EP2491181A1 - Method and system for producing asphalt mixture - Google Patents
Method and system for producing asphalt mixtureInfo
- Publication number
- EP2491181A1 EP2491181A1 EP09806080A EP09806080A EP2491181A1 EP 2491181 A1 EP2491181 A1 EP 2491181A1 EP 09806080 A EP09806080 A EP 09806080A EP 09806080 A EP09806080 A EP 09806080A EP 2491181 A1 EP2491181 A1 EP 2491181A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- oxygen
- gases
- asphalt
- poor
- drum
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000010426 asphalt Substances 0.000 title claims abstract description 234
- 238000000034 method Methods 0.000 title claims abstract description 53
- 239000000203 mixture Substances 0.000 title claims abstract description 47
- 239000007789 gas Substances 0.000 claims abstract description 312
- 239000008187 granular material Substances 0.000 claims abstract description 90
- 239000001301 oxygen Substances 0.000 claims abstract description 76
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 76
- 238000002156 mixing Methods 0.000 claims abstract description 72
- 238000001035 drying Methods 0.000 claims abstract description 58
- 238000010438 heat treatment Methods 0.000 claims abstract description 54
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 26
- 238000004519 manufacturing process Methods 0.000 claims description 43
- 238000000746 purification Methods 0.000 claims description 26
- 239000000463 material Substances 0.000 claims description 25
- 238000002485 combustion reaction Methods 0.000 claims description 15
- 238000004064 recycling Methods 0.000 claims description 10
- 239000003245 coal Substances 0.000 claims description 7
- 238000007789 sealing Methods 0.000 claims description 5
- 239000002803 fossil fuel Substances 0.000 claims description 4
- 238000000227 grinding Methods 0.000 claims description 4
- 239000002699 waste material Substances 0.000 claims description 4
- 239000006227 byproduct Substances 0.000 claims description 3
- 238000010304 firing Methods 0.000 claims description 3
- 239000007788 liquid Substances 0.000 claims description 3
- 239000000047 product Substances 0.000 claims description 3
- 239000004449 solid propellant Substances 0.000 claims description 3
- 229910000831 Steel Inorganic materials 0.000 claims description 2
- 239000000446 fuel Substances 0.000 claims description 2
- 239000010959 steel Substances 0.000 claims description 2
- 241000531897 Loma Species 0.000 claims 2
- 239000000126 substance Substances 0.000 claims 2
- 238000004140 cleaning Methods 0.000 claims 1
- 238000009434 installation Methods 0.000 abstract description 4
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 6
- 239000011230 binding agent Substances 0.000 description 6
- 239000003546 flue gas Substances 0.000 description 6
- 239000000945 filler Substances 0.000 description 4
- 150000002430 hydrocarbons Chemical class 0.000 description 4
- 229920001169 thermoplastic Polymers 0.000 description 4
- 239000004416 thermosoftening plastic Substances 0.000 description 4
- 230000002411 adverse Effects 0.000 description 3
- 239000000470 constituent Substances 0.000 description 3
- 238000013021 overheating Methods 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 238000010792 warming Methods 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 230000032683 aging Effects 0.000 description 2
- 238000005056 compaction Methods 0.000 description 2
- 238000005336 cracking Methods 0.000 description 2
- -1 for example Substances 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 229910052500 inorganic mineral Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 238000003801 milling Methods 0.000 description 2
- 239000011707 mineral Substances 0.000 description 2
- 239000004014 plasticizer Substances 0.000 description 2
- 239000004848 polyfunctional curative Substances 0.000 description 2
- 239000011435 rock Substances 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 235000019738 Limestone Nutrition 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 238000004378 air conditioning Methods 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 239000004566 building material Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000004939 coking Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000011363 dried mixture Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000003344 environmental pollutant Substances 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000003517 fume Substances 0.000 description 1
- 239000011874 heated mixture Substances 0.000 description 1
- 239000006028 limestone Substances 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 239000013521 mastic Substances 0.000 description 1
- 238000010310 metallurgical process Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- XNGIFLGASWRNHJ-UHFFFAOYSA-L phthalate(2-) Chemical compound [O-]C(=O)C1=CC=CC=C1C([O-])=O XNGIFLGASWRNHJ-UHFFFAOYSA-L 0.000 description 1
- 231100000719 pollutant Toxicity 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000007420 reactivation Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 239000000932 sedative agent Substances 0.000 description 1
- 230000001624 sedative effect Effects 0.000 description 1
- 239000011343 solid material Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000003878 thermal aging Methods 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
Classifications
-
- E—FIXED CONSTRUCTIONS
- E01—CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
- E01C—CONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
- E01C19/00—Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving
- E01C19/02—Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving for preparing the materials
- E01C19/10—Apparatus or plants for premixing or precoating aggregate or fillers with non-hydraulic binders, e.g. with bitumen, with resins, i.e. producing mixtures or coating aggregates otherwise than by penetrating or surface dressing; Apparatus for premixing non-hydraulic mixtures prior to placing or for reconditioning salvaged non-hydraulic compositions
- E01C19/1004—Reconditioning or reprocessing bituminous mixtures, e.g. salvaged paving, fresh patching mixtures grown unserviceable; Recycling salvaged bituminous mixtures; Apparatus for the in-plant recycling thereof
-
- E—FIXED CONSTRUCTIONS
- E01—CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
- E01C—CONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
- E01C19/00—Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving
- E01C19/02—Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving for preparing the materials
- E01C19/10—Apparatus or plants for premixing or precoating aggregate or fillers with non-hydraulic binders, e.g. with bitumen, with resins, i.e. producing mixtures or coating aggregates otherwise than by penetrating or surface dressing; Apparatus for premixing non-hydraulic mixtures prior to placing or for reconditioning salvaged non-hydraulic compositions
- E01C19/1013—Plant characterised by the mode of operation or the construction of the mixing apparatus; Mixing apparatus
- E01C19/1027—Mixing in a rotary receptacle
- E01C19/1036—Mixing in a rotary receptacle for in-plant recycling or for reprocessing, e.g. adapted to receive and reprocess an addition of salvaged material, adapted to reheat and remix cooled-down batches
-
- E—FIXED CONSTRUCTIONS
- E01—CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
- E01C—CONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
- E01C19/00—Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving
- E01C19/02—Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving for preparing the materials
- E01C19/10—Apparatus or plants for premixing or precoating aggregate or fillers with non-hydraulic binders, e.g. with bitumen, with resins, i.e. producing mixtures or coating aggregates otherwise than by penetrating or surface dressing; Apparatus for premixing non-hydraulic mixtures prior to placing or for reconditioning salvaged non-hydraulic compositions
- E01C2019/1081—Details not otherwise provided for
- E01C2019/109—Mixing containers having a counter flow drum, i.e. the flow of material is opposite to the gas flow
-
- E—FIXED CONSTRUCTIONS
- E01—CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
- E01C—CONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
- E01C19/00—Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving
- E01C19/02—Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving for preparing the materials
- E01C19/10—Apparatus or plants for premixing or precoating aggregate or fillers with non-hydraulic binders, e.g. with bitumen, with resins, i.e. producing mixtures or coating aggregates otherwise than by penetrating or surface dressing; Apparatus for premixing non-hydraulic mixtures prior to placing or for reconditioning salvaged non-hydraulic compositions
- E01C2019/1081—Details not otherwise provided for
- E01C2019/1095—Mixing containers having a parallel flow drum, i.e. the flow of material is parallel to the gas flow
Definitions
- the invention relates to a method for producing bituminous mixture according to the preamble of claim 1 and to a plant for producing bituminous mixture according to the preamble of claim 19.
- the invention is particularly directed to the reuse of reclaimed asphalt, which accrues during the reconstruction and dismantling of asphalt roads and due to legal requirements, including the Kreislauf insects- and waste law, an orderly reuse is supplied.
- reuse should be carried out at least as a building material, but primarily with the reactivation of the binder bitumen in newly mixed asphalt.
- Degraded asphalt for example, mastic asphalt or demolition asphalt, is thereby comminuted into asphalt granulate and mixed with a predefinable particle size distribution and according to the classification in a defined amount together with aggregates and bitumen.
- fresh solids such as gravel, sand and mineral powder, also referred to as fillers or fillers, understood, which have a defined grain size composition and are used with a predetermined amount.
- the promotion takes place, for example, with conveyor belts or heat elevators, a classification of the aggregates and mixing with asphalt granules and with heated bitumen in mixing equipment, for example in a wing mixer, an ensiling, especially in hot silos.
- a premix hardening of the new binder should be avoided.
- asphalt granules are heated and dried by contact with fresh aggregates in the mixer.
- the aggregates must therefore be heated correspondingly higher, usually heated above 200 ° C, in order to achieve the heating and drying of the asphalt granules and the required for the installation and compaction of the asphalt mix mixed product temperature of about 160 to 180 ° C.
- the addition amount of the asphalt granules is a maximum of 30%.
- the mixture of aggregates and asphalt granules is then fed through a sieve bypass bag to the mixing device, for example a mixing tower.
- a sieve bypass bag to the mixing device, for example a mixing tower.
- a separate heating of asphalt granules can be carried out separately from the aggregates in a parallel drum.
- a maximum temperature of 130 ° C should be maintained.
- a warming to about 110 ° C is preferred.
- Higher temperatures in the drum devices or mixers cause an intensive aging of the bitumen and a deterioration of its thermoplastic properties.
- DE 195 30 164 A1 discloses a method and a drying drum for heating and drying asphalt granules, in which a separate hot gas production is carried out in a hot gas generator. This should set a maximum hot gas temperature of 600 ° C.
- a special le guidance of the hot gas and the asphalt granules within the drum gentle warming aimed to prevent cracking of bitumen-containing asphalt granules and minimize the accumulation of pollutants.
- DE 10 2004 014 760 B4 discloses an asphalt plant and a process for producing asphalt in which aggregates with bitumen and optionally further additives and used asphalt as asphalt granulate are mixed to form a new, incorporable asphalt mixture.
- a temperature range of 170 to 190 ° C is given for the dried and heated aggregates.
- EP 0 216 316 A2 describes a process for the recycling of asphalt granules in which aggregates and asphalt granules are heated and dried in two separate drum driers and then mixed together with additional filler and bitumen fractions in a mixer to form recycling mix. The recycled mix is immediately fed to further processing or caching for on-demand removal. Temperatures are not specified in this document. Reference is made only to the relevant provisions and to a significant increase in the viscosity of the bitumen as a result of overheating of the aggregates. The heating of the asphalt granulate in the drying drum with directly connected burner takes place in cocurrent, and the exhaust gases are fed back to the burner of the drum dryer for the aggregates as secondary and tertiary air.
- a plant for drying and heating of granulated material for asphalt production which has a rotating drying drum for drying and heating the aggregates and the asphalt granulate and a hot gas generator for supplying a hot gas stream.
- a hot gas generator for supplying a hot gas stream.
- the particles and fines from the exhaust gas to be deposited in a sedative drum and then added to the material flow of recycled asphalt and aggregates.
- the exhaust gas flow, which is returned to the hot gas generator, should preferably be enriched with oxygen-rich fresh air.
- the plasticity of the bitumen in the expansion asphalt which is reduced by thermal aging, is adjusted by a plasticizer.
- a plasticizer There is also a combined addition of a curing agent, preferably in the warm phase of the mixture.
- reclaimed asphalt is usually heated up to 130 to 140 ° C in compliance with the air conditioning environmental specifications and the aggregates or the new minerals would have to be heated significantly above 200 ° C with the addition of about 50% expansion asphalt.
- the degree of oxidation (aging) of the bitumen in the reclaimed asphalt is related to the degree of warming of the asphalt at 140 ° C.
- the burners and / or hot gas generators used in the drying drums are operated with burners with fossil fuels, and an exhaust gas recycling is carried out, in which up to 50% of the exhaust gas flow is fed back to a hot gas generator.
- Another disadvantage of the known methods and equipment is the process and equipment technically limited addition amount of reclaimed asphalt for asphalting, whereby the asphalt industry can not meet the ever increasing demands for a better road infrastructure under the fullest possible and high quality reuse of recycling asphalt to the required extent.
- the invention has for its object to provide a method and a system which ensure the production of asphalt mix in the required quality even with reuse of up to 100% expansion asphalt and greatly improve the efficiency of asphalt production, in particular by saving raw materials and heating energy ,
- the oxygen-poor atmosphere is characterized by an oxygen content of 0 to 10%, preferably by an oxygen content of 0 to a maximum of 5%.
- the invention is based on the recognition that by a low-oxygen atmosphere at least during the drying and heating of the asphalt granules and / or the aggregates, advantageously also in the promotion of heated and dried asphalt granulate or the heated and dried mixture of asphalt granules and aggregates and mixing with bitumen in a mixing device, prevents oxidation of the bitumen in the asphalt granules and also in the fresh bitumen, but at least is reduced, so that the thermoplastic properties of the bitumen are not adversely affected.
- an increase in temperature of the asphalt granulate or of the mixture of asphalt granulate and rock granules is achieved.
- This temperature level advantageously ensures the production of bituminous mixtures, even with the sole reuse of reclaimed asphalt or with 100% asphalt granulate, with less addition of new bitumen, and without fresh aggregates.
- oxygen-poor atmosphere according to the invention during drying and heating in at least one drum device and preferably also in the conveying and mixing with new bitumen in a mixing device is achieved by means of oxygen-poor gases, which according to the invention an oxygen content of not more than 10% and preferably an oxygen content of maximum 5%, so that the oxygen content may preferably be 1, 2, 3, 4 or 5% or 6, 7, 8, 9 or 10%.
- asphalt granules and / or aggregates are heated and dried with the aid of oxygen-poor gases having a temperature in the range of 500 to 1000 ° C and then conveyed to a mixing device and that to ensure a low-oxygen atmosphere in the promotion and when mixing with the aid of cold oxygen-poor gases having a temperature in the range of about 20 to about 150 ° C, or by means of cooled oxygen-poor gases having a temperature of about 150 to 300 ° C, mixing the hot oxygen-poor gases with cold oxygen-poor gases or a cooling of the hot oxygen-poor gases is performed.
- the storage bin or silos before and / or after the mixing device are charged with oxygen-poor gases.
- the combustion air can be mixed with oxygen-poor gases, for example exhaust gas, up to 100%.
- hot low-oxygen gases which have been produced by combustion indirectly, for example in heat exchangers, and / or directly by mixing with cold oxygen-poor gases up to a temperature in the range from 1000 to 400 ° C., preferably 900 to 600 ° C. to cool.
- the cold and hot oxygen-poor gases can come from different sources or production sites.
- Particularly efficient and environmentally advantageous is the use of low-oxygen gases, which in technical processes as by-product or waste product, expediently incurred outside the production of asphalt.
- the nitrogen obtained in metallurgical processes from air separation plants or oxygen-poor gases from gas-tight boiler plants, oxy-fuel plants and furnaces, for example glass or metal production can be used for the production of the oxygen-poor atmosphere according to the invention in the production of asphalt mixtures.
- Cold oxygen-poor gases can advantageously be brought to a higher temperature indirectly, for example in heat exchangers, or directly by mixing with hot, oxygen-poor gases.
- the use of low-oxygen gases from processes and production facilities outside the production of asphalt is not only advantageous for the production of asphalt, but also means an improved economic efficiency of the technical processes and plants in which the oxygen-poor gases are produced.
- An improved efficiency in the production of asphalt is advantageously achieved in that the partial flows of oxygen-poor gases from the individual facilities can be combined and fed to an exhaust gas purification and that a return to the equipment before and / or after the exhaust gas purification can take place.
- cold oxygen-poor gases are advantageously supplied for sealing the drum devices and / or conveying devices and / or silo devices and / or mixing devices and the connection points between these devices as well as in the area of the material inlet and outlet devices, in particular the drum devices. Seals of this type are particularly useful in Chen between the rotating and fixed parts of the drum devices make.
- the oxygen-poor gases are formed and / or used at a positive pressure, for example at about 0.005 to 300 mbar, in particular up to 100 mbar, in a drum device and hot gas generator with burner, wherein a gas suction is carried out in the sealing and connecting regions can be and the extracted gas can be supplied to the burner of the drum device as a primary air fraction and / or the exhaust gas purification and / or a chimney.
- a positive pressure for example at about 0.005 to 300 mbar, in particular up to 100 mbar
- the oxygen-lean gases are at least partially supplied to an exhaust gas purification with dewatering and then used as cold oxygen-poor gases and used for example for sealing the drum devices, conveyors, mixing devices and / or silo devices.
- the plant according to the invention for the production of bituminous mixtures which has at least one drum device for heating and drying asphalt granules of expanded asphalt and / or virgin material in the form of aggregates and a mixing device for mixing the heated and dried asphalt granules and / or aggregates with bitumen, is provided with at least one Equipped for low-oxygen gases, in which the oxygen-poor gases with an oxygen content of not more than 10%, advantageously formed with an oxygen content of not more than 5% and / or from which the oxygen-poor gases of at least one drum device can be supplied.
- At least the drum devices and advantageously also the conveying devices, silo devices and the mixing device are gas-tight and provided with seals which prevent false air volumes and a higher oxygen content in the devices.
- the system of the invention differs from the known system variants, which have an oxygen content of 10% to about 16% due to high amounts of false air in the exhaust gases.
- a drying and heating drum which asphalt granules and / or the aggregates are fed in countercurrent or in parallel to the hot oxygen-poor gases
- a countercurrent drum for the asphalt granules and / or the aggregates or a parallel drum are used for the asphalt granulate
- the mixing devices may be mixing towers, drum mixers or continuous mixers.
- the source of the low-oxygen gases used may be the off-gas of the asphalt mixing plant or waste and by-products from technical processes and operations outside the asphalt mixing plant.
- the low-oxygen gases from the asphalt production process and the low-oxygen gases from coal milling and drying can be used at least proportionally and be used both in the plant for asphalt production and coal milling, for example, for firing the asphalt production plant. This increases the economic efficiency of both processes.
- a hot gas generator in particular with a steel combustion chamber, for the production of hot, oxygen-poor gases.
- This may have a burner for gaseous, liquid and / or solid fuels.
- the hot gas generator may have a gas mixer for mixing cold, low-oxygen gases, for example, from the exhaust gas purification, and the hot, low-oxygen gases of the burner.
- the hot gas generator is a Loesche LOMA furnace which is provided with a Loesche perforated jacket (LOMA) furnace
- cold, low-oxygen gases may be supplied to the shell for mixing with the generated hot, low-oxygen exhaust gases.
- LOMA Loesche perforated jacket
- a hot gas generator with Lochmantelfeuerung is connected to a countercurrent drum as a drum means for drying and heating for asphalt granules and / or aggregates.
- the hot, low-oxygen gases from the Loesche hot gas generator are transported countercurrent to the asphalt granules and / or aggregates in the countercurrent drum and an internal recirculation circuit of the volatile hydrocarbon compounds forms from the bitumen.
- concentrations of the volatile hydrocarbon compounds in the drum increase 5 to 15 times as compared to a parallel drum.
- FIG. 1 to 11 plants according to the invention for the production of asphalt mix, in particular for carrying out the method according to the invention, and
- Fig. 12 is a countercurrent drum with hot gas generator as part of an asphalt plant according to the invention.
- Fig. 1 a plant scheme for the production of asphalt mix is shown, which is fed with cold oxygen-poor gases from a source 3.
- the cold oxygen-poor gases 2 have an oxygen content in the range of 0 to 5%, for example 2% oxygen.
- the cold, oxygen-poor gases 2 can arise in technical processes outside of asphalt production, and be, for example, exhaust gases from glass or metal production.
- Fig. 1 leaves the essential equipment - a drying and heating drum 4 as one of the possible drum means for heating and drying asphalt granulate 5 from reclaimed asphalt and / or virgin material in the form of aggregates 7, a conveyor 6, for example a heat elevator, silo equipment 18, 19 and a mixing device 8 - recognize.
- the dried and heated material from the drying and heating drum 4 is fed to a silo device 18, from which the mixture of asphalt granules 5 and / or aggregates 7 in a defined proportion with bitumen 9, which heats with the aid of an oiler 31 is, mixed.
- the installable asphalt mixture 10 can be installed immediately or initially fed to a silo 19.
- a portion of the cold oxygen-poor gases 2 is heated in a gas heater 15 by means of a heat source 37 to a temperature in the range of 500 to 1000X and proportionally fed to the drying and heating drum 4.
- the flow guidance in the drying and heating drum 4 takes place in countercurrent to the asphalt granulate 5 and / or aggregates 7.
- a portion of the hot oxygen-poor gases 12 from the gas heater 15 thus provides in the drying and heating drum 4 for a low-oxygen atmosphere, while another proportion is mixed with a partial flow of the cold oxygen-poor gases 2 and the conveyor 6, the silo devices 18, 19 and the mixing device 8 for producing a low-oxygen atmosphere in these investment facilities is supplied.
- the flow guidance within the silo devices 18, 19 and in the mixing device 8 takes place in parallel flow.
- the heat source 37 for example, an electric heater can be used. It is also a direct or indirect heating of the cold oxygen-poor gases 2 in hot oxygen-poor gases 12 possible.
- the oxygen-poor gases from the conveyor 6, the Silo devices 18, 19 and the mixing device 8 are collected and fed to an exhaust gas purification 11.
- FIG. 2 shows the plant scheme of an alternative plant for producing asphalt mix 10, with asphalt granules 5 and / or aggregates 7 in turn being transported in a drying and heating drum 4 in countercurrent to hot, oxygen-poor gases 12.
- the conveying device 6, silo devices 18, 19, mixing device 8, the oil heater 31 for temperature control of the bitumen 9 before mixing in the mixing device 8 are consistent with the facilities of the system of FIG.
- the hot low-oxygen gases 32 from a source 13 outside the asphalt mixing plant have a temperature> 1000 ° C and are either directly or, as shown in Fig. 2, in a gas cooler 16 to a temperature in the range of 1000 to 500 ° C. cooled and then proportionately abandoned the drying and heating drum 4 and passed in countercurrent to the transport of the asphalt granules 5 and / or aggregates 7.
- the gas cooler 16 can be operated, for example, with a cooling medium, for example water.
- a proportion of the hot oxygen-poor gases 12 from the gas cooler 16 is as cooled oxygen-poor gases 22 having a temperature in the range of 150 to 300 ° C the conveyor 6, the silo devices 18, 19 and the mixing device 8 for producing a low-oxygen atmosphere having an oxygen content of a maximum of 10%, in particular 5% supplied.
- the partial streams of oxygen-poor gases are collected and passed to the exhaust gas purification 1 1.
- the plant of FIG. 3 is based on hot oxygen-poor gases 32 having an oxygen content of at most 5% and a temperature of about 1400 ° C.
- hot oxygen-poor gases 32 are technical processes outside the asphalt production and asphalt mixing plant in question, especially a combustion of fossil fuels.
- the hot oxygen-poor gases 32 are mixed in a gas mixer 17 with cold oxygen-poor gases 2 and passed as hot oxygen-poor gases 12 at a temperature in the range of 500 to 1000 ° C proportionately in the drying and heating drum 4.
- Another part of the hot oxygen-poor gases 12 is mixed with a proportion of the cold oxygen-poor gases 2 and the conveyor 6 in countercurrent, the silo devices 18, 19 and fed to the mixing device 8 in parallel flow.
- Parts of the oxygen-poor gases from the conveyor 6, the silo devices 18, 19 and the mixing device 8 and from the exhaust gas purification 1 1, which are designated Q1, Q2 and Q3 are returned to the gas mixer 17, whereby the energy efficiency is increased.
- the remaining gas streams from the devices 4, 6, 18, 19, 8 and 10 are combined and fed to the exhaust gas purification 11.
- the exhaust gases from the exhaust gas purification 11 are used, preferably after a first purification stage, as source 3 for cold oxygen-poor gases 2.
- An exhaust gas recycling value of 50 to 100% is achieved.
- the hot oxygen-poor gases 12 are used with an overpressure of about 0.01 mbar to about 50 mbar.
- the temperature of the cold oxygen-poor gases 2 is preferably in the range of 100 to 150 ° C. This is associated with reduced emissions in the production of asphalt mix and at the same time efficient heat utilization.
- Fig. 4 shows a plant for the production of bituminous mixtures with a source 3 for cold oxygen-poor gases 2, which are supplied by means of a blower 38 a hot gas generator 20.
- the hot gas generator 20 comprises a burner 21 for gaseous, liquid and / or solid fuels and a combustion chamber 28 for the production of hot oxygen-poor gases 32 having an oxygen content of about 3% and a temperature of about 1400 ° C.
- These hot oxygen-poor gases 32 are mixed in a gas mixer 17 with cold oxygen-poor gases 2 and cooled to hot oxygen-poor gases 12 to a temperature in the range of 1000 to 500 ° C. After the gas mixer 17, the hot oxygen-poor gases 12 are fed to the drying and heating drum 4.
- a partial flow is branched off and mixed with the cold oxygen-poor gases 2 and fed to the conveyor 6, the silo devices 18, 19 and the mixing device 8. Subsequently, all partial flows of the oxygen-poor gases are collected again and the exhaust gas purification 1 1 fed.
- hot low-oxygen gases 32 are produced in a hot gas generator 20.
- the low-oxygen gases 32 produced in the hot gas generator 20 are mixed in a gas mixer 17 with cold oxygen-poor gases 2 from a source 3, and the hot oxygen-poor gases 12 from the gas mixer 17 become part of the drying and heating drum 4 and another part cold oxygen-poor gases 2 mixed and then fed to the conveyor 6 and the other means for securing a low-oxygen atmosphere.
- the entire drying and heating process takes place at an overpressure of about 20 mbar, which is why the drying and heating drum 4 is equipped with seals 35, for example drum seals, from which the oxygen-poor gases sucked off and the blower 40 for combustion in the burner 21 of the hot gas generator 20 are supplied.
- seals 35 for example drum seals
- the plant according to FIG. 6 is operated with cold, oxygen-poor gases 2 from a source 3, which are heated or mixed in a hot gas generator 20 with a gas mixer 17 to give hot oxygen-poor gases 12.
- a proportion of the cold oxygen-poor gases 2 from the source 3 is supplied to the seals 35 of the drying and heating drum 4, which is operated by means of a blower 41 in the negative pressure with 0.5 to 2 mbar.
- the drying and heating drum 4 is driven in the negative pressure and the seals 35 are also acted upon with cold oxygen-poor gases 2, a false air intrusion is prevented.
- the drying and heating drum 4 and the other equipment are gas-tight.
- material inlet 33 and material outlet 34 rotary valves can be used (see also Fig. 7), which ensure a vacuum and low-pressure operation of the drying and heating drum 4, a suction of oxygen-poor gases 2 in the vacuum operation of the drying and heating drum 4.
- Fig. 7 shows a system with a drying and heating drum 4, which is operated at an overpressure of 0.005 to 3 mbar.
- a blower 40 for supplying the burner 21 of the hot gas generator 20 in addition to fresh air 39 sucks oxygen-poor gases 2 from the seals 35 of the drying and heating drum 4 and from the material inlet 33 and material outlet 34 and supplies them to the combustion process in the hot gas generator 20.
- Both the hot gas generator 20 and the drying and heating drum 4 operate in overpressure operation.
- the exhaust gas of the system is used after at least one stage of the exhaust gas purification 11th
- the plant according to FIG. 8 shows a gas-tight drying and heating drum 4, which is operated by means of a blower 41 at a negative pressure of 0.5 to 2 mbar.
- the seals 35 and the material inlet 33 and material outlet 34 are supplied with oxygen-poor gases 2 in order to prevent a false air entry.
- the cold oxygen-poor gases 2 from a source 3 are supplied by means of a blower 38 to the gas mixer 17 of the hot gas generator 20 and the hot oxygen-poor gases 12 proportionately fed to the drying and heating drum 4. Another part is mixed with cold oxygen-poor gases 2 and then passed to the other facilities 6, 8, 18, 19 of the system.
- FIG. 9 shows a system diagram in which cold oxygen-poor gases 2 are supplied to a hot gas generator 20 with gas mixer 17 after the exhaust gas purification 11 with the aid of a blower 38. 20 to 30% of the cold oxygen-poor gases 2, preferably 25 to 30%, are fed to a muffle 28 of the hot gas generator 20 and 10 to 20% of the cold oxygen-poor gases 2, preferably 15 to 20%, are fed to the primary air 39 of the burner 21. This is advantageously associated with a reduction in NO x emissions.
- the blower 40 for the burner 21 of the hot gas generator 20 sucks in addition to the combustion air 39 and oxygen-poor gases 2, 12 from the seals 35 of the drying and heating drum 4 and from the material inlet 33 and material outlet 34 at.
- a second stage 23 of the exhaust gas purification, the remaining exhaust gases can be supplied.
- the system according to FIG. 10 is operated with two drum devices 14, 24. Both drum devices 14, 24 operate in an oxygen-poor atmosphere.
- the heated and dried material from the counterflow drum 24 is fed by means of a conveyor 6, such as a H facedelevators, the mixing device 8.
- asphalt granules 5 which in a parallel drum 14 with help is heated by hot oxygen-poor gases 12 from a source 43 and at a temperature in the range of 300 to 1000 ° C and dried, in the mixing device 8 and is mixed with bitumen 9 to form a mountable asphalt mixture 10.
- the partial flows of the oxygen-poor gases from the installation devices 6, 8, 18, 19 are in turn fed to an exhaust gas purification 11.
- the plant according to FIG. 11 also has two drum devices 14, 24, namely a counterflow drum 24 for heating and drying asphalt granules 5 and aggregates 7 and a parallel drum 14 for heating and drying 100% asphalt granules 5.
- the parallel drum 14 is operated as in the system of FIG. 10 with hot oxygen-poor gases 12 at a temperature of 500 to 1000 ° C in negative pressure, the corresponding seals and loading of the material inlet and material outlet are not shown.
- the hot oxygen-lean gases 12 from a source 13 are proportionally mixed with cold oxygen-poor gases 2 from the exhaust gas purification 11 and cooled to a temperature in the range of 100 to 200 ° C, then to produce the oxygen-poor atmosphere in the conveyor 6, in the silo devices 18, 19 and mixing device 8 to serve.
- the partial flows of the oxygen-poor gases from the facilities of the system are collected and a cooler 27 for water separation and then an exhaust gas purification 1 1 supplied, which serves as a source for the cold oxygen-poor gases 2 and thus ensures a favorable exhaust gas recycling.
- Fig. 12 shows as part of a plant for the production of bituminous mixture a countercurrent drum 24 in which asphalt granules 5 and aggregates 7 are heated and dried in countercurrent with hot oxygen-poor gases 12.
- the hot low-oxygen gases 12 may preferably be produced in a hot gas generator 20 with Loesche perforated jacket (LOMA) firing.
- LOMA Loesche perforated jacket
- the countercurrent causes an internal circulation of the volatile bitumen constituents from the asphalt granulate 5, in that these constituents evaporate at the hot end of the drum and condense at the cold end of the drum.
- the internal concentration of volatile bitumen components rise to 5 to 15 times compared to a parallel drum.
- a seal 35 is provided, which is designed in such a way that it can be exposed to cold, oxygen-poor gases 2.
- the exhaust gases from the countercurrent drum 24 and from the seals 35 are an exhaust gas purification 1 1 fed.
- the outlet 34 for the ready-to-install asphalt mixture 10 takes place in the feed area of the hot oxygen-poor gases 12.
- asphalt granulate 5 can be heated and dried from expansion asphalt, thus achieving 100% asphalt recycling.
Landscapes
- Engineering & Computer Science (AREA)
- Architecture (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Road Paving Machines (AREA)
- Working-Up Tar And Pitch (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
Description
Claims
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PL09806080T PL2491181T3 (en) | 2009-10-23 | 2009-12-28 | Method and system for producing asphalt mixture |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102009050506 | 2009-10-23 | ||
PCT/EP2009/009292 WO2011047705A1 (en) | 2009-10-23 | 2009-12-28 | Method and system for producing asphalt mixture |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2491181A1 true EP2491181A1 (en) | 2012-08-29 |
EP2491181B1 EP2491181B1 (en) | 2015-02-25 |
Family
ID=42245971
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP09806080.9A Not-in-force EP2491181B1 (en) | 2009-10-23 | 2009-12-28 | Method and system for producing asphalt mixture |
Country Status (13)
Country | Link |
---|---|
US (1) | US8882899B2 (en) |
EP (1) | EP2491181B1 (en) |
JP (1) | JP5606540B2 (en) |
CN (1) | CN102666993B (en) |
AR (1) | AR078671A1 (en) |
BR (1) | BR112012011348A2 (en) |
CA (1) | CA2776894A1 (en) |
DK (1) | DK2491181T3 (en) |
ES (1) | ES2536883T3 (en) |
IN (1) | IN2012DN03398A (en) |
PL (1) | PL2491181T3 (en) |
RU (1) | RU2509838C2 (en) |
WO (1) | WO2011047705A1 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
IT201600124444A1 (en) * | 2016-12-07 | 2018-06-07 | Marini Spa | PRODUCTION AND DISTRIBUTION SYSTEM OF BITUMINOUS CONGLOMERATES |
CN111364320B (en) * | 2020-04-14 | 2024-02-27 | 西安建筑科技大学 | High-quality asphalt mixture coarse aggregate regenerating device and method based on microwave technology |
Family Cites Families (35)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU424941A1 (en) | 1969-09-22 | 1974-04-25 | П. К. Симоненко, О. В. Монастырский , В. И. Соломатин | DEVICE FOR PREPARATION OF ASPHALT-CONCRETE MIXTURES |
US3971666A (en) * | 1972-09-05 | 1976-07-27 | Mendenhall Robert Lamar | Process for recycle of asphalt-aggregate compositions |
US3866888A (en) * | 1973-01-26 | 1975-02-18 | Baldwin Thomas I | Apparatus for making hot asphalt paving material |
GB1526360A (en) | 1976-12-08 | 1978-09-27 | Mendenhall R | Apparatus and method for producing asphalt-aggregate compositions |
US4249890A (en) * | 1978-06-21 | 1981-02-10 | K. P. Graham & Associates Pty. Ltd. | Production of heated bituminous mixes |
US4190370A (en) * | 1978-11-24 | 1980-02-26 | Astec Industries, Inc. | Asphalt plant with improved temperature control system |
JPS5639210A (en) * | 1979-09-06 | 1981-04-14 | Kondo Keijirou | Method and device for controlling temperature in heating conveyor for asphalt mixture |
US4387996A (en) * | 1980-04-14 | 1983-06-14 | Mendenhall Robert Lamar | Batch method of recycling asphaltic concrete |
SU962406A1 (en) | 1981-03-20 | 1982-09-30 | Проектно-Технологический Трест "Оргдорстрой" Министерства Строительства И Эксплуатации Автомобильных Дорог Усср | Drying and mixing drum of installation for preparing asphalt-concrete composition |
US4477250A (en) * | 1983-03-07 | 1984-10-16 | Mechtron International Corporation | Asphalt recycle plant and method |
IT1199992B (en) | 1983-03-21 | 1989-01-05 | Stabilimenti Meccanici Vm Divi | DRYER-MIXER DRUM FOR THE PREPARATION OF BITUMINOUS CONGLOMERATE, PARTICULARLY THROUGH THE USE OF RECOVERED MATERIAL |
SU1270198A2 (en) | 1985-04-24 | 1986-11-15 | Проектно-Технологический Трест "Оргдорстрой" Министерства Строительства И Эксплуатации Автомобильных Дорог Усср | Drying and mixing drum of installation for preparing asphalt concrete mixes |
DE3540978A1 (en) | 1985-09-21 | 1987-03-26 | Wibau Ag | METHOD FOR THE LOW-EMISSION TREATMENT OF A BITUMINOUS MIXTURE WITH A HIGH ASPHALT GRANULATE CONTENT AS A RECYCLING MIX |
US4932785A (en) * | 1988-06-21 | 1990-06-12 | Bracegirdle P E | Aggregate drying system with improved aggregate dryer and mass flow apparatus |
DE3831870C1 (en) | 1988-09-20 | 1990-02-08 | Deutag-Mischwerke Gmbh, 5000 Koeln, De | Method for the manufacture of asphalt |
ATE115214T1 (en) | 1990-01-30 | 1994-12-15 | Cyclean Inc | DRUM DRYERS FOR THE RECYCLING OF CRACKED WASTE ASPHALT. |
CN2087209U (en) | 1990-08-28 | 1991-10-23 | 李金波 | Reprocess device for slag of bituminous concrete |
DE4208951C2 (en) | 1992-03-19 | 1996-01-18 | Loesche Gmbh | Hot gas generator |
RU2001191C1 (en) * | 1992-07-09 | 1993-10-15 | Иван Федотович Заброда | Bituminous concrete mixer |
DE4320664A1 (en) | 1993-06-22 | 1995-01-05 | Gibat Ohl Ingenieurgesellschaf | Process for producing asphalt using heated, fresh asphalt and heated, worked-up reclaimed asphalt |
US5538340A (en) | 1993-12-14 | 1996-07-23 | Gencor Industries, Inc. | Counterflow drum mixer for making asphaltic concrete and methods of operation |
DE19530164A1 (en) | 1995-08-03 | 1997-02-06 | Teltomat Maschinen Gmbh | Drying drum for used asphalt granules - having injection unit allowing carefully zoned heating in counter-current using diverse lifting flights for heat transfer by rotation from upwardly slanting gas jet avoiding overheating, blue smoke emission and asphalt cracking |
JP2000248507A (en) * | 1999-02-26 | 2000-09-12 | Nikko Co Ltd | Asphalt compound manufacturing device |
CN1369333A (en) | 2001-01-30 | 2002-09-18 | 大山产业株式会社 | Asphalt concrete recovering and reusing appts |
CN2532108Y (en) | 2002-03-19 | 2003-01-22 | 沈阳伟达机械有限公司 | Apparatus for working asphalt mixing material |
CN2608544Y (en) | 2003-04-28 | 2004-03-31 | 无锡雪桃集团有限公司 | Asphalt mixture heat regeneration and supplying device |
DE102004014760B4 (en) | 2004-03-23 | 2008-12-11 | Ammann Asphalt Gmbh | Asphalt plant and method for producing asphalt |
RU46767U1 (en) | 2004-12-10 | 2005-07-27 | Снатович Анатолий Михайлович | INSTALLATION FOR PREPARATION OF ASPHALT CONCRETE MIXTURE AND DUST COLLECTION DEVICE |
JP4500693B2 (en) * | 2005-01-27 | 2010-07-14 | 日工株式会社 | Asphalt recycle plant |
UA15810U (en) | 2006-01-27 | 2006-07-17 | Univ Nat Agrarian | Unit for surface application of solid mineral fertilizers |
DE102006038614A1 (en) | 2006-08-17 | 2008-02-21 | Norddeutsche Mischwerke Gmbh & Co. Kg | Process for reuse of spent asphalts and production of bituminous mixtures |
JP5128885B2 (en) * | 2007-09-27 | 2013-01-23 | 三菱重工環境・化学エンジニアリング株式会社 | Asphalt heating apparatus and method and paving material manufacturing equipment |
CH703226B1 (en) | 2007-12-11 | 2011-12-15 | Fapico Ag | Procedure for the requalification and energy enhancement of bituminous aggregates. |
US8220982B2 (en) * | 2008-07-22 | 2012-07-17 | Terex Usa, Llc | Energy efficient asphalt plant |
DE202008012971U1 (en) | 2008-09-30 | 2008-12-24 | Ammann Schweiz Ag | Plant for drying and heating granulated material for asphalt production |
-
2009
- 2009-12-28 WO PCT/EP2009/009292 patent/WO2011047705A1/en active Application Filing
- 2009-12-28 PL PL09806080T patent/PL2491181T3/en unknown
- 2009-12-28 CN CN200980162107.3A patent/CN102666993B/en not_active Expired - Fee Related
- 2009-12-28 JP JP2012534547A patent/JP5606540B2/en not_active Expired - Fee Related
- 2009-12-28 RU RU2012113774/03A patent/RU2509838C2/en not_active IP Right Cessation
- 2009-12-28 ES ES09806080.9T patent/ES2536883T3/en active Active
- 2009-12-28 DK DK09806080.9T patent/DK2491181T3/en active
- 2009-12-28 BR BR112012011348A patent/BR112012011348A2/en not_active IP Right Cessation
- 2009-12-28 CA CA2776894A patent/CA2776894A1/en not_active Abandoned
- 2009-12-28 EP EP09806080.9A patent/EP2491181B1/en not_active Not-in-force
- 2009-12-28 US US13/503,612 patent/US8882899B2/en not_active Expired - Fee Related
- 2009-12-28 IN IN3398DEN2012 patent/IN2012DN03398A/en unknown
-
2010
- 2010-10-18 AR ARP100103807A patent/AR078671A1/en active IP Right Grant
Non-Patent Citations (1)
Title |
---|
See references of WO2011047705A1 * |
Also Published As
Publication number | Publication date |
---|---|
DK2491181T3 (en) | 2015-05-26 |
RU2012113774A (en) | 2013-11-27 |
US8882899B2 (en) | 2014-11-11 |
ES2536883T3 (en) | 2015-05-29 |
WO2011047705A1 (en) | 2011-04-28 |
PL2491181T3 (en) | 2015-06-30 |
RU2509838C2 (en) | 2014-03-20 |
JP2013508577A (en) | 2013-03-07 |
CN102666993B (en) | 2015-05-20 |
CN102666993A (en) | 2012-09-12 |
CA2776894A1 (en) | 2011-04-28 |
US20120204761A1 (en) | 2012-08-16 |
EP2491181B1 (en) | 2015-02-25 |
IN2012DN03398A (en) | 2015-10-23 |
AR078671A1 (en) | 2011-11-23 |
BR112012011348A2 (en) | 2016-04-19 |
JP5606540B2 (en) | 2014-10-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2872596B1 (en) | Cement production plant and method for treating biomass in such a plant | |
DE69623034T2 (en) | WASTE TREATMENT METHOD AND DEVICE | |
CH645084A5 (en) | METHOD FOR CONTINUOUSLY PRODUCING A CEMENT CLINKER AND DEVICE FOR CARRYING OUT THE METHOD. | |
EP0617656A4 (en) | Method and apparatus for producing hot mix asphalt | |
EP0529285A1 (en) | Hot mix asphalt pavement plant and method of producing hot mix asphalt | |
DD298287A5 (en) | PROCESS FOR PREWASHING IRON SCRAP BY PYROLYSIS OF RESIN HARDEY CONTAINING THEREIN WHEN COMPLETE RECOVERY OF THEIR ENERGY CONTENT AND IMPROVEMENT OF THE STEEL MANUFACTURING CYCLE | |
DE3533775C2 (en) | ||
EP3546546B1 (en) | Device for processing scrap rubber | |
DE2621220A1 (en) | METHOD FOR TREATMENT OF MATERIALS AND OVEN SYSTEM FOR HEAT TREATMENT OF MATERIALS | |
EP2491181B1 (en) | Method and system for producing asphalt mixture | |
EP0728713A2 (en) | Process for using waste materials for making cement | |
EP0463379B1 (en) | Process for the valorisation of sewage sludge | |
WO2021104661A1 (en) | Method and arrangement for treating a mineral solid mixture | |
AT513149B1 (en) | Method and apparatus for separating a volatile constituent from the waste gases in cement clinker production | |
DE102009025361B4 (en) | Process and installation for the treatment of road break-up material | |
EP3580312A1 (en) | Producing synthesis gas from carbon-rich substances by means of a combined co-current/counter-current method | |
EP0030376A2 (en) | Process and apparatus for drying and preheating moist coal | |
DE3502957C2 (en) | ||
EP3964646B1 (en) | Method for treating bituminous and / or tar-containing solids | |
DE3110380A1 (en) | Method for working up mixed asphalt products reusing old asphalt material, and a device for carrying out the method | |
AT510106B1 (en) | METHOD FOR ASSESSING ORGANIC WASTE MATERIALS | |
EP3344816B1 (en) | Method for producing asphalt | |
DE102020002533A1 (en) | Shaft furnace for treating road rubble | |
DE4425281A1 (en) | Asphalt mfr. and processing plant |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20120503 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR |
|
DAX | Request for extension of the european patent (deleted) | ||
17Q | First examination report despatched |
Effective date: 20130927 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20141027 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: T3 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502009010685 Country of ref document: DE Effective date: 20150409 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 712126 Country of ref document: AT Kind code of ref document: T Effective date: 20150415 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: ISLER AND PEDRAZZINI AG, CH |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: T3 Effective date: 20150518 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2536883 Country of ref document: ES Kind code of ref document: T3 Effective date: 20150529 |
|
REG | Reference to a national code |
Ref country code: PL Ref legal event code: T3 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
REG | Reference to a national code |
Ref country code: GR Ref legal event code: EP Ref document number: 20150401091 Country of ref document: GR Effective date: 20150618 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150225 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150525 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150225 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150225 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150625 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150225 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150225 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150225 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150225 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502009010685 Country of ref document: DE |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20151126 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150225 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20160112 Year of fee payment: 7 Ref country code: ES Payment date: 20160225 Year of fee payment: 7 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20151231 |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: EBP Effective date: 20151231 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150225 Ref country code: LU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151228 |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: EUG |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20151228 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20151229 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MM Effective date: 20160101 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20160831 |
|
REG | Reference to a national code |
Ref country code: GR Ref legal event code: ML Ref document number: 20150401091 Country of ref document: GR Effective date: 20160707 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20151228 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20151228 Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160101 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20151231 Ref country code: GR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160707 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20151231 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 712126 Country of ref document: AT Kind code of ref document: T Effective date: 20151228 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20151228 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20161227 Year of fee payment: 8 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20091228 Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20151228 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150225 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150225 Ref country code: PL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20151228 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20151228 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150225 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150225 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20161231 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20161231 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20161229 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150225 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150225 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 502009010685 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180703 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20181112 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20151228 |