EP1812159A2 - Katalysator zur herstellung von kohlenstoffnanoröhrchen durch zersetzung von gasförmigen kohlenstoffverbindungen an einem heterogenen katalysator - Google Patents
Katalysator zur herstellung von kohlenstoffnanoröhrchen durch zersetzung von gasförmigen kohlenstoffverbindungen an einem heterogenen katalysatorInfo
- Publication number
- EP1812159A2 EP1812159A2 EP05816390A EP05816390A EP1812159A2 EP 1812159 A2 EP1812159 A2 EP 1812159A2 EP 05816390 A EP05816390 A EP 05816390A EP 05816390 A EP05816390 A EP 05816390A EP 1812159 A2 EP1812159 A2 EP 1812159A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- catalyst
- carbon nanotubes
- solution
- deionized water
- carbon
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
- 239000003054 catalyst Substances 0.000 title claims abstract description 121
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title claims abstract description 68
- 239000002041 carbon nanotube Substances 0.000 title claims abstract description 46
- 229910021393 carbon nanotube Inorganic materials 0.000 title claims abstract description 45
- 239000002638 heterogeneous catalyst Substances 0.000 title claims abstract description 8
- 238000000354 decomposition reaction Methods 0.000 title abstract description 7
- 150000001722 carbon compounds Chemical class 0.000 title description 2
- 238000004519 manufacturing process Methods 0.000 claims abstract description 26
- 229930195733 hydrocarbon Natural products 0.000 claims abstract description 17
- 150000002430 hydrocarbons Chemical group 0.000 claims abstract description 17
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 16
- 239000012876 carrier material Substances 0.000 claims abstract description 7
- 238000000034 method Methods 0.000 claims description 33
- 239000000203 mixture Substances 0.000 claims description 28
- 238000006243 chemical reaction Methods 0.000 claims description 20
- 230000008569 process Effects 0.000 claims description 20
- 239000007789 gas Substances 0.000 claims description 19
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 9
- 239000001257 hydrogen Substances 0.000 claims description 9
- 229910052739 hydrogen Inorganic materials 0.000 claims description 9
- 238000002360 preparation method Methods 0.000 claims description 8
- 239000002131 composite material Substances 0.000 claims description 5
- 239000000126 substance Substances 0.000 claims description 5
- 150000001336 alkenes Chemical class 0.000 claims description 4
- 238000004140 cleaning Methods 0.000 claims description 3
- 238000000576 coating method Methods 0.000 claims description 3
- 230000002829 reductive effect Effects 0.000 claims description 3
- 239000007858 starting material Substances 0.000 claims description 3
- 239000004215 Carbon black (E152) Substances 0.000 claims description 2
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims description 2
- 239000003990 capacitor Substances 0.000 claims description 2
- 239000000919 ceramic Substances 0.000 claims description 2
- 230000005669 field effect Effects 0.000 claims description 2
- 239000000446 fuel Substances 0.000 claims description 2
- 229910052744 lithium Inorganic materials 0.000 claims description 2
- 239000012528 membrane Substances 0.000 claims description 2
- 238000003860 storage Methods 0.000 claims description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 claims 1
- 239000003550 marker Substances 0.000 claims 1
- 239000002071 nanotube Substances 0.000 abstract description 11
- 229910052750 molybdenum Inorganic materials 0.000 abstract description 9
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 abstract description 6
- 239000011733 molybdenum Substances 0.000 abstract description 6
- 239000000243 solution Substances 0.000 description 107
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 82
- 239000008367 deionised water Substances 0.000 description 57
- 229910021641 deionized water Inorganic materials 0.000 description 57
- 239000007787 solid Substances 0.000 description 43
- 238000003756 stirring Methods 0.000 description 38
- 239000011572 manganese Substances 0.000 description 32
- 229910052751 metal Inorganic materials 0.000 description 31
- 239000002184 metal Substances 0.000 description 30
- 239000000463 material Substances 0.000 description 27
- 229910052799 carbon Inorganic materials 0.000 description 22
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 21
- 238000001354 calcination Methods 0.000 description 20
- 150000002739 metals Chemical class 0.000 description 19
- 239000012065 filter cake Substances 0.000 description 13
- 229910052742 iron Inorganic materials 0.000 description 12
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 10
- 229910052759 nickel Inorganic materials 0.000 description 9
- 239000002245 particle Substances 0.000 description 9
- 238000000746 purification Methods 0.000 description 9
- 229910021094 Co(NO3)2-6H2O Inorganic materials 0.000 description 8
- 230000008021 deposition Effects 0.000 description 8
- 230000015572 biosynthetic process Effects 0.000 description 7
- 238000000975 co-precipitation Methods 0.000 description 7
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 7
- ZZBAGJPKGRJIJH-UHFFFAOYSA-N 7h-purine-2-carbaldehyde Chemical compound O=CC1=NC=C2NC=NC2=N1 ZZBAGJPKGRJIJH-UHFFFAOYSA-N 0.000 description 5
- 229910016870 Fe(NO3)3-9H2O Inorganic materials 0.000 description 5
- 125000001931 aliphatic group Chemical group 0.000 description 5
- 229910003481 amorphous carbon Inorganic materials 0.000 description 5
- 230000003197 catalytic effect Effects 0.000 description 5
- 238000005470 impregnation Methods 0.000 description 5
- 239000002086 nanomaterial Substances 0.000 description 5
- 238000001556 precipitation Methods 0.000 description 5
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 239000000969 carrier Substances 0.000 description 4
- 238000006555 catalytic reaction Methods 0.000 description 4
- 239000006185 dispersion Substances 0.000 description 4
- 150000004679 hydroxides Chemical class 0.000 description 4
- 239000011261 inert gas Substances 0.000 description 4
- 238000011068 loading method Methods 0.000 description 4
- 150000002736 metal compounds Chemical class 0.000 description 4
- 229920000642 polymer Polymers 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- 239000002904 solvent Substances 0.000 description 4
- 239000000725 suspension Substances 0.000 description 4
- 238000003786 synthesis reaction Methods 0.000 description 4
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 239000013543 active substance Substances 0.000 description 3
- 150000001298 alcohols Chemical class 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 229910052804 chromium Inorganic materials 0.000 description 3
- 230000003750 conditioning effect Effects 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 238000000608 laser ablation Methods 0.000 description 3
- 239000000376 reactant Substances 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 229910052720 vanadium Inorganic materials 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 229920000049 Carbon (fiber) Polymers 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical class [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 2
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 description 2
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 2
- 239000012298 atmosphere Substances 0.000 description 2
- 239000002585 base Substances 0.000 description 2
- 239000001273 butane Substances 0.000 description 2
- 239000004917 carbon fiber Substances 0.000 description 2
- 229910002090 carbon oxide Inorganic materials 0.000 description 2
- 238000005119 centrifugation Methods 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 230000009849 deactivation Effects 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 125000005842 heteroatom Chemical group 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 2
- OFBQJSOFQDEBGM-UHFFFAOYSA-N n-pentane Natural products CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- 229910052763 palladium Inorganic materials 0.000 description 2
- 230000001376 precipitating effect Effects 0.000 description 2
- 239000010453 quartz Substances 0.000 description 2
- 239000002109 single walled nanotube Substances 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 229910052718 tin Inorganic materials 0.000 description 2
- 229910052723 transition metal Inorganic materials 0.000 description 2
- 150000003624 transition metals Chemical class 0.000 description 2
- 238000011144 upstream manufacturing Methods 0.000 description 2
- 238000010626 work up procedure Methods 0.000 description 2
- VXNZUUAINFGPBY-UHFFFAOYSA-N 1-Butene Chemical compound CCC=C VXNZUUAINFGPBY-UHFFFAOYSA-N 0.000 description 1
- USFZMSVCRYTOJT-UHFFFAOYSA-N Ammonium acetate Chemical compound N.CC(O)=O USFZMSVCRYTOJT-UHFFFAOYSA-N 0.000 description 1
- 239000005695 Ammonium acetate Substances 0.000 description 1
- ATRRKUHOCOJYRX-UHFFFAOYSA-N Ammonium bicarbonate Chemical compound [NH4+].OC([O-])=O ATRRKUHOCOJYRX-UHFFFAOYSA-N 0.000 description 1
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- 229910000975 Carbon steel Inorganic materials 0.000 description 1
- 229910052684 Cerium Inorganic materials 0.000 description 1
- 229910017767 Cu—Al Inorganic materials 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- 229910019427 Mg(NO3)2-6H2O Inorganic materials 0.000 description 1
- 229910018669 Mn—Co Inorganic materials 0.000 description 1
- 229910003310 Ni-Al Inorganic materials 0.000 description 1
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 1
- 150000001242 acetic acid derivatives Chemical class 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 239000011149 active material Substances 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 150000001299 aldehydes Chemical class 0.000 description 1
- 229910001854 alkali hydroxide Inorganic materials 0.000 description 1
- 229910000288 alkali metal carbonate Inorganic materials 0.000 description 1
- 150000008041 alkali metal carbonates Chemical class 0.000 description 1
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 229940043376 ammonium acetate Drugs 0.000 description 1
- 235000019257 ammonium acetate Nutrition 0.000 description 1
- 239000001099 ammonium carbonate Substances 0.000 description 1
- 235000012501 ammonium carbonate Nutrition 0.000 description 1
- 239000000908 ammonium hydroxide Substances 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 150000001491 aromatic compounds Chemical class 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- IAQRGUVFOMOMEM-UHFFFAOYSA-N butene Natural products CC=CC IAQRGUVFOMOMEM-UHFFFAOYSA-N 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 239000004202 carbamide Substances 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000010962 carbon steel Substances 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 1
- 150000001735 carboxylic acids Chemical class 0.000 description 1
- 238000003421 catalytic decomposition reaction Methods 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 150000003841 chloride salts Chemical class 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 230000001427 coherent effect Effects 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 238000004146 energy storage Methods 0.000 description 1
- -1 ethylene, propylene, butene Chemical class 0.000 description 1
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 description 1
- 239000003063 flame retardant Substances 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000007770 graphite material Substances 0.000 description 1
- 238000007210 heterogeneous catalysis Methods 0.000 description 1
- 238000010978 in-process monitoring Methods 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 239000003701 inert diluent Substances 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 239000002563 ionic surfactant Substances 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 239000002905 metal composite material Substances 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 1
- 150000002823 nitrates Chemical class 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 229910052756 noble gas Inorganic materials 0.000 description 1
- 150000002835 noble gases Chemical class 0.000 description 1
- 239000002736 nonionic surfactant Substances 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- KDLHZDBZIXYQEI-UHFFFAOYSA-N palladium Substances [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 239000011164 primary particle Substances 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- 238000000197 pyrolysis Methods 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 239000012495 reaction gas Substances 0.000 description 1
- 230000007420 reactivation Effects 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 238000013341 scale-up Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000011949 solid catalyst Substances 0.000 description 1
- 239000004071 soot Substances 0.000 description 1
- 238000007725 thermal activation Methods 0.000 description 1
- 238000009997 thermal pre-treatment Methods 0.000 description 1
- 238000007669 thermal treatment Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
- 230000004584 weight gain Effects 0.000 description 1
- 235000019786 weight gain Nutrition 0.000 description 1
- 239000010457 zeolite Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/15—Nano-sized carbon materials
- C01B32/158—Carbon nanotubes
- C01B32/16—Preparation
- C01B32/162—Preparation characterised by catalysts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J21/00—Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
- B01J21/10—Magnesium; Oxides or hydroxides thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/76—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
- B01J23/84—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
- B01J23/889—Manganese, technetium or rhenium
- B01J23/8892—Manganese
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/76—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
- B01J23/84—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
- B01J23/889—Manganese, technetium or rhenium
- B01J23/8898—Manganese, technetium or rhenium containing also molybdenum
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82B—NANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
- B82B3/00—Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
- B82B3/0004—Apparatus specially adapted for the manufacture or treatment of nanostructural devices or systems or methods for manufacturing the same
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y10/00—Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F9/00—Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
- D01F9/08—Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
- D01F9/12—Carbon filaments; Apparatus specially adapted for the manufacture thereof
- D01F9/127—Carbon filaments; Apparatus specially adapted for the manufacture thereof by thermal decomposition of hydrocarbon gases or vapours or other carbon-containing compounds in the form of gas or vapour, e.g. carbon monoxide, alcohols
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/20—Carbon compounds, e.g. carbon nanotubes or fullerenes
- H10K85/221—Carbon nanotubes
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/615—Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2202/00—Structure or properties of carbon nanotubes
- C01B2202/20—Nanotubes characterized by their properties
- C01B2202/34—Length
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2202/00—Structure or properties of carbon nanotubes
- C01B2202/20—Nanotubes characterized by their properties
- C01B2202/36—Diameter
Definitions
- the present invention relates to a process for the preparation of co-substance tubes, in particular those having a diameter of 3-150 nm and an aspect ratio longer diameter (L: D)> 100 by decomposition of hydrocarbons on a heterogeneous catalyst of Mn, Co, preferably also molybdenum, and contains an inert carrier material and the catalyst and the carbon nanotubes themselves and their use
- Carbon steel tubes are mainly cylindrical carbon tubes with a diameter between 3 and 80 nm, the length is a multiple, at least 100 times, of the diameter. These tubes consist of layers of ordered carbon atoms and have a different nucleus in morphology. These carbon nanotubes are also referred to as “carbon fibrils” or “hollow carbon fibers”, for example.
- the described carbon fiber tubes because of their dimensions and their particular properties, have a technical significance for the production of composite materials. Significant further possibilities lie in electronics, energy and other applications.
- Carbon nanotubes are a well known material for a long time. Although Iijima in 1991 (S. hjima, Nature 354, 56-58, 1991) is generally referred to as the discoverer of nanotubes, these materials, particularly fibrous graphite materials having multiple layers of graphite, have been known for some time. For example, the deposition of very fine fibrous carbon from the catalytic decomposition of hydrocarbons has already been described in the 1970s and early 1980s (GB 1469930A1, 1977 and EP 56004 A2, 1982, Tates and Baker). However, carbon-based carbonyls based on short-chain hydrocarbons are no longer characterized in terms of their diameter.
- the deposition on supported catalyst particles In the catalytic process, a distinction can be made between the deposition on supported catalyst particles and the deposition on in-situ formed metal centers with diameters in the nanometer range (so-called flow processes).
- CCVD Catalytic Carbon Vapor Deposition
- the catalysts comprise metals, metal oxides or decomposable or reducible metal components.
- the metals known in the art are Fe, Mo, Ni, V, Mn, Sn, Co, Cu and others.
- the individual metals usually have a tendency to form nanotubes, according to the prior art high yields and low proportions of amorphous carbons are advantageously achieved with metal catalysts which contain a combination of the abovementioned metals.
- Particularly advantageous systems are based on combinations containing Fe or Ni in the prior art.
- the formation of coherent nanotubes and the properties of the tubes formed are complex depending on the metal component used as catalyst or a combination of several metal components, the carrier material used and the interaction between catalyst and carrier, the educt gas and its partial pressure, an admixture of hydrogen or other gases, the Mattersterrperatur and the residence time or the reactor used. Optimization represents a special challenge for a technical process.
- the metal component used in the CCVD and referred to as a catalyst is consumed in the course of the synthesis process. This consumption is due to deactivation of the metal component, e.g. due to deposition of carbon on the entire particle, which leads to the complete coverage of the particle (this is known to the skilled person as "Encapping".) A reactivation is usually not possible or not economically meaningful
- the catalyst comprises carbon nanotubes per gram of catalyst, in which case the catalyst comprises the entirety of support and catalyst used. Owing to the described consumption of catalyst, a high yield of carbon nanotubes, based on the catalyst used, is an essential requirement for catalyst and process.
- Ni-based systems are described as being active in the decomposition of methane to carbon nanomaterials, for example, Geus et al., Chem DeJong in a review article (KP De Jong and JW Geus in Catal. Rev. Sci. Eng., 42 (4), 2000, pages 481-5 It is possible to use both pure metals and combinations of various metals, for example applications WO 03/004410 (Nanocyl), US Pat. No.
- EP 1 375 424 A1 describes a technical device for the production of carbon nanomaterials and also a very general catalyst composition.
- the catalyst composition is indicated by the presence of the elements Fe, Ni or Co.
- it is not called a precise, particularly suitable composition in a work by Cassell et. al. describe various catalysts for the production of single wall carbon nanotubes based on iron / molybdenum systems.
- porous materials eg silica, alumina or zeolites
- porous materials eg silica, alumina or zeolites
- these carriers must be prepared separately and the Aknvkompone ⁇ te be applied consisting of one or more metal oxides or reducible metal compounds on these carriers.
- the amount of active components which can be applied here is limited, since only small loadings with an active component lead to a high dispersion and small primary particle diameters and thus enable the formation of carbon nanotubes (G. Ertl, H. Knoeginger, J. Weitkamp, Handbook of Heterogeneous Catalysis, VCH , Weinheim, Germany, 1997, Vol., Pp. 191 f, KP De Jong, JW Geus, CataL Rev.
- EP 1368505A1 (Electrovac) describes coating a substrate with a Ni or Co based catalyst.
- the catalyst is subjected to a thermal activation phase in a reducing atmosphere in the process which is only to be carried out batchwise, which means an additional outlay.
- WO 200006311 A1 describes a method for producing nanotube furnaces in which the catalyst may include Fe, Co, Al, Ni, Mn, Pd, Cr and mixtures thereof.
- the catalysts are not further described and particularly suitable combinations of these elements is not indicated.
- US 2003/0148097 A1 describes a method for the production of spiral or twisted nanotubes, wherein the catalyst influences the shape of the product.
- the catalyst includes one or more of Fe, Co, Al, Ni, Mn, Pd, Cr, or these elements or mixtures thereof combined with other elements or oxides. Special combinations of elements from this group to improve the yield is not indicated.
- the active components are preferably applied by impregnation and impregnation methods.
- the amount of catalyst loading is limited with simultaneously high dispersion.
- very high dispersions or small diameters of the active catalyst components are advantageous for the growth of carbon nanotubes.
- Low active component diameters are achieved in the case of impregnations or precipitations on catalyst supports only at low loadings and high dispersion.
- the performance of the catalysts used is severely limited in US 6,358,878 Bl typical yields in the Magnitude of the 20-25 times the used catalyst mass called. Higher yields are not disclosed.
- the content of catalyst and carrier residues is so high that these residues must be removed for further use. This results in an increased technical complexity, which entails several further process steps Furthermore, the work-up and purification may affect the morphology and properties of the carbon nanotubes depending on the chosen procedure.
- the object of the present invention is now to develop a catalyst and a process for the preparation of the above-described carbon nanotubes, which enable the production of multi-layer carbon nanotubes with diameters of from 3 to 200 nm, preferably from 3 to 150 ⁇ m more preferably 3-60 nm and an aspect ratio of L: D> 100, preferably> 500, more preferably> 3000 in a technically efficient manner, ie in particular the highest possible educt conversions and a low addition of catalyst.
- the invention therefore provides a catalyst and a process for the deposition of carbon nanotubes using such a catalyst from the gas phase on heterogeneous catalysts with the basic components Mn and Co, preferably Mn and Co in similar proportions, preferably in the additional presence of Mo and optionally further transition metals, being used as reactant under reaction conditions gaseous hydrocarbons.
- the carbon nanotubes thereby surprisingly grow in the form of an "expanding universe", wherein the catalyst particles contained in the catalyst agglomerates pass through the randomly growing nanotubes are driven apart and a loose material with a bulk density ⁇ 500 kg-m "3 is formed.
- the catalyst according to the invention is based on the components manganese and cobalt.
- an addition of molybdenum In addition to the base components, the addition of one or more metal components may occur. Examples of the latter are all transition metals, preferably on the elements Fe, Ni, Cu, W, V, Cr, Sn based metal components.
- the catalyst according to the invention preferably contains 2-98 mol% of Mn and 2-98 mol% of Co, based on the content of active components in metallic form. Particularly preferred is a content of 10-90 mol .-% Mn and 10-90 mol% Co, more preferably a content of 25-75 mol .-% Mn and 25-75 mol .-% Co.
- the sum of Shares of Mn and Co, or Mn, Co and Mo does not necessarily give 100%, insofar as further elements, as mentioned above, are added. Preference is given to an addition of 0.2-50% of one or more further metal components. Particularly preferred is a content of 10-90 mol .-% Mn, 10-90 mol .-% Co and 0-10 mol .-% molybdenum. Very particular preference is given to a content of 25-75 mol% of Mn, 25-75 mol% of Co and 0-25 mol% of molybdenum.
- catalysts which have similar mass fractions Mn and Co.
- the catalyst according to the invention can be prepared in various ways. Conceivable is the precipitation onto support materials, the impregnation of support materials, the co-precipitation of the catalytically active substances in the presence of a carrier, a co-precipitation of the catalytically active metal compounds together with the carrier material or a co-precipitation of the catalytically active metal compounds together with an inert component, in further steps the catalyst treatment forms a carrier material.
- starting compounds can be used different starting compounds, provided that they are soluble in the solvent used, or in the case of a co-precipitation or co-precipitation can be liked together.
- these starting compounds are acetates, nitrates, chlorides and other soluble compounds.
- the precipitate may e.g. by a change in the temperature, the concentration (also by evaporation of the solvent), by a change in the pH and / or by the addition of a precipitating agent or combinations thereof.
- Preference is given to light alcohols and / or water as solvent. Particularly preferred are aqueous synthesis routes.
- the co-precipitation of the components in particular from aqueous solution, for example with the addition of ammonium carbonate, ammonium hydroxide, urea, alkali metal Carbonates and hydroxides.
- the precipitation can be carried out either batchwise or continuously.
- surface-active substances for example ionic or nonionic surfactants or carboxylic acids.
- the resulting in the form of a solid catalyst can be separated from the educt solutions by methods known in the art such as filtration, centrifugation, evaporation and concentration. Preference is given to centrifugation and filtration. The resulting solid may be further washed or used further directly as received.
- the catalyst obtained can be dried.
- further conditioning of the catalysts may be advantageous.
- This conditioning can be the calcination and thermal treatment as well as the treatment with reactive atmospheres or eg water vapor with the aim of improving the catalytic properties.
- Preference is given to a thermal pretreatment in an oxidizing atmosphere at temperatures between 300 ° C. and 900 ° C.
- the conditioning upstream or downstream can be a shaping and / or classification.
- the pretreatment of the catalyst to be used industrially with a reactive gas such as H 2 , hydrocarbons, CO or with mixtures of said gases may be advantageous.
- Such a pretreatment can change the metal compounds contained in their oxidation state, but also influence the morphology of the catalyst structure.
- the process according to the invention can be carried out in various reactor types. Examples include solid-bed reactors, tubular reactors, rotary tubular reactors, moving bed reactors, reactors with a blaseribüdenden, turbulent or irradiated fluidized bed, called internally or externally circulating fluidized beds. It is also possible to place the catalyst in a particle-filled reactor falling, for example, under the above classes. These particles may be inert particles and / or consist entirely or partially of a further catalytically active material. These particles can also be agglomerates of carbon nanotubes.
- the process can be carried out, for example, continuously or discontinuously, with reference continuously or discontinuously to both the supply of the catalyst and the removal of the carbon nanotubes formed with the spent catalyst.
- Suitable starting gases are light hydrocarbons such as aliphatics and olefins.
- alcohols, carbon oxides, in particular CO aromatic compounds with and without Heteroatoms and functionalized hydrocarbons such as aldehydes or ketones are used, as long as they are decomposed on the catalyst.
- mixtures of the abovementioned hydrocarbons are, for example, methane, ethane, propane, butane or higher aliphatics, ethylene, propylene, butene, butadiene or higher olefins or aromatic hydrocarbons or carbon oxides or alcohols or hydrocarbons with heteroatoms.
- the carbon donating educt may be supplied in gaseous form or vaporized in the reaction space or a suitable upstream apparatus. Hydrogen or an inert gas, for example noble gases or nitrogen, may be added to the educt gas. It is possible to carry out the process according to the invention for the production of carbon nanotubes with the addition of an inert gas or a mixture of several inert gases with and without hydrogen in any desired combination.
- the reaction gas preferably consists of carbon support, hydrogen and optionally an inert component for the adjustment of advantageous reactant partial pressures. It is also conceivable to add a component which is inert in the reaction as an internal standard for the analysis of the educt or product gas or as a detection aid in process monitoring.
- the preparation can be carried out at pressures above and below the atmospheric pressure.
- the process can be carried out at pressures of from 0.05 bar to 200 bar, pressures of from 0.1 to 100 bar are preferred, and pressures of from 0.2 to 10 bar are particularly preferred.
- the temperature can be varied in the temperature range from 300 0 C to 1600 0 C. However, it must be so high that the deposition of carbon by decomposition takes place with sufficient speed and must not lead to a significant self-pyrolysis of the hydrocarbon in the gas phase. This would result in a high level of non-preferred amorphous carbon in the resulting material.
- the advantageous temperature range is between 500 ° C. and 800 ° C.
- Preferred is a decomposition temperature of 550 ° C. to 750 ° C.
- the catalyst can be introduced batchwise or continuously into the reaction space.
- the catalyst may be reduced as described before it is introduced into the actual reaction space, added in an oxidic form of the mainly catalytically active metals or even in the form of the precipitated hydroxides or carbonates.
- the carbon nanotubes produced in this way can usually, to the extent permitted by the application, be used in the end product without prior workup because of the low catalyst content.
- the materials can be purified, for example by chemical dissolution of the catalyst and carrier residues, by oxidation of the amounts of amorphous carbon formed in very small amounts or by a thermal aftertreatment in an inert or reactive gas. It is possible to chemically functionalize the carbon nanotubes produced in order, for example, to obtain improved incorporation into a matrix or to tailor the surface properties to the desired application.
- the carbon nanotubes produced according to the invention are suitable for use as additives in polymers, in particular for mechanical reinforcement and for increasing the electrical conductivity.
- the carbon nanotubes produced can also be used as material for gas and energy storage, for coloring and as flame retardants. Due to the good electrical conductivity, the carbon nanotubes produced according to the invention can be used as electrode material or for the production of conductor tracks and conductive structures. It is also possible to use the Kohlenstoffhan ⁇ rschreibchen invention produced as emitters in displays.
- the carbon nanotubes are preferably used in polymer composite materials, ceramic or metal composite materials for improving the electrical or thermal conductivity and mechanical properties, for the production of conductive coatings and composite materials, as a dye, in batteries, capacitors, displays (eg Fiat Screen Displays) or light sources Field Effect Transistor, as Speicher ⁇ medium eg for hydrogen or lithium, in membranes e.g. for the purification of gases, as catalyst or as carrier material e.g. for catalytically active components in chemical reactions, in fuel cells, in the medical field e.g. as a scaffold for growth control of cellular tissue, in the diagnostic field e.g. used as markers, as well as in chemical and physical analysis (for example in atomic force microscopes).
- polymer composite materials ceramic or metal composite materials for improving the electrical or thermal conductivity and mechanical properties, for the production of conductive coatings and composite materials, as a dye, in batteries, capacitors, displays (eg Fiat Screen Displays) or light sources Field Effect Transistor, as Speicher ⁇ medium eg for
- Example 1 Preparation of the catalysts with different stoichiometry, solvent, precipitating agent, temperature
- Catalysts were preferably prepared by a co-precipitation.
- Catalyst 1 (MCN0062_23Mn_27Co_llMo_39Al): Three solutions were prepared of 2.5 g (NIM) 6 Mo 7 O 24 • 4H 2 O in 50 ml deionized water, 17.8 g Co (NO 3 ) 2 6 H 2 O in 50 ml of deionized water and 15.4 g of Mn (NO 3 ) 2 • 4H 2 O in 50 ml of deionized water. The solutions were combined at room temperature and stirred for 5 minutes. The obtained non-cloudy mixture was added a solution of 50.0 g A1 (NO 3) 3 • 9H 2 O in 35 ml of water and stirred. Purification was achieved by the dropwise addition of dilute HNO 3 .
- Catalyst 2 (MCN0071_20Mn_21Co_20Mo_39Al): Three solutions were prepared from 6.8 g (NIM) 6 Mo 7 O 24 • 4H 2 O in 50 ml deionized water, 19.8 g Co (NO 3 ) 2 -6H 2 O in 50 ml of deionized water and 16.8 g of Mn (NO 3 ) 2 • 4H 2 O in 50 ml of deionized water. The solutions were combined at room temperature and stirred for 5 minutes. The obtained turbid mixture was combined with a solution of 50.0 g A1 (NO3) 3 • 9H2O in 35 ml of water and stirred. The solution thus obtained is further referred to as solution A.
- Catalyst 3 (MCN0068_5Mn_45Co_llMo_39AI): Three solutions were prepared from 2.5 g (NEM) 6 Mo 7 O 24 • 4H 2 O in 50 ml deionized water, 34.5 g Co (NO 3 ) 2 -6H 2 O in 50 ml of deionized water and 3.2 g of Mn (NO 3 ) 2 • 4H 2 O. The solutions were combined at room temperature and stirred for 5 minutes. The obtained turbid mixture was combined with a solution of 50.0 g A1 (NO3) 3 • 9H2O in 35 ml of water and stirred. The solution thus obtained is further referred to as solution A.
- Catalyst 4 (MCN0070_35Mn_15Co_llMo_39Al): Three solutions of 2.5 g (Nm) of 6 Mo 7 O 24 • 4H 2 O in 50 ml of deionized water, 11 g of CoOFO 3 ) 2 -6H 2 O in 100 ml of deionized water were prepared and 24 g of Mn (NO 3 ) 2 • 4H 2 O in 10 ml of deionized water. The solutions were combined at room temperature and stirred for 5 minutes. The resulting non-turbid mixture was combined with a solution of 50.0 g of A1 (NO 3 ) 3 • 9H 2 O in 35 ml of water and stirred. The solution thus obtained is further referred to as solution A.
- Catalyst 5 (MCN0074_29Mn_3Co_39AI): Two solutions were prepared from 29.5 g Co (NO 3 ) 2 -6H 2 O in 50 mL deionized water and 25.1 g Mn (NO 3 ) 2 • 4H 2 O in 50 mL deionized water. The solutions were combined at room temperature and stirred for 5 minutes. The non-turbid mixture obtained was combined with a solution of 50.0 g A1 (NO 3) 3 • 9H 2 O in 35 ml water and stirred. The solution thus obtained is further referred to as solution A.
- Catalyst 6 (MCN0072_23Mn_27Co_llMo_39Mg): Three solutions were prepared from 2.5 g (NH 4) 6 Mo 7 O 2 4 • 4H 2 O in 50 mL deionized water, 17.8 g C ⁇ (NO 3 ) 2 -6 H 2 O in 100 ml deionized water and 15.4 g Mn (NO 3 ) 2 • 4H 2 O in 50 ml deionized water. The solutions were combined at room temperature and stirred for 5 minutes. The non-cloudy mixture obtained was combined with a solution of 41.0 g of Mg (NO 2 ) 2 • 6H 2 O in 35 ml of water and stirred. The solution thus obtained is further referred to as solution A.
- Catalyst 7 (MCN0076_28Mn_33Co_39Mg): Two solutions were prepared from 21.8 g Co (NO 3 ) 2 -6H 2 O in 50 mL deionized water and 18.4 g Mn (NO 3 ) 2 • 4H 2 O in 50 mL deionized water. The solutions were combined at room temperature and stirred for 5 minutes. The non-cloudy mixture obtained was combined with a solution of 41.0 g of Mg (NO 2 ) 6H 2 O in 35 ml of water and stirred, the solution thus obtained being further referred to as solution A.
- Catalyst 8 (MCN0079_28Mn_33Co_39Mg): Two solutions were prepared from 21.8 g Co (NO 3 ) 2 H 2 O in 50 mL deionized water and 18.4 g Mn (NO 3 ) 2 • 4H 2 O in 50 mL deionized Water. The solutions were combined at room temperature and stirred for 5 minutes. The non-cloudy mixture obtained was combined with a solution of 41.0 g of Mg (NO 3 ) 2 -6H 2 O in 35 ml of water and stirred. The solution thus obtained is further referred to as solution A.
- a solution hereinafter referred to as Solution B was prepared by stirring 20.0 g of NaOH in 200 ml deionized water.
- Example 2 Growth of Carbon Nanotubes, Fixed Bed, Laboratory
- the catalysts were tested in a fixed-bed apparatus on a laboratory scale. For this purpose, a defined amount of catalyst was placed in a heated from the outside by a heat transfer quartz tube with an inner diameter of 9 mm. The temperature of the solid beds was controlled by a PID control of the electrically heated heat carrier. The temperature of the catalyst bed or of the catalyst / nanotube mixture was determined by a thermocouple surrounded by an inert quartz capillary. Feed gases and inert diluent gases were fed into the reactor via electronically controlled mass flow controllers. The catalyst samples were first heated in a stream of hydrogen and inert gas. After reaching the desired temperature, the reactant gas was switched on.
- the total volume flow was adjusted to 110 mL K -min '1 .
- the loading of the catalyst with the educt gases was carried out for a period of 100-120 minutes usually until complete deactivation of the catalyst. Thereafter, the amount of deposited carbon was determined by weighing, the structure and morphology of the deposited carbon was determined by means of SEM and TEM analyzes.
- Catalyst 9 (MCN0063_52Co_9Mo_39Al): Two solutions were prepared from 2.5 g (NH 4 ) 6 M ⁇ 7 ⁇ 24 • 4H 2 O in 50 mL deionized water and 36 g Co (NO 3 ) 2 -6 H 2 O in 50 mL deionized water. The solutions were combined at room temperature and stirred for 5 minutes. The non-cloudy mixture obtained was combined with a solution of 50.0 g of Al (NO 3 ) 3 .9H 2 O in 35 ml of water and stirred. Purification was achieved by the dropwise addition of dilute HNO 3 . The solution thus obtained is further referred to as solution A.
- Catalyst 10 (MCN0064_40Fe_20Co40Al): Two solutions of 40 g Fe (NO 3 ) 3 -9H 2 O in 40 mL deionized water and 13 g Co (NO 3 ) 2 -6 H 2 O in 40 mL deionized water were prepared. The solutions were combined at room temperature and stirred for 5 minutes. The Vietnamese ⁇ cloudy mixture was treated with a solution of 50.0 g A1 (NO3) 3 • 9 H 2 O in 35 ml of water and stirred. Purification was achieved by the dropwise addition of dilute HNO 3 . The solution thus obtained is further referred to as solution A.
- solution B was prepared by stirring 400.0 g (NHt) 2 COB in 1200 ml of deionized water. At room temperature, solution B was added dropwise to suspension A with vigorous stirring.
- Catalyst 12 (MCN0022_40Fe_60Al): A solution was prepared of 34.4 g of Fe (NO 3 ) 3 -9H 2 O and 99.3 g of Al (NO 3 ) 3 • 9H 2 O in 350 mL of deionized water. The solution was stirred at room temperature and for 5 minutes. Purification was achieved by dropwise addition of dilute HNO 3 . The solution thus obtained is further referred to as solution A.
- a solution hereinafter referred to as solution B was prepared by stirring 63.6 g of Na 2 CO 3 in 600 ml of deionized water.
- Catalyst 13 (MCN0037_50Fe_llMo_39Al): Two solutions were prepared of 12.5 g (MM) 6 Mc 7 O 24 • 4H 2 O in 250 mL deionized water and 245 g Fe (NO 3 ) 3 -9H 2 O in 250 mL deionized Water. The solutions were combined at room temperature and stirred for 5 min at room temperature. The non-cloudy mixture obtained was combined with a solution of 245 g of Al (NO 3 ) 3 .9H 2 O in 163 ml of water and stirred. Purification was achieved by the dropwise addition of dilute HNO 3 . The solution thus obtained is further referred to as solution A.
- Catalyst 14 (MCN0044_8Fe_lMo_lCo to Pural MG30): Two solutions were prepared from 0.1 g (NH 4) 6 M ⁇ 7 ⁇ 24 • 4H 2 O in 5.5 mL deionized water and 4 g Fe (NO 3 ) 3 9H 2 O and 0.275 g Co (NO 3 ) 2 -6H 2 O in 10 ml deionized water. The solutions were combined at room temperature and stirred for 5 minutes at room temperature. One third of the resultant non-turbid solution was applied by incipient wetness impregnation of 20 g Pural MG30, which was dried at 180 0 C in advance.
- Example 3 The catalysts obtained in Example 3 were also tested in the laboratory apparatus as described under Example 2. The yields of carbon nanotubes obtained are summarized in Table 2. The yields of the catalysts produced there under comparable conditions or by precipitation are significantly lower than the yields described in Example 2.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Nanotechnology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Textile Engineering (AREA)
- Thermal Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Inorganic Chemistry (AREA)
- Composite Materials (AREA)
- Theoretical Computer Science (AREA)
- Mathematical Physics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Catalysts (AREA)
- Carbon And Carbon Compounds (AREA)
Abstract
Description
Claims
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102004054959A DE102004054959A1 (de) | 2004-11-13 | 2004-11-13 | Katalysator zur Herstellung von Kohlenstoffnanoröhrchen durch Zersetzung von gas-förmigen Kohlenverbindungen an einem heterogenen Katalysator |
PCT/EP2005/011925 WO2006050903A2 (de) | 2004-11-13 | 2005-11-08 | Katalysator zur herstellung von kohlenstoffnanoröhrchen durch zersetzung von gasförmigen kohlenstoffverbindungen an einem heterogenen katalysator |
Publications (1)
Publication Number | Publication Date |
---|---|
EP1812159A2 true EP1812159A2 (de) | 2007-08-01 |
Family
ID=35788213
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP05816390A Ceased EP1812159A2 (de) | 2004-11-13 | 2005-11-08 | Katalysator zur herstellung von kohlenstoffnanoröhrchen durch zersetzung von gasförmigen kohlenstoffverbindungen an einem heterogenen katalysator |
Country Status (8)
Country | Link |
---|---|
US (1) | US9409779B2 (de) |
EP (1) | EP1812159A2 (de) |
JP (1) | JP5702043B2 (de) |
KR (1) | KR101292489B1 (de) |
CN (1) | CN101142020B (de) |
DE (1) | DE102004054959A1 (de) |
TW (1) | TW200730245A (de) |
WO (1) | WO2006050903A2 (de) |
Families Citing this family (81)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102006007147A1 (de) * | 2006-02-16 | 2007-08-23 | Bayer Technology Services Gmbh | Verfahren zur kontinuierlichen Herstellung von Katalysatoren |
DE102006035773A1 (de) | 2006-08-01 | 2008-02-07 | Bayer Technology Services Gmbh | Verfahren zur Herstellung von Kohlenstoffnanorörchen-Polymer-Mischungen mittels Gasphasenpolymerisation |
JP4197729B2 (ja) | 2006-12-21 | 2008-12-17 | 昭和電工株式会社 | 炭素繊維および炭素繊維製造用触媒 |
DE102007029008A1 (de) | 2007-06-23 | 2008-12-24 | Bayer Materialscience Ag | Verfahren zur Herstellung eines leitfähigen Polymerverbundwerkstoffs |
DE102007046160A1 (de) * | 2007-09-27 | 2009-04-02 | Bayer Materialscience Ag | Verfahren zur Herstellung eines Katalysators für die Herstellung von Kohlenstoffnanoröhrchen |
DE102007058992A1 (de) | 2007-12-07 | 2009-06-10 | Bayer Materialscience Ag | Verfahren zur Herstellung eines leitfähigen Polycarbonatverbundmaterials |
DE102008004135B4 (de) * | 2008-01-11 | 2014-03-06 | H.C. Starck Gmbh | Katalysatorpulver |
DE102008020135A1 (de) * | 2008-04-22 | 2009-10-29 | Bayer Materialscience Ag | Reaktionsharz auf Basis eines ungesättigten Polyesters, radikalisch härtbaren Vinylverbindungen und Kohlenstoffnanoröhrchen |
US9174847B2 (en) | 2008-05-01 | 2015-11-03 | Honda Motor Co., Ltd. | Synthesis of high quality carbon single-walled nanotubes |
US8591858B2 (en) | 2008-05-01 | 2013-11-26 | Honda Motor Co., Ltd. | Effect of hydrocarbon and transport gas feedstock on efficiency and quality of grown single-walled nanotubes |
JP5566628B2 (ja) * | 2008-06-18 | 2014-08-06 | 昭和電工株式会社 | 炭素繊維の製造方法 |
JP5649269B2 (ja) * | 2008-06-18 | 2015-01-07 | 昭和電工株式会社 | カーボンナノファイバー、その製造方法及び用途 |
JP5420982B2 (ja) | 2008-06-18 | 2014-02-19 | 昭和電工株式会社 | 炭素繊維及び炭素繊維製造用触媒 |
DE102008031579A1 (de) * | 2008-07-03 | 2010-01-07 | Bayer Materialscience Ag | Ein hocheffizientes Gasphasenverfahren zur Modifizierung und Funktionalisierung von Kohlenstoff-Nanofasern mit Salpetersäuredampf |
DE102009011538A1 (de) | 2009-03-03 | 2010-09-09 | Pp-Mid Gmbh | Leiterplatten-Anordnung, sowie Verfahren zu deren Herstellung |
DE102008061051A1 (de) | 2008-12-08 | 2010-06-10 | Pp-Mid Gmbh | Leiterplatten-Anordnung und leitfähige Klebstoffe zum Verbinden von Bauteilen mit der Leiterplatte sowie Verfahren zu deren Herstellung |
DE102008048459A1 (de) | 2008-09-23 | 2010-03-25 | Pp-Mid Gmbh | Polymerformkörper mit leitfähigen Strukturen auf der Oberfläche, sowie Verfahren zu dessen Herstellung |
EP2311048B1 (de) * | 2008-08-08 | 2015-04-29 | pp-mid GmbH | Polymerformkörper und leiterplatten-anordnung, sowie verfahren zu deren herstellung |
EP2151830A1 (de) | 2008-08-08 | 2010-02-10 | pp-mid GmbH | Polymerformkörper mit leitfähigen Strukturen auf der Oberfläche, sowie Verfahren zu dessen Herstellung |
EP2328736A1 (de) * | 2008-08-20 | 2011-06-08 | Bayer MaterialScience AG | Verfahren zur herstellung von kohlenstoffnanoröhrchen enthaltenden verbundmaterialien mit reduziertem widerstand |
DE102008038524A1 (de) | 2008-08-20 | 2010-02-25 | Bayer Materialscience Ag | Antistatische oder elektrisch leitfähige Polyurethane und ein Verfahren zu deren Herstellung |
EP2184324A1 (de) * | 2008-11-06 | 2010-05-12 | Clariant International Ltd. | Zusammensetzungen mit Propylen-Olefin-Copolymerwachsen und Kohlennanoröhrchen |
PL2184316T3 (pl) * | 2008-11-06 | 2017-08-31 | Clariant International Ltd | Kompozycja zawierająca kopolimeryczne woski propylenowo-olefinowe i sadzę |
DE602008006421D1 (de) * | 2008-11-06 | 2011-06-01 | Clariant Finance Bvi Ltd | Verfahren zur Herstellung von organischen polymerischen Profilen |
KR100976174B1 (ko) * | 2009-02-13 | 2010-08-16 | 금호석유화학 주식회사 | 얇은 다중벽 탄소나노튜브 제조용 촉매조성물 및 이의 제조방법 |
JP4593692B2 (ja) | 2009-03-05 | 2010-12-08 | 昭和電工株式会社 | 炭素繊維凝集体、及びその製造方法 |
DE102009012675A1 (de) | 2009-03-13 | 2010-09-16 | Bayer Materialscience Ag | Verfahren zur Dispergierung graphitartiger Nanoteilchen |
EP2228343A1 (de) | 2009-03-13 | 2010-09-15 | Bayer MaterialScience AG | Von Wasserdampf unterstützte Ozonolyse von Kohlenstoffnanoröhrchen |
DE102009012674A1 (de) | 2009-03-13 | 2010-09-16 | Bayer Materialscience Ag | Polyurethanmassen mit Kohlenstoffnanoröhrchen |
EP2228414A1 (de) | 2009-03-13 | 2010-09-15 | Bayer MaterialScience AG | UV-härtbare, verschleißfeste und antistatische Beschichtung, die mit Kohlenstoffnanoröhrchen gefüllt ist |
EP2228406A1 (de) | 2009-03-13 | 2010-09-15 | Bayer MaterialScience AG | Verbesserte mechanische Eigenschaften von Epoxid, das mit funktionalisierten Kohlenstoffnanoröhrchen gefüllt ist |
DE102009012673A1 (de) | 2009-03-13 | 2010-09-16 | Bayer Materialscience Ag | Formkörper aus Kohlenstoffnanoteilchen-Polymermischungen mit Gradienteneigenschaft der elektrischen Volumenleitfähigkeit |
DE102009013418A1 (de) | 2009-03-18 | 2010-09-23 | Bayer Technology Services Gmbh | Verfahren zur Dispersion von Nanopartikeln in fluiden Medien |
WO2010111624A1 (en) * | 2009-03-26 | 2010-09-30 | Northeastern University | Carbon nanostructures from pyrolysis of organic materials |
EA028873B1 (ru) | 2009-04-17 | 2018-01-31 | СИРСТОУН ЭлЭлСи | Способ производства твердого углерода путем восстановления оксидов углерода |
DE102009024340A1 (de) | 2009-06-09 | 2010-12-16 | Bayer Materialscience Ag | Hochfließfähige Polymerzusammensetzung und Verfahren zu ihrer Herstellung |
KR101089570B1 (ko) * | 2009-07-07 | 2011-12-05 | 금호석유화학 주식회사 | 겉보기 밀도를 조절시킨 탄소나노튜브 제조용 촉매 |
CA2768474A1 (en) * | 2009-07-17 | 2011-01-20 | Southwest Nanotechnologies, Inc. | Catalyst and methods for producing multi-wall carbon nanotubes |
DE102009038464A1 (de) * | 2009-08-21 | 2011-02-24 | Bayer Materialscience Ag | Kohlenstoffnanoröhrchen-Agglomerat |
DE102009040047A1 (de) | 2009-09-04 | 2011-03-17 | Bayer Materialscience Ag | Verfahren zur Einarbeitung von Feststoffen in Polymere |
US20120292578A1 (en) | 2009-11-18 | 2012-11-22 | Alexander Bacher | METHOD FOR PRODUCING COMPOSITE MATERIALS BASED ON POLYMERS AND CARBON NANOTUBES (CNTs), COMPOSITE MATERIALS PRODUCED IN THIS WAY AND USE THEREOF |
KR101018660B1 (ko) * | 2009-12-22 | 2011-03-04 | 금호석유화학 주식회사 | 다중벽 탄소나노튜브 제조용 촉매조성물 |
DE102010005560A1 (de) | 2010-01-22 | 2011-07-28 | Bayer MaterialScience AG, 51373 | Herstellung von CNT |
DE102010008173A1 (de) * | 2010-02-16 | 2012-03-01 | Bayer Materialscience Aktiengesellschaft | Herstellung von Kohlenstoffnanoröhrchen |
WO2012075499A1 (en) | 2010-12-03 | 2012-06-07 | Northeastern University | Method and device for fuel and power generation by clean combustion of organic waste material |
EP3000849B1 (de) | 2010-12-08 | 2018-04-04 | Haydale Graphene Industries PLC | Graphitnanoplättchen, verbundstoffe damit, herstellung und verwendung |
EP2500376A1 (de) | 2011-03-17 | 2012-09-19 | Basf Se | Antistatische oder elektrisch leitfähige Polyurethane |
DE102011105760A1 (de) * | 2011-06-15 | 2012-12-20 | Cutec-Institut Gmbh | Mischoxidkatalysator, sowie Verfahren zu dessen Herstellung |
KR101431953B1 (ko) * | 2012-01-11 | 2014-08-19 | 주식회사 엘지화학 | 카본나노튜브용 균질 담지 촉매의 제조방법 |
KR101424910B1 (ko) * | 2012-01-11 | 2014-07-31 | 주식회사 엘지화학 | 카본나노튜브 및 그 제조방법 |
MX354526B (es) | 2012-04-16 | 2018-03-07 | Seerstone Llc | Metodos y sistemas para capturar y secuestrar carbono y para reducir la masa de oxidos de carbono en una corriente de gas de desechos. |
NO2749379T3 (de) | 2012-04-16 | 2018-07-28 | ||
JP2015514669A (ja) | 2012-04-16 | 2015-05-21 | シーアストーン リミテッド ライアビリティ カンパニー | 二酸化炭素を還元することによって固体炭素を生成するための方法 |
CN104284861A (zh) | 2012-04-16 | 2015-01-14 | 赛尔斯通股份有限公司 | 处理含有碳氧化物的废气的方法 |
MX2014012548A (es) * | 2012-04-16 | 2015-04-10 | Seerstone Llc | Metodos y estructuras para reducir oxidos de carbono con catalizadores no ferrosos. |
US9896341B2 (en) | 2012-04-23 | 2018-02-20 | Seerstone Llc | Methods of forming carbon nanotubes having a bimodal size distribution |
CN104619637B (zh) | 2012-07-12 | 2017-10-03 | 赛尔斯通股份有限公司 | 包含碳纳米管的固体碳产物以及其形成方法 |
US10815124B2 (en) | 2012-07-12 | 2020-10-27 | Seerstone Llc | Solid carbon products comprising carbon nanotubes and methods of forming same |
JP6025979B2 (ja) | 2012-07-13 | 2016-11-16 | シーアストーン リミテッド ライアビリティ カンパニー | アンモニアおよび固体炭素生成物を形成するための方法およびシステム |
US9779845B2 (en) | 2012-07-18 | 2017-10-03 | Seerstone Llc | Primary voltaic sources including nanofiber Schottky barrier arrays and methods of forming same |
EP2700740A3 (de) | 2012-08-24 | 2014-03-19 | Showa Denko Kabushiki Kaisha | Kohlenstofffasern, Katalysator für die Herstellung von Kohlenstofffasern. |
MX2015006893A (es) | 2012-11-29 | 2016-01-25 | Seerstone Llc | Reactores y metodos para producir materiales de carbono solido. |
EP3129135A4 (de) | 2013-03-15 | 2017-10-25 | Seerstone LLC | Reaktoren, systeme und verfahren zur herstellung fester produkte |
US9783416B2 (en) | 2013-03-15 | 2017-10-10 | Seerstone Llc | Methods of producing hydrogen and solid carbon |
US9586823B2 (en) | 2013-03-15 | 2017-03-07 | Seerstone Llc | Systems for producing solid carbon by reducing carbon oxides |
WO2014151144A1 (en) | 2013-03-15 | 2014-09-25 | Seerstone Llc | Carbon oxide reduction with intermetallic and carbide catalysts |
EP3129321B1 (de) | 2013-03-15 | 2021-09-29 | Seerstone LLC | Elektroden mit nanostrukturiertem kohlenstoff |
EP3003552A1 (de) | 2013-05-24 | 2016-04-13 | Hindustan Petroleum Corporation Ltd. | Katalytische zersetzung niedrigerer kohlenwasserstoffe zur herstellung von kohlenmonoxidfreiem wasserstoff und bambusförmiger kohlenstoffnanoröhrchen |
WO2014198752A1 (de) | 2013-06-14 | 2014-12-18 | Basf Se | Beheizbare formkörper aus elektrisch leitfähigem thermoplastischem polyurethan |
DE102013214229A1 (de) | 2013-07-19 | 2015-01-22 | Bayer Materialscience Ag | Verfahren zur Herstellung eines effizienten Katalysators für die Produktion mehrwandiger Kohlenstoffnanoröhrchen, mehrwandiges Kohlenstoffnanoröhrchen und Kohlenstoffnanoröhrchenpulver |
JP6237225B2 (ja) * | 2013-12-26 | 2017-11-29 | 東洋インキScホールディングス株式会社 | カーボンナノチューブ合成用触媒 |
JP6374513B2 (ja) | 2013-12-30 | 2018-08-15 | インディアン オイル コーポレーション リミテッド | 原油およびその製品からの、カーボンナノチューブおよび生成ガスの同時生産のための方法 |
JP6278727B2 (ja) * | 2014-02-04 | 2018-02-14 | 住友化学株式会社 | 共沈物の製造方法およびリチウム含有複合酸化物の製造方法 |
CN103965389B (zh) * | 2014-05-13 | 2016-09-21 | 清华大学 | 碳纳米管-高分子复合材料的气相聚合生产方法及装置 |
US11752459B2 (en) | 2016-07-28 | 2023-09-12 | Seerstone Llc | Solid carbon products comprising compressed carbon nanotubes in a container and methods of forming same |
US10995000B2 (en) | 2016-10-19 | 2021-05-04 | Vanderbilt University | Nanostructured carbon materials and methods of making and use thereof |
CN107134579B (zh) * | 2017-04-17 | 2020-03-17 | 中山市卡耐特塑料有限公司 | 一种用于正极导电剂的碳材料的制备方法 |
JP6778707B2 (ja) | 2017-05-23 | 2020-11-04 | インディアン オイル コーポレーション リミテッド | 形態制御されたcntを生成するための多重金属触媒組成物およびそのプロセス |
KR102303667B1 (ko) * | 2017-10-31 | 2021-09-16 | 에스케이이노베이션 주식회사 | 탄소 나노 튜브 합성용 촉매 및 탄소 나노 튜브의 제조 방법 |
US11181043B2 (en) | 2019-09-30 | 2021-11-23 | General Electric Company | Apparatuses and methods for generating carbon particles and exhaust gas used by gas turbine systems |
KR20240032077A (ko) * | 2021-08-27 | 2024-03-08 | 존슨 맛쎄이 퍼블릭 리미티드 컴파니 | 배기 가스의 처리를 위한 방법 및 hvac 시스템 |
Family Cites Families (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3701822A (en) * | 1970-06-11 | 1972-10-31 | Chemical Construction Corp | Process and catalyst for treating combustion exhaust gas |
US4058571A (en) * | 1973-03-24 | 1977-11-15 | Bayer Aktiengesellschaft | Continuous process for the production of d,l'menthol |
JPS5946133A (ja) * | 1982-09-06 | 1984-03-15 | Yoshinobu Takegami | 還元触媒 |
JPH04323101A (ja) * | 1991-04-23 | 1992-11-12 | Hitachi Ltd | 脱臭装置を備えた生ごみ容器 |
JPH06129613A (ja) * | 1992-10-20 | 1994-05-13 | Matsushita Electric Ind Co Ltd | 触媒燃焼装置 |
AU698391B2 (en) | 1995-06-16 | 1998-10-29 | Shell Internationale Research Maatschappij B.V. | Catalyst and process for the preparation of hydrocarbons |
JP4619539B2 (ja) * | 1998-11-03 | 2011-01-26 | ウィリアム・マーシュ・ライス・ユニバーシティ | 高温一酸化炭素気体からの単層カーボンナノチューブの結晶核形成および成長 |
EP1054036A1 (de) * | 1999-05-18 | 2000-11-22 | Fina Research S.A. | Verstärkte Polymere |
US20030091496A1 (en) * | 2001-07-23 | 2003-05-15 | Resasco Daniel E. | Method and catalyst for producing single walled carbon nanotubes |
JP3912583B2 (ja) * | 2001-03-14 | 2007-05-09 | 三菱瓦斯化学株式会社 | 配向性カーボンナノチューブ膜の製造方法 |
AUPR421701A0 (en) * | 2001-04-04 | 2001-05-17 | Commonwealth Scientific And Industrial Research Organisation | Process and apparatus for the production of carbon nanotubes |
CN1141250C (zh) * | 2001-05-25 | 2004-03-10 | 清华大学 | 一种流化床连续化制备碳纳米管的方法及其反应装置 |
JP2003012939A (ja) * | 2001-07-03 | 2003-01-15 | Toray Ind Inc | カーボン含有樹脂組成物、成形材料および成形体 |
JP3782993B2 (ja) * | 2001-11-28 | 2006-06-07 | 国立大学法人名古屋大学 | 中空状ナノファイバーの製造法 |
US6846345B1 (en) | 2001-12-10 | 2005-01-25 | The United States Of America As Represented By The Secretary Of The Navy | Synthesis of metal nanoparticle compositions from metallic and ethynyl compounds |
JP4020410B2 (ja) * | 2001-12-28 | 2007-12-12 | 大研化学工業株式会社 | 炭素物質製造用触媒 |
JP4404961B2 (ja) * | 2002-01-08 | 2010-01-27 | 双葉電子工業株式会社 | カーボンナノ繊維の製造方法。 |
JP2004018290A (ja) * | 2002-06-13 | 2004-01-22 | Mitsubishi Chemical Engineering Corp | 炭素質微細繊維状体の粒状凝集体 |
GB0214383D0 (en) * | 2002-06-21 | 2002-07-31 | Isis Innovation | Catalyst |
JP3804594B2 (ja) | 2002-08-02 | 2006-08-02 | 日本電気株式会社 | 触媒担持基板およびそれを用いたカーボンナノチューブの成長方法ならびにカーボンナノチューブを用いたトランジスタ |
US20060008408A1 (en) * | 2002-10-17 | 2006-01-12 | Nexen Nano Tech. Co., Ltd. | Fibrous nano-carbon and preparation method thereof |
JP4659367B2 (ja) * | 2003-02-19 | 2011-03-30 | パナソニック株式会社 | 電池用電極およびその製造法 |
US7235159B2 (en) * | 2003-09-17 | 2007-06-26 | Molecular Nanosystems, Inc. | Methods for producing and using catalytic substrates for carbon nanotube growth |
JP2007513760A (ja) * | 2003-12-15 | 2007-05-31 | ダニエル イー. リサスコ, | 単層カーボンナノチューブの生成のためのレニウム触媒および方法 |
US20060078489A1 (en) * | 2004-09-09 | 2006-04-13 | Avetik Harutyunyan | Synthesis of small and narrow diameter distributed carbon single walled nanotubes |
AU2008337780B9 (en) * | 2007-11-27 | 2011-09-15 | Shell Internationale Research Maatschappij B.V. | Catalyst with support structure |
-
2004
- 2004-11-13 DE DE102004054959A patent/DE102004054959A1/de not_active Withdrawn
-
2005
- 2005-11-08 JP JP2007540559A patent/JP5702043B2/ja not_active Expired - Fee Related
- 2005-11-08 CN CN200580046507XA patent/CN101142020B/zh not_active Expired - Fee Related
- 2005-11-08 EP EP05816390A patent/EP1812159A2/de not_active Ceased
- 2005-11-08 US US11/719,152 patent/US9409779B2/en not_active Expired - Fee Related
- 2005-11-08 WO PCT/EP2005/011925 patent/WO2006050903A2/de active Application Filing
- 2005-11-08 KR KR1020077010697A patent/KR101292489B1/ko active IP Right Grant
-
2006
- 2006-02-13 TW TW095104720A patent/TW200730245A/zh unknown
Non-Patent Citations (1)
Title |
---|
None * |
Also Published As
Publication number | Publication date |
---|---|
KR101292489B1 (ko) | 2013-08-01 |
CN101142020A (zh) | 2008-03-12 |
KR20070084180A (ko) | 2007-08-24 |
JP2008519679A (ja) | 2008-06-12 |
WO2006050903A2 (de) | 2006-05-18 |
DE102004054959A1 (de) | 2006-05-18 |
TW200730245A (en) | 2007-08-16 |
US9409779B2 (en) | 2016-08-09 |
WO2006050903A3 (de) | 2006-09-08 |
CN101142020B (zh) | 2012-05-02 |
JP5702043B2 (ja) | 2015-04-15 |
US20090140215A1 (en) | 2009-06-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2006050903A2 (de) | Katalysator zur herstellung von kohlenstoffnanoröhrchen durch zersetzung von gasförmigen kohlenstoffverbindungen an einem heterogenen katalysator | |
DE102006007147A1 (de) | Verfahren zur kontinuierlichen Herstellung von Katalysatoren | |
JP4979705B2 (ja) | 多層カーボンナノチューブ製造工程のための触媒系 | |
WO2011101300A2 (de) | Herstellung von kohlenstoffnanoröhrchen | |
DE102007046160A1 (de) | Verfahren zur Herstellung eines Katalysators für die Herstellung von Kohlenstoffnanoröhrchen | |
DE102007062421A1 (de) | Verfahren zur Herstellung von Stickstoff-dotierten Kohlenstoffnanoröhrchen | |
EP2010701B1 (de) | Verfahren zur herstellung von kohlenstoffnanoröhrchen in einer wirbelschicht | |
WO2009036877A2 (de) | Kohlenstoffanoröhrchenpulover, kohlenstoffanoröhrchen und verfahren zu ihrer herstellung | |
DE102009038464A1 (de) | Kohlenstoffnanoröhrchen-Agglomerat | |
EP3021966A1 (de) | Verfahren zur herstellung eines effizienten katalysators für die produktion mehrwandiger kohlenstoffnanoröhrchen, mehrwandiges kohlenstoffnanoröhrchen und kohlenstoffnanoröhrchenpulver | |
US20150224479A1 (en) | Method for preparing metal catalyst for preparing carbon nanotubes and method for preparing carbon nanotubes using the same | |
DE60225181T2 (de) | Verfahren zur herstellung vielflächiger graphitnanoröhrchen | |
CN106132537B (zh) | 利用水热合成共沉淀法制备的催化剂及利用其制备的碳纳米管 | |
EP1901995A2 (de) | Kohlenstoff-nanopartikel, deren herstellung und deren verwendung | |
WO2004035882A2 (en) | Ultra-fine fibrous carbon and preparation method thereof | |
EP2496347B1 (de) | Eisenhaltiger heterogenkatalysator und verfahren zur herstellung von olefinen durch umsetzung von kohlenmonoxid mit wasserstoff | |
DE102005032071A1 (de) | Nanoporöse Katalysatorteilchen, deren Herstellung und deren Verwendung | |
Kuvshinov et al. | The influence of inert impurities on the catalyst lifetime and properties of nanofibrous carbon produced by utilization of diluted hydrocarbon gases |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20070613 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): DE FR GB IT |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: BUCHHOLZ, SIGURD Inventor name: WOLF, AUREL Inventor name: MUENNICH, CHRISTIAN Inventor name: MLECZKO, LESLAW Inventor name: RUDOLF, REINER Inventor name: MICHELE, VOLKER Inventor name: DUFF, DANIEL, GORDON |
|
DAX | Request for extension of the european patent (deleted) | ||
RBV | Designated contracting states (corrected) |
Designated state(s): DE FR GB IT |
|
17Q | First examination report despatched |
Effective date: 20090522 |
|
R17C | First examination report despatched (corrected) |
Effective date: 20090602 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: BAYER INTELLECTUAL PROPERTY GMBH |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: COVESTRO DEUTSCHLAND AG |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R003 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED |
|
18R | Application refused |
Effective date: 20191209 |