AFFICHEUR A CRISTAL LIQUIDE PERFECTIONNE NOTAMMENT PAR SUPPRESSION D'EFFETS NEFASTES SUR LES BORDS DE ZONES ADRESSEES
DOMAINE TECHNIQUE
La présente invention concerne le domaine des afficheurs à cristaux liquides (LCD).
Plus précisément la présente invention concerne les afficheurs bistables à cristaux liquides nématiques. La présente invention s'applique en particulier aux afficheurs bistables à cristaux liquides nématiques, à cassure d'ancrage, dont deux textures stables diffèrent par une torsion d'environ 180°. BUT DE L'INVENTION
Le but de l'invention est d'améliorer les performances des dispositifs d'affichage bistables, et plus particulièrement de supprimer certains effets visuellement néfastes qui apparaissent sur les bords des zones adressées de certains afficheurs connus.
ETAT DE L'ART DES TECHNOLOGIES LCD Etat de Ia technologie des LCD standard (type TN)
Mode de fonctionnement d'un écran TN Ce mode de fonctionnement va être rappelé rapidement en regard de la figure 1 sur laquelle on aperçoit deux substrats 10, 20, munis d'électrodes respectives 12, 22 et entre lesquels est placée une couche de molécules de cristal liquide 30.
La structure TN (Twisted Nematic en anglais pour « Nématique Twisté ou Tordu») est très utilisée dans les afficheurs à cristaux liquides. Dans ces afficheurs, les directions d'alignement des molécules sur les deux substrats en regard 10, 20
(verre ou plastique) sont perpendiculaires entre elles. Le cristal liquide forme alors un quart d'hélice comme illustré sur la gauche de la figure 1 <ΌUS la référence 31 qui illustre un pixel non adressé tordu. Ceci représente l'état stable du cristal liquide.
Cette structure hélicoïdale fait tourner de 90° la direction de polarisation d'une lumière polarisée de façon rectiligne. Les cristaux liquides utilisés dans cet effet ont une anisotropie diélectrique positive.
Lors de l'application d'un champ électrique E entre deux électrodes 12, 22 portées respectivement par les deux substrats 10, 20, les molécules s'orientent parallèlement au champ électrique, soit perpendiculairement auxdits substrats 10,
20, supprimant ainsi la structure hélicoïdale. Cet état est instable, il n'est obtenu que sous champ électrique, comme le schématise la figure 1 sous la référence 32 au milieu et sur la droite de la figure 1 pour un pixel ainsi adressé. L'axe optique du cristal liquide s'oriente alors parallèlement au champ électrique et la polarisation de la lumière n'est plus modifiée par la traversée du cristal liquide.
Une cellule placée entre deux polariseurs croisés (c'est à dire entre des polariseurs alignés respectivement parallèlement aux directions d'alignement du cristal liquide sur les substrats 10, 20), absorbe la lumière sous champ électrique (état noir) et transmet la lumière au repos (état blanc). On a alors une inscription noire sur fond clair (comme illustré sur la figure 2). Sur cette figure 2 on a référencé 40 une zone non adressée, située entre des électrodes et 42 un segment matérialisé par des électrodes.
L'inverse est obtenu entre polariseurs parallèles, c'est à dire que dans ce cas la cellule transmet la lumière sous champ électrique (état liane) et absorbe la lumière au repos (état noir).
Dans les écrans TN, quel que soit le mode d'adressage, les zones non adressées, entre les pixels définis par les électrodes permettant l'application du champ électrique, sont toujours en état tordu en quart d'hélice (état stable) comme illustré sur la figure 1 sous la référence 33.
En résumé, la figure 1 représente schématiquement les deux textures d'un écran TN. La structure tordue est stable. On la trouve dans les zones entre les pixels sous la référence 33 et dans les pixels au repos sous la référence 31. Cette texture apparaît claire entre polariseurs croisés. Sous champ électrique, les molécules se relèvent et s'orientent parallèlement au champ comme illustré ous la référence 32. La texture alors obtenue apparaît noire entre polariseurs croisés.
Ecrans TN à affichage digital
Le mode d'adressage d'un écran à cristal liquide peut être direct ou multiplexe. La structure des électrodes d'un écran à cristal liquide peut être à « affichage direct » ou matricielle. Le mode d'adressage le plus simple adapté à un faible nombre d'éléments d'image, est dénommé mode direct. Dans ce mode, chaque pixel est adressé indépendamment , il faut donc une piste d'adressage, c'est à dire d'application d'un signal électrique de commande, par élément d'image. Usuellement, le mode d'adressage direct est utilisé avec une structure d'électrodes à affichage direct, où les deux électrodes prévues respectivement sur les deux substrats et entre lesquelles on applique le champ électrique, forment l'image que l'on va obtenir. Il est typiquement utilisé pour écrire un mot ou un sigle. Par exemple pour l'affichage d'un chiffre ou digit constitué de 7 segments (7 unités élémentaires), les électrodes auront la forme des segments et on aura 7 pistes permettant de connecter chaque segment indépendamment.
Lorsque le nombre d'éléments d'image devient trop important, il devient impossible techniquement de réaliser une piste de connexion par élément d'image. On utilise alors une structure d'électrodes matricielle et un mode d'adressage multiplexe. L'adressage multiplexe consiste à relier entre eux un certain nombre d'éléments d'image de façon à constituer des lignes sur un des substrats et des colonnes sur l'autre substrat. L'adressage se fait alors ligne par ligne, une ligne à la fois. Lors de l'adressage d'une ligne, les tensions correspondant aux colonnes sont injectées simultanément dans toutes les colonnes. Puis on passe à la ligne suivante et ainsi de suite jusqu'à la dernière ligne.
Dans le cas d'écrans matriciels, les électrodes 12, 22 sont disposées en lignes et colonnes respectivement sur les deux substrats 10, 20. Leur intersection forme des pixels que l'on « inscrit » (c'est à dire que l'on commande sélectivement en leur appliquant un champ électrique) en mode multiplexe, afin de former une image. Le schéma de principe de ce type d'écran se trouve sur la figure 3. Sur celle- ci on a référencé 44 les électrodes de colonnes placées sur un premier substrat, par
exemple le substrat supérieur et on a référencé 46 les électrodes de lignes placées sur le second substrat, par exemple sur le substrat inférieur. Par exemple pour afficher le pixel de coordonnées 3, 4, on applique un signal ligne sur la ligne 4 et un signal colonne sur la colonne 3. Le mode d'affichage appelé digital a une structure d'électrode de type direct et un mode d'adressage de type multiplexe. Il permet l'écriture d'éléments simples appelés segments, formant les digits (le plus souvent des chiffres). La figure 2 montre un écran de calculatrice TN à affichage digital. Il est composé de 5 chiffres et d'une virgule. Les chiffres sont écrits chacun à l'aide de 7 segments soit en tout 36 éléments d'image, adressés en mode multiplexe, ce qui signifie que certains de ces segments vont être reliés entre eux pour constituer les lignes et les colonnes. Les segments peuvent être dans l'état noir ou blanc en fonction du chiffre que l'on veut noter. On voit sur l'image de la figure 2 que les segments sont bien définis, aucun défaut n'est visible dans les zones non adressées. La figure 4 représente le contour des électrodes pour un affichage digital à 5 chiffres (faisant chacun 7 segments) et une virgule soit 36 unités élémentaires (5 digits x 7 segments = 35 segments + la virgule). L'écran est multiplexe, c'est à dire que l'adressage est effectué de façon matriciel : on a 12 « colonnes » (sur une « électrode principale », voir figure 4a) et 3 « lignes » (sur la « contre électrode », voir figure 4b) permettant d'adresser 3x12 = 36 éléments. Le taux de multiplexage de cet écran est de trois. On peut ainsi adresser chaque segment indépendamment en connectant une ligne et une colonne sur le même principe que celui de la figure 3 pour l'écran matriciel. A titre d'exemple, pour inscrire la virgule, il faut appliquer une tension électrique entre la piste pi de la figure 4b et la piste pi 0 de la figure 4a. Ces pistes sont également indiquées sur la figure 4c.
Plus précisément la figure 4a représente les électrodes (ici sous forme de 12 colonnes) prévues sur un premier substrat, par exemple le substrat inférieur, la figure 4b représente les électrodes (ici sous forme de trois lignes) prévues sur le second substrat, par exemple le substrat supérieur, tandis que la figure 4c représente la superposition de ces deux types d'électrodes. Les zones ne comportant pas d'électrode ne pourront pas être adressées. Par ailleurs plus précisément, sur la
figure 4c, on a représenté en gris foncé les électrodes illustrées sur la figure 4b et on a représenté en gris clair les électrodes illustrées sur la figure 4a.
Etat de la technologie dite « BiNem »
Une nouvelle génération d'afficheurs nématiques, dits "bistables", est apparue depuis quelques années : ils fonctionnent par commutation entre deux états stables en l'absence de champ électrique. Ainsi le champ électrique externe n'est appliqué que pendant le temps nécessaire pour faire commuter d'un état à l'autre la texture du cristal liquide. En l'absence de signal électrique de commande, l'afficheur reste en l'état. Par son principe de fonctionnement, ce type d'afficheur consomme une énergie proportionnelle au nombre de changements d'images. Ainsi, quand la fréquence de ces changements diminue, la puissance nécessaire pour le fonctionnement de l'afficheur tend vers zéro. Ce type d'afficheur se développe rapidement en raison de l'expansion du marché des dispositifs mobiles. Mode de fonctionnement L'afficheur bistable BiNem® (décrit dans les documents FR- A-2 740 893,
FR-A-2 740 894 et US 6 327 017) est présenté schématiquement sur la figure 5. On retrouve sur celle-ci un afficheur comprenant deux substrats 10, 20 munis d'électrodes respectives 12, 22. Sur la figure 5 on a représenté par ailleurs sous les références 14, 24, les couches d'alignement prévues respectivement sur les deux substrats 10, 20. Un tel afficheur utilise deux textures, l'une uniforme ou faiblement tordue U (illustrée sur la gauche de la figure 5) dans laquelle les molécules sont sensiblement parallèles entre elles et l'autre T (illustrée sur la droite de la figure 5) qui diffère de la première par une torsion d'environ +/- 180°. Le cristal liquide nématique est chiralisé de façon à présenter un pas spontané po proche de quatre fois l'épaisseur d de la cellule, pour égaliser les énergies des deux textures. Le rapport entre l'épaisseur d de la cellule et le pas spontané po, soit d/po, est donc environ égal à 0,25 +/- 0,1. Sans champ électrique, ce sont les états d'énergie minimale : la cellule est bistable. Sous fort champ, une texture presque homéotrope (H) est obtenue. Cet état est illustré au centre de la cellule sous la référence H. L'ancrage des molécules est cassé au moins sur l'une des plaques 10 : les molécules voisines lui sont normales. A la fin de l'impulsion de commande, la cellule revient vers l'une ou l'autre des textures U ou T, selon la vitesse de retour à l'équilibre des molécules près de la surface dont l'ancrage n'était pas cassé. Un retour lent donne
l'état U par couplage élastique entre les molécules près des deux surfaces. Un retour rapide donne l'état T par couplage hydrodynamique. Les textures U et T sont optiquement différentes, et une cellule BiNem entre polariseur croisés ou parallèles permet une modulation de la lumière en noir (état bloquant) et blanc (état passant). Problèmes rencontrés dans les écrans BiNem pour l'affichage de digits
Un premier problème rencontré lors de la fabrication d'écrans BiNem avec segments est la non maîtrise de la texture dans les zones non adressées, c'est à dire dans les zones situées entres les électrodes.
En effet, la bistabilité permettant par définition d'obtenir deux états stables (état uniforme U et état tordu T), si les deux textures, après remplissage ou après application d'une contrainte mécanique sur la cellule, cohabitent dans une zone non adressée alors ce défaut ne peut pas être corrigé par application d'un champ électrique puisque ces zones ne possèdent pas d'électrodes. La figure 6 schématise ce problème. Dans le cas des écrans matriciels, ce phénomène est observé dans les zones non adressées séparant les pixels. Il est assez aléatoire et est difficilement maîtrisé, mais peu visible, du fait de la faible dimension des zones non adressées séparant les pixels. Dans les écrans à affichage digital, les zones non adressées (sans électrode) représentent la majeure partie de la surface de la zone d'affichage (comme on peut le voir sur la figure 4). La coexistence aléatoire des deux tex.ures dans ces zones non adressées constitue une gêne visuelle majeure.
Cet effet est montré sur la figure 7 où les deux textures se retrouvent dans les zones non adressées de la surface utile. Dans cette cellule, les différences de texture sont apparues lors de la phase de remplissage de la cellule par le cristal liquide et ne peuvent plus être corrigées. La figure 7 représente la photographie d'un écran BiNem en mode transmissif. Sur cette figure la texture U est blanche et la texture T est noire. Les zones non adressées sont dans des états totalement aléatoires et la lecture des chiffres (ici blancs en U) est difficile.
Sur la figure 8a, les deux textures U et T sont mélangées à une échelle non visible sur les zones non adressées référencées 60, et l'impression visuelle est grisâtre à ce niveau.
Une solution pour les zones non adressées 60 serait de refaire le dessin des électrodes (généralement constituées d'une couche mince d'ITO pour Indium Tin
Oxyde) afin d'ajouter une piste dans les zones situées entre les pixels utiles, permettant de rafraîchir ces zones à chaque commutation. Cette option aurait cependant pour conséquence une complexification de l'écran au niveau des pistes d'ITO et de l'électronique, ce qui entraînerait un surcoût important. De plus, cela ne résout pas un autre problème important qui est celui des effets de bord (voir paragraphe suivant) et augmente même le nombre de zones non adressées de faible largeur entre deux blocs d'ITO (appelées zones interbloc), ce qui aggrave encore ce problème dit des effets de bord.
Un deuxième problème rencontré est en effet la présence d'effets de bord le long des segments. Cet effet, constaté sur toutes les cellules BiNem, est dû à la technologie : au bord des pixels ou des segments que l'on souhaite adresser en T, de petites zones restent dans L'état U et ne passent jamais en T. On voit donc des zones en U dans un segment devant être complètement en T. Ce phénomène s'explique par le ralentissement du flux hydrodynamique du cristal liquide en bord de pixel. Lors de la commutation, les molécules dans les zones non adressées restent immobiles, le flux du cristal liquide dans le pixel se trouve donc ralenti au bord de celui-ci. Dans ce bord, le flux hydrodynamique est insuffisant pour faire basculer les molécules de cristal liquide dans l'état tordu T et le couplage élastique ramène alors le cristal liquide dans l'état uniforme U.
Sur les écrans à affichage digital avec des segments rectangulaires de grande longueur ce défaut est beaucoup plus important que le défaut observé dans les pixels des écrans matriciels plutôt carrés ou faiblement rectangulaires. Sur la figure 8b, on voit nettement les effets de bord, référencés 70, le long des segments horizontaux. Lorsque ces segments sont mis en état T (noirs selon la figure 8b), les bords restent en U (blancs selon la figure 8b) créant une différence de contraste à l'intérieur du segment. Leur emplacement est toujours le même sur toutes les cellules brossées de manière identique : l'effet de bord apparaît selon la direction perpendiculaire au sens de brossage référencé 72 (cf figure 8b). Cela s'explique par le fait que la direction de brossage coïncide avec la direction du flux
hydrodynamique qui commande la commutation. Ce sont donc bien les bords des segments perpendiculaires à la direction de ce flux qui présentent un effet de bord.
L'effet de bord peut être plus ou moins marqué en fonction des paramètres du procédé de fabrication utilisé (force de brossage, durcissement de la couche...). Un brossage à 45° des cellules par rapport aux directions des segments diminue la surface des effets de bord mais ceux-ci sont toujours présents. Type d'électrodes utilisées dans les afficheurs à cristal liquide
Généralement, les électrodes conductrices sont réalisées avec un conducteur transparent appelé ITO (Oxyde mixte d'Indium et d'Etain) déposé en couche mince. Mais lorsque l'afficheur est réfiectif, les électrodes situées côté opposé à l'observateur n'ont pas la contrainte de transparence, elles peuvent être réalisées avec un matériau conducteur opaque, par exemple de l'aluminium.
Dans les exemples décrits par la suite, y compris dans le cadre de l'invention, on choisit une électrode en ITO, mais cet exemple n'est en aucun cas limitatif quant au matériau dont l'électrode est constituée. DESCRIPTION DE L'INVENTION Principe
Le but de la présente invention est essentiellement de résoudre simultanément les deux imperfections évoquées ci-dessus d'effet de bord et de zones non adressées, qui sont spécifiques à la technologie BiNem.
Ce but est atteint dans le cadre de la présente invention grâce à un dispositif afficheur à cristal liquide comprenant deux substrats munis d'électrodes respectives et situés de part et d'autre d'une couche de molécules de cristal liquide et des moyens définissant deux états stables pour les molécules de cristal liquide, en l'absence de champ électrique, caractérisé par le fait qu'il comprend en outre un masque comportant des plages transparentes ne laissant apparaître que le dessin des plages que l'on souhaite visualiser et des plages opaques couvrant le reste de la surface de l'afficheur et entre autres les zones non adressées par les électrodes et, que les électrodes sont conformées de sorte que leurs bords soient situés dans des zones extérieures aux plages transparentes du masque, que sur l'un au moins des substrats, les électrodes sont formées de blocs, que chaque bloc d'électrode étant constitué de la réunion d'une part des plages élémentaires reliées entre elles à cause
du multiplexage et d'autre part des zones intermédiaires situées sous les plages opaques du masque, et que les blocs couvrent la totalité de la surface du substrat à l'exception de zones intermédiaires de faible largeur nécessaire pour assurer l'isolation électrique entre les blocs. Les inventeurs proposent ainsi de modifier le procédé classique de réalisation des cellules d'afficheur à cristal liquide en réalisant un masque ne laissant apparaître que le dessin des segments que l'on cherche à visualiser et en procédant à un nouveau dessin des électrodes.
D'autres caractéristiques, buts et avantages de la présente invention apparaîtront à la lecture de la description détaillée qui va suivre et en regard des dessins annexés, donnés à titre d'exemples non limitatifs et sur lesquels :
. la figure 1 précédemment décrite représente schématiquement les deux textures connues d'un écran TN,
. la figure 2 précédemment décrite représente la photographie d'un écran digital TN classique,
. la figure 3 précédemment décrite représente le schéma de principe du fonctionnement d'un écran matriciel,
. la figure 4 précédemment décrite représente les électrodes d'un écran 5 digits, 7 segments ; plus précisément les figures 4a et 4b représentent respectivement les dessins des électrodes prévues sur les deux substrats de la cellule et la figure 4c représente ces électrodes superposées,
. la figure 5 précédemment décrite représente le schéma de principe de fonctionnement d'un écran BiNem,
. la figure 6 précédemment décrite représente les deux textures présentes dans un écran BiNem,
. la figure 7 précédemment décrite représente la photographie d'un écran BiNem en mode transmissif et illustre l'état aléatoire de zones non adressées,
. la figure 8 précédemment décrite représente d'autres photographies d'un écran BiNem en mode transmissif ; plus précisément la figure 8a illustre des zones non adressées grisées et la figure 8b illustre des effets de bords néfastes,
. la figure 9 représente schématiquement un écran conforme à la présente invention comportant un masque ; plus précisément les figures 9a et 9b représentent deux variantes de positionnement du masque conformes à la présente invention,
. les figures 10, 11 et 12 représentent schématiquement différentes étapes du mécanisme ayant conduit au dessin d'électrodes conformes à la présente invention,
. la figure 13a représente le dessin d'électrodes principales conformes à l'état de la technique, tandis que la figure 13b représente en regard le dessin d'électrodes principales conformes à la présente invention,
. la figure 14a représente le dessin de contre-électrodes conformes à l'état de la technique, tandis que la figure 14b représente en regard le dessin de contre- électrodes conformes à la présente invention,
. la figure 15a représente la superposition d'électrodes conformes à l'état de la technique telles qu'illustrées sur les figures 13a et 14a, tandis que la figure 15b représente en regard la superposition d'électrodes conformes à la présente invention telles qu'illustrées sur les figures 13b et 14b,
. la figure 16 représente la photographie d'un masque conforme à la présente invention, déposé par exemple par sérigraphie sur un substrat ou un autre élément de l'afficheur,
. la figure 17 représente une vue en perspective éclatée illustrant la superposition des éléments constituant un écran conforme à la présente invention, à masque incorporé,
. la figure 18 représente un écran BiNem digital conforme à la présente invention avec masque noir et en mode transmissif, respectivement à l'état non passant (noir = état T) sur la figure 18a et à l'état passant (blanc = état U) sur la figure 18b, en présence d'un léger désalignement visible sur la figure 18a, et
. la figure 19 représente une autre vue d'un écran BiNem digital conforme à la présente invention avec masque noir et en mode transmissif, respectivement à l'état non passant (état T) sur la figure 19a et à l'état passant (état U) sur la figure 19b, sans aucun désalignement.
On va maintenant exposer plus en détail les caractéristiques de la présente invention en regard des figures 9 à 19 annexées.
Comme on l'a indiqué précédemment, et comme on le voit sur la figure 9 annexée, dans le cadre de la présente invention, le dispositif d'affichage comporte un masque opaque ou quasi opaque 100. Ce masque 100 comporte des plages transparentes 120 ne laissant apparaître, que le dessin des segments que l'on souhaite visualiser, et des plages opaques ou quasi opaques 110 couvrant le reste de la surface.
Le masque 100 peut être réalisé en tout matériau approprié. II peut par ailleurs être disposé en tout lieu approprié de l'afficheur.
Le masque 100 peut ainsi être réalisé sur la cellule même à l'extérieur de celle ci, du côté observateur ou du côte opposé (par exemple entre le substrat 20 et un polariseur 200 placé côté observateur comme illustré sur la figure 9a ou en avant du polariseur 200 côté observateur, c'est à dire entre le polariseur 200 et l'observateur comme illustré sur la figure 9b).
Le polariseur arrière 250 peut être soit de type transmissif dans le cas d'un écran transmissif, soit de type réflectif pour un écran réflectif, soit de type transflectif pour un écran transflectif.
Pour une cellule de type transmissif, le masque 100 peut être positionné du côté de l'éclairage ou du côté de l'observateur.
Pour un écran réflectif (réalisé avec un réflecteur externe ou interne à la cellule), le masque 100 est de préférence placé du côté de l'observateur, c'est à dire sur le dessus de l'écran.
Il est également envisageable d'intégrer le masque 100 à l'intérieur même de l'afficheur, du côté de l'observateur ou du côté opposé.
Dans tous les cas, le masque 100 est de préférence aligné avec les motifs des électrodes à mieux que 50 μm près.
Le masque 100 couvre l'ensemble de la surface à l'exception des zones que l'on souhaite visualiser, et résout donc le premier problème précité, c'est à dire que quel que soit l'état réel du cristal liquide dans les zones situées sous les plages opaques du masque 100, à ce niveau l'apparence de l'écran est toujours celle du masque. Néanmoins des effets de bord peuvent rester visibles.
Cependant, la présence du masque 100 permet de libérer un certain nombre de contraintes sur le dessin des électrodes, qui n'a plus à correspondre exactement à la forme, ici le segment, que l'on souhaite visualiser. Celles-ci peuvent donc être totalement re-dessinées dans le cadre de la présente invention. Ainsi avec le nouveau dessin selon l'invention, les bords des segments d'électrodes 22 sont rejetés dans des zones extérieures aux zones transparentes 120 du masque, sous les plages opaques ou quasi opaques 110 du masque. Les effets de bords précédemment décrits sont ainsi rendus invisibles par le masque 100.
De plus, les zones non adressées peuvent être supprimées en formant des blocs d'électrodes (par exemple en ITO) à partir des lignes et des colonnes .
La présence d'un masque 100 dans un écran BiNem donne également la possibilité d'optimiser le contraste de l'afficheur. En effet, on peut choisir d'afficher les digits blancs sur fond noir auquel cas le masque 100 sera noir. Ou alors on peut choisir de les afficher noirs sur fond blanc. Dans ce cas, le masque 100 sera « blanc ».
Le masque 100 peut en réalité n'être pas parfaitement noir ou blanc. Il peut avoir une teinte qui se rapproche le plus possible de l'état des digits. Si on affiche les digits noir sur fond clair, il faudra que la teinte du masque 100 se rapproche le plus possible de la couleur des digits lorsqu'ils sont clairs ou inversement, si on affiche blanc sur fond sombre, la teinte du masque 100 devra se rapprocher le plus possible de l'état sombre des digits.
Contour des électrodes.
On va maintenant expliciter la démarche des inventeurs pour redessiner la géométrie des électrodes 22. Diminution des effets de bords visibles par l'utilisateur.
Le masque 100, qui ne laisse apparaître que les digits et la virgule (tel que représenté par exemple sur la figure 16), est utilisé pour couvrir les zones non adressées selon le dessin de l'état de l'art. Mais son existence permet de modifier complètement le dessin des électrodes 22 par rapport à une géométrie classique, dans le but de masquer également les effets de bord décrits précédemment.
Les effets de bord sont très marqués lorsque le brossage est perpendiculaire au dessin des électrodes. Ils peuvent s'étendre sur 0.5mm sur certains écrans comme celui de la figure 8.
Pour cacher les effets de bord, plusieurs étapes de re-conception du dessin des électrodes ont été nécessaires.
Une première étape a consisté, comme illustré sur la figure 10, à élargir les segments d'électrodes tout en conservant leur forme initiale. Plus précisément la figure 10a représente le dessin d'électrodes classiques (on y retrouve la direction de brossage 72 et les effets de bord 70), tandis que la figure 10b représente une ébauche de dessin dans le cadre de la présente invention. Sur les figure 10b et 11, les traits interrompus 74 délimitent les contours des segments que l'on souhaite visualiser, correspondant aux contours des électrodes selon l'état de l'art (figure 10a). La figure 10b montre cependant que certains effets de bord dont on ne maîtrise pas la taille restent visibles. Ces effets apparaissent à l'intérieur de certaines parties du cadre 74 en traits interrompus illustré sur la figure 10b. Pour minimiser la taille de l'effet de bord, les inventeurs ont déterminé qu'il est souhaitable que le dessin des électrodes fasse toujours un angle de 45° minimum avec la direction de brossage et donc le rouleau de la machine de brossage.
La figure 11 montre en conséquence le dessin théorique qu'entraînerait cette deuxième modification. Sur la figure 11, les bords des électrodes ne sont plus perpendiculaires au brossage. Les effets de bord 70 sont localisés dans les pointes des triangles. Ils n'apparaissent plus au travers du masque 100. Dans cette configuration, l'effet de bord 70 est non seulement plus petit mais il est aussi repoussé dans une zone cachée par le masque 100. De fait les effets de bord 70 visibles sur la figure 11 sont situés en dehors des plages transparentes 75 situées à l'intérieur des cadres 74.
Dans la pratique, il est cependant assez difficile d'agrandir les segments d'électrodes de la manière représentée sur la figure 11. Néanmoins à partir de ce dessin théorique les inventeurs ont abouti à une troisième et dernière étape du re- dessin des électrodes, illustré sur la figure 12.
Plus précisément la figure 12a représente le dessin classique d'électrodes (sur un des substrats) conformes à l'état de la technique (ici dessin des colonnes), la figure 12b représente une délimitation d'électrodes conformes à la présente invention illustrées en superposition du dessin classique de la figure 12a, et la figure 12c représente le dessin final d'électrodes conformes à un mode de réalisation de la présente invention.
Comme on le voit sur les figures 12b et 12c, les inventeurs préconisent de créer des blocs d'électrode 28 à partir des segments d'origine 22 reliés entre eux du fait du multiplexage et en élargissant ces blocs bien au-delà de la zone à visualiser. Le masque opaque ayant levé toute contrainte quant à la forme de l'électrode, la taille de ces blocs peut être augmentée jusqu'à ce qu'ils deviennent quasiment jointifs, seulement séparés par une zone interbloc 281 de faible largeur, typiquement 2 à 100 μm, préférentiellement 5 à 50 μm.
Comme on le voit sur les figures annexées, par exemple sur les figures 12c, 13b et 14b, dans le cadre de la présente invention, les blocs d'électrodes 28 adjacents quasiment jointifs peuvent être délimités par des contours constitués de tronçons, de préférence rectilignes, parallèles entre eux. La zone interbloc est alors délimitée sur une de ses dimensions par deux tronçons rectilignes parallèles entre eux séparés par une distance typiquement comprise entre 2 à 100 μm, préférentiellement 5 à 50 μm.
Le dessin final obtenu illustré sur la figure 12c n'a alors plus rien à voir avec le dessin initial de la figure 12a.
La surface des blocs ayant été agrandie par rapport à l'état de l'art, cette surface est alors significativement moins résistive que trois segments 22 classiques reliés par deux pistes étroites 23.
En résumé les figures 12a, 12b et 12c montrent le passage du dessin d'origine au dessin final grâce au multiplexage et à l'utilisation du masque. On voit sur la figure 12a que les segments 22 d'un digit sont reliés entre eux par des pistes fines 23. Le multiplexage étant de trois sur ce dessin, les segments 22 des électrodes sont reliés par trois comme expliqué précédemment. La figure 12b montre la superposition du dessin d'origine (quasi équivalent au dessin du masque) et du
dessin final du digit où on a créé trois blocs d'électrode 28 , par exemple en ITO, constitués de la réunion d'une part des plages élémentaires ou segments reliées entre elles à cause du multiplexage et d'autre part des zones intermédiaires, qui dans le dessin selon l'état de l'art constituait les zones non adressées entre les segments. Enfin, la figure 12c montre que dans le dessin final la surface d'ITO est beaucoup plus importante que dans le dessin classique. Il n'existe plus de zones non adressée, ce qui permet un rafraîchissement total de la surface de l'écran, incluant les zones que l'on cherche à visualiser. Les effets de bords 70 sont rejetés dans les pointes du dessin qui sont très éloignées de la zone visible par l'utilisateur Sur les figures 12b et 12c, on conserve sur l'arête supérieure du bloc d'ITO référencé 280 le principe de l'angle à 45° de la direction de brossage 72 non plus sous forme d'une pointe unique mais sous la forme de plusieurs dents de scie, ce afin de réduire la surface de l'électrode et ainsi de réduire les risques de court circuit. De plus, comme on le constate sur la figure 12b, il est possible de diminuer la largeur de la zone interbloc 281 par rapport à la largeur initiale entre deux segments du dessin selon l'état de l'art, ce afin de faciliter l'alignement entre les dessins du masque et de l'électrode.
Ce nouveau dessin des électrodes selon l'invention s'applique de la même manière au substrat en regard, ici le substrat comportant les électrodes lignes.
AVANTAGES DU NOUVEAU DESSIN D'ELECTRODES CONFORME A LA PRESENTE INVENTION
Le dessin final d'électrodes illustré sur la figure 12c présente plusieurs avantages en plus de celui de rejeter les effets de bord 70 en dehors de la zone visible par l'utilisateur :
Un premier avantage est la simplification du dessin des pistes qui entraîne une augmentation du rendement de fabrication.
Un deuxième avantage est de faciliter l'alignement entre le dessin du masque et celui de l'électrode. Pour cela, sur le dessin ΛQ l'électrode selon l'invention, il n'existe plus de zones non adressées et la largeur de la zone interbloc peut être diminuée par rapport à celle selon l'état de l'art, tandis que celle du
masque 100 peut être légèrement élargie. Etant donné que les blocs entiers d'ITO 28 sont adressés, on n'est plus limité par la forme des segments 22 pour aligner le masque 100 sur les électrodes d'ITO (ou inversement, alignement de la lithographie sur le masque 100). La limitation sur l'alignement ne vient alors plus que de la zone interbloc 281. Pour le faciliter, les inventeurs ont apportés les modifications suivantes précédemment évoquées :
. l' interpixel sur le masque 100 est élargi, . la zone interbloc 281 est amincie, et . la virgule initiale est devenue un point. Un troisième avantage est que, du fait de l'augmentation de la surface de chaque bloc d'électrode, sa résistance globale est réduite. De la même façon, les pistes de connectique 282 de la figure 13a selon l'état de l'art ont été élargies sur la figure 13b selon l'invention.
Un quatrième avantage est que la zone utile est quasiment en ITO plein, ce qui garantit une très bonne homogénéité de l'épaisseur de la cellule de cristal liquide. Une telle homogénéité facilite le remplissage des cellules. Pour améliorer encore l'homogénéité, des blocs non connectés électriquement référencés 284 sur les figures 13b et 14b, peuvent être ajoutés sur l'extérieur de la zone utile. Ces blocs
284 ont la même épaisseur que les électrodes actives. Ils sont réalisés de préférence dans le même matériau que ces électrodes actives, soit en ITO. De préférence la distance qui sépare ces blocs d'ITO 284 entre eux et qui les sépare des électrodes 28 est comprise entre 1 et 500 μm, très préférentiellement entre 5 et 50 μm.
En effet, avec le dessin d'origine, le front de remplissage n'est pas du tout régulier. Le cristal liquide remplit d'abord les zones les plus fines c'est à dire les zones avec ITO en regard puis les zones sans ITO. On remplit donc en premier les segments et ensuite l'intérieur des digits et le fond de la cellule. Il arrive alors régulièrement que ce remplissage non uniforme laisse de petites bulles dans ces zones. Ces bulles sont gênantes esthétiquement et peuvent se déplacer par pression sur la cellule.
La bonne homogénéité de l'épaisseur de la cellule conforme à la présente invention permet au contraire un remplissage plus uniforme qui limite le nombre de bulles.
EXEMPLES DE REALISATION DE L'INVENTION Des écrans 5 digits, 7 segments ont été réalisés selon l'invention.
Les figures 13, 14 et 15 permettent de visualiser un exemple de dessin de l'ITO suivant l'invention sur chaque électrode complète. Selon cet exemple on crée 12 blocs d'ITO correspondant aux douze colonnes de l'électrode (figure 13b) et 3 blocs d'ITO sur la contre électrode correspondant aux trois lignes (figure 14b). Le dessin final obtenu est illustré sur la figure 15b. Il n'a plus rien à voir avec le dessin d'origine classique illustré sur la figure 15a. Ce nouveau dessin comporte quasiment une électrode pleine.
En complément du re-dessin des électrodes, un masque 100 selon l'invention a été implanté dans un afficheur. Dans cet exemple de réalisation, la solution adoptée par les inventeurs a été d'appliquer par sérigraphie une encre de couleur sombre sur le substrat du dessus 20 préalablement lithographie. La figure 15b représente la superposition des deux électrodes selon l'invention (figures 13b et 14b) de l'afficheur et du masque 100.
La figure 16 montre le résultat du dépôt d'une encre noire sur un substrat lithographie. Dans cet exemple non limitatif, le masque est placé entre le substrat du dessus 20 et le polariseur 200 comme le montre la figure 17. Avec cette teinte de masque, après fabrication de l'écran, l'affichage est blanc sur fond noir.
Des exemples d'écrans réalisés avec le dessin d'électrode 28 et le masque 100 selon l'invention sont présentés figure 18 et 19. On affiche sur ces écrans les digits en blanc sur fond noir. Sur l'écran de la figure 18, les zones non adressées et les effets de bord n'apparaissent plus. Cependant la couleur du masque n'est pas encore tout à fait celle des digits en noir et le masque n'est pas parfaitement aligné avec le design de l'électrode, on peut donc toujours voir des zones interbloc 281 dans l'état blanc. Sur l'afficheur de la figure 19, la couleur du masque est parfaitement adaptée à la couleur des digits et il est parfaitement aligné.
Bien entendu la présente invention n'est pas limitée aux modes de réalisation particuliers qui viennent d'être décrits, mais s'étend à toutes variantes conformes à son esprit.