JP6374513B2 - 原油およびその製品からの、カーボンナノチューブおよび生成ガスの同時生産のための方法 - Google Patents
原油およびその製品からの、カーボンナノチューブおよび生成ガスの同時生産のための方法 Download PDFInfo
- Publication number
- JP6374513B2 JP6374513B2 JP2016542274A JP2016542274A JP6374513B2 JP 6374513 B2 JP6374513 B2 JP 6374513B2 JP 2016542274 A JP2016542274 A JP 2016542274A JP 2016542274 A JP2016542274 A JP 2016542274A JP 6374513 B2 JP6374513 B2 JP 6374513B2
- Authority
- JP
- Japan
- Prior art keywords
- carbon nanotubes
- catalyst
- reactor
- range
- hydrogen
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title claims description 145
- 239000002041 carbon nanotube Substances 0.000 title claims description 135
- 229910021393 carbon nanotube Inorganic materials 0.000 title claims description 133
- 238000000034 method Methods 0.000 title claims description 65
- 239000010779 crude oil Substances 0.000 title claims description 32
- 238000004519 manufacturing process Methods 0.000 title claims description 24
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 119
- 239000003054 catalyst Substances 0.000 claims description 114
- 239000007789 gas Substances 0.000 claims description 91
- 229910052751 metal Inorganic materials 0.000 claims description 68
- 229930195733 hydrocarbon Natural products 0.000 claims description 67
- 239000002184 metal Substances 0.000 claims description 67
- 150000002430 hydrocarbons Chemical class 0.000 claims description 66
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 58
- 229910052757 nitrogen Inorganic materials 0.000 claims description 55
- 239000001257 hydrogen Substances 0.000 claims description 48
- 229910052739 hydrogen Inorganic materials 0.000 claims description 48
- 239000012159 carrier gas Substances 0.000 claims description 47
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 46
- 239000000203 mixture Substances 0.000 claims description 30
- 230000008569 process Effects 0.000 claims description 30
- 229910052717 sulfur Inorganic materials 0.000 claims description 23
- 239000011593 sulfur Substances 0.000 claims description 21
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims description 20
- 150000002431 hydrogen Chemical class 0.000 claims description 19
- 239000003208 petroleum Substances 0.000 claims description 18
- 239000003921 oil Substances 0.000 claims description 14
- 229910044991 metal oxide Inorganic materials 0.000 claims description 13
- 150000004706 metal oxides Chemical class 0.000 claims description 13
- 230000003197 catalytic effect Effects 0.000 claims description 11
- 150000002739 metals Chemical class 0.000 claims description 11
- 238000006243 chemical reaction Methods 0.000 claims description 9
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 claims description 8
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 8
- 239000000463 material Substances 0.000 claims description 8
- 229910052759 nickel Inorganic materials 0.000 claims description 8
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 7
- 238000005336 cracking Methods 0.000 claims description 7
- 229910052742 iron Inorganic materials 0.000 claims description 7
- OFBQJSOFQDEBGM-UHFFFAOYSA-N n-pentane Natural products CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 claims description 7
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 6
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims description 6
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 claims description 6
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 6
- 229910052748 manganese Inorganic materials 0.000 claims description 6
- 229910052750 molybdenum Inorganic materials 0.000 claims description 6
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 claims description 5
- 239000005977 Ethylene Substances 0.000 claims description 5
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 5
- 229910052760 oxygen Inorganic materials 0.000 claims description 5
- 239000001301 oxygen Substances 0.000 claims description 5
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 claims description 4
- YTPLMLYBLZKORZ-UHFFFAOYSA-N Thiophene Chemical group C=1C=CSC=1 YTPLMLYBLZKORZ-UHFFFAOYSA-N 0.000 claims description 4
- IAQRGUVFOMOMEM-UHFFFAOYSA-N but-2-ene Chemical compound CC=CC IAQRGUVFOMOMEM-UHFFFAOYSA-N 0.000 claims description 4
- 229910052804 chromium Inorganic materials 0.000 claims description 4
- 239000000295 fuel oil Substances 0.000 claims description 4
- 239000007952 growth promoter Substances 0.000 claims description 4
- NNPPMTNAJDCUHE-UHFFFAOYSA-N isobutane Chemical compound CC(C)C NNPPMTNAJDCUHE-UHFFFAOYSA-N 0.000 claims description 4
- 239000000395 magnesium oxide Substances 0.000 claims description 4
- 239000000377 silicon dioxide Substances 0.000 claims description 4
- 229910052721 tungsten Inorganic materials 0.000 claims description 4
- 229910021536 Zeolite Inorganic materials 0.000 claims description 3
- 229910052786 argon Inorganic materials 0.000 claims description 3
- 239000001273 butane Substances 0.000 claims description 3
- 239000001569 carbon dioxide Substances 0.000 claims description 3
- 229910002092 carbon dioxide Inorganic materials 0.000 claims description 3
- 239000004927 clay Substances 0.000 claims description 3
- 229910052570 clay Inorganic materials 0.000 claims description 3
- 229910052802 copper Inorganic materials 0.000 claims description 3
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 claims description 3
- 239000001307 helium Substances 0.000 claims description 3
- 229910052734 helium Inorganic materials 0.000 claims description 3
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 claims description 3
- 125000005842 heteroatom Chemical group 0.000 claims description 3
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 claims description 3
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 claims description 3
- 239000001294 propane Substances 0.000 claims description 3
- 239000010457 zeolite Substances 0.000 claims description 3
- 125000003118 aryl group Chemical group 0.000 claims description 2
- XNMQEEKYCVKGBD-UHFFFAOYSA-N dimethylacetylene Natural products CC#CC XNMQEEKYCVKGBD-UHFFFAOYSA-N 0.000 claims description 2
- 239000012530 fluid Substances 0.000 claims description 2
- 239000001282 iso-butane Substances 0.000 claims description 2
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 claims description 2
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 claims description 2
- 238000000197 pyrolysis Methods 0.000 claims description 2
- 229930192474 thiophene Natural products 0.000 claims description 2
- 239000000047 product Substances 0.000 description 44
- 238000002411 thermogravimetry Methods 0.000 description 38
- 230000009467 reduction Effects 0.000 description 34
- 238000006722 reduction reaction Methods 0.000 description 34
- 239000007788 liquid Substances 0.000 description 30
- 239000002994 raw material Substances 0.000 description 25
- 239000004215 Carbon black (E152) Substances 0.000 description 22
- 230000005540 biological transmission Effects 0.000 description 21
- 230000015572 biosynthetic process Effects 0.000 description 20
- 238000010586 diagram Methods 0.000 description 14
- 239000012299 nitrogen atmosphere Substances 0.000 description 14
- 239000007787 solid Substances 0.000 description 14
- 229910017116 Fe—Mo Inorganic materials 0.000 description 11
- 229910052799 carbon Inorganic materials 0.000 description 11
- 238000010531 catalytic reduction reaction Methods 0.000 description 10
- 229910001873 dinitrogen Inorganic materials 0.000 description 10
- 238000001757 thermogravimetry curve Methods 0.000 description 10
- 229910017709 Ni Co Inorganic materials 0.000 description 8
- 229910003267 Ni-Co Inorganic materials 0.000 description 8
- 229910003262 Ni‐Co Inorganic materials 0.000 description 8
- 239000003426 co-catalyst Substances 0.000 description 8
- 238000003786 synthesis reaction Methods 0.000 description 7
- 239000002048 multi walled nanotube Substances 0.000 description 6
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 6
- 239000006185 dispersion Substances 0.000 description 5
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 5
- 239000002245 particle Substances 0.000 description 5
- 230000001737 promoting effect Effects 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 239000000446 fuel Substances 0.000 description 4
- 238000005245 sintering Methods 0.000 description 4
- 239000006227 byproduct Substances 0.000 description 3
- 229910002091 carbon monoxide Inorganic materials 0.000 description 3
- 238000000354 decomposition reaction Methods 0.000 description 3
- 238000005538 encapsulation Methods 0.000 description 3
- 125000002524 organometallic group Chemical group 0.000 description 3
- 239000002109 single walled nanotube Substances 0.000 description 3
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 2
- 150000001336 alkenes Chemical class 0.000 description 2
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 2
- 239000012298 atmosphere Substances 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 125000004432 carbon atom Chemical group C* 0.000 description 2
- 239000003575 carbonaceous material Substances 0.000 description 2
- 238000000975 co-precipitation Methods 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 description 2
- 239000012527 feed solution Substances 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 239000002071 nanotube Substances 0.000 description 2
- AETVBWZVKDOWHH-UHFFFAOYSA-N 2-[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]-3-(1-ethylazetidin-3-yl)oxypyrazol-1-yl]-1-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethanone Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C=1C(=NN(C=1)CC(=O)N1CC2=C(CC1)NN=N2)OC1CN(C1)CC AETVBWZVKDOWHH-UHFFFAOYSA-N 0.000 description 1
- DCVGCQPXTOSWEA-UHFFFAOYSA-N 4-[[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]-1-[2-oxo-2-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethyl]pyrazol-3-yl]methyl]-1-methylpiperazin-2-one Chemical compound CN1CCN(CC2=NN(CC(=O)N3CCC4=C(C3)N=NN4)C=C2C2=CN=C(NC3CC4=C(C3)C=CC=C4)N=C2)CC1=O DCVGCQPXTOSWEA-UHFFFAOYSA-N 0.000 description 1
- -1 C1-C5 hydrocarbons Chemical class 0.000 description 1
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- FHKPLLOSJHHKNU-INIZCTEOSA-N [(3S)-3-[8-(1-ethyl-5-methylpyrazol-4-yl)-9-methylpurin-6-yl]oxypyrrolidin-1-yl]-(oxan-4-yl)methanone Chemical compound C(C)N1N=CC(=C1C)C=1N(C2=NC=NC(=C2N=1)O[C@@H]1CN(CC1)C(=O)C1CCOCC1)C FHKPLLOSJHHKNU-INIZCTEOSA-N 0.000 description 1
- JAWMENYCRQKKJY-UHFFFAOYSA-N [3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-ylmethyl)-1-oxa-2,8-diazaspiro[4.5]dec-2-en-8-yl]-[2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidin-5-yl]methanone Chemical compound N1N=NC=2CN(CCC=21)CC1=NOC2(C1)CCN(CC2)C(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F JAWMENYCRQKKJY-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 230000029936 alkylation Effects 0.000 description 1
- 238000005804 alkylation reaction Methods 0.000 description 1
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 1
- 238000004523 catalytic cracking Methods 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 229910000428 cobalt oxide Inorganic materials 0.000 description 1
- IVMYJDGYRUAWML-UHFFFAOYSA-N cobalt(ii) oxide Chemical compound [Co]=O IVMYJDGYRUAWML-UHFFFAOYSA-N 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 229920001940 conductive polymer Polymers 0.000 description 1
- 238000010924 continuous production Methods 0.000 description 1
- 239000012043 crude product Substances 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000002079 double walled nanotube Substances 0.000 description 1
- 238000011143 downstream manufacturing Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000002803 fossil fuel Substances 0.000 description 1
- 239000008246 gaseous mixture Substances 0.000 description 1
- 229910021389 graphene Inorganic materials 0.000 description 1
- 150000002391 heterocyclic compounds Chemical class 0.000 description 1
- 125000000623 heterocyclic group Chemical group 0.000 description 1
- 238000004050 hot filament vapor deposition Methods 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 238000005984 hydrogenation reaction Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 229910052745 lead Inorganic materials 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 229910000480 nickel oxide Inorganic materials 0.000 description 1
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 1
- GNRSAWUEBMWBQH-UHFFFAOYSA-N oxonickel Chemical compound [Ni]=O GNRSAWUEBMWBQH-UHFFFAOYSA-N 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 238000002407 reforming Methods 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 150000003464 sulfur compounds Chemical class 0.000 description 1
- 150000003577 thiophenes Chemical class 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 229930195735 unsaturated hydrocarbon Natural products 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/15—Nano-sized carbon materials
- C01B32/158—Carbon nanotubes
- C01B32/16—Preparation
- C01B32/162—Preparation characterised by catalysts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B3/00—Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
- C01B3/02—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
- C01B3/22—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds
- C01B3/24—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds of hydrocarbons
- C01B3/26—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds of hydrocarbons using catalysts
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/15—Nano-sized carbon materials
- C01B32/158—Carbon nanotubes
- C01B32/16—Preparation
- C01B32/164—Preparation involving continuous processes
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/15—Nano-sized carbon materials
- C01B32/158—Carbon nanotubes
- C01B32/16—Preparation
- C01B32/166—Preparation in liquid phase
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C4/00—Preparation of hydrocarbons from hydrocarbons containing a larger number of carbon atoms
- C07C4/02—Preparation of hydrocarbons from hydrocarbons containing a larger number of carbon atoms by cracking a single hydrocarbon or a mixture of individually defined hydrocarbons or a normally gaseous hydrocarbon fraction
- C07C4/06—Catalytic processes
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F9/00—Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
- D01F9/08—Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
- D01F9/12—Carbon filaments; Apparatus specially adapted for the manufacture thereof
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F9/00—Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
- D01F9/08—Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
- D01F9/12—Carbon filaments; Apparatus specially adapted for the manufacture thereof
- D01F9/127—Carbon filaments; Apparatus specially adapted for the manufacture thereof by thermal decomposition of hydrocarbon gases or vapours or other carbon-containing compounds in the form of gas or vapour, e.g. carbon monoxide, alcohols
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y35/00—Methods or apparatus for measurement or analysis of nanostructures
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2202/00—Structure or properties of carbon nanotubes
- C01B2202/20—Nanotubes characterized by their properties
- C01B2202/36—Diameter
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/02—Processes for making hydrogen or synthesis gas
- C01B2203/0266—Processes for making hydrogen or synthesis gas containing a decomposition step
- C01B2203/0277—Processes for making hydrogen or synthesis gas containing a decomposition step containing a catalytic decomposition step
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/10—Catalysts for performing the hydrogen forming reactions
- C01B2203/1041—Composition of the catalyst
- C01B2203/1047—Group VIII metal catalysts
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/10—Catalysts for performing the hydrogen forming reactions
- C01B2203/1041—Composition of the catalyst
- C01B2203/1047—Group VIII metal catalysts
- C01B2203/1052—Nickel or cobalt catalysts
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/10—Catalysts for performing the hydrogen forming reactions
- C01B2203/1041—Composition of the catalyst
- C01B2203/1047—Group VIII metal catalysts
- C01B2203/1052—Nickel or cobalt catalysts
- C01B2203/1058—Nickel catalysts
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/10—Catalysts for performing the hydrogen forming reactions
- C01B2203/1041—Composition of the catalyst
- C01B2203/1082—Composition of support materials
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/10—Catalysts for performing the hydrogen forming reactions
- C01B2203/1041—Composition of the catalyst
- C01B2203/1094—Promotors or activators
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2523/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
- C07C2523/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
- C07C2523/74—Iron group metals
- C07C2523/755—Nickel
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2523/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
- C07C2523/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
- C07C2523/76—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups C07C2523/02 - C07C2523/36
- C07C2523/84—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups C07C2523/02 - C07C2523/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
- C07C2523/85—Chromium, molybdenum or tungsten
- C07C2523/88—Molybdenum
- C07C2523/881—Molybdenum and iron
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S977/00—Nanotechnology
- Y10S977/70—Nanostructure
- Y10S977/734—Fullerenes, i.e. graphene-based structures, such as nanohorns, nanococoons, nanoscrolls or fullerene-like structures, e.g. WS2 or MoS2 chalcogenide nanotubes, planar C3N4, etc.
- Y10S977/742—Carbon nanotubes, CNTs
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S977/00—Nanotechnology
- Y10S977/84—Manufacture, treatment, or detection of nanostructure
- Y10S977/842—Manufacture, treatment, or detection of nanostructure for carbon nanotubes or fullerenes
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Nanotechnology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Inorganic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Textile Engineering (AREA)
- Physics & Mathematics (AREA)
- General Health & Medical Sciences (AREA)
- Health & Medical Sciences (AREA)
- Combustion & Propulsion (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Composite Materials (AREA)
- Thermal Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Carbon And Carbon Compounds (AREA)
- Catalysts (AREA)
- Hydrogen, Water And Hydrids (AREA)
Description
US 8398894 B2には、所望の見かけ密度を有するカーボンナノチューブを生産するための、共沈法により調製された触媒を用いた、650℃でのエチレンと水素のガス状混合物の接触分解による方法が開示されている。
特許US 20090140215 A1には、直径3〜150nmのカーボンナノチューブの生産であって、主にCo、MnおよびMoを含む担持金属触媒上のH2およびArの存在下における、6500Cでの原料としてのエチレンの分解による、前記生産が記載されている
EP 1 318 102 A1には、単層/多層カーボンナノチューブの、アセチレン、エチレン、ブタン、プロパン、エタン、メタンからの触媒化学蒸着法を用いた生産が記載されている。
CN 1443708には、メタン原料からの、単一金属と促進剤の組み合わせを用いた、多層カーボンナノチューブ合成の調製方法が開示されている。
US 20120219490A1には、炭素および水素原子のガス状炭素源の原料成分からの、カーボンナノチューブと水素の同時生産が記載されている。この方法は、気化した金属触媒の存在下で、ガス状原料からの、単層カーボンナノチューブと水素の生産を扱っている。
特許US 6413487には、カーボンナノチューブを生産するための方法および装置が記載されている。この発明は主に、CO、CH4、C2H2、C2H4およびそれらの混合物のいずれかからの、VIII族金属触媒を使用した、カーボンナノチューブの合成について記載する。
WO 2001085612 A2には、Ni−Co触媒の存在下で、メタン、エタン、アセチレンおよび一酸化炭素を用いてカーボンナノチューブを製造する方法が記載されている。
上記従来技術において、使用される原料は、カーボンナノチューブを生産する目的で、C1〜C4の範囲の炭素数を有するガス状炭化水素である。しかし、上記の従来技術には、カーボンナノチューブを、輸送用燃料として直接使用することができる水素とメタンの混合物と一緒に生産することを目的とした、例えば原油またはその製品などの液体炭化水素混合物の、原料としての使用は、記載されていない。
US 6730284には、化学蒸着により炭素質物品を生産する方法が記載され、ここで、炭化水素、および酸素含有炭化水素、および芳香族炭化水素を原料として用い、IB族金属ならびに、Fe、Ni、Co、Znおよび混合物の群から選択される第2の金属を、100〜11000Cの動作温度の範囲で使用する。
これらの開示は、原料として様々な炭素質原料から、特にガスおよび液体炭化水素を含む単一分子の炭化水素からの、カーボンナノチューブの合成に関することは、上記の従来技術から明らかである。上記従来技術では、単分子のガス/液体原料またはそれらの混合物の、カーボンナノチューブの生産のための使用が開示されている。かかる方法は通常高価であり、カーボンナノチューブ(CNT)を商業規模で生産するための、より経済的な代替方法を見出す必要がある。
一側面において、本発明は、液体炭化水素から、カーボンナノチューブならびに水素および軽炭化水素を含む生成ガスを同時に生産するための、液体炭化水素を反応器内に供給すること;および、前記液体炭化水素を、カーボンナノチューブ、水素および軽炭化水素を含む生成ガスの同時生産のための触媒の存在下で変換すること、を含む方法であって、ここで前記液体炭化水素が、石油原油またはその製品およびそれらの混合物を含む、前記方法を提供する。
方法において使用される触媒は、促進剤ありまたはなしで使用可能な、バルク活性金属触媒または担持活性金属触媒のいずれかである。活性金属はVIII族金属から選択され、促進剤は、IB、VIB、VIIB、VIII族金属およびそれらの混合物から選択される。活性金属は、Fe、Co、Niを含む群から選択されてよく、および促進剤は、Fe、Ni、Co、Cu、Mo、W、CrまたはMnを含む群から選択されてよい。活性金属は、金属酸化物担体上に担持されていてよく、金属酸化物は、アルミナ、シリカ、シリカ−アルミナ、ゼオライト、チタニア、マグネシア、粘土材料および炭素材料を含む群から選択される。
触媒反応器は、振動機能ありまたはなしで操作することができる。反応器は、300〜1200℃の範囲、好ましくは500〜900℃の範囲の温度に維持されてよい。反応器は、1mbar〜10barの範囲、好ましくは1mbar〜5barの範囲の動作圧力に維持されてよい。触媒変換は、500〜1200℃の範囲の高温で実施される。
液体炭化水素の反応器への供給は、キャリアガスの助けにより行われる。キャリアガスは、窒素、ヘリウム、アルゴン、水素、二酸化炭素、またはそれらの混合物を含む群から選択される。軽炭化水素は、C1〜C5ガス、好ましくはメタン、エタン、エチレン、プロパン、プロピレン、ブタン、イソブタン、2−ブテン、およびペンタンである。C1〜C5炭化水素の生成ガス流は、部分的にまたは完全に反応器中に再循環されるか、または供給原料として別の反応器へ再循環される。
第2の側面の方法におけるカーボンナノチューブの収率は、液体炭化水素の1重量%〜80重量%、好ましくは20重量%〜60重量%の範囲である。カーボンナノチューブは、直径が1〜100nm、好ましくは1nm〜30nmで生産される。カーボンナノチューブの純度は、70重量%〜99.5重量%の範囲、好ましくは90重量%〜98重量%の範囲である。方法はまた、水素を10体積%〜90体積%の範囲で、およびメタンを10体積%〜90体積%の範囲で含む生成ガスを生成する。方法はまた、水素を、液体炭化水素の1重量%〜12重量%、好ましくは5重量%〜10重量%の範囲で生成する。
本発明は様々な修正および代替形態が可能であり、その具体的な態様を以下に詳細に説明する。しかしこれは、本発明を開示された特定の形態に限定することを意図せず、逆に本発明は、添付のクレームにより規定される本発明の範囲内に入るすべての修正、均等物、および代替物をカバーするものであることが、理解されるべきである。
語句「バルク活性金属触媒」は、担体の存在または不存在いずれかのもとで高い量の金属を負荷して一般的に調製される、バルク金属酸化物触媒を指す。一般に、活性金属の分散はバルク触媒において低く、これは、高濃度の金属のために、むき出しの担体の利用可能性が低くなるからである。
「担持活性金属触媒」という語句は、アルミナ、マグネシア、シリカなどの高表面積の担体にわたる、活性金属の均一な分散を指す。これらの触媒において、担体表面上の活性金属負荷容量は、低い0.5重量%から最大25重量%まで変化する。活性金属の分散は、バルク金属触媒よりも高い。
「内因性(intrinsic)成長促進剤」という語句は、異なる割合で石油原料中に存在するチオフェンなどの複素環式分子を意味する。理論により束縛されるものではないが、内因性成長促進分子は、分解プロセスの間に触媒の活性金属成分と反応し、金属−ヘテロ原子結合を形成すると考えられており、これがカーボンナノチューブ(CNT)の成長を促進すると考えられている。
液体炭化水素原料の複雑な混合物の使用は、カーボンナノチューブを生産するための供給源としては、従来技術において開示または教示されていない。より具体的には、石油原油およびその製品は、カーボンナノチューブ、水素および軽炭化水素の同時生産のためには開示されていない。
本発明は、液体炭化水素から、好ましくは石油原油およびその製品からの、カーボンナノチューブの同時生産のための方法であって、好ましくは500℃〜1200℃の範囲の高温にてバッチまたは連続反応器中1mbar〜10barの動作圧力での触媒変換を用いる、前記方法を開示する。高温は、触媒表面上の炭化水素の分解を容易にする方法において使用され、ここで(メタ)安定金属炭化物結合の活性相が生じ、これがCNT成長プロセスに必要とされる。処理の実施中、より低い温度の使用は推奨されない。より低い温度は、触媒表面上の炭化水素の部分分解を引き起こす。さらに、より低い温度でのCNTの収率は、500℃以下の金属炭化物を形成できないために低く、これによりクラッキング生成物につながる。
本発明の別の側面は、バルクまたは担持金属触媒のいずれかである触媒複合体の使用を開示し、該触媒は、VIII族金属から選択される活性金属、IB、VIB、VIIB、VIII族金属またはその混合物から選択される促進剤を、その酸化金属担体と共に含む。バルク触媒は、約>50重量%の金属負荷量を有する低分散の金属酸化物触媒である(例えば、酸化鉄、酸化コバルト、酸化ニッケル、またはそれらの組み合わせ)。バルク金属酸化物触媒は、担持金属触媒より熱的な安定性が低く、高温で焼結する傾向がある。対照的に、担持触媒は、25重量%までの金属負荷を有する、不活性担体上の活性金属の分散により形成される。担持金属触媒において、活性金属は、強力な金属−担体相互作用により担体表面に安定化される。担体材料は、触媒に広い表面積および熱安定性を提供する。
原油由来の天然に利用可能な液体炭化水素は、単一分子の液体または気体原料と比較して安価な原料である。さらに、原油由来の液体炭化水素原料は、水素化、アルキル化、改質(リホーミング)およびクラッキングなどの、さらに下流のプロセスを必要としない。さらに重要なことは、原油由来の液体炭化水素原料は、炭素と水素に富む可能性を有し、また、ヘテロ原子分子等の少量の内因性CNT成長促進分子を有する。酸素、窒素および硫黄を含有する複素環式化合物は、原油および留分に異なる割合で常に存在している。特に、チオフェン化合物は、CNTプロセスに対して内因性成長促進剤として作用する。理論に束縛されることなく、硫黄化合物と共に安定した金属−硫黄結合が形成され、これは活性金属種を維持し安定化させる。
本発明に従って使用される活性金属は、VIII族金属、好ましくは、Fe、Co、Niを含み、一方本発明に従って使用される促進剤は、IB、VIB、VIIBおよびVIII族金属、好ましくはFe、Ni、Co、Cu、Mo、W、CrまたはMnまたはそれらの混合物を含む。本発明に従って使用される金属酸化物としては、限定はされないが、アルミナ、シリカ、シリカ−アルミナ、ゼオライト、チタニア、マグネシア、粘土材料および炭素材料が挙げられる。
本発明に係る製造方法は、キャリアガスの助けを借りて、石油原油およびその誘導体を、触媒反応器に供給することを含む;該キャリアガスは、水素、窒素、ヘリウム、アルゴン、二酸化炭素またはこれらの混合物から選択される。供給速度は、反応器の滞留時間1〜100分の範囲に維持される。反応器の動作圧力は、1mbar〜10barに維持され、反応器温度は、500〜1200℃の範囲である。触媒反応器はバッチ式または連続式で操作され、振動機能が装備されているか、または装備無しである。前記触媒反応器は、原油およびその製品の変換のために操作される場合、炭素層の表面封入を触媒粒子上に限定し、これにより、長時間の触媒活性および改善されたカーボンナノチューブ純度が得られる。
(1)および(2)は、窒素および水素ガスの質量流量コントローラである。質量流量コントローラは、必要なプロセス条件に従って、ガスの所望の流量を調節する。(3)は、供給ポンプを埋め込んだ供給タンクであり、(4)は供給物をプレヒーター部へ運ぶためのラインヒーターであり、(5)および(6)は、反応器のための供給入口点である。触媒トレイ(7)およびバスケット(8)は、図13に示すように、反応器内に直列に配置される。触媒は、所望の容量の各トレイに負荷され、供給蒸気は、プロセス中に触媒表面と接触している。触媒振動流反応器は、直列に配置された複数の触媒トレイ(7)と収集バスケット(8)からなる。CNTは、触媒トレイ(7)に生成され、振動を利用して穿孔触媒トレイを通して収集バスケット(8)中に収集される。触媒トレイと収集バスケットの順序は交換することができる。金属製のシャフトには、電気機械的振動子(10)が装備され、CNTプロセスの間に電気的に暫定的/連続的に操作される。反応器からの生成ガスは、熱交換器(11)を通過し、最終的にウェットガス流量計(13)に達する。ガス試料収集は、開閉弁(12)から取り出される。
プロセスの終わりに、反応器は不活性雰囲気下で冷却され、生成物であるカーボンナノチューブが、1重量%〜80重量%の収率で反応器から回収される。カーボンナノチューブの直径は、1〜100nm、好ましくは1nm〜30nmで変動する。カーボンナノチューブの生産に加えて、原油およびその誘導体の変換から生成されて得られる生成ガス流は、水素およびC1〜C5ガスの軽炭化水素を、固体カーボンナノチューブと共に含む。CO、CO2ガスも、無視できる量で形成されていることに留意すべきである。
本発明の一態様において、水素ガスが生成ガス流から分離され、軽炭化水素の残りの副生成物は、部分的にまたは完全に反応器に再循環されて、カーボンナノチューブおよび水素の全体的な生産性を改善する。
本発明で生産されたカーボンナノチューブは、石油原油およびその製品から直接生産され、かつその純度が生成ガスの70重量%〜99.5重量%の範囲、好ましくは生成ガスの90重量%〜98重量%の範囲であるという利点を有する。これは、単一分子の気体または液体原料をカーボンナノチューブの生産に使用する既存の技術に勝る、重要な進歩である。別の明確な利点は、プロセス中に液体副産物が形成されず、得られた生成物はカーボンナノチューブ、水素およびメタン、および微量のC2〜C5炭化水素のみであり、これらすべてが産業上の利用可能性を有することである。水素の収率は、液体炭化水素の1重量%〜12重量%、好ましくは5重量%〜10重量%の範囲である。生成ガスは、水素を生成ガスの10体積%〜90体積%の範囲で含み、メタンを生成ガスの10体積%〜90体積%の範囲で含む。
本発明の基本的側面を説明してきたが、以下の非限定的な例は、その具体的な態様を示す。
8gのアルミナ担持Fe−Mo触媒を、振動反応器の中央内部に負荷する。キャリアガスおよび還元ガスの流速は、電子質量流量計により制御し、触媒および反応器の温度は、熱電対により測定する。さらに触媒を、窒素キャリアガスの存在下で700℃まで加熱する。700℃の所望の温度を達成した後、水素ガス(75sccm、すなわち毎分の標準立方センチメートル)を、触媒の還元のために反応器に導入し、還元を4時間継続する。触媒還元の終了後、窒素ガスを同じ温度で導入する。還元の目的は、金属酸化物種を、炭化水素分解のための活性相触媒種である金属種へと還元することである。この段階で、低硫黄(<1重量%のS)を有する原油を10g/hの流量で、50sccmの窒素キャリアガスと共に反応器に供給し、これを450分間継続する。キャリアガスの目的は、供給蒸気を反応器へ運ぶため、また、CNTプロセス中に不活性/還元性雰囲気を維持するためである。生成ガス流を、リファイナリーガスアナライザーによりさらに分析する。クロマトグラムは、水素、窒素、メタンおよび他の軽炭化水素等のガスの収率パターンを示す。実行完了後、反応器を窒素雰囲気下で冷却し、固体のカーボンナノチューブを収集し、収率を推定する。物質収支は、低硫黄原油原料の重量%に基づき窒素フリーベースで計算し、表1に示す。
8gのアルミナ担持Fe−Mo触媒を、振動反応器の中央内部に負荷する。キャリアガスおよび還元ガスの流速は、電子質量流量計により制御し、触媒および反応器の温度は、熱電対により測定する。さらに触媒を、窒素キャリアガスの存在下で700℃まで加熱する。700℃の所望の温度を達成した後、水素ガス(75sccm)を触媒の還元のために反応器に導入し、還元を4時間継続する。触媒還元の終了後、窒素ガスを同じ温度で導入する。この段階で、>1重量%の硫黄含有量を有する原油を14g/hの流量で、50sccmの窒素キャリアガスと共に反応器に供給し、これを430分間継続する。生成ガス流を、リファイナリーガスアナライザーによりさらに分析する。クロマトグラムは、水素、窒素、メタンおよび他の軽炭化水素等のガスの収率パターンを示す。実行完了後、反応器を窒素雰囲気下で冷却し、固体のカーボンナノチューブを収集し、収率を推定する。物質収支は、高硫黄原油原料の重量%に基づき窒素フリーベースで計算し、表2に示す。
8gのアルミナ担持Fe−Mo触媒を、振動反応器の中央内部に負荷する。キャリアガスおよび還元ガスの流速は、電子質量流量計により制御し、触媒および反応器の温度は、熱電対により測定する。さらに触媒を、窒素キャリアガスの存在下で700℃まで加熱する。700℃の所望の温度を達成した後、水素ガス(75sccm)を触媒の還元のために反応器に導入し、還元を4時間継続する。触媒還元の終了後、反応器温度を窒素雰囲気下で600℃に低下させる。この段階で、>1重量%の硫黄含有量を有する高硫黄原油を14g/hの流量で、50sccmの窒素キャリアガスと共に反応器に供給し、これを430分間継続する。生成ガス流を、リファイナリーガスアナライザーによりさらに分析する。クロマトグラムは、水素、窒素、メタンおよび他の軽炭化水素等のガスの収率パターンを示す。実行完了後、反応器を窒素雰囲気下で冷却し、固体のカーボンナノチューブを収集し、収率を推定する。物質収支は、高硫黄原油原料の重量%に基づき窒素フリーベースで計算し、表3に示す。
8gのアルミナ担持Fe−Mo触媒を反応器の中央内部に負荷し、ここで振動機能はこのプロセスの間作動していない。キャリアガスおよび還元ガスの流速は、電子質量流量計により制御し、触媒および反応器の温度は、熱電対により測定する。さらに触媒を、窒素キャリアガスの存在下で700℃まで加熱する。700℃の所望の温度を達成した後、水素ガス(75sccm)を触媒の還元のために反応器に導入し、還元を4時間継続する。触媒還元の終了後、窒素ガスを同じ温度で導入する。この段階で、ナフサを8.5g/hの流量で、40sccmの窒素キャリアガスと共に反応器に供給し、これを566分間継続する。生成ガス流を、リファイナリーガスアナライザーによりさらに分析する。クロマトグラムは、水素、窒素、メタンおよび他の軽炭化水素等のガスの収率パターンを示す。実行完了後、反応器を窒素雰囲気下で冷却し、固体のカーボンナノチューブを収集し、収率を推定する。物質収支は、ナフサ原料の重量%に基づき窒素フリーベースで計算し、表4に示す。
8gのアルミナ担持Fe−Mo触媒を、振動反応器の中央内部に負荷する。キャリアガスおよび還元ガスの流速は、電子質量流量計により制御し、触媒および反応器の温度は、熱電対により測定する。さらに触媒を、窒素キャリアガスの存在下で700℃まで加熱する。700℃の所望の温度を達成した後、水素ガス(75sccm)を触媒の還元のために反応器に導入し、還元を4時間継続する。触媒還元の終了後、窒素ガスを同じ温度で導入する。この段階で、ナフサを18.5g/hの流量で、40sccmの窒素キャリアガスと共に反応器に供給し、これを395分間継続する。生成ガス流を、リファイナリーガスアナライザーによりさらに分析する。クロマトグラムは、水素、窒素、メタンおよび他の軽炭化水素等のガスの収率パターンを示す。実行完了後、反応器を窒素雰囲気下で冷却し、固体のカーボンナノチューブを収集し、収率を推定する。物質収支は、ナフサ原料の重量%に基づき窒素フリーベースで計算し、表5(振動子なし)および表6(振動子あり)に示す。
生産されたカーボンナノチューブは、純度について熱重量分析を用いて分析し、振動子の動作なしの反応器から生産されたナノチューブのサーモグラムと比較し、比較のサーモグラムを図10に示す。
振動子の動作機能ありまたはなしによるカーボンナノチューブの純度を図10に示す;これは、カーボンナノチューブの純度が、振動子の動作により95重量%に増加し、一方振動子の動作機能なしでは、88重量%の純度が観察されることを示す。
8gのアルミナ担持Fe−Mo触媒を、振動反応器の中央内部に負荷する。キャリアガスおよび還元ガスの流速は、電子質量流量計により制御し、触媒および反応器の温度は、熱電対により測定する。さらに触媒を、窒素キャリアガスの存在下で700℃まで加熱する。700℃の所望の温度を達成した後、水素ガス(75sccm)を触媒の還元のために反応器に導入し、還元を4時間継続する。触媒還元の終了後、窒素ガスを同じ温度で導入する。この段階で、ライトサイクルオイル(LCO)を5.3g/hの流量で、40sccmの窒素キャリアガスと共に反応器に供給し、これを640分間継続する。生成ガス流を、リファイナリーガスアナライザーによりさらに分析する。クロマトグラムは、水素、窒素、メタンおよび他の軽炭化水素等のガスの収率パターンを示す。実行完了後、反応器を窒素雰囲気下で冷却し、固体のカーボンナノチューブを収集し、収率を推定する。物質収支は、ライトサイクルオイル原料の重量%に基づき窒素フリーベースで計算し、表7に示す。これに対し、ライトサイクルオイルからの生成ガスの配分を、体積%に基づき表8に示す。
8gのアルミナ担持Fe−Mo触媒を、振動反応器の中央内部に負荷する。キャリアガスおよび還元ガスの流速は、電子質量流量計により制御し、触媒および反応器の温度は、熱電対により測定する。さらに触媒を、窒素キャリアガスの存在下で700℃まで加熱する。700℃の所望の温度を達成した後、水素ガスを触媒の還元のために反応器に導入し、還元を4時間継続する。触媒還元の終了後、窒素ガスを同じ温度で導入する。この段階で、高硫黄を有する原油(>1重量%のS)を10g/hの流量で、窒素キャリアガスと共に反応器に供給し、これを450分間継続する。生成ガス流を、リファイナリーガスアナライザーによりさらに分析する。クロマトグラムは、水素、窒素、メタンおよび他の軽炭化水素等のガスの収率パターンを示す。実行完了後、反応器を窒素雰囲気下で冷却し、固体のカーボンナノチューブを収集し、収率を推定する。物質収支は、高硫黄原油原料の重量%に基づき窒素フリーベースで計算し、表9に示す。
8gのアルミナ担持Fe−Mo触媒を、振動反応器の中央内部に負荷する。キャリアガスおよび還元ガスの流速は、電子質量流量計により制御し、触媒および反応器の温度は、熱電対により測定する。さらに触媒を、窒素キャリアガスの存在下で700℃まで加熱する。700℃の所望の温度を達成した後、水素ガスを触媒の還元のために反応器に導入し、還元を4時間継続する。触媒還元の終了後、窒素ガスを500℃で導入する。この段階で、ナフサを18.5g/hの流量で、窒素キャリアガスと共に反応器に供給し、これを395分間継続する。生成ガス流を、リファイナリーガスアナライザーによりさらに分析する。クロマトグラムは、水素、窒素、メタンおよび他の軽炭化水素等のガスの収率パターンを示す。実行完了後、反応器を窒素雰囲気下で冷却し、固体のカーボンナノチューブを収集し、収率を推定する。物質収支は、ナフサ原料の重量%に基づき窒素フリーベースで計算し、表10に示す。
8gのアルミナ担持Fe−Mo触媒を、振動反応器の中央内部に負荷する。キャリアガスおよび還元ガスの流速は、電子質量流量計により制御し、触媒および反応器の温度は、熱電対により測定する。さらに触媒を、窒素キャリアガスの存在下で700℃まで加熱する。700℃の所望の温度を達成した後、水素ガスを触媒の還元のために反応器に導入し、還元を4時間継続する。触媒還元の終了後、窒素ガスを600℃で導入する。この段階で、ナフサを18.5g/hの流量で、窒素キャリアガスと共に反応器に供給し、これを395分間継続する。生成ガス流を、リファイナリーガスアナライザーによりさらに分析する。クロマトグラムは、水素、窒素、メタンおよび他の軽炭化水素等のガスの収率パターンを示す。実行完了後、反応器を窒素雰囲気下で冷却し、固体のカーボンナノチューブを収集し、収率を推定する。物質収支は、ナフサ原料の重量%に基づき窒素フリーベースで計算し、表11に示す。
温度が高くなるにつれて、触媒粒子へのガス拡散の運動エネルギーが増加し、これによりCNT成長の増加がもたらされる。
8gのアルミナ担持Ni−Co触媒を、振動反応器の中央内部に負荷する。キャリアガスおよび還元ガスの流速は、電子質量流量計により制御し、触媒および反応器の温度は、熱電対により測定する。さらに触媒を、窒素キャリアガスの存在下で700℃まで加熱する。700℃の所望の温度を達成した後、水素ガスを触媒の還元のために反応器に導入し、還元を4時間継続する。触媒還元の終了後、窒素ガスを700℃で導入する。この段階で、ナフサを18.5g/hの流量で、窒素キャリアガスと共に反応器に供給し、これを395分間継続する。生成ガス流を、リファイナリーガスアナライザーによりさらに分析する。クロマトグラムは、水素、窒素、メタンおよび他の軽炭化水素等のガスの収率パターンを示す。実行完了後、反応器を窒素雰囲気下で冷却し、固体のカーボンナノチューブを収集し、収率を推定する。物質収支は、ナフサ原料の重量%に基づき窒素フリーベースで計算し、表12に示す。
カーボンナノチューブの純度をTGAにより決定し、85重量%と推定される(図17)。
8gのアルミナ担持Ni−Co触媒を、振動反応器の中央内部に負荷する。キャリアガスおよび還元ガスの流速は、電子質量流量計により制御し、触媒および反応器の温度は、熱電対により測定する。さらに触媒を、窒素キャリアガスの存在下で500℃まで加熱する。500℃の所望の温度を達成した後、水素ガスを触媒の還元のために反応器に導入し、還元を4時間継続する。触媒還元の終了後、窒素ガスを500℃で導入する。この段階で、ナフサを18.5g/hの流量で、窒素キャリアガスと共に反応器に供給し、これを395分間継続する。生成ガス流を、リファイナリーガスアナライザーによりさらに分析する。クロマトグラムは、水素、窒素、メタンおよび他の軽炭化水素等のガスの収率パターンを示す。実行完了後、反応器を窒素雰囲気下で冷却し、固体のカーボンナノチューブを収集し、収率を推定する。物質収支は、ナフサ原料の重量%に基づき窒素フリーベースで計算し、表13に示す。
Ni−Co触媒を用いて500℃で生産されたカーボンナノチューブの純度を図18に示す;これは66重量%と推定される。
例10および11は共に、同一に維持したCNTプロセス条件および還元温度について示し、データは、Ni−Co触媒について2つの異なる温度、すなわち500℃と700℃で提供される。例11では、還元はより低い温度で実施され、反応も同じ温度で実施される。
8gのアルミナ担持Fe−Mo触媒を、振動反応器の中央内部に負荷する。キャリアガスおよび還元ガスの流速は、電子質量流量計により制御し、触媒および反応器の温度は、熱電対により測定する。さらに触媒を、窒素キャリアガスの存在下で700℃まで加熱する。700℃の所望の温度を達成した後、水素ガス(75sccm)を触媒の還元のために反応器に導入し、還元を4時間継続する。触媒還元の終了後、ナフサを18.5g/hの流量で、キャリアガスとして40sccmの水素と共に反応器に供給し、これを395分間継続する。生成ガス流を、リファイナリーガスアナライザーによりさらに分析する。クロマトグラムは、水素、窒素、メタンおよび他の軽炭化水素等のガスの収率パターンを示す。実行完了後、反応器を窒素雰囲気下で冷却し、固体のカーボンナノチューブを収集し、次いで収率を推定する。物質収支は、ナフサ原料の重量%に基づき窒素フリーベースで計算し、表14に示す。
8gのアルミナ担持Fe−Mo触媒を、振動反応器の中央内部に負荷する。キャリアガスおよび還元ガスの流速は、電子質量流量計により制御し、触媒および反応器の温度は、熱電対により測定する。さらに触媒を、窒素キャリアガスの存在下で800℃まで加熱する。800℃の所望の温度を達成した後、水素ガス(75sccm)を触媒の還元のために反応器に導入し、還元を4時間継続する。触媒還元の終了後、ナフサを18.5g/hの流量で、キャリアガスとして40sccmの水素と共に反応器に供給し、これを395分間継続する。生成ガス流を、リファイナリーガスアナライザーによりさらに分析する。クロマトグラムは、水素、窒素、メタンおよび他の軽炭化水素等のガスの収率パターンを示す。実行完了後、反応器を窒素雰囲気下で冷却し、固体のカーボンナノチューブを収集し、収率を推定する。物質収支は、ナフサ原料の重量%に基づき窒素フリーベースで計算し、表15に示す。
両方の例は、同一に維持したCNTプロセス条件および還元温度について示し、データは、Ni−Co触媒について2つの異なる温度、すなわち500℃と700℃で提供される。例11では、還元はより低い温度で実施され、反応も同じ温度で実施される。
Claims (21)
- 石油原油、その製品、またはそれらの混合物から、カーボンナノチューブならびに水素および軽炭化水素を含む生成ガスを同時に生産する方法であって、
石油原油、その製品、またはそれらの混合物を振動機能で操作される振動反応器内に供給すること;および
前記石油原油、その製品、またはそれらの混合物はヘテロ原子の内因性成長促進剤を有し、当該石油原油、その製品、またはそれらの混合物をカーボンナノチューブ、水素および軽炭化水素の同時生産のための触媒で変換すること、を含み、
ここで前記石油原油、その製品、またはそれらの混合物は、ナフサ、ライトサイクルオイル、流体触媒クラッキングからのデカンテッド・クラリファイドオイル(decanted clarified oil)、芳香族抽出物、水素化分解装置ボトムからの未転換油(UCO)、脱アスファルト油(DAO)、コーカー炉オイル(Coker Furnace Oil)(CFO)、熱分解炉オイル(PFO)、抜頭原油(reduced crude oil)、減圧軽油(VGO)またはそれらの混合物を含み、および
生成物は、70重量%〜99.5重量%の範囲の純度のカーボンナノチューブを含み、および
生成ガスは、水素、およびメタン、エタン、エチレン、プロパン、プロピレン、ブタン、イソブタン、2−ブテン、およびペンタンからなるC1〜C5軽炭化水素を含み、水素ガスは、生成ガスの10体積%〜90体積%の範囲であり、ここで、メタンは生成ガスの10体積%〜90体積%の範囲内である、前記方法。 - 触媒が、促進剤ありまたはなしの、バルクまたは担持活性金属触媒である、請求項1に記載の方法。
- ヘテロ原子の内因性成長促進剤が、酸素および/または硫黄および/または窒素含有分子である、請求項1に記載の方法。
- 酸素および/または硫黄および/または窒素含有分子がチオフェンである、請求項3に記載の方法。
- 活性金属がVIII族金属から選択され、促進剤がIB、VIB、VIIB、VIII族金属から選択される、請求項2に記載の方法。
- 活性金属が、Fe、Co、Niを含む群から選択され、促進剤が、Fe、Ni、Co、Cu、Mo、W、CrまたはMnを含む群から選択される、請求項5に記載の方法。
- 活性金属が金属酸化物担体上に担持され、金属酸化物が、アルミナ、シリカ、シリカ−アルミナ、ゼオライト、チタニア、マグネシア、粘土材料を含む群から選択される、請求項2に記載の方法。
- 活性金属の金属酸化物担体に対する比率が、1〜100重量%/重量%の範囲であり、活性金属の促進剤に対する比率が、0〜20重量%/重量%の範囲である、請求項2に記載の方法。
- 活性金属の担体に対する比率が、5〜40重量%/重量%の範囲であり、活性金属の促進剤に対する比率が、1〜10重量%/重量%の範囲である、請求項2に記載の方法。
- 振動反応器の温度が、300〜1200℃の範囲に維持される、請求項1に記載の方法。
- 振動反応器の温度が、500〜900℃の範囲に維持される、請求項1に記載の方法。
- 振動反応器が、1mbar〜10barの範囲の動作圧力に維持される、請求項1に記載の方法。
- 振動反応器が、1mbar〜5barの範囲の動作圧力に維持される、請求項1に記載の方法。
- 触媒変換が、500〜1200℃の範囲の高温で実施される、請求項1に記載の方法。
- 石油原油、その製品、またはそれらの混合物の振動反応器への供給が、キャリアガスの助けを用いて行われ、該キャリアガスが、窒素、ヘリウム、アルゴン、水素、二酸化炭素、またはそれらの混合物を含む群から選択される、請求項1に記載の方法。
- カーボンナノチューブの収率が、石油原油、その製品、またはそれらの混合物の1重量%〜80重量%の範囲である、請求項1に記載の方法。
- カーボンナノチューブの純度が、90重量%〜98重量%の範囲である、請求項1に記載の方法。
- 水素および軽炭化水素を含む生成ガスの収率が、10体積%〜90体積%の範囲である、請求項1に記載の方法。
- 水素の収率が、石油原油、その製品、またはそれらの混合物の1重量%〜12重量%の範囲である、請求項1に記載の方法。
- C1〜C5炭化水素を含む生成ガス流を、部分的にまたは完全に振動反応器中に再循環させるか、または供給原料として別の振動反応器へ再循環させる、請求項1に記載の方法。
- カーボンナノチューブが、1〜100nmの直径を有して生産される、請求項1に記載の方法。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
IN4116/MUM/2013 | 2013-12-30 | ||
IN4116MU2013 IN2013MU04116A (ja) | 2013-12-30 | 2014-12-29 | |
PCT/IB2014/067383 WO2015101917A1 (en) | 2013-12-30 | 2014-12-29 | Process for simultaneous production of carbon nanotube and a product gas from crude oil and its products |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2017501959A JP2017501959A (ja) | 2017-01-19 |
JP6374513B2 true JP6374513B2 (ja) | 2018-08-15 |
Family
ID=52434905
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016542274A Active JP6374513B2 (ja) | 2013-12-30 | 2014-12-29 | 原油およびその製品からの、カーボンナノチューブおよび生成ガスの同時生産のための方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US9890045B2 (ja) |
EP (1) | EP3089940B1 (ja) |
JP (1) | JP6374513B2 (ja) |
IN (1) | IN2013MU04116A (ja) |
WO (1) | WO2015101917A1 (ja) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9815700B2 (en) | 2014-12-11 | 2017-11-14 | Baker Hughes | Method of manufacturing carbon nanotubes and fibers using catalytic metal oxide nanoparticles |
US9376320B1 (en) * | 2014-12-11 | 2016-06-28 | Baker Hughes Incorporated | Method of manufacturing carbon nanotubes and fibers using catalytic magnesium oxide nanoparticles |
US10876035B2 (en) * | 2016-06-03 | 2020-12-29 | Baker Hughes, A Ge Company, Llc | Method for decomposing asphaltene using a supported catalyst |
EP3404747B1 (en) | 2017-05-17 | 2020-01-29 | INDIAN OIL CORPORATION Ltd. | Compositions for preparing expander free electrodes for lead acid battery and performance thereof |
CN111372681A (zh) | 2017-09-18 | 2020-07-03 | 西弗吉尼亚大学 | 用于可调基底生长的多壁碳纳米管的催化剂和工艺 |
US11181043B2 (en) | 2019-09-30 | 2021-11-23 | General Electric Company | Apparatuses and methods for generating carbon particles and exhaust gas used by gas turbine systems |
US11685651B2 (en) * | 2019-10-25 | 2023-06-27 | Mark Kevin Robertson | Catalytic decomposition of hydrocarbons for the production of hydrogen and carbon |
US20220331784A1 (en) * | 2020-08-26 | 2022-10-20 | Hindustan Petroleum Corporation Limited | Catalyst composition for the production of hydrogen |
KR102672016B1 (ko) * | 2021-12-03 | 2024-06-05 | 한국에너지기술연구원 | 활성화 전처리된 촉매를 포함하는 유동화 반응기를 이용하는 수소 및 탄소체 제조방법 및 제조장치 |
CN114011418A (zh) * | 2021-12-06 | 2022-02-08 | 无锡碳谷科技有限公司 | 一种甲烷裂解催化剂的制备方法 |
CN113955742B (zh) * | 2021-12-09 | 2023-11-10 | 太原理工大学 | 一种二氧化碳-甲烷重整技术制备碳纳米管的工艺 |
Family Cites Families (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001085612A2 (en) | 2000-05-11 | 2001-11-15 | Her Majesty The Queen In Right Of Canada, As Represented By The Minister Of National Defence | Process for preparing carbon nanotubes |
JP2001348215A (ja) * | 2000-05-31 | 2001-12-18 | Fuji Xerox Co Ltd | カーボンナノチューブおよび/またはフラーレンの製造方法、並びにその製造装置 |
US6919064B2 (en) * | 2000-06-02 | 2005-07-19 | The Board Of Regents Of The University Of Oklahoma | Process and apparatus for producing single-walled carbon nanotubes |
US6413487B1 (en) | 2000-06-02 | 2002-07-02 | The Board Of Regents Of The University Of Oklahoma | Method and apparatus for producing carbon nanotubes |
US6730284B2 (en) | 2000-06-16 | 2004-05-04 | Honda Giken Kogyo Kabushiki Kaisha | Method for producing carbonaceous articles |
US7160531B1 (en) | 2001-05-08 | 2007-01-09 | University Of Kentucky Research Foundation | Process for the continuous production of aligned carbon nanotubes |
EP1318102A1 (en) | 2001-12-04 | 2003-06-11 | Facultés Universitaires Notre-Dame de la Paix | Catalyst supports and carbon nanotubes produced thereon |
US7150863B2 (en) * | 2001-08-30 | 2006-12-19 | Tda Research, Inc. | Polynuclear aromatic hydrocarbons for fullerene synthesis in flames |
CN1226085C (zh) | 2003-04-17 | 2005-11-09 | 浙江大学 | 一种金属氧化物催化剂及用于制备成束多壁纳米碳管的方法 |
US7473873B2 (en) * | 2004-05-18 | 2009-01-06 | The Board Of Trustees Of The University Of Arkansas | Apparatus and methods for synthesis of large size batches of carbon nanostructures |
DE102004054959A1 (de) | 2004-11-13 | 2006-05-18 | Bayer Technology Services Gmbh | Katalysator zur Herstellung von Kohlenstoffnanoröhrchen durch Zersetzung von gas-förmigen Kohlenverbindungen an einem heterogenen Katalysator |
EP1797950A1 (en) | 2005-12-14 | 2007-06-20 | Nanocyl S.A. | Catalyst for a multi-walled carbon nanotube production process |
DE102006007147A1 (de) | 2006-02-16 | 2007-08-23 | Bayer Technology Services Gmbh | Verfahren zur kontinuierlichen Herstellung von Katalysatoren |
JP2007280731A (ja) * | 2006-04-05 | 2007-10-25 | National Institute Of Advanced Industrial & Technology | カーボンナノチューブ電線の製造方法 |
DK2011907T3 (da) * | 2007-07-02 | 2010-05-17 | Centre Nat Rech Scient | Fremgangsmåde til fremstilling af hydrogengas og carbon-nanorør ud fra en katalytisk nedbrydning af ethanol |
JP2009131751A (ja) * | 2007-11-29 | 2009-06-18 | Tokushima Ken | 光触媒活性化装置及びその使用方法 |
KR101089570B1 (ko) | 2009-07-07 | 2011-12-05 | 금호석유화학 주식회사 | 겉보기 밀도를 조절시킨 탄소나노튜브 제조용 촉매 |
CA2773996C (en) * | 2009-09-10 | 2017-12-05 | The University Of Tokyo | Method for simultaneously producing carbon nanotubes and hydrogen, and device for simultaneously producing carbon nanotubes and hydrogen |
KR101018660B1 (ko) | 2009-12-22 | 2011-03-04 | 금호석유화학 주식회사 | 다중벽 탄소나노튜브 제조용 촉매조성물 |
US8712374B2 (en) * | 2010-11-24 | 2014-04-29 | Alcatel Lucent | Method and apparatus for providing charging status information to subscriber of communication service |
CN105110290B (zh) * | 2010-11-25 | 2017-06-09 | 谢嘉骏 | 用于氢生产的系统和方法 |
RU2497752C2 (ru) * | 2011-11-29 | 2013-11-10 | Инфра Текнолоджис Лтд. | Способ получения длинных углеродных нанотрубок и устройство для осуществления этого способа |
-
2014
- 2014-12-29 EP EP14833289.3A patent/EP3089940B1/en active Active
- 2014-12-29 JP JP2016542274A patent/JP6374513B2/ja active Active
- 2014-12-29 US US15/105,563 patent/US9890045B2/en active Active
- 2014-12-29 WO PCT/IB2014/067383 patent/WO2015101917A1/en active Application Filing
- 2014-12-29 IN IN4116MU2013 patent/IN2013MU04116A/en unknown
Also Published As
Publication number | Publication date |
---|---|
US9890045B2 (en) | 2018-02-13 |
US20160318764A1 (en) | 2016-11-03 |
JP2017501959A (ja) | 2017-01-19 |
EP3089940A1 (en) | 2016-11-09 |
IN2013MU04116A (ja) | 2015-08-07 |
EP3089940B1 (en) | 2019-07-10 |
WO2015101917A1 (en) | 2015-07-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6374513B2 (ja) | 原油およびその製品からの、カーボンナノチューブおよび生成ガスの同時生産のための方法 | |
Zahid et al. | Synthesis of carbon nanomaterials from different pyrolysis techniques: a review | |
Yao et al. | Carbon nanotubes from post-consumer waste plastics: Investigations into catalyst metal and support material characteristics | |
KR101460373B1 (ko) | 유동층에서 탄소 나노튜브를 제조하는 방법 | |
Tessonnier et al. | Recent progress on the growth mechanism of carbon nanotubes: a review | |
EP2025643B1 (en) | Method for producing single-walled carbon nanotubes | |
EP1846157B1 (fr) | Procede de synthese de nanotubes de carbone | |
WO2008048313A9 (en) | Production of carbon nanotubes | |
US10758898B2 (en) | Method for manufacturing carbon nanotube agglomerate having controlled bulk density | |
WO2006064760A1 (ja) | 単層カーボンナノチューブの製造方法 | |
Azara et al. | A review of filamentous carbon nanomaterial synthesis via catalytic conversion of waste plastic pyrolysis products | |
US11053123B2 (en) | Method of producing carbon nanotubes in fluidized bed reactor | |
Zhang et al. | Study of tire pyrolysis oil model compound structure on carbon nanomaterial production | |
Toussi et al. | Effect of synthesis condition on the growth of SWCNTs via catalytic chemical vapour deposition | |
Esteves et al. | Influence of space velocity and catalyst pretreatment on COx free hydrogen and carbon nanotubes production over CoMo/MgO catalyst | |
EP1786958B1 (en) | Production method of vapor-grown carbon fiber and apparatus therefor | |
US11826732B2 (en) | Catalyst for MWCNT production | |
CN113727942B (zh) | 碳纳米管的制备方法和制备系统 | |
Setyopratomo et al. | Carbon nanotubes synthesis using Fe-Co-Mo/MgO tri-metallic catalyst: study the effect of reaction temperature, reaction time and catalyst weight | |
KR102730292B1 (ko) | 탄소나노튜브 제조용 촉매 | |
Pellegrino et al. | Process optimization and kinetic study of multiwalled carbon nanotube synthesis | |
JP2024510823A (ja) | カーボンナノチューブ製造用触媒の製造方法 | |
JP2024537305A (ja) | カーボンナノチューブの合成方法 | |
Bikbaeva | Metal-sulfide materials for ethane conversion in presence of CO2 | |
Hanaei | The interaction effects of synthesis reaction temperature and deposition time on carbon nanotubes (CNTs) yield |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20160622 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20170508 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20170807 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20170920 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20171102 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20180215 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20180712 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20180719 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6374513 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |