[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP2108238B1 - Durch eine elektrisch erwärmbare verglasung geformte anordnung und für magnetfelder empfindliche vorrichtung - Google Patents

Durch eine elektrisch erwärmbare verglasung geformte anordnung und für magnetfelder empfindliche vorrichtung Download PDF

Info

Publication number
EP2108238B1
EP2108238B1 EP07872018.2A EP07872018A EP2108238B1 EP 2108238 B1 EP2108238 B1 EP 2108238B1 EP 07872018 A EP07872018 A EP 07872018A EP 2108238 B1 EP2108238 B1 EP 2108238B1
Authority
EP
European Patent Office
Prior art keywords
conductors
heating
glazing unit
assembly according
partial region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP07872018.2A
Other languages
English (en)
French (fr)
Other versions
EP2108238A2 (de
Inventor
Marc Maurer
Stefan Ziegler
Martin Melcher
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saint Gobain Glass France SAS
Compagnie de Saint Gobain SA
Original Assignee
Saint Gobain Glass France SAS
Compagnie de Saint Gobain SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saint Gobain Glass France SAS, Compagnie de Saint Gobain SA filed Critical Saint Gobain Glass France SAS
Priority to PL07872018T priority Critical patent/PL2108238T3/pl
Publication of EP2108238A2 publication Critical patent/EP2108238A2/de
Application granted granted Critical
Publication of EP2108238B1 publication Critical patent/EP2108238B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/1271Supports; Mounting means for mounting on windscreens
    • H01Q1/1278Supports; Mounting means for mounting on windscreens in association with heating wires or layers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/84Heating arrangements specially adapted for transparent or reflecting areas, e.g. for demisting or de-icing windows, mirrors or vehicle windshields
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/002Heaters using a particular layout for the resistive material or resistive elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2214/00Aspects relating to resistive heating, induction heating and heating using microwaves, covered by groups H05B3/00, H05B6/00
    • H05B2214/02Heaters specially designed for de-icing or protection against icing

Definitions

  • the invention relates to an assembly consisting of an electrically heatable glazing unit and a magnetic field sensitive device having the features of the preamble of claim 1.
  • glazings and mirrors can be electrically heated by providing them with an electrically conductive coating and / or electrically conductive tracks and by heating the coating and / or the conductive tracks by applying an electrical voltage and leaving to circulate a current.
  • the heat produced makes it possible to eliminate, in a short time, such glazings the visual disturbances caused by condensation of humidity and / or icing / snow. On the windows of a vehicle, the frozen wipers can be released again.
  • the patent DE 36 44 297 A1 describes a series of variants which consist essentially of grouping the heating power in certain places on a coated glazing, divided collecting conductors and stratified heating zones structured by lines and / or separation surfaces being presented as means for this purpose.
  • Figs. 11A / B and 12A / B it is also already indicated that different sections of the collector conductors may be subjected to different potentials or voltages opposite to each other.
  • the zone of the heating wires in the outer lateral corner of a trapezoidal glass pane is divided into three electrically connected bands in series in which the heating current flows in alternate directions. There is also inevitably an additional collector conductor section. However, as with the aforementioned US patent, this division into zones serves only to homogenize the heating power in this lateral zone.
  • the patent US 5,182,431 also publishes already an arrangement of discrete heating conductors (screen-printed or wire-shaped) in several parallel zones which, in order to control an area of the surface to be heated preferably, also comprises a series circuit consisting of groups of heated conductors covered by currents in opposite directions.
  • the fundamental principles of electrotechnical knowledge also include the fact that the circulation of an electric current in a conductor always generates a magnetic field around this conductor. This magnetic field is normally much more powerful than the overall but relatively weak magnetic field of the Earth and is superimposed on it. It is therefore not surprising that a compass which is installed in a vehicle near an electrically heatable glazing, in particular of course in the field of vision of the driver of the vehicle near the windshield, is disturbed and / or deviated by the electric magnetic field produced during heating to the point where a reliable directional indication with respect to the earth's magnetic field is no longer possible.
  • Heated windows with electrically conductive coating tend to form "hot spots" in the presence of defects in the homogeneity of the coating conductive (window passing radiation), that is to say local overheating at the edges of these defects of homogeneity, which are undesirable and may in addition to this cause long-term damage to the windows, in particular in the case of composite panes with a thermoplastic adhesive layer.
  • the patent DE 101 26 869 A1 publishes a heated wire pane with which the two parallel collector conductors are arranged directly next to one another near an edge of the pane, the heating wires moving away by being isolated through the collector conductors further away from the edge.
  • the invention relates to all possible variants of electrically heatable glazing, and whether they are now glass or plastic. Specifically, this is monolithic windows with a heated conductive structure arranged on their surface in the form of a layer, a printed pattern (screen printing) or son or heated conductors embedded in the mass of the window.
  • Composite panes comprising at least two rigid panes and an adhesive layer connecting them by surface adhesion, in particular vehicle windshields, are often found in a heated version. It is true that heating in Composite glass is usually embedded in the composite (again with heated conductors in the form of a layer, printed pattern or wires). But it is of course also possible to make composite windows with heated structures that are outside (on one or both main surfaces).
  • the object of the invention is to take measurements to influence the magnetic field of an electrically heatable glazing, which in particular allow undisturbed operation of a device sensitive to magnetic fields, such as a compass or a sensor in the vicinity of such a window.
  • the invention exploits the fact that a magnetic field which is generated by a current in a conductor according to the "rule of the thumb" and rotating to the right with respect to the direction of the current can be compensated at least partially by the magnetic field in a conductor parallel traversed by a current in the opposite direction.
  • This physical effect is not mentioned explicitly in any of the documents mentioned above, because these relate to totally different problems. But it also occurs where there are electrical conductors arranged parallel to each other and traversed by currents in the opposite direction.
  • the heating conductors which extend in principle in parallel between two side edges of the glazing
  • a magnetic field sensitive device such as a compass, but also other types of sensors, in particular devices integrated in satellite positioning systems
  • the effect of the magnetic field in the direction of this apparatus can be at least minimized.
  • these measurements are taken in a partial area of the glazing surface and with a form of glass without the heating function itself necessarily being necessary.
  • the measurements in accordance with the invention are in no way comparable with a communication window of the type mentioned above.
  • the invention thus does not consist, as with the state of the art mentioned above, in a local control of the heating power or in a homogenization of the currents in heating conductors of different lengths, but exclusively in a larger reduction. possible magnetic field generated locally (perpendicular to the plane of the glass) of the heating conductors at the location of a device whose operation would otherwise be disturbed. If this is to be done on an industrial scale at a reasonable cost, it is of course also necessary to find a compromise between a very high resolution compensation (for example with a change of direction of the current from one heating wire to another, beyond 2 adjacent heating wires) and a solution with which a magnetic field that is too strong still persists.
  • reversing line here designates a virtual line extending in the plane of the glass parallel to the heating conductors and on both sides of which are flows of current in opposite directions in neighboring heating conductors. In the case of heating layers divided into strips, this inversion line is in the line or the separation surface each time between two parallel stripes separated from each other.
  • this difference which can also be called width of the partial zone of the glazing, or separation distance between the heating conductors of each end of the partial zone, corresponds to one to three times, preferably corresponds to twice , the distance separating the device from the glazing. It is thus possible to compensate almost completely the magnetic field that acts on the device above the area of the heating conductors in the center, so that the device can detect at this location mainly the magnetic field earthly.
  • a glazing 1 shown in simplified manner in the form of a straight-line trapezoid is equipped with a number of heating conductors 2 and a pair of collector conductors 3 in addition to external terminals 3A for the application of a supply voltage to the heating conductors 2.
  • These are made in the form of thin discrete conductive strips printed parallel to each other or deposited in the form of son.
  • the heating conductors 2 form at least one "normal" heating zone (here there are two heating zones on the right and left of the center of the glass).
  • a device 4 sensitive to magnetic fields is installed in the immediate vicinity of the glazing 1 and is here in the direction of observation at a short distance in front of the plane of the window and approximately in the center of the window near the window. lower edge.
  • the concrete mounting position of this apparatus 4 with respect to the glazing 1, however, is of secondary importance for the present invention.
  • the apparatus can thus also be mounted in the upper zone of the glazing, for example in the housing of an interior mirror in a motor vehicle, and again has a relatively small deviation from the glazing in the direction of the normal.
  • the apparatus is then attached at least indirectly to the glazing unit and in a fixed position relative thereto.
  • a group of heating conductors 2 ' (highlighted visually and grouped by a dashed ellipse) is electrically isolated from the first pair of collector conductors 3 and thus "normal" heating zones consisting of heating conductors 2 and equipped with a (second) pair of collector conductors 3 'proper.
  • the latter are provided with their own external terminals which are brought above the outer collector conductors 3 (closer to the edge of the pane) by being electrically insulated from them.
  • To the right and left of this group of heating conductors 2 ' which is approximately in the center of the glass are two larger groups of heating conductors 2.
  • the reciprocal deviation of the reversal lines on the surface of the window which also determines the level of weakening of the magnetic field, is dimensioned according to the conditions of the individual mounting situation, in particular according to the dimensions of the device 4 itself and its deviation from the surface of the glass. Simple optimization tests and possible simulations can be performed for this purpose. In particular, this difference corresponds to one to three times, and preferably corresponds to twice the distance separating the apparatus from the glazing.
  • the arrangement represented in figure 1 three heating zones connected in parallel, has the advantage that the heating voltage is everywhere the same, which allows to design all the heating conductors identically without changing the local heating power.
  • it has the disadvantage that it is necessary to provide additional external terminals for the short 3 'collector conductors in order to be able to fix an inverted polarity with respect to that of the collector conductors 3.
  • the two additional collector conductors 3' of the zone partial are arranged respectively near the two edges of greater extension of the glazing (longitudinal edges) and in the middle of these edges, the heating son 2 'extending between these two collector conductors.
  • the conductors 3 ' are preferably in the form of bus bars which extend parallel to the edges of greater extension of the glazing.
  • the figure 2 represents a variant of the configuration of the partial area of the surface by using the same reference characters for the same elements as in the figure 1 .
  • Five groups of heating conductors are all formed here. These are two larger groups respectively to the right and left of the center of the window (heating conductors 2, "normal” heating zones) which extend directly between the collecting conductors 3.
  • four parallel heating conductors 2 '(group 2' 1 ) extend between the upper collector conductor 3 and a short collector conductor 3 '.
  • This one has no external terminal, but only serves as a jumper with the next 2 ' 2 group in the series. It also comprises four heating conductors which extend between the short collector conductor 3 'of the bottom and a short collector 3' of the top, also without external terminal, which in turn are connected four heating conductors (group 2 ' 3 ) to the collector conductor 3 at the bottom.
  • the changing directions of current flow are also represented by arrows in the figure 2 to illustrate them.
  • the 3 'collector conductors are used here only reversing jumpers for the current flowing in the series circuit.
  • This series circuit forms a voltage divider in which the available heating voltage between the collector conductors 3 is reduced to partial voltages. In the absence of additional measurements, that is to say when the heating conductors 2 'are designed identically to the heating conductors 2, this would produce a reduction in the heating power in the zone of groups 2' 1 to 2 '3.
  • the figure 3 represents in highly simplified form a section through three heating conductors 2 ' 1 , 2' 2 and 2 ' 3 arranged in parallel (flat) next to each other which are respectively surrounded by magnetic field lines. While the magnetic field lines in the outer heating conductors 2 ' 1 and 2' 3 turn to the left, the magnetic field lines in the central heating conductor 2 ' 2 turn to the right.
  • Vector arrows form a closed triangle locally.
  • the apparatus 4 is preferably installed close to this place or that this place in the heatable glazing defined by the inversion lines exposed above must preferably be placed near the installation location of the apparatus in the complete assembly environment.

Landscapes

  • Surface Heating Bodies (AREA)

Claims (14)

  1. Durch eine elektrisch erwärmbare Verglasung geformte Anordnung und für Magnetfelder empfindliche Vorrichtung (4), die in der Nähe der Verglasung eingerichtet ist, wobei die Verglasung eine VielzahlSammelleiter (3, 3') zum Versorgen einer VielzahlHeizleiter (2, 2') mit elektrischem Strom, der zum Erwärmen der Heizleiter und der Verglasung verwendet wird,umfasst, dadurch gekennzeichnet, dass die Vorrichtung (4) in der Nähe zumindest eines Teilbereichs der Fläche der Verglasung angeordnet ist, wobei der Teilbereich mit einer Anordnung paralleler Heizleiter (2') versehen ist, in denen der Strom in eine entgegengesetzte Richtung des Stroms durch die Heizleiter (2) außerhalb des Teilbereichs fließt, und die Anordnung abgestimmt ist, das Magnetfeld, das lokal in dem Teilbereich und senkrecht zurScheibenebene beim Fließen des Stromes wirkt, durch gegenseitiges Kompensieren oder Aufheben zu minimieren.
  2. Anordnung nach Anspruch 1, dadurch gekennzeichnet, dass mindestens zwei, bevorzugt mindestens drei Heizleiter (2')mit alternierenden Stromflussrichtungen in dem Teilbereich der Fläche vorgesehen sind.
  3. Anordnung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass mindestens ein Paar zusätzlicher Sammelleiter (3'), die mit ihren eigenen Außenanschlüssen für die Versorgung der Heizdrähte(2') in dem Teilbereich der Fläche versehen sind, in dem Teilbereich der Fläche vorgesehen ist, wobei das Paar Sammelleiter (3') mit einer Spannung beaufschlagt werden kann, deren Polarität der gleichzeitig an den Sammelleitern (3) angelegten Spannung des anderen Heizbereichs entgegengesetzt ist.
  4. Anordnung nach Anspruch 3, dadurch gekennzeichnet, dass die zwei zusätzlichen Sammelleiter (3') des Teilbereichs jeweils in der Nähe der beiden Kanten mit größter Ausdehnung der Verglasung und in der Mitte dieser Kanten angeordnet sind, wobei die Heizdrähte (2') sich zwischen den zwei Sammelleitern erstrecken.
  5. Anordnung nach Anspruch 3, dadurch gekennzeichnet, dass die zwei Sammelleiter (3') des Teilbereichs in Form von Sammelschienen vorliegen, die sich parallel zu den Kanten mit größter Ausdehnung der Verglasung erstrecken.
  6. Anordnung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass mindestens ein Paar zusätzlicher Sammelleiter (3') ohne eigene Außenanschlüsse in dem Teilbereich der Fläche vorgesehen ist, wobei sie zum Bilden einer aus Gruppen (2'1, 2'2, 2'3) von Heizleitern (2') bestehenden Reihenschaltung innerhalb der an die Sammelleiter (3) des normalen Heizbereichs angelegten Spannung vorgesehen sind.
  7. Anordnung nach Anspruch 6, dadurch gekennzeichnet, dass die Heizleiter (2') in den Gruppen (2'1, 2'2, 2'3) der Reihenschaltung elektrische Widerstände aufweisen, die zumindest in ihrer Summe geringer sind als die der anderen direkt an die Sammelleiter (3) angeschlossenen Heizleiter (2).
  8. Anordnung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Heizleiter (2,2') aus elektrisch leitenden Schichten, Drähten und/oder einem Siebdruckmuster gebildet sind.
  9. Anordnung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass sie in einem Fahrzeug angeordnet ist.
  10. Anordnung nach Anspruch 9, dadurch gekennzeichnet, dass die Verglasung eine Windschutzscheibe des Fahrzeugs ist und die Vorrichtung (4) ein Kompass oder eine in [sic] Satellitennavigationssystem integrierte magnetische Vorrichtung ist.
  11. Anordnung nach Anspruch 9 oder 10, dadurch gekennzeichnet, dass auf der Verglasung eine Halterung für das direkte oder indirekte Befestigen der Vorrichtung angeordnet ist.
  12. Anordnung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Vorrichtung zumindest indirekt auf der Verglasung selbst in einer abgestimmten Position in dem Teilbereich der Fläche mit abgeschwächtem Magnetfeld und in einemgegebenen Abstand bezogen auf die Fläche der Scheibe befestigt ist.
  13. Anordnung nach Anspruch 9, dadurch gekennzeichnet, dass die Vorrichtung (4) auf der in den Innenraum des Fahrzeugs gerichteten Fläche der Verglasung befestigt ist.
  14. Anordnung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Breite des Teilbereichs der Verglasung, die der trennende Abstand zwischen den Heizleitern (2') an jedem Ende des Teilbereichs ist, dem Ein- bis Dreifachen, bevorzugt Zweifachen, des Abstands, der die Vorrichtung (4) von der Verglasung trennt, entspricht.
EP07872018.2A 2007-01-04 2007-12-21 Durch eine elektrisch erwärmbare verglasung geformte anordnung und für magnetfelder empfindliche vorrichtung Not-in-force EP2108238B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL07872018T PL2108238T3 (pl) 2007-01-04 2007-12-21 Zestaw utworzony z elektrycznie podgrzewanej szyby oraz urządzenia czułego na pola magnetyczne

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102007001080A DE102007001080A1 (de) 2007-01-04 2007-01-04 Elektrisch beheizbare Fensterscheibe
PCT/FR2007/052609 WO2008087350A2 (fr) 2007-01-04 2007-12-21 Ensemble forme par un vitrage electriquement chauffable et un appareil sensible aux champs magnetiques

Publications (2)

Publication Number Publication Date
EP2108238A2 EP2108238A2 (de) 2009-10-14
EP2108238B1 true EP2108238B1 (de) 2014-03-19

Family

ID=39477650

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07872018.2A Not-in-force EP2108238B1 (de) 2007-01-04 2007-12-21 Durch eine elektrisch erwärmbare verglasung geformte anordnung und für magnetfelder empfindliche vorrichtung

Country Status (8)

Country Link
US (1) US8669493B2 (de)
EP (1) EP2108238B1 (de)
DE (1) DE102007001080A1 (de)
DK (1) DK2108238T3 (de)
ES (1) ES2463465T3 (de)
PL (1) PL2108238T3 (de)
PT (1) PT2108238E (de)
WO (1) WO2008087350A2 (de)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006002636B4 (de) * 2006-01-19 2009-10-22 Saint-Gobain Sekurit Deutschland Gmbh & Co. Kg Tansparente Scheibe mit einem beheizbaren Schichtsystem
DE202009018104U1 (de) 2009-01-08 2011-01-13 Saint-Gobain Sekurit Deutschland Gmbh & Co. Kg Scheibe mit beheizbarem optisch transparentem Scheibensegment
DE102009025888B4 (de) * 2009-05-29 2014-04-10 Saint-Gobain Sekurit Deutschland Gmbh & Co. Kg Elektrisch großflächig beheizbarer, transparenter Gegenstand und seine Verwendung
DE202009018502U1 (de) 2009-06-24 2011-12-22 Saint-Gobain Sekurit Deutschland Gmbh & Co. Kg Scheibe mit beheizbaren, optisch transparenten Sensorfeld
DE102009026021A1 (de) 2009-06-24 2010-12-30 Saint-Gobain Sekurit Deutschland Gmbh & Co. Kg Scheibe mit beheizbaren, optisch transparenten Sensorfeld
DE102009026319A1 (de) 2009-08-04 2011-02-24 Saint-Gobain Sekurit Deutschland Gmbh & Co. Kg Scheibe mit optisch transparenten Sensorfeld
PL2325002T5 (pl) 2009-11-17 2016-06-30 Saint Gobain Sposób wytwarzania szyby zespolonej z oknem dla czujnika
FR3090857B1 (fr) * 2018-12-20 2021-01-29 Valeo Systemes Dessuyage Procédé de détection d’une position d’un bras de balai d’essuie-glace et dispositif de mise en œuvre du procédé
WO2022152910A1 (en) * 2021-01-18 2022-07-21 Saint-Gobain Glass France Glazing with electric heating field

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2414520A (en) 1943-06-14 1947-01-21 Lockheed Aircraft Corp Windshield deicing
US2878357A (en) 1956-07-13 1959-03-17 Gen Dynamics Corp Electric heated laminated glass panel
GB1202522A (en) 1966-08-08 1970-08-19 Triplex Safety Glass Co Electrical components applied to vitreous bodies
BE789359A (fr) * 1971-09-28 1973-03-27 Saint Gobain Vitrage a chauffage electrique
JPS5816942A (ja) 1981-07-24 1983-01-31 Nissan Motor Co Ltd 車両用熱線式防曇ウインドウ
KR870005921A (ko) 1985-12-26 1987-07-07 노부오 사수가 전도성 유리판
US5182431A (en) 1991-12-18 1993-01-26 Ppg Industries, Inc. Electrically heated window
CA2177726C (en) * 1996-05-29 2000-06-27 Theodore Wildi Low-voltage and low flux density heating system
US6124886A (en) * 1997-08-25 2000-09-26 Donnelly Corporation Modular rearview mirror assembly
JPH11208421A (ja) * 1998-01-28 1999-08-03 Asahi Glass Co Ltd 自動車用防曇ガラス
US6023229A (en) * 1999-03-02 2000-02-08 Gentex Corp Rearview mirror with internally-mounted compass sensor
DE10126869A1 (de) 2001-06-01 2002-12-19 Saint Gobain Sekurit D Gmbh Elektrisch beheizbare Scheibe
US7132625B2 (en) * 2002-10-03 2006-11-07 Ppg Industries Ohio, Inc. Heatable article having a configured heating member
US6891517B2 (en) * 2003-04-08 2005-05-10 Ppg Industries Ohio, Inc. Conductive frequency selective surface utilizing arc and line elements
DE10352464A1 (de) 2003-11-07 2005-06-23 Saint-Gobain Sekurit Deutschland Gmbh & Co. Kg Heizbare Verbundscheibe
JP4219790B2 (ja) 2003-11-14 2009-02-04 日本板硝子株式会社 電熱窓ガラス
DE102004038448B3 (de) 2004-08-07 2006-04-27 Eads Deutschland Gmbh Radarabschirmende Verglasung
US20070159396A1 (en) * 2006-01-06 2007-07-12 Sievenpiper Daniel F Antenna structures having adjustable radiation characteristics

Also Published As

Publication number Publication date
EP2108238A2 (de) 2009-10-14
US8669493B2 (en) 2014-03-11
PT2108238E (pt) 2014-06-25
PL2108238T3 (pl) 2014-08-29
WO2008087350A3 (fr) 2008-11-27
ES2463465T3 (es) 2014-05-28
US20100006555A1 (en) 2010-01-14
DE102007001080A1 (de) 2008-07-10
WO2008087350A2 (fr) 2008-07-24
DK2108238T3 (da) 2014-06-23

Similar Documents

Publication Publication Date Title
EP2108238B1 (de) Durch eine elektrisch erwärmbare verglasung geformte anordnung und für magnetfelder empfindliche vorrichtung
CA2679223C (fr) Vitre transparente avec un revetement chauffant
EP1714185B1 (de) Verfahren zur steuerung eines elements, das elektrochromisch innerhalb eines transparenten fensters angesteuert werden kann
CA2469708C (fr) Vitre chauffante avec un revetement superficiel electriquement conducteur
EP3408089B1 (de) Fahrzeug-verbundverglasung mit einem amoled-bildschirm
CN101406102B (zh) 有加热层压系统的透明窗玻璃
CA2584240C (fr) Vitrage transparent avec un revetement chauffant resistif
EP1680945B1 (de) Heizbare verbundglasscheibe
CA2969048C (en) Transparent pane with an electrical heating layer and production method therefor
CN102484900A (zh) 电加热窗
WO2008020141A1 (fr) Électrode transparente
EP3081050B1 (de) Beheizbare windschutzscheibe
WO2020065192A1 (fr) Panneau radiant destine a etre installe a l'interieur d'un habitacle de vehicule
EP0609141B1 (de) Verfahren zum Beheizen einer mit einer Widerstandsschicht versehenen Glasscheibe
EA043108B1 (ru) Нагреваемая панель остекления

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20090804

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20091112

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20131011

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 658397

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140415

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602007035710

Country of ref document: DE

Effective date: 20140430

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2463465

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20140528

REG Reference to a national code

Ref country code: RO

Ref legal event code: EPE

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20140619

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20140617

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140319

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 658397

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140319

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140319

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140319

REG Reference to a national code

Ref country code: PL

Ref legal event code: T3

REG Reference to a national code

Ref country code: SK

Ref legal event code: T3

Ref document number: E 16424

Country of ref document: SK

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140319

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140319

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140719

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140319

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602007035710

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20141222

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602007035710

Country of ref document: DE

Effective date: 20141222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140319

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141231

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141221

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141231

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140319

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140620

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140319

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20071221

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20161130

Year of fee payment: 10

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20191212

Year of fee payment: 13

Ref country code: BG

Payment date: 20191114

Year of fee payment: 13

Ref country code: PT

Payment date: 20191220

Year of fee payment: 13

Ref country code: SE

Payment date: 20191210

Year of fee payment: 13

Ref country code: CZ

Payment date: 20191216

Year of fee payment: 13

Ref country code: RO

Payment date: 20191121

Year of fee payment: 13

Ref country code: DE

Payment date: 20191210

Year of fee payment: 13

Ref country code: SK

Payment date: 20191111

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20191210

Year of fee payment: 13

Ref country code: DK

Payment date: 20191210

Year of fee payment: 13

Ref country code: PL

Payment date: 20191113

Year of fee payment: 13

Ref country code: FR

Payment date: 20191213

Year of fee payment: 13

Ref country code: BE

Payment date: 20191118

Year of fee payment: 13

Ref country code: IT

Payment date: 20191209

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20200102

Year of fee payment: 13

Ref country code: GB

Payment date: 20191219

Year of fee payment: 13

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602007035710

Country of ref document: DE

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

Effective date: 20201231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201221

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210621

Ref country code: CZ

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201221

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20210101

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20201221

REG Reference to a national code

Ref country code: SK

Ref legal event code: MM4A

Ref document number: E 16424

Country of ref document: SK

Effective date: 20201221

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20201231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201221

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201231

Ref country code: BG

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210630

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201222

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201221

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210701

Ref country code: SK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201231

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20220412

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201222

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201221