mixes
US4190370A (en) * 1978-11-24 1980-02-26 Astec Industries, Inc. Asphalt plant with improved temperature control system
JPS5639210A (en) * 1979-09-06 1981-04-14 Kondo Keijirou Method and device for controlling temperature in heating conveyor for asphalt mixture
US4387996A (en) * 1980-04-14 1983-06-14 Mendenhall Robert Lamar Batch method of recycling asphaltic concrete
SU962406A1 (ru) 1981-03-20 1982-09-30 Проектно-Технологический Трест "Оргдорстрой" Министерства Строительства И Эксплуатации Автомобильных Дорог Усср Сушильно-смесительный барабан установки дл приготовлени асфальтобетонных смесей
US4477250A (en) * 1983-03-07 1984-10-16 Mechtron International Corporation Asphalt recycle plant and method
IT1199992B (it) 1983-03-21 1989-01-05 Stabilimenti Meccanici Vm Divi Tamburo essiccatore-mescolatore per la preparazione di conglomerato bituminoso,particolarmente mediante impiego di materiale recuperato
SU1270198A2 (ru) 1985-04-24 1986-11-15 Проектно-Технологический Трест "Оргдорстрой" Министерства Строительства И Эксплуатации Автомобильных Дорог Усср Сушильно-смесительный барабан установки дл приготовлени асфальтобетонных смесей
DE3540978A1 (de) 1985-09-21 1987-03-26 Wibau Ag Verfahren zur emissionsarmen aufbereitung eines bituminoesen mischgutes mit hohem asphaltgranulatanteil als recycling-mischgut
US4932785A (en) * 1988-06-21 1990-06-12 Bracegirdle P E Aggregate drying system with improved aggregate dryer and mass flow apparatus
DE3831870C1 (en) 1988-09-20 1990-02-08 Deutag-Mischwerke Gmbh, 5000 Koeln, De Method for the manufacture of asphalt
ATE115214T1 (de) 1990-01-30 1994-12-15 Cyclean Inc Trommeltrockner für die wiederaufbereitung von aufgebrochenem altasphalt.
CN2087209U (zh) 1990-08-28 1991-10-23 李金波 沥青混凝土废料再生装置
DE4208951C2 (de) 1992-03-19 1996-01-18 Loesche Gmbh Heißgaserzeuger
RU2001191C1 (ru) * 1992-07-09 1993-10-15 Иван Федотович Заброда Смеситель асфальтобетона
DE4320664A1 (de) 1993-06-22 1995-01-05 Gibat Ohl Ingenieurgesellschaf Verfahren zum Herstellen von Asphalt unter Verwendung von erwärmtem, frischem Asphalt und erwärmtem, aufbereitetem Ausbauasphalt
US5538340A (en) 1993-12-14 1996-07-23 Gencor Industries, Inc. Counterflow drum mixer for making asphaltic concrete and methods of operation
DE19530164A1 (de) 1995-08-03 1997-02-06 Teltomat Maschinen Gmbh Trockentrommel zur Aufbereitung von Asphaltgranulat
JP2000248507A (ja) * 1999-02-26 2000-09-12 Nikko Co Ltd アスファルト合材製造装置
CN1369333A (zh) 2001-01-30 2002-09-18 大山产业株式会社 沥青混凝土回收再用装置
CN2532108Y (zh) 2002-03-19 2003-01-22 沈阳伟达机械有限公司 沥青混合料的加工装置
CN2608544Y (zh) 2003-04-28 2004-03-31 无锡雪桃集团有限公司 沥青混合料热再生供给装置
DE102004014760B4 (de) 2004-03-23 2008-12-11 Ammann Asphalt Gmbh Asphaltanlage und Verfahren zum Herstellen von Asphalt
RU46767U1 (ru) 2004-12-10 2005-07-27 Снатович Анатолий Михайлович Установка для приготовления асфальтобетонной смеси и устройство пылеулавливания
JP4500693B2 (ja) * 2005-01-27 2010-07-14 日工株式会社 アスファルトリサイクルプラント
UA15810U (en) 2006-01-27 2006-07-17 Univ Nat Agrarian Unit for surface application of solid mineral fertilizers
DE102006038614A1 (de) 2006-08-17 2008-02-21 Norddeutsche Mischwerke Gmbh & Co. Kg Verfahren zur Wiederverwendung von Ausbauasphalten und Herstellung von Asphaltmischgut
JP5128885B2 (ja) * 2007-09-27 2013-01-23 三菱重工環境・化学エンジニアリング株式会社 アスファルト加熱装置及び方法並びに舗装材製造設備
CH703226B1 (it) 2007-12-11 2011-12-15 Fapico Ag Procedimento per la riqualifica e valorizzazione energetica di inerti bituminosi.
US8220982B2 (en) * 2008-07-22 2012-07-17 Terex Usa, Llc Energy efficient asphalt plant
DE202008012971U1 (de) 2008-09-30 2008-12-24 Ammann Schweiz Ag Anlage zur Trocknung und Erhitzung von granuliertem Material für die Asphaltherstellung

Also Published As

Publication number Publication date
DK2491181T3 (en) 2015-05-26
RU2012113774A (ru) 2013-11-27
US8882899B2 (en) 2014-11-11
ES2536883T3 (es) 2015-05-29
WO2011047705A1 (fr) 2011-04-28
PL2491181T3 (pl) 2015-06-30
EP2491181A1 (fr) 2012-08-29
RU2509838C2 (ru) 2014-03-20
JP2013508577A (ja) 2013-03-07
CN102666993B (zh) 2015-05-20
CN102666993A (zh) 2012-09-12
CA2776894A1 (fr) 2011-04-28
US20120204761A1 (en) 2012-08-16
IN2012DN03398A (fr) 2015-10-23
AR078671A1 (es) 2011-11-23
BR112012011348A2 (pt) 2016-04-19
JP5606540B2 (ja) 2014-10-15

Similar Documents

Publication Publication Date Title
EP2872596B1 (fr) Procédé de traitement de biomasse dans une installation de fabrication de ciment et installation correspondante
DE69623034T2 (de) Verfahren und vorrichtung zur abfallbehandlung
CH645084A5 (de) Verfahren zum kontinuierlichen erzeugen eines zement-klinkers und vorrichtung zur durchfuehrung des verfahrens.
EP0617656A4 (en) Method and apparatus for producing hot mix asphalt
EP0529285A1 (fr) Dispositif et procédé de préparation à chaud de mélanges bitumineux
DE2624971C2 (de) Verfahren zur Verwertung industrieller Abfälle
DD298287A5 (de) Verfahren zum vorwaermen von eisenschrott durch die pyrolyse von darin enthaltenen harzartigen rueckstaenden bei vollstaendiger rueckgewinnung ihres energiegehalts und verbesserung des stahlherstellungszyklus
DE3533775C2 (fr)
EP2491181B1 (fr) Procédé et installation de production d'enrobé asphaltique
DE69422380T2 (de) Vorrichtung zum Recycling von Asphalt
EP0728713A2 (fr) Procédé d'utilisation de matériaux de déchets pour la fabrication de ciment
WO2021104661A1 (fr) Procédé et ensemble pour traiter un mélange de matière solides minérales
EP0463379B1 (fr) Procédé pour la valorisation de boues résiduaires
AT513149B1 (de) Verfahren und Vorrichtung zur Abscheidung eines flüchtigen Bestandteils aus den Abgasen bei der Zementklinkerherstellung
EP2264368B1 (fr) Procédé de préparation de matériaux fragmentés pour routes
WO2018146179A1 (fr) Production de gaz de synthèse à partir de substances riches en carbone au moyen d'un procédé combiné de co-courant et contre-courant
EP3964646B1 (fr) Procédé de traitement des solides contenant du bitume et/ou du goudron
DE3502957C2 (fr)
DE3110380A1 (de) Verfahren zur aufbereitung von asphaltmischgut unter wiederverwendung alten asphaltmaterials sowie eine vorrichtung zur durchfuehrung des verfahrens
AT510106B1 (de) Verfahren zum verwerten von organischen abfallstoffen
AT520225B1 (de) Verfahren zur Rückgewinnung von Wertstoffen aus Abfallprodukten
DE102020002533A1 (de) Schachtofen zur Behandlung von Straßenaufbruchmaterial
EP3344816B1 (fr) Procédé de fabrication d'asphalte
EP2899167B1 (fr) Procédé de fabrication de verre mousse
DD207978A1 (de) Verfahren zur herstellung von leichtzuschlagstoffen mittels sintermaschinen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20120503

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20130927

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20141027

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502009010685

Country of ref document: DE

Effective date: 20150409

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 712126

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150415

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: ISLER AND PEDRAZZINI AG, CH

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20150518

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2536883

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20150529

REG Reference to a national code

Ref country code: PL

Ref legal event code: T3

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: GR

Ref legal event code: EP

Ref document number: 20150401091

Country of ref document: GR

Effective date: 20150618

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150225

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150525

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150225

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150625

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150225

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150225

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150225

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150225

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502009010685

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20151126

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150225

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20160112

Year of fee payment: 7

Ref country code: ES

Payment date: 20160225

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151231

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

Effective date: 20151231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150225

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151228

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20151228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151229

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20160101

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20160831

REG Reference to a national code

Ref country code: GR

Ref legal event code: ML

Ref document number: 20150401091

Country of ref document: GR

Effective date: 20160707

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151228

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151228

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151231

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160707

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151231

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 712126

Country of ref document: AT

Kind code of ref document: T

Effective date: 20151228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151228

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20161227

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20091228

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151228

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150225

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150225

Ref country code: PL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151228

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150225

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161231

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150225

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150225

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502009010685

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180703

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20181112

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151228