EP2035686B1 - Kraftstoffinjektor - Google Patents
Kraftstoffinjektor Download PDFInfo
- Publication number
- EP2035686B1 EP2035686B1 EP07728615A EP07728615A EP2035686B1 EP 2035686 B1 EP2035686 B1 EP 2035686B1 EP 07728615 A EP07728615 A EP 07728615A EP 07728615 A EP07728615 A EP 07728615A EP 2035686 B1 EP2035686 B1 EP 2035686B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- pressure
- diaphragm
- shells
- fuel injector
- diaphragm capsule
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Not-in-force
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M55/00—Fuel-injection apparatus characterised by their fuel conduits or their venting means; Arrangements of conduits between fuel tank and pump F02M37/00
- F02M55/04—Means for damping vibrations or pressure fluctuations in injection pump inlets or outlets
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M47/00—Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure
- F02M47/02—Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure of accumulator-injector type, i.e. having fuel pressure of accumulator tending to open, and fuel pressure in other chamber tending to close, injection valves and having means for periodically releasing that closing pressure
- F02M47/027—Electrically actuated valves draining the chamber to release the closing pressure
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M55/00—Fuel-injection apparatus characterised by their fuel conduits or their venting means; Arrangements of conduits between fuel tank and pump F02M37/00
- F02M55/002—Arrangement of leakage or drain conduits in or from injectors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M2200/00—Details of fuel-injection apparatus, not otherwise provided for
- F02M2200/31—Fuel-injection apparatus having hydraulic pressure fluctuations damping elements
- F02M2200/315—Fuel-injection apparatus having hydraulic pressure fluctuations damping elements for damping fuel pressure fluctuations
Definitions
- the present invention relates to a fuel injector according to the preamble of claim 1.
- Fuel injectors of the type of interest serve to control the fuel which is injected into the combustion chamber in an internal combustion engine. They are essentially composed of a solenoid valve and a miniservovalve, and actuate a nozzle needle whose opening and closing position is controlled by the solenoid valve, so that injection holes are opened and closed in the injector for injecting the fuel.
- a fuel injector for injecting fuel into a combustion chamber with a solenoid valve in which upon actuation of the solenoid valve, a control line from a high-pressure fuel to a return pressure in a return line is relieved.
- a pressure oscillation damping device is provided which dampens pressure fluctuations arising during the termination of the fuel injection by the control of the high-pressure fuel in the low-pressure region.
- the pressure oscillation damping device is arranged outside of the fuel injector in the return line and has a diaphragm can as a damping element with a balloon-shaped or pillow-shaped elastically compressible membrane.
- a force injector is disclosed, which is designed with a solenoid valve for controlling the miniservovalve with an armature which can be applied to a valve seat in the lower armature space.
- the lower armature space is in fluid communication via bores with a control pressure chamber, whereby leakage quantities occurring via at least one return borehole can be returned to a tank above the lower armature space.
- means for reducing these pressure oscillations in the lower armature space are provided.
- the means for reducing pressure fluctuations include recesses or internals to be machined in the lower armature space and an enlarged volume of the return bores or of the lower armature space.
- certain affected by the return of the leakage quantities sections in the solenoid valve and in the injection valve in its volume can be increased.
- Such an enlargement of the volume, with a defined outflow cross-section, results in a significant reduction of pressure oscillations, but the necessary injector-related volume can not be represented in the available installation space.
- An essential disadvantage of the known designs of fuel injectors are those pressure oscillations that lead to different opening behavior of the Miniservoventils and thus can lead to volume fluctuations of the injected fuel.
- Pressure oscillations that propagate through communicating holes in the adjacent solenoid valve space and the magnetic spring space cause a quantity map ripple, which also can not be satisfactorily reduced or avoided by means of the increased fluid volumes.
- pressure limiting devices for limiting occurring peak pressure values in the fluidic system of a fuel injector. These relate to a fuel injector which has a high-pressure fuel pump with a pump piston driven in a stroke movement, which delimits a pump working chamber which is connected to at least one fuel injector, through which fuel is injected into the combustion chamber of the internal combustion engine. In this case, at least one connection of the pump working space with a discharge region is controlled by an electrically actuated control valve. By the pressure limiting device, a connection of the pump working chamber is opened with a discharge area when a predetermined pressure in the pump working space is exceeded.
- the pressure limiting device has an elastically deformable membrane which is acted upon by the pressure prevailing in the pump working chamber and which opens the connection of the pump working chamber to the discharge region when the predetermined pressure in the pump working space is exceeded due to its elastic deformation.
- a disadvantage of the proposed pressure limiting device is the outflow of the fuel into a discharge area, which forms the formation of a closed Systems, ie the integration of the pressure relief device in the closed fluidic system of the return bores without leakage current not possible.
- the invention includes the technical teaching that the means for reducing pressure oscillations comprise at least one diaphragm can, which is accommodated in a recess which is fluidically connected to the at least one return bore.
- the integration of a membrane can and the fluidic connection to the return bore have the advantage that the maximum fuel pressure is limited to the level of the maximum diaphragm clamping pressure, whereby the pressure oscillations can be reduced.
- the flow velocity in the return bore is limited due to the volume taken up or discharged by the membrane can, whereby smaller cross sections of the return bores can be realized. If the pressure in the recess increases, the internal volume decreases due to the deflection of the membrane shells of the diaphragm can. This effect limits the maximum pressure during the pressure oscillations.
- the diaphragm shells expand again due to the internal pressure within the diaphragm cell and additionally because of the elastic restoring force of the diaphragm shells, so that overall a smoothing of the pressure fluctuations and thus a smoothing of the quantity characteristic waviness can be achieved.
- the return bores extend from the lower region of the flat seat into the region of the solenoid valve, wherein the portion of the return bore in the direction of the solenoid valve serves as a connecting line into the magnetic spring chamber. Due to the reduced pressure oscillations, the bounce behavior of the armature of the miniservovalve can be reduced or avoided, which enables an improved metering of the amount of fuel injected into the combustion chamber, and the closing behavior of the fuel injector in the final phase of the injection cycle is optimized. Due to the thus achieved improved quantification of the injected fuel quantity due to the minimized or avoided bounce behavior improved combustion of the fuel due to the optimized atomization of the fuel is reachable in the combustion chamber, resulting in a reduction of pollutant emissions.
- the recess for receiving the diaphragm cell is advantageously designed as a circular depression in the wall of the injector, so that the diaphragm cell can be easily inserted from the outside into the recess formed as a recess.
- a connecting channel allows fluid communication between the return bore and the recess to provide fluid communication between the recess and the return bore.
- the closure element seals in the form of a cover, the recess to the outside in the injector body, wherein the closure element may be formed as a circular disc-shaped lid, which is mechanically secured by means of a shaft securing ring in the injector body and fluidly pressure sealed by a ring seal.
- the biasing member may be made of a thin sheet metal material as an elastic, plate spring-like, circular disk-shaped element, so that the pressure cell is clamped in the region of its circumference by the biasing member against the inside of the closure element.
- the diaphragm cell is constructed from two circular membrane shells, which are pressure-tight radially circumferentially joined together.
- the joint connection can advantageously be designed as a welded joint, wherein the membrane box is radially radially positioned and biased in the region of the weld seam of the two membrane shells between the biasing member and the inside of the closure element.
- a further embodiment of the invention provides that the recess for receiving the diaphragm cell is accommodated in a separate damper housing, wherein the damper housing is arranged on the injector housing and is fluidically connected to the return line.
- the execution of the means for reducing pressure oscillations in a separate damper housing offers the possibility to arrange the diaphragm can outside the injector body, and the recess in which the diaphragm cell is added to fluidly connect to the system of return bores.
- the damper housing comprises an interior which is formed by means of a closure element to a closed recess for receiving the diaphragm cell, wherein stops are provided which receive the diaphragm can on the circumference of the weld and radially center. At the closure element and the stop itself stop surfaces are provided which limit the stroke of the membrane shells of the diaphragm cell. Thus, overload, i. a plastic deformation of the membrane shells are avoided.
- the biasing element is designed to be adjustable in the embodiment of the damper housing, so that the stop, which is integrally formed on the biasing element, is adjustable.
- the circular membrane shells have a concentric wave structure to increase the compliance. Due to the wave structure, the value of membrane cup deflection may be increased due to the lower compliance and thus the extended elastic range to maximize the maximum volume difference between a maximum pressure and a minimum pressure within the recess.
- the volume difference relates to the maximum or minimum volume of the interior of the diaphragm cell.
- the wave structure runs concentrically around the central axis of the circular membrane can and can For example, four wave peaks or troughs include. Concerning the arrangement of the membrane shells to form the membrane can each other on the one hand the opportunity is offered to arrange the two circular membrane shells mirror images of each other, so that the wave structure of the membrane shells against each other and the membrane cell has a symmetrical design.
- the two circular membrane shells to form the diaphragm cell are arranged parallel, ie in the same direction to each other, so that the wave structure of the membrane shell is rectilinear and the diaphragm cell has an asymmetrical design.
- the membrane shells can be formed equal to each other, so that a small parts variance can be achieved.
- the membrane shells can be welded in the mutually facing arrangement, so that the membrane box does not require a preferred installation direction due to their symmetry.
- a minimum distance results which leads to a minimum thickness of the membrane can and comprises a relatively large volume within the membrane can.
- the final pressure at a given intake volume ie the volume difference at maximum pressure and minimum pressure within the return bore
- the limited by the space in their outer diameter diaphragm cell can take under life conditions only a limited intake volume.
- the swallowing volume requirement decreases with increasing external pressure.
- the reduction of the initial volume causes a steeper characteristic of the external pressure over the swallowing volume, whereby a higher external pressure can be achieved at the given intake volume.
- a safe function is achieved even with small absorption volumes.
- the contour of the membranes in the entire spring region have a small distance, which is made possible by an asymmetrical arrangement of the membrane shells. Due to the low output volume in the diaphragm cell and the resulting steeper pressure volume characteristic, the pressure force which the diaphragm can expands when the external pressure is reduced is reduced bulges, very quickly, whereby a lower load on the membrane shells and the weld in the uninstalled state or outside of the operation of the diaphragm cell is given.
- a further advantageous embodiment of the present invention provides that the membrane can is filled with helium and has a gas pressure which is greater than the return pressure in the return line or in the recess connected to the return line. If helium is selected as the gas which fills the membrane can, the sealing of the membrane shells is reliably possible and at the same time leads to more favorable properties of the gas state change. Helium has a high adiabatic exponent, with a steeper pressure rise characteristic compared to the isothermal basic design in highly dynamic processes.
- the diaphragm cell on a stroke limitation which is introduced inside the diaphragm cell.
- the stroke limiter in this case comprises stirrup elements, which are arranged interlocking, so that this limits both the membrane shells merging membrane shell deflection and the membrane shells divergent Membranschalen vombiegung.
- the stirrup elements can be welded into the membrane shells on the inside, and have a C-shaped profile structure, which in each case engage one another in opposite directions.
- the membrane shells bulge outwards, the bending movement of the outer curvature is limited by engagement of the C-shaped profiles of the hoop elements, wherein the hoop elements have a height above the inner side of the membrane shells, which also limit a deflection of the membrane shells inward.
- the possibility is created by simple means to limit a stroke limitation both as a deflection inward and a bulge of the membrane shells to the outside, without providing external elements to the diaphragm cell.
- the stirrup elements in the respective membrane shell can be formed equal to one another in order to minimize the parts variance in this case as well, whereby an asymmetrical design of the elements of the stroke limitation within the membrane shells is also possible.
- the fuel injector 1 comprises an armature 3 and a valve seat 4, wherein the latter separates an armature space 5 from a control chamber of the miniservovalve 2.
- the armature 3 moves upward in the vertical direction, so that the valve seat 4 in the lower armature space 5 opens.
- This valve seat 4 is in turn via one or more holes in fluid communication with a control pressure chamber of the miniservovalve 2.
- the pressure in the control pressure chamber of the miniservoval valve decreases, fluid via the holes in the direction of the valve seat 4 from there into the lower Anchor space 5 flows.
- the nozzle needle (not shown here) of the fuel injector which is constantly exposed to an acting in the opening direction of high pressure, set in motion, whereby the injection holes are opened and the fuel injector can inject fuel into the combustion chamber.
- return bores 8 are introduced, wherein the system of the return bores 8 connect to a flat seat 6, and wherein 6 pressure oscillations within the return bore 8 can occur due to the opening or closing movement of the flat seat. Therefore, these are fluidically connected to a recess 10 and act on a diaphragm cell 9, which is incorporated within the recess 10.
- the recess 10 is arranged on the outside in the injector body 7, and sealed pressure-tight by means of a closure element 12.
- the injector on the flat seat 6 of the miniservovalve 2 now relieves the control line from rail pressure to return pressure, a high volume flow within the return bore 8 initially arises. This is passed on to the recess 10, so that the diaphragm can 9 is pressurized and the membrane shells are arched inwards , This reduces the inner volume of the diaphragm cell 9, and occurring pressure peaks within return bores 8 are reduced. If, on the other hand, the pressure within the return bore 8 drops, the membrane shells of the membrane can 9 expand again, so that overall the pressure fluctuations are smoothed out.
- the membrane box 9 is arranged between the closure element 12 and a biasing element 13, which press the membrane shells of the membrane box each on each other to relieve the weld between the membrane shells.
- FIG. 2 shows an enlarged section of the recess 10 within the injector body 7.
- the membrane box 9 is arranged, which is formed from a first membrane shell 14 and a second membrane shell 15. If the fuel then flows through the return bore 8 into the recess 10, it first passes into a first space 21, which passes through recesses 29 and 30 within the injector body 7 or the Closure element 12 is possible.
- a second space 22 is also pressurized with fuel pressure, which is directly connected to the return bore 8. Now increases the pressure within the spaces 21, 22, so the membrane shells 14 and 15 directed towards each other inwardly, so that the volume decreases within the diaphragm cell 9.
- the deflection of the membrane shells 14 and 15 is limited by a stroke limiter 16, which consists of a first bracket member 17 and a second bracket member 18.
- the ironing elements have a C-shaped profile, so that they each abut against the inside of the membrane shells 14, 15 and thereby limit the lifting movement.
- the bracket elements 17 and 18 engage each other when the pressure in the spaces 21, 22 decreases, and the membrane shells 14 and 15 bulge outwards.
- the membrane box 9 is clamped between a biasing member 13 and the closure member 12, wherein the clamping takes place radially circumferentially at the height of the weld 19 to relieve them due to the bias between the biasing member 13 and the closure member 12.
- the biasing element 13 is shown in a flying and unbiased condition.
- the closure element 12 is sealed by means of a sealing element 20 with respect to the outside of the injector body 7, which consists for example of an O-ring.
- stops 23 and 24 are provided both in the injector body 7 and in the closure element 12, to which the membrane shells 14 and 15 abut outwardly at a curvature of the membrane shells 14, 15.
- the inner stroke limiter 16 and the outer stroke limiter with the stops 23 and 24 are for simultaneous presentation both in the FIG. 2 shown, for a technical implementation of the arrangement one of the two stroke limits is sufficient.
- the stops are optionally formed by the housing 7 and the closure element 12 or by the biasing element 13 and the receiving element 28 (see FIG. 3 ).
- FIG. 2a shows a further embodiment for receiving, limiting and biasing the diaphragm cell 9.
- the biasing member 13a has at least three exhibitions 32, which relieve the weld seam 19 by elastic bias and simultaneously hold the diaphragm cell 9 in position. Through the exhibitions 32 forms in the enclosure 31 a recess, whereby the space 22 directly and the Room 21 communicates with the return bore 8 via the recess 29a.
- a latching 33 is formed, which preferably engages in the sealing ring groove of the closure element 12a and produces a positive connection.
- a stop 24a is formed, which cooperates with the closing element 12a formed on the stop 23a and can be used both for Loslaufdruckvorschreib and to the Hubbegrenzung.
- the latch 33 is secured by the boundary of the enclosure 31 in the recess 10.
- the diaphragm mount which is independent of the injector body 7, permits precise pretensioning and idling pressure adjustment and stroke limitation to the outside.
- the damper assembly 34 provides a high process reliability, since the assembly is not hidden, no collision contours are present in the injector body and a lack of eg the diaphragm cell 9 is reliably detected.
- the comparatively sensitive diaphragm cell 9 is protected in the damper assembly 34 and independently testable.
- the damper assembly 34 consists of the closure element 12a, the membrane box 9, the biasing member 13a and the sealing member 20 and is pressure-tight received in the recess 10 of the injector body 7 to the outside, the diaphragm box is on all sides fluidly connected to the return bore 8 in combination.
- the circular disc-shaped biasing element 13a adopts both the preload to relieve the weld 29 and the function of the Loslauftikvorschreib and stroke limitation.
- the elastic bias is carried out by at least three flared areas, which lie close to the welding seam on the diaphragm cell.
- FIG. 3 shows a further embodiment of the means for reducing pressure oscillations, wherein these comprise a diaphragm box 9, which is arranged within a damper housing 11.
- the damper housing 11 is in turn disposed on the injector body 7, and fluidly and mechanically connected thereto.
- the mechanical connection comprises a screw connection, wherein the fluidic connection takes place via internal channels into the recess 10 within the damper housing 11 with the system of the return bore 8.
- the diaphragm cell 9 is received within the damper housing 11 and arranged by means of a closure element 12 in this fixed.
- a receiving element 28 is provided, which is also formed circular disk-shaped and has a stop 25 in the center.
- a further biasing element 27 is provided, which end in the direction of the diaphragm cell 9 has an opposite stop 26.
- the closure element 12 is screwed inside the damper housing 11 and sealed pressure-tight by means of seals.
- the biasing member 27 is disposed centrally within the closure member 12 and designed as a kind of screw to adjust this by a screwing movement in the direction of the diaphragm cell 9 and removed to this.
- the centrally arranged stop 25 is formed on the receiving element 28 and acts counter to the abutment 26 of the biasing member 27.
- FIG. 5 Each different embodiments of the stroke limiter 16 are shown in the diaphragm cell 9.
- the stroke limiter 16 has C-shaped bracket elements 17 and 18, which engage in one another in such a way that both an inwardly directed membrane deflection and an outwardly directed membrane deflection can be limited.
- the stroke limitation is in FIG. 5 formed asymmetrically, which is another embodiment of the same. This includes a T-shaped bracket member 17 and each bracket-shaped bracket elements 18, which also engage in such a way and limit an inwardly directed and an outward deflection of the diaphragm shells 14 and 15.
- the membrane shells 14 and 15 are joined together by a radially circumferential weld 19.
- FIG. 6a each show a symmetrical and an asymmetric design of the membrane can 9.
- the membrane shells 14 and 15 are formed equal to each other, so that they are mirror images each rotated by 180 ° to each other and are welded together.
- the membrane shells 14 and 15 according to FIG. 6b an asymmetrical design, so that the wave structure within the membrane shells are uniform and the overall height in the membrane box 9 is reduced.
- the membrane shells 14 and 15 each have three shafts, which are formed concentrically around the central axis of the membrane boxes 9, wherein also a different number of waves can be introduced into the membrane shells, which depends on the diameter of the membrane box and the thickness of the sheet material of the membrane shells ,
- the wave structure enlarges the elastic region for bending the membrane shells 14 and 15, and substantially avoid damage or overloading of the membrane shells (14, 15) and the weld seam 19.
- the invention is not limited in its execution to the above-mentioned preferred embodiment. Rather, a number of variants is conceivable, which makes use of the illustrated solution even with fundamentally different types of use.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Fuel-Injection Apparatus (AREA)
- Fuel Cell (AREA)
Description
- Die vorliegende Erfindung betrifft einen Kraftstoffinjektor nach dem Oberbegriff des Anspruchs 1.
- Kraftstoffinjektoren der hier interessierenden Art dienen zur Steuerung des Kraftstoffes, welcher in den Brennraum in einer Verbrennungskraftmaschine eingespritzt wird. Sie sind im Wesentlichen aus einem Magnetventil sowie einem Miniservoventil aufgebaut, und betätigen eine Düsennadel, deren Öffnungs- und Schließstellung durch das Magnetventil steuerbar ist, so dass Einspritzbohrungen im Injektor zum Einspritzen des Kraftstoffs geöffnet und geschlossen werden.
- Aus
EP 1 617 072 A2 ist ein Kraftstoffinjektor zur Einspritzung von Kraftstoff in einen Brennraum mit einem Magnetventil bekannt, bei dem bei einer Betätigung des Magnetventils eine Steuerleitung von einem Kraftstoffhochdruck auf einen Rücklaufdruck in eine Rücklaufleitung hinein entlastbar ist. Zur Reduzierung von Druckschwingungen ist eine Druckschwingungsdämpfungseinrichtung vorgesehen, die bei der Beendigung der Kraftstoffeinspritzung durch die Absteuerung des unter Hochdruck stehenden Kraftstoffs in den Niederdruckbereich entstehenden Druckschwingungen dämpft. Die Druckschwingungsdämpfungseinrichtung ist außerhalb des Kraftstoffinjektors in der Rücklaufleitung angeordnet und weist eine Membrandose als Dämpfungselement mit einer ballon- oder kissenförmig ausgebildeten elastisch zusammendrückbaren Membran auf. - Ein weiterer Kraftstoffinjektor ist aus der
DE 101 59 003 A1 bekannt. Hierin ist ein Kraftinjektor offenbart, welcher mit einem Magnetventil zur Steuerung des Miniservoventils mit einem Anker ausgeführt ist, der auf einen Ventilsitz im unteren Ankerraum aufbringbar ist. Der untere Ankerraum steht über Bohrungen mit einem Steuerdruckraum in fluidischer Verbindung, wobei über zumindest eine Rücklaufbohrung auftretende Leckmengen über dem unteren Ankerraum in einen Tank zurückgeführt werden können. Um beim Schließen des Ventilsitzes durch den Anker Druckschwingungen bzw. Druckschwankungen im System der Rücklaufbohrungen unterhalb des Ventilsitzes zu vermeiden, sind Mittel zur Reduzierung dieser Druckschwingungen im unteren Ankerraum vorgesehen. Die Mittel zur Reduzierung von Druckschwankungen umfassen dabei im unteren Ankerraum einzuarbeitende Ausnehmungen oder Einbauten sowie ein vergrößertes Volumen der Rücklaufbohrungen oder des unteren Ankerraums. Somit können bestimmte von der Rückführung der Leckmengen betroffene Abschnitte im Magnetventil sowie im Einspritzventil in ihrem Volumen vergrößert ausgebildet sein. Eine solche Vergrößerung des Volumens bewirkt mit einem definierten Abflussquerschnitt eine deutliche Reduzierung von Druckschwingungen, jedoch ist das dafür notwendige injektornahe Volumen nicht im vorhandenen Bauraum darstellbar. - Ein wesentlicher Nachteil der bekannten Ausführungen von Kraftstoffinjektoren sind solche Druckschwingungen, die zu unterschiedlichem Öffnungsverhalten des Miniservoventils und damit zu Mengenschwankungen des eingespritzten Kraftstoffs führen können. Druckschwingungen, die sich über Verbindungsbohrungen in den angrenzenden Magnetventilraum und den Magnetfederraum fortpflanzen, verursachen eine Mengenkennfeldwelligkeit, welche auch mittels der vergrößerten fluidischen Volumina nicht zufriedenstellend verringert bzw. vermieden werden können. Weiterhin verursacht ein hohes Druckniveau im Kraftstoffrücklauf unzulässig hohe Beanspruchungen in Kraftstoffrücklaufschläuchen bzw. erhöhte Kosten für hochdruckfeste Schläuche. In der Leckagebohrung des Injektorkörpers treten Kavitationsschäden auf, die durch Druckschwingungen und hohe Strömungsgeschwindigkeiten verursacht werden.
- Zur Vermeidung von Drucküberhöhungen und dem Prellverhalten des Ankers, welches ein sauberes Schließverhalten der Einspritzlöcher durch die Düsennadel stört, wird ein unsauberes Einspritzen des Kraftstoffes in der Schlussphase des Öffnungszyklus hervorgerufen, welches ein negatives Emissionsverhalten der Brennkraftmaschine zur Folge hat.
- Aus der
DE 102 21 383 A1 sind Druckbegrenzungseinrichtungen zur Limitierung auftretender Spitzendruckwerte im fluidischen System eines Kraftstoffinjektors bekannt. Diese betreffen einen Kraftstoffinjektor, welcher eine Kraftstoffhochdruckpumpe mit einem in einer Hubbewegung angetriebenen Pumpenkolben aufweist, der einen Pumpenarbeitsraum begrenzt, der mit wenigstens einem Kraftstoffinjektor verbunden ist, durch den Kraftstoff in den Brennraum der Brennkraftmaschine eingespritzt wird. Hierbei wird durch ein elektrisch betätigtes Steuerventil zumindest eine Verbindung des Pumpenarbeitsraums mit einem Entlastungsbereich gesteuert. Durch die Druckbegrenzungseinrichtung wird bei Überschreiten eines vorgegebenen Druckes im Pumpenarbeitsraum eine Verbindung des Pumpenarbeitsraums mit einem Entlastungsbereich geöffnet. Die Druckbegrenzungseinrichtung weist eine elastisch verformbare Membran auf, die von dem im Pumpenarbeitsraum herrschenden Druck beaufschlagt ist und die bei Überschreiten des vorgegebenen Druckes im Pumpenarbeitsraum durch deren elastische Verformung die Verbindung des Pumpenarbeitsraums zum Entlastungsbereich öffnet. - Ein Nachteil der vorgeschlagenen Druckbegrenzungseinrichtung ist jedoch das Abfließen des Kraftstoffes in einen Entlastungsbereich, welcher die Ausbildung eines geschlossenen Systems, d.h. die Integration der Druckbegrenzungseinrichtung im geschlossenen fluidischen System der Rücklaufbohrungen ohne Leckagestrom nicht ermöglicht.
- Es ist daher die Aufgabe der vorliegenden Erfindung, einen Kraftstoffinjektor mit Mitteln zur Reduzierung von Druckschwingungen in der wenigstens einen Rücklaufleitung zu schaffen, welche ohne Leckagestrom arbeitet und eine einfache sowie wirkungsvolle Funktion aufweist.
- Diese Aufgabe wird ausgehend von einem Kraftstoffinjektor gemäß dem Oberbegriff des Anspruchs 1 in Verbindung mit dessen kennzeichnenden Merkmalen gelöst. Vorteilhafte Weiterbildungen der Erfindung sind in den abhängigen Ansprüchen angegeben.
- Die Erfindung schließt die technische Lehre ein, dass die Mittel zur Reduzierung von Druckschwingungen zumindest eine Membrandose umfassen, welche in einer Aussparung aufgenommen ist, die fluidisch mit der wenigstens einen Rücklaufbohrung in Verbindung gebracht ist.
- Durch die Integration einer Membrandose und die fluidische Verbindung mit der Rücklaufbohrung wird der Vorteil erreicht, dass der maximale Kraftstoffdruck auf das Niveau des maximalen Membranspanndruckes begrenzt wird, wodurch die Druckschwingungen reduziert werden können. Damit wird aufgrund des von der Membrandose aufgenommenen bzw. abgegebenen Volumens die Strömungsgeschwindigkeit in der Rücklaufbohrung begrenzt, wodurch kleinere Querschnitte der Rücklaufbohrungen realisiert werden können. Steigt der Druck in der Aussparung an, verringert sich aufgrund der Durchbiegung der Membranschalen der Membrandose das innere Volumen. Durch diesen Effekt wird der Maximaldruck während der Druckschwingungen begrenzt. Sinkt der Kraftstoffdruck in dem System der Rücklaufleitungen, so dehnen sich die Membranschalen aufgrund des Innendrucks innerhalb der Membrandose und zusätzlich aufgrund der elastischen Rückstellkraft der Membranschalen wieder aus, so dass insgesamt eine Glättung der Druckschwankungen und damit eine Glättung der Mengenkennfeldwelligkeit erreichbar ist.
- Die Rücklaufbohrungen erstrecken sich vom unteren Bereich des Flachsitzes bis in den Bereich des Magnetventils hinein, wobei der Abschnitt der Rücklaufbohrung in Richtung des Magnetventils als Verbindungsleitung in den Magnetfederraum dient. Durch die verringerten Druckschwingungen kann das Prellverhalten des Ankers des Miniservoventils verringert bzw. vermieden werden, was eine verbesserte Dosierung der in den Brennraum eingespritzten Kraftstoffmenge ermöglicht, und das Schließverhalten des Kraftstoffinjektors in der Schlussphase des Einspritzzyklus wird optimiert. Durch die damit erzielbare verbesserte Quantifizierung der eingespritzten Kraftstoffmenge aufgrund des minimierten bzw. vermiedenen Prellverhaltens ist eine verbesserte Verbrennung des Kraftstoffs aufgrund der optimierten Zerstäubung des Kraftstoffs in den Brennraum erreichbar, was eine Verringerung der Schadstoffemissionen zur Folge hat.
- Die Aussparung zur Aufnahme der Membrandose ist vorteilhaft als kreisförmige Vertiefung in der Wandung des Injektorkörpers ausgeführt, so dass die Membrandose einfach von der Außenseite in die als Vertiefung ausgebildete Aussparung eingebracht werden kann. Ein Verbindungskanal ermöglicht die fluidische Verbindung zwischen der Rücklaufbohrung und der Aussparung, um eine fluidische Kommunikation zwischen der Aussparung sowie der Rücklaufbohrung zu schaffen.
- Das Verschlusselement dichtet in Form eines Deckels die Aussparung zur Außenseite im Injektorkörper ab, wobei das Verschlusselement als kreisscheibenförmiger Deckel ausgebildet sein kann, welcher mittels eines Wellensicherungsringes mechanisch im Injektorkörper gesichert ist und mittels einer Ringdichtung fluidisch druckdicht angedichtet ist.
- Das Vorspannelement kann als elastisches, tellerfederartiges, kreisscheibenförmiges Element aus einem dünnen Blechmaterial hergestellt sein, so dass die Druckdose im Bereich ihres Umfangs durch das Vorspannelement gegen die Innenseite des Verschlusselementes verspannt wird. Die Membrandose ist dabei aus zwei kreisförmigen Membranschalen aufgebaut, welche druckdicht radial umlaufend aneinander gefügt sind.
- Die Fügeverbindung kann Vorteilhafterweise als Schweißverbindung ausgeführt sein, wobei die Membrandose radial umlaufend im Bereich der Schweißnaht der beiden Membranschalen zwischen dem Vorspannelement und der Innenseite des Verschlusselementes radial positioniert und vorgespannt wird. Dadurch wird bei einem Druckabfall im Innenraum der Aussparung die Schweißverbindung zwischen beiden Membranschalen der Membrandose entlastet.
- Ein weiteres Ausführungsbeispiel der Erfmdung sieht vor, dass die Aussparung zur Aufnahme der Membrandose in einem separaten Dämpfergehäuse aufgenommen ist, wobei das Dämpfergehäuse am Injektorgehäuse angeordnet und fluidisch mit der Rücklaufleitung verbunden ist. In Abhängigkeit von den geometrischen Verhältnissen des Konstruktionsraumes des Kraftstoffinjektors sowie der fehlenden Integrierbarkeit der Membrandose in den Injektorkörper bietet die Ausführung der Mittel zur Reduzierung von Druckschwingungen in einem separaten Dämpfergehäuse die Möglichkeit, die Membrandose außerhalb des Injektorkörpers anzuordnen, und die Aussparung, in welcher die Membrandose aufgenommen ist, fluidisch mit dem System der Rücklaufbohrungen zu verbinden. Ähnlich wie die im Injektorkörper ausgebildete Aussparung umfasst das Dämpfergehäuse einen Innenraum, welcher mittels eines Verschlusselementes zu einer geschlossenen Aussparung zur Aufnahme der Membrandose ausgebildet ist, wobei Anschläge vorgesehen sind, welche die Membrandose auf dem Umfang der Schweißnaht aufnehmen und radial zentrieren. Am Verschlusselement sowie am Anschlag selber sind Anschlagflächen vorgesehen, die den Hub der Membranschalen der Membrandose begrenzen. Damit kann eine Überlastung, d.h. eine plastische Verformung der Membranschalen vermieden werden. Das Vorspannelement ist im Ausführungsbeispiel des Dämpfergehäuses verstellbar ausgeführt, so dass der Anschlag, welcher am Vorspannelement angeformt ist, verstellbar ist.
- Vorteilhafterweise weisen die kreisförmigen Membranschalen eine konzentrische Wellenstruktur auf, um die Nachgiebigkeit zu erhöhen. Durch die Wellenstruktur kann der Wert der Membranschalendurchbiegung aufgrund der niedrigeren Nachgiebigkeit und damit des ausgedehnteren elastischen Bereiches erhöht werden, um die maximale Volumendifferenz zwischen einem Maximaldruck und einem Minimaldruck innerhalb der Aussparung zu maximieren. Die Volumendifferenz betrifft dabei das maximale bzw. minimale Volumen des Innenraums der Membrandose. Die Wellenstruktur verläuft konzentrisch um die Mittelachse der kreisförmig ausgebildeten Membrandose und kann beispielsweise vier Wellenberge bzw. Wellentäler umfassen. Betreffend die Anordnung der Membranschalen zur Bildung der Membrandose zueinander ist zum einen die Möglichkeit geboten, die zwei kreisförmigen Membranschalen spiegelbildlich zueinander anzuordnen, so dass die Wellenstruktur der Membranschalen gegeneinander verläuft und die Membrandose eine symmetrische Ausbildung aufweist. Hingegen besteht weiterhin die Möglichkeit, dass die zwei kreisförmigen Membranschalen zur Bildung der Membrandose parallel, d.h. in gleicher Richtung zueinander angeordnet sind, so dass die Wellenstruktur der Membranschale gleichgerichtet verläuft und die Membrandose eine asymmetrische Ausbildung aufweist.
- Im ersten Fall der symmetrischen Ausbildung der Membrandose können die Membranschalen gleich zueinander ausgebildet sein, so dass eine geringe Teilevarianz erreichbar ist. Die Membranschalen können in der zueinander gewandten Anordnung geschweißt werden, so dass die Membrandose aufgrund ihrer Symmetrie keine bevorzugte Einbaurichtung erforderlich macht. Hingegen ergibt sich basierend auf der symmetrischen Anordnung der Membranschalen ein Mindestabstand, welcher zu einer Mindestdicke der Membrandose führt und ein relativ großes Volumen innerhalb der Membrandose umfasst.
- Es ist jedoch bekannt, dass bei einem kleineren Volumen innerhalb der Membrandose der Enddruck bei gegebenen Schluckvolumen, d.h. der Volumendifferenz bei Maximaldruck und Minimaldruck innerhalb der Rücklaufbohrung, nur gering ansteigt, wenn das Ausgangsvolumen groß ist. Die durch den Bauraum in ihrem Außendurchmesser begrenzte Membrandose kann jedoch unter Lebensdauerbedingungen nur ein begrenztes Schluckvolumen aufnehmen. Aus der typischen Außendruck-Schluckvolumenkennlinie des vorliegenden Kraftstoffinjektors kann entnommen werden, das der Schluckvolumenbedarf mit zunehmenden Außendruck sinkt. Die Reduzierung des Ausgangsvolumens bewirkt eine steilere Kennlinie des Außendruckes über dem Schluckvolumen, wodurch beim gegebenen Schluckvolumen ein höherer Außendruck erreicht werden kann. Dadurch wird auch bei kleinen Schluckvolumina einen sichere Funktion erreicht. Somit ist die Möglichkeit gegeben, das die Kontur der Membranen im gesamten Federbereich einen geringen Abstand aufweisen, was durch eine asymmetrische Anordnung der Membranschalen ermöglicht ist. Durch das geringe Ausgangsvolumen in der Membrandose und die dadurch steilere Druckvolumenkennlinie reduziert sich beim Absenken des Außendruckes die Druckkraft, welche die Membrandose nach außen aufwölbt, sehr schnell, wodurch eine geringere Belastung der Membranschalen und der Schweißnaht im unverbauten Zustand bzw. außerhalb des Betriebes der Membrandose gegeben ist.
- Eine weitere vorteilhafte Ausführung der vorliegenden Erfindung sieht vor, dass die Membrandose mit Helium gefüllt ist und einen Gasdruck aufweist, der größer ist als der Rücklaufdruck in der Rücklaufleitung bzw. in der mit der Rücklaufleitung verbundenen Aussparung. Wird als Gas, welches die Membrandose füllt, Helium gewählt, ist das Dichtschweißen der Membranschalen prozesssicher möglich und führt gleichzeitig zu günstigeren Eigenschaften der Gaszustandsänderung. Helium weist einen hohen adiabaten Exponenten auf, wobei bei hochdynamischen Vorgängen eine steilere Druckanstiegskennlinie gegenüber der Isothermen Grundauslegung entsteht.
- Vorteilhafterweise weist die Membrandose eine Hubbegrenzung auf, welche innenseitig in der Membrandose eingebracht ist. Die Hubbegrenzung umfasst dabei Bügelelemente, welche ineinandergreifend angeordnet sind, so dass diese sowohl eine die Membranschalen zusammenführende Membranschalendurchbiegung als auch eine die Membranschalen auseinanderführende Membranschalendurchbiegung begrenzt. Die Bügelelemente können innenseitig in die Membranschalen eingeschweißt sein, und weisen eine C-förmige Profilstruktur auf, die jeweils gegenüberliegend ineinander greifen. Wölben sich die Membranschalen nach außen, so wird die Biegebewegung der Außenwölbung durch ein Eingreifen der C-förmigen Profile der Bügelelemente begrenzt, wobei die Bügelelement ein Höhe über der Membranschaleninnenseite aufweisen, die eine Durchbiegung der Membranschalen nach innen ebenfalls begrenzen. Somit ist durch einfache Mittel die Möglichkeit geschaffen, eine Hubbegrenzung sowohl als Durchbiegung nach innen als auch eine Auswölbung der Membranschalen nach außen zu begrenzen, ohne externe Elemente an der Membrandose vorzusehen. Die Bügelelemente in der jeweiligen Membranschale können gleich zueinander ausgebildet sein, um auch in diesem Fall die Teilevarianz zu minimieren, wobei auch eine asymmetrische Ausbildung der Elemente der Hubbegrenzung innerhalb der Membranschalen möglich ist.
- Weitere, die Erfindung verbessernde Maßnahmen werden nachstehend gemeinsam mit der Beschreibung bevorzugter Ausführungsbeispiele der Erfindung anhand von Figuren näher dargestellt.
- Es zeigt:
-
Figur 1 : ein Querschnitt eines Kraftstoffinjektors mit Mitteln zur Druckbegrenzung, wobei die Mittel als Membrandose ausgebildet sind, die innerhalb des Injektorkörpers integriert sind; -
Figur 2 : einen Querschnitt eines Ausschnitts der Membrandose ausFigur 1 , welche innerhalb des Injektorkörpers integriert ist; -
Figur 2a : einen Querschnitt eines Ausschittes der Dämpferbaugruppe gemäß eines weiteren Ausführungsbeispiels; -
Figur 3 : einen Querschnitt eines Kraftstoffinjektors mit Mitteln zur Druckbegrenzung, wobei die Mittel als Membrandose ausgebildet sind, die in einem außerhalb des Injektorkörpers angeordneten Dämpfergehäuse integriert sind; -
Figur 4 : eine Membrandose gemäß vorliegenden Erfindung, welche eine innenseitig eingebrachte symmetrische Hubbegrenzung aufweist; -
Figur 5 : ein weiteres Ausführungsbeispiel der Membrandose mit innenseitig eingebrachter Hubbegrenzung, wobei die Hubbegrenzung asymmetrisch ausgebildet ist; -
Figur 6a : ein erstes Ausführungsbeispiel der Membrandose, welche eine symmetrische Anordnung der Membranschalen aufweist; und -
Figur 6b : ein weiteres Ausführungsbeispiel der Membrandose, welche eine asymmetrische Anordnung der Membranschalen aufweist. - Der in
Figur 1 dargestellte Kraftstoffinjektor umfasst ein Magnetventil 1 sowie ein Miniservoventil 2. Das Magnetventil 1 umfasst einen Anker 3 sowie einen Ventilsitz 4, wobei dieser einen Ankerraum 5 von einem Steuerraum des Miniservoventils 2 trennt. Wird die Magnetspule des Magnetventils 1 bestromt, bewegt sich der Anker 3 in vertikaler Richtung nach oben, so dass sich der Ventilsitz 4 im unteren Ankerraum 5 öffnet. Dieser Ventilsitz 4 steht seinerseits über eine oder mehrere Bohrungen in Fluidverbindung mit einem Steuerdruckraum des Miniservoventils 2. Bei einem Öffnen des Ventilsitzes 4 baut sich der Druck im Steuerdruckraum des Miniservoventils ab, wobei Fluid über die Bohrungen in Richtung des Ventilsitzes 4 von dort in den unteren Ankerraum 5 strömt. Bei einem sinkenden Druck im Steuerraum wird die Düsennadel (hier nicht dargestellt) des Kraftstoffinjektors, die ständig einem in Öffnungsrichtung wirkenden Kraftstoffhochdruck ausgesetzt ist, in Bewegung gesetzt, wodurch die Einspritzbohrungen geöffnet werden und der Kraftstoffinjektor Kraftstoff in den Brennraum einspritzen kann. Im Injektorkörper 7 sind Rücklaufbohrungen 8 eingebracht, wobei das System der Rücklaufbohrungen 8 an einen Flachsitz 6 anschließen, und wobei durch die Öffen- bzw. Schließbewegung des Flachsitzes 6 Druckschwingungen innerhalb der Rücklaufbohrung 8 auftreten können. Daher sind diese fluidisch mit einer Aussparung 10 verbunden und wirken auf eine Membrandose 9, welche innerhalb der Aussparung 10 eingebracht ist. Die Aussparung 10 ist außenseitig im Injektorkörper 7 angeordnet, und mittels eines Verschlusselementes 12 druckdicht verschlossen. Entlastet nun der Injektor am Flachsitz 6 des Miniservoventils 2 die Steuerleitung von Raildruck auf Rücklaufdruck, so entsteht zunächst ein hoher Volumenstrom innerhalb der Rücklaufbohrung 8. Dieser wird zu der Aussparung 10 weitergeleitet, so dass die Membrandose 9 druckbeaufschlagt wird und die Membranschalen nach innen gewölbt werden. Dadurch verringert sich das innere Volumen der Membrandose 9, und auftretende Druckspitzen innerhalb Rücklaufbohrungen 8 werden verringert. Sinkt hingegen der Druck innerhalb der Rücklaufbohrung 8, so dehnen sich die Membranschalen der Membrandose 9 wieder aus, so dass insgesamt die Druckschwankungen geglättet werden. Die Membrandose 9 ist zwischen dem Verschlusselement 12 und einem Vorspannelement 13 angeordnet, welche die Membranschalen der Membrandose jeweils aufeinander drücken, um die Schweißnaht zwischen den Membranschalen zu entlasten. -
Figur 2 zeigt einen vergrößerten Ausschnitt der Aussparung 10 innerhalb des Injektorkörpers 7. Über die Rücklaufbohrung 8 ist die Aussparung 10 mit dem Bereich unterhalb des Flachsitzes (sieheFigur 1 ) verbunden. Innerhalb der Aussparung 10 ist die Membrandose 9 angeordnet, welche aus einer ersten Membranschale 14 und einer zweiten Membranschale 15 ausgebildet ist. Strömt nun der Kraftstoff durch die Rücklaufbohrung 8 in die Aussparung 10, so gelangt diese zunächst in einen ersten Raum 21, was durch Aussparungen 29 und 30 innerhalb des Injektorkörpers 7 bzw. des Verschlusselementes 12 möglich ist. Ein zweiter Raum 22 wird ebenfalls mit Kraftstoffdruck beaufschlagt, welcher direkt mit der Rücklaufbohrung 8 verbunden ist. Steigt nun der Druck innerhalb der Räume 21, 22 an, so wölben sich die Membranschalen 14 und 15 zueinander gerichtet nach innen, so dass sich das Volumen innerhalb der Membrandose 9 verringert. Die Durchbiegung der Membranschalen 14 und 15 wird durch eine Hubbegrenzung 16 begrenzt, welche aus einem ersten Bügelelement 17 sowie einem zweiten Bügelelement 18 besteht. Die Bügelelemente weisen ein C-förmiges Profil auf, so dass sie jeweils gegenüberliegend an die Innenseite der Membranschalen 14, 15 anstoßen und dadurch die Hubbewegung begrenzen. Hingegen greifen die Bügelelemente 17 und 18 ineinander, wenn der Druck in den Räumen 21, 22 sinkt, und sich die Membranschalen 14 und 15 nach außen wölben. Die Membrandose 9 ist zwischen einem Vorspannelement 13 sowie dem Verschlusselement 12 eingespannt, wobei die Einspannung radial umlaufend auf der Höhe der Schweißnaht 19 erfolgt, um diese aufgrund der Vorspannung zwischen dem Vorspannelement 13 und dem Verschlusselement 12 zu entlasten. Zur deutlicheren Darstellung ist in derFigur 2 das Vorspannelement 13 in einem fliegenden und nicht vorgespannten Zustand gezeigt. Das Verschlusselement 12 ist mittels eines Dichtelementes 20 gegenüber der Außenseite des Injektorkörpers 7 abgedichtet, welches beispielsweise aus einem O-Ring besteht. Um eine Begrenzung der Wölbungsbewegung der Membranschalen 14 und 15 zu schaffen, sind sowohl im Injektorkörper 7 als auch im Verschlusselement 12 Anschläge 23 und 24 vorgesehen, an die die Membranschalen 14 und 15 bei einer Wölbung der Membranschalen 14, 15 nach außen anstoßen. Somit legen die vorgespannten Anschläge 23, 24 der Hubbegrenzung den Loslaufdruck fest und begrenzen nach außen die Membranschalendurchbiegung. Die innere Hubbegrenzung 16 und die äußere Hubbegrenzung mit den Anschlägen 23 und 24 sind zur gleichzeitigen Darstellung beide in derFigur 2 gezeigt, wobei für eine technische Umsetzung der Anordnung eine der beiden Hubbegrenzungen hinreichend ist. Die Anschläge werden wahlweise durch das Gehäuse 7 und das Verschlusselement 12 oder durch das Vorspannelement 13 und das Aufnahmeelement 28 gebildet (sieheFigur 3 ). -
Figur 2a zeigt ein weiteres Ausführungsbeispiel zur Aufnahme, Begrenzung und Vorspannung der Membrandose 9. Das Vorspannelement 13a hat zumindest drei Ausstellungen 32, welche durch elastische Vorspannung die Schweißnaht 19 entlasten und gleichzeitig die Membrandose 9 in ihrer Position halten. Durch die Ausstellungen 32 bildet sich in der Umfassung 31 eine Aussparung, wodurch der Raum 22 direkt und der Raum 21 über die Aussparung 29a mit der Rücklaufbohrung 8 kommuniziert. Am verschlussdeckelseitigen Ende der Umfassung 31 ist eine Verrastung 33 ausgebildet, die vorzugsweise in die Dichtringnut des Verschlusselementes 12a eingreift und eine formschlüssige Verbindung herstellt. Am Vorspannelement 13a ist ein Anschlag 24a ausgebildet, der mit dem am Verschlusselement 12a ausgebildeten Anschlag 23a zusammenwirkt und sowohl zur Loslaufdruckvorspannung als auch zur Hubbegrenzung eingesetzt werden kann. Die Verrastung 33 ist durch die Begrenzung der Umfassung 31 in der Aussparung 10 gesichert. Die vom Injektorkörper 7 unabhängige Membranbefestigung ermöglicht eine genaue Vorspann- und Loslaufdruckeinstellung und Hubbegrenzung nach Außen. Die Dämpferbaugruppe 34 ergibt eine hohe Prozesssicherheit, da die Montage nicht verdeckt erfolgt, keine Kollisionskonturen im Injektorkörper vorhanden sind und ein Fehlen z.B. der Membrandose 9 sicher erkannt wird. Die vergleichsweise empfindliche Membrandose 9 ist in der Dämpferbaugruppe 34 geschützt und unabhängig prüfbar. Die Dämpferbaugruppe 34 besteht aus dem Verschlusselement 12a, der Membrandose 9, dem Vorspannelement 13a und dem Dichtelement 20 und ist in der Aussparung 10 des Injektorkörpers 7 nach außen druckdicht aufgenommen, wobei die Membrandose allseitig fluidisch mit der Rücklaufbohrung 8 in Verbindung steht. Das kreisscheibenförmige Vorspannelement 13a übernimmt sowohl die Vorspannung zur Entlastung der Schweißnaht 29 als auch die Funktion der Loslaufdruckvorspannung und Hubbegrenzung. Die elastische Vorspannung erfolgt durch mindestens drei ausgestellte Bereiche, welche schweißnahtnah auf der Membrandose aufliegen. -
Figur 3 zeigt ein weiteres Ausführungsbeispiel der Mittel zur Reduzierung von Druckschwingungen, wobei diese eine Membrandose 9 umfassen, die innerhalb eines Dämpfergehäuses 11 angeordnet ist. Das Dämpfergehäuse 11 ist wiederum am Injektorkörper 7 angeordnet, und fluidisch sowie mechanisch mit diesem verbunden. Die mechanische Verbindung umfasst gemäß dem vorliegenden Ausführungsbeispiel eine Schraubverbindung, wobei die fluidische Verbindung über innenliegende Kanäle in die Aussparung 10 innerhalb des Dämpfergehäuses 11 mit dem System der Rücklaufbohrung 8 erfolgt. Die Membrandose 9 ist innerhalb des Dämpfergehäuses 11 aufgenommen und mittels eines Verschlusselementes 12 in diesem fest angeordnet. Gegenüberliegend vom Verschlusselement 12 ist ein Aufnahmeelement 28 vorgesehen, welches ebenfalls kreisscheibenförmig ausgebildet ist und mittig einen Anschlag 25 aufweist. Innerhalb des Verschlusselementes 12 ist wiederum ein weiteres Vorspannelement 27 vorgesehen, welches endseitig in Richtung der Membrandose 9 einen gegenüberliegenden Anschlag 26 besitzt. Damit kann die Hubbewegung der Membranschalen 14 und 15 der Membrandose 9 durch den Anschlag 25 sowie 26 begrenzt werden. Das Verschlusselement 12 ist innerhalb des Dämpfergehäuses 11 eingeschraubt und mittels Dichtungen druckdicht verschlossen. Das Vorspannelement 27 ist innerhalb des Verschlusselementes 12 zentrisch angeordnet und als eine Art Schraube ausgeführt, um dieses durch eine Schraubbewegung in Richtung der Membrandose 9 bzw. entfernt zu dieser zu verstellen. Der zentrisch angeordnet Anschlag 25 ist am Aufnahmeelement 28 ausgebildet und wirkt entgegen des Anschlags 26 des Vorspannelementes 27. Damit ist die maximale Auswölbung der Membranschalen 14 und 15 begrenzbar. - In
Abbildung 4 und5 sind jeweils verschiedene Ausbildungen der Hubbegrenzung 16 in der Membrandose 9 dargestellt. InAbbildung 4 weist die Hubbegrenzung 16 C-förmige Bügelelemente 17 und 18 auf, die derart ineinander greifen, dass sowohl eine nach innen gerichtete Membrandurchbiegung als auch eine nach außen gerichtete Membrandurchbiegung begrenzbar ist. Hingegen ist die Hubbegrenzung inFigur 5 asymmetrisch ausgebildet, welche ein weiteres Ausführungsbeispiel derselben darstellt. Diese umfasst ein T -förmiges Bügelelement 17 sowie jeweils klammerförmige Bügelelemente 18, welche ebenfalls derart ineinander greifen und eine nach innen gerichtete sowie eine nach außen gerichtete Durchbiegung der Membranschalen 14 und 15 begrenzen. Die Membranschalen 14 und 15 sind durch eine radial umlaufende Schweißnaht 19 miteinander gefügt. - Die
Figuren 6a und 6b zeigen jeweils eine symmetrische sowie einen asymmetrische Ausbildung der Membrandose 9. InFigur 6a sind die Membranschalen 14 und 15 gleich zueinander ausgebildet, so dass diese spiegelbildlich jeweils um 180° verdreht zueinander angeordnet sind und aufeinander verschweißt sind. Hingegen weisen die Membranschalen 14 und 15 gemäßFigur 6b eine asymmetrische Ausbildung auf, so dass die Wellenstruktur innerhalb der Membranschalen gleichförmig verlaufen und die Bauhöhe in der Membrandose 9 insgesamt verringert ist. Die Membranschalen 14 und 15 weisen jeweils drei Wellen auf, welche konzentrisch um die Mittelachse der Membrandosen 9 ausgebildet sind, wobei auch eine andere Anzahl von Wellen in die Membranschalen eingebracht werden können, was vom Durchmesser der Membrandose und der Dicke des Blechmaterials der Membranschalen abhängig ist. Die Wellenstruktur vergrößert den elastischen Bereich zur Durchbiegung der Membranschalen 14 und 15, und vermeiden im Wesentlichen eine Beschädigung bzw. eine Überlastung der Membranschalen (14, 15) und der Schweißnaht 19. - Die Erfindung beschränkt sich in ihrer Ausführung nicht auf das vorstehend angegebene bevorzugte Ausführungsbeispiel. Vielmehr ist eine Anzahl von Varianten denkbar, welche von der dargestellten Lösung auch bei grundsätzlich anders gearteten Ausführungen Gebrauch macht.
Claims (8)
- Kraftstoffinjektor zur Einspritzung von Kraftstoff in einen Brennraum, mit einem zur Steuerung eines Miniservoventils (2) vorgesehenen Magnetventil (1), umfassend einen bewegbaren Anker (3), der auf einen Ventilsitz (4) im unteren Ankerraum (5) dichtend aufbringbar ist, wobei weiterhin das Miniservoventil (2) in einem Injektorkörper (7) aufgenommen ist und eine Steuerleitung gegen einen Flachsitz (6) dichtet, vermittels dessen bei einer Betätigung des Magnetventils (1) die Steuerleitung von einem Kraftstoffhochdruck auf einen Rücklaufdruck in wenigstens eine Rücklaufleitung (8) hinein entlastbar ist, wobei Mittel zur Reduzierung von Druckschwingungen in der wenigstens einen Rücklaufleitung (8) vorgesehen sind, und wobei die Mittel zur Reduzierung von Druckschwingungen zumindest eine Membrandose (9) umfassen, welche in einer Aussparung (10) aufgenommen ist, dadurch gekennzeichnet, dass die Aussparung (10) fluidisch mit der wenigstens einen Rücklaufleitung (8) in Verbindung gebracht und im Injektorkörper (7) eingebracht ist, so dass die Membrandose (9) in den Injektorkörper (7) integrierbar ist, und dass die Aussparung (10) mittels eines Verschlusselements (12) druckdicht abgedichtet ist, wobei in der Aussparung (10) benachbart zur Membrandose (9) ein Vorspannelement (13) angeordnet ist, welches die Membrandose (9) auf dem Fügeumfang der Membranschalen (14, 15) gegen das Verschlusselement (12) mechanisch verspannt.
- Kraftstoffinjektor nach Anspruch 1,
dadurch gekennzeichnet, dass die Membrandose (9) zwei kreisscheibenförmige Membranschalen (14, 15) aufweist, welche druckdicht radial umlaufend aneinander gefügt sind. - Kraftstoffinjektor nach Anspruch 1,
dadurch gekennzeichnet, dass die Aussparung (10) zur Aufnahme der Membrandose (9) in einem separaten Dämpfergehäuse (11) aufgenommen ist, wobei das Dämpfergehäuse (11) am Injektorgehäuse (7) angeordnet und fluidisch mit der Rücklaufleitung (8) verbunden ist. - Kraftstoffinjektor nach Anspruch 1, 2 oder 3,
dadurch gekennzeichnet, dass die kreisscheibenförmigen Membranschalen (14, 15) eine konzentrische Wellenstruktur aufweisen, um die Nachgiebigkeit der Membranschalen (14, 15) zu erhöhen. - Kraftstoffinjektor nach Anspruch 4, dadurch gekennzeichnet, dass die kreisscheibenförmigen Membranschalen (14, 15) zur Bildung der Membrandose (9) spiegelbildlich zueinander angeordnet sind, sodass die Wellenstruktur der Membranschalen (14, 15) gegeneinander verläuft und die Membrandose (9) eine symmetrische Ausbildung aufweist.
- Kraftstoffinjektor nach Anspruch 4, dadurch gekennzeichnet, dass die kreisscheibenförmigen Membranschalen (14, 15) zur Bildung der Membrandose (9) parallel zueinander angeordnet sind, sodass die Wellenstruktur der Membranschalen (14, 15) gleichgerichtet verläuft und die Membrandose (9) eine asymmetrische Ausbildung aufweist.
- Kraftstoffinjektor nach einem der vorgenannten Ansprüche, dadurch gekennzeichnet, dass die Membrandose (9) mit Helium gefüllt ist und einen Gasdruck aufweist, der größer ist als der Rücklaufdruck in der Rücklaufleitung (8) bzw. in der mit der Rücklaufleitung (8) verbundenen Aussparung (10).
- Kraftstoffinjektor nach einem der vorgenannten Ansprüche, dadurch gekennzeichnet, dass die Membrandose (9) eine Hubbegrenzung (16) umfasst, welche innenseitig in der Membrandose (9) eingebracht ist.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102006027780A DE102006027780A1 (de) | 2006-06-16 | 2006-06-16 | Kraftstoffinjektor |
PCT/EP2007/054160 WO2007144229A1 (de) | 2006-06-16 | 2007-04-27 | Kraftstoffinjektor |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2035686A1 EP2035686A1 (de) | 2009-03-18 |
EP2035686B1 true EP2035686B1 (de) | 2010-12-15 |
Family
ID=38325218
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP07728615A Not-in-force EP2035686B1 (de) | 2006-06-16 | 2007-04-27 | Kraftstoffinjektor |
Country Status (6)
Country | Link |
---|---|
US (1) | US8038083B2 (de) |
EP (1) | EP2035686B1 (de) |
JP (1) | JP4878386B2 (de) |
AT (1) | ATE491884T1 (de) |
DE (2) | DE102006027780A1 (de) |
WO (1) | WO2007144229A1 (de) |
Families Citing this family (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4530053B2 (ja) * | 2008-01-22 | 2010-08-25 | 株式会社デンソー | 燃料ポンプ |
US7520268B1 (en) * | 2008-03-18 | 2009-04-21 | Robert Bosch Gmbh | Fuel rail damping assembly including an insert |
FR2929343A3 (fr) * | 2008-03-31 | 2009-10-02 | Renault Sas | Circuit de retour de carburant pour dispositif d'injection de carburant et dispositif d'injection de carburant associe |
US7900886B2 (en) * | 2008-04-18 | 2011-03-08 | Caterpillar Inc. | Valve assembly having a washer |
EP2385241B1 (de) * | 2010-05-04 | 2013-07-17 | Continental Automotive GmbH | Schwingungsdämpfer |
DE102010029123A1 (de) * | 2010-05-19 | 2011-11-24 | Robert Bosch Gmbh | Kraftstoffinjektor mit hydraulischer Kopplereinheit |
DE102010030626A1 (de) * | 2010-06-29 | 2011-12-29 | Robert Bosch Gmbh | Pulsationsdämpferelement für eine Fluidpumpe und zugehörige Fluidpumpe |
US8727752B2 (en) * | 2010-10-06 | 2014-05-20 | Stanadyne Corporation | Three element diaphragm damper for fuel pump |
DE102011008467B4 (de) * | 2011-01-13 | 2014-01-02 | Continental Automotive Gmbh | Injektor mit Druckausgleichsmitteln |
DE102011100029C5 (de) | 2011-04-29 | 2016-10-13 | Horiba Europe Gmbh | Vorrichtung zum Messen eines Kraftstoffflusses und Kalibriervorrichtung dafür |
DE102011120468A1 (de) * | 2011-12-07 | 2013-06-13 | Andreas Stihl Ag & Co. Kg | Verbrennungsmotor mit Kraftstoffzuführeinrichtung |
JP5821769B2 (ja) * | 2012-04-24 | 2015-11-24 | 株式会社デンソー | ダンパ装置 |
DE102013003104A1 (de) * | 2013-02-25 | 2014-08-28 | L'orange Gmbh | Krafftstoffinjektor |
US20150017040A1 (en) * | 2013-07-12 | 2015-01-15 | Denso Corporation | Pulsation damper and high-pressure pump having the same |
JP5854006B2 (ja) * | 2013-07-12 | 2016-02-09 | 株式会社デンソー | パルセーションダンパ及びそれを備えた高圧ポンプ |
JP5783431B2 (ja) * | 2013-07-12 | 2015-09-24 | 株式会社デンソー | パルセーションダンパ及びそれを備えた高圧ポンプ |
FR3017905B1 (fr) * | 2014-02-24 | 2018-12-07 | Delphi International Operations Luxembourg S.A R.L. | Injecteur de carburant |
JP5892397B2 (ja) * | 2014-10-30 | 2016-03-23 | 株式会社デンソー | パルセーションダンパ |
JP6527689B2 (ja) * | 2014-12-12 | 2019-06-05 | 株式会社不二工機 | ダイヤフラム及びそれを用いたパルセーションダンパ |
DE102015219768A1 (de) * | 2015-10-13 | 2017-04-13 | Continental Automotive Gmbh | Kraftstoffhochdruckpumpe für ein Kraftstoffeinspritzsystem eines Kraftfahrzeugs |
DE102015226024A1 (de) * | 2015-12-18 | 2017-06-22 | Robert Bosch Gmbh | Fluidpumpe, insbesondere Kraftstoff-Hochdruckpumpe |
US20190107167A1 (en) * | 2016-03-28 | 2019-04-11 | Eagle Industry Co., Ltd. | Metal diaphragm damper |
CN111356833B (zh) * | 2017-11-24 | 2022-01-25 | 伊格尔工业股份有限公司 | 金属膜片阻尼器及其制造方法 |
DE102018212090A1 (de) * | 2018-07-19 | 2020-01-23 | Robert Bosch Gmbh | Düsenbaugruppe für ein Kraftstoffeinspritzventil zum Einspritzen eines gasförmigen und/oder flüssigen Kraftstoffs, Kraftstoffeinspritzventil |
DE102018212229A1 (de) * | 2018-07-23 | 2020-01-23 | Continental Automotive Gmbh | Pumpe für ein Kraftfahrzeug, Haltevorrichtung, Baugruppe und Verfahren |
JP7041956B2 (ja) * | 2018-09-20 | 2022-03-25 | 株式会社不二工機 | パルセーションダンパー |
WO2020166440A1 (ja) * | 2019-02-13 | 2020-08-20 | 日立オートモティブシステムズ株式会社 | 金属ダイアフラム、金属ダンパ、及びこれらを備えた燃料ポンプ |
JP7261362B2 (ja) * | 2021-03-09 | 2023-04-19 | 日本発條株式会社 | 脈動減衰部材 |
Family Cites Families (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2936425A1 (de) * | 1979-09-08 | 1981-04-02 | Robert Bosch Gmbh, 7000 Stuttgart | Elektromagnetisch betaetigbares kraftsoffeinspritzventil |
US5520215A (en) * | 1995-08-04 | 1996-05-28 | Handy & Harman Automotive Group, Inc. | Pressure regulator and dampener assembly |
DE29708369U1 (de) * | 1997-05-09 | 1997-07-10 | FEV Motorentechnik GmbH & Co. KG, 52078 Aachen | Steuerbares Einspritzventil für die Kraftstoffeinspritzung an Brennkraftmaschinen |
JP2002529654A (ja) * | 1998-11-10 | 2002-09-10 | ガンサー−ハイドロマグ アーゲー | 内燃機関用燃料噴射バルブ |
GB9906092D0 (en) * | 1999-03-18 | 1999-05-12 | Lucas France | Fuel injector |
US6360963B2 (en) * | 2000-01-12 | 2002-03-26 | Woodward Governor Company | Gaseous fuel injector having high heat tolerance |
EP1132615B1 (de) * | 2000-03-07 | 2006-11-08 | Matsushita Electric Industrial Co., Ltd. | Flüssigkeitsspender |
US6321776B1 (en) * | 2000-04-24 | 2001-11-27 | Wayne L. Pratt | Double diaphragm precision throttling valve |
DE10159003A1 (de) * | 2001-11-30 | 2003-06-18 | Bosch Gmbh Robert | Injektor mit einem Magnetventil zur Steuerung eines Einspritzventils |
JP3823060B2 (ja) * | 2002-03-04 | 2006-09-20 | 株式会社日立製作所 | 高圧燃料供給ポンプ |
EP1411236B1 (de) * | 2002-10-19 | 2012-10-10 | Robert Bosch Gmbh | Vorrichtung zum Dämpfen von Druckpulsationen in einem Fluidsystem, insbesondere in einem Kraftstoffsystem einer Brennkraftmaschine |
US7322488B2 (en) * | 2003-07-22 | 2008-01-29 | Flexcon Industries Trust | Expansion tank with double diaphragm |
JP4036153B2 (ja) * | 2003-07-22 | 2008-01-23 | 株式会社日立製作所 | ダンパ機構及び高圧燃料供給ポンプ |
US7303091B2 (en) * | 2003-07-22 | 2007-12-04 | Flexcon Industries | Expansion tank with double diaphragm |
JP2005076571A (ja) * | 2003-09-02 | 2005-03-24 | Nippon Soken Inc | インジェクタ |
US7165535B2 (en) * | 2004-05-27 | 2007-01-23 | Delphi Technologies, Inc. | Fuel rail pulse damper with improved end crimp |
DE102004034672A1 (de) | 2004-07-17 | 2006-02-16 | Robert Bosch Gmbh | Kraftstoffeinspritzeinrichtung für eine Brennkraftmaschine |
JP4686501B2 (ja) * | 2007-05-21 | 2011-05-25 | 日立オートモティブシステムズ株式会社 | 液体脈動ダンパ機構、および液体脈動ダンパ機構を備えた高圧燃料供給ポンプ |
JP4530053B2 (ja) * | 2008-01-22 | 2010-08-25 | 株式会社デンソー | 燃料ポンプ |
-
2006
- 2006-06-16 DE DE102006027780A patent/DE102006027780A1/de not_active Withdrawn
-
2007
- 2007-04-27 US US12/304,599 patent/US8038083B2/en not_active Expired - Fee Related
- 2007-04-27 DE DE502007005966T patent/DE502007005966D1/de active Active
- 2007-04-27 AT AT07728615T patent/ATE491884T1/de active
- 2007-04-27 JP JP2009514725A patent/JP4878386B2/ja not_active Expired - Fee Related
- 2007-04-27 WO PCT/EP2007/054160 patent/WO2007144229A1/de active Application Filing
- 2007-04-27 EP EP07728615A patent/EP2035686B1/de not_active Not-in-force
Also Published As
Publication number | Publication date |
---|---|
JP4878386B2 (ja) | 2012-02-15 |
WO2007144229A1 (de) | 2007-12-21 |
DE502007005966D1 (de) | 2011-01-27 |
US8038083B2 (en) | 2011-10-18 |
ATE491884T1 (de) | 2011-01-15 |
DE102006027780A1 (de) | 2007-12-20 |
US20090127356A1 (en) | 2009-05-21 |
EP2035686A1 (de) | 2009-03-18 |
JP2009540206A (ja) | 2009-11-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2035686B1 (de) | Kraftstoffinjektor | |
EP2273115B1 (de) | Fluidpumpe, insbesondere Kraftstoffhochdruckpumpe, mit Druckdämpfer | |
EP1364114B1 (de) | Fluiddosiervorrichtung mit drosselstelle | |
EP1046809B1 (de) | Fluiddosiervorrichtung | |
DE60129830T2 (de) | Ausgleichsvorrichtung für ein einspritzventil | |
EP2394049B1 (de) | Brennstoffeinspritzventil für verbrennungskraftmaschinen | |
DE112010002435T5 (de) | Piezoelektrische direkt arbeitende Kraftstoff-Einspritzdüse mit Hydraulikanschluß | |
EP1411236A2 (de) | Vorrichtung zum Dämpfen von Druckpulsationen in einem Fluidsystem, insbesondere in einem Kraftstoffsystem einer Brennkraftmaschine | |
EP1129285B1 (de) | Kraftstoffhochdruckspeicher | |
DE102013107275A1 (de) | Gedämpftes Kraftstoffzuführsystem | |
WO2017148661A1 (de) | Dämpferkapsel, druckpulsationsdämpfer und kraftstoffhochdruckpumpe | |
DE102004002489B4 (de) | Fluidpumpe, insbesondere Kraftstoff-Hochdruckpumpe | |
WO2000032924A1 (de) | Flachrohrdruckdämpfer zur dämpfung von flüssigkeits-druckschwingungen in flüssigkeitsleitungen | |
DE602004002969T2 (de) | Dämpfer für Common Rail Kraftstoffverteiler | |
EP1403509A2 (de) | Druckbegrenzungseinrichtung sowie Kraftstoffsystem mit einer solchen Druckbegrenzungseinrichtung | |
DE19710891A1 (de) | Druckventil | |
EP1382838B1 (de) | Brennstoffeinspritzventil | |
WO2007012510A1 (de) | Kraftstoff-einspritzvorrichtung für eine brennkraftmaschine mit kraftstoff-direkteinspritzung | |
EP1685323B1 (de) | Vorrichtung zum dämpfen von druckstössen | |
EP2329132B1 (de) | Brennstoffeinspritzventil | |
DE10217594A1 (de) | Brennstoffeinspritzventil | |
DE19928916B4 (de) | Brennstoffeinspritzventil | |
DE60311358T2 (de) | Membrananordnung mit festem Anschlag für Brennstoffdruckregler | |
DE10054182A1 (de) | Fluiddosiervorrichtung mit Drosselstelle | |
EP1208321B1 (de) | Ventil zum steuern von flüssigkeiten |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20090116 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA HR MK RS |
|
17Q | First examination report despatched |
Effective date: 20091109 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
DAX | Request for extension of the european patent (deleted) | ||
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REF | Corresponds to: |
Ref document number: 502007005966 Country of ref document: DE Date of ref document: 20110127 Kind code of ref document: P |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: VDEP Effective date: 20101215 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20101215 |
|
LTIE | Lt: invalidation of european patent or patent extension |
Effective date: 20101215 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20101215 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20101215 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110315 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20101215 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20101215 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20101215 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20101215 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FD4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20101215 Ref country code: IE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20101215 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110415 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110316 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110415 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20101215 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110326 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20101215 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20101215 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20101215 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
BERE | Be: lapsed |
Owner name: ROBERT BOSCH G.M.B.H. Effective date: 20110430 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20101215 |
|
26N | No opposition filed |
Effective date: 20110916 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110430 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20110427 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20101215 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20101215 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502007005966 Country of ref document: DE Effective date: 20110916 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110430 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110430 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110430 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110427 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110427 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 491884 Country of ref document: AT Kind code of ref document: T Effective date: 20120427 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120427 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20101215 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20101215 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20140626 Year of fee payment: 8 Ref country code: FR Payment date: 20140416 Year of fee payment: 8 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 502007005966 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20151103 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20151231 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150430 |