[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP1778952A1 - Exhaust gas turbocharger for an internal combustion engine - Google Patents

Exhaust gas turbocharger for an internal combustion engine

Info

Publication number
EP1778952A1
EP1778952A1 EP05774990A EP05774990A EP1778952A1 EP 1778952 A1 EP1778952 A1 EP 1778952A1 EP 05774990 A EP05774990 A EP 05774990A EP 05774990 A EP05774990 A EP 05774990A EP 1778952 A1 EP1778952 A1 EP 1778952A1
Authority
EP
European Patent Office
Prior art keywords
exhaust gas
gas turbocharger
carrier ring
turbocharger according
turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP05774990A
Other languages
German (de)
French (fr)
Inventor
Peter Fledersbacher
Paul Löffler
Michael Scherrieble
Siegfried Sumser
Siegfried Weber
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Charging Systems International GmbH
Original Assignee
DaimlerChrysler AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DaimlerChrysler AG filed Critical DaimlerChrysler AG
Publication of EP1778952A1 publication Critical patent/EP1778952A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/24Control of the pumps by using pumps or turbines with adjustable guide vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D17/00Regulating or controlling by varying flow
    • F01D17/10Final actuators
    • F01D17/12Final actuators arranged in stator parts
    • F01D17/14Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits
    • F01D17/16Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits by means of nozzle vanes
    • F01D17/165Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits by means of nozzle vanes for radial flow, i.e. the vanes turning around axes which are essentially parallel to the rotor centre line
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/04Cooling of air intake supply
    • F02B29/0406Layout of the intake air cooling or coolant circuit
    • F02B29/0437Liquid cooled heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/05High pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust system upstream of the turbine and reintroduced into the intake system downstream of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/23Layout, e.g. schematics
    • F02M26/28Layout, e.g. schematics with liquid-cooled heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/40Application in turbochargers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/40Movement of components
    • F05D2250/41Movement of components with one degree of freedom
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/30Retaining components in desired mutual position
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the invention relates to an exhaust gas turbocharger for an internal combustion engine according to the preamble of claim 1.
  • the publication DE 102 37 413 A1 describes such an exhaust gas turbocharger which comprises an exhaust gas turbine in the exhaust line of the internal combustion engine and a compressor in the intake tract, wherein the turbine wheel of the exhaust gas turbine drives the compressor wheel in the compressor via a shaft.
  • the compressor sucks in combustion air from the environment and compresses it to an increased charge pressure, below which the combustion air is supplied to the cylinders of the internal combustion engine.
  • the pressurized exhaust gases of the internal combustion engine drive the turbine wheel.
  • variable turbine geometry which allows a variable adjustment of the effective flow inlet cross section to the turbine wheel.
  • the variable turbine geometry can be used to increase power both in the fired drive mode and in engine braking mode. It is designed as an adjustable Leitgit ⁇ ter, which comprises a support ring with frontally held ge vanes. The vanes are located in the flow inlet cross section and can about a rotation axis be pivoted between a minimum stowed position and a maximum open position.
  • the vane clearance necessary to ensure proper functioning in such rotary vane turbine geometries is determined by the material and the geometry of the vanes, as well as the position and material of the spacers used to adjust the cold play of the vane.
  • Another influencing variable is the offset between the two running surfaces resulting from thermal and mechanical loading (end face of the guide blade carrier and machined counter-contour turbine housing), to which the guide vanes are intended to terminate initially with as small a gap as possible. Since the distance between these two treads is usually determined only by three spacers, especially in the large exhaust gas turbines operating gap from one Leitschaufei to another can vary significantly. In addition, for example, in the case of a rapid increase in the exhaust gas temperature, the spacer bushings heat up much more slowly and thus also expand than the guide vanes.
  • the invention is based on the problem of improving the efficiency of exhaust gas turbochargers with simple measures. Expediently, gaps between the end faces of guide vanes in the flow inlet cross-section and the adjacent housing wall are to be reduced by structural measures and without energy consumption. This problem is solved according to the invention with the features of An ⁇ award 1.
  • the subclaims indicate expedient developments.
  • the support ring as part of the guide grid is floatingly mounted in the supporting wall section, whereby the possi bility of an axial compensating movement is given. Furthermore, in the exhaust gas turbocharger according to the invention, the rear side of the carrier ring, which faces away from the guide vanes, is acted upon by the pressure prevailing in the inflow channel of the exhaust gas turbocharger. Since a lower pressure than in the inflow channel prevails in the flow inlet cross section to the turbine wheel owing to the acceleration of the flow in the guide grid, a force resultant on the carrier ring arises which acts on the carrier ring in the direction of the wall section defining the flow inlet cross section.
  • the guide vanes which are held on the carrier ring, are pressed by this resultant force to the wall adjacent to the end faces of the guide vanes, whereby gap dimensions are reliably prevented and leakage flows are prevented.
  • the efficiency of the exhaust gas turbocharger is considerably improved and can be maintained, in particular under all operating conditions, that is to say both in the cold state and in the warm operating state. Since the resultant force arises solely from the pressure difference between the front side and the rear side of the carrier ring of the guide grid, no active energy-consuming actuators are required for the adjustment of the guide grid. This way, complex control systems can be omitted.
  • the pressure difference between the back of the carrier ring (high pressure) and the front of the carrier ring (lower pressure) is sufficient to adjust the carrier ring including the vanes in the desired direction.
  • the carrier ring it is sufficient for the carrier ring to be mounted in a floating manner in a radial section of the bearing housing or of the turbine housing and thus to be able to execute an axial movement relative to this bearing wall section.
  • the wall section receiving the carrier ring can rather be designed as a fixed and immovable component of the housing, in particular a bearing housing, which accommodates the rotatably mounted supercharger shaft and is part of the exhaust-gas turbocharger. Since the carrier ring has only a relatively low weight, relatively small pressure differences between the front and rear sides of the carrier ring are also sufficient to beat it with an actuating force in the direction of the opposite wall section.
  • the rear side communicates advantageously via a connecting gap with the inflow channel, wherein the connecting gap preferably branches away from the inflow channel at a distance from the guide vanes, to ensure that the maximum pressure in the inflow channel to the back of the Su ⁇ ringes is passed.
  • the connecting gap preferably branches away from the inflow channel at a distance from the guide vanes, to ensure that the maximum pressure in the inflow channel to the back of the Su ⁇ ringes is passed.
  • the guide vanes which are arranged on the front side of the carrier ring, be ⁇ already a pressure drop, whereby the pressure difference between the front and back of the carrier ring comes about.
  • a seal, is also a sealing ring into consideration.
  • the connecting gap via which the rear side of the carrier ring communicates with the inflow channel, preferably runs along the radially outer shell side of the support ring. On the one hand it directs the pressure from the inflow channel on the remind ⁇ side of the support ring, on the other hand it is ensured that the support ring is guided free of friction and obstacle on its radial outer side, so that the axial adjusting movement of the Carrier ring is not inhibited.
  • the axial free travel, within which the carrier ring can move axially, is expediently limited in both directions.
  • a housing-side stop can be provided which limits the axial mobility of the carrier ring on the side facing away from the guide vanes.
  • spacer sleeves can be arranged in the flow inlet cross section and extend between the carrier ring and the wall against which the end faces of the guide vanes abut. These spacer sleeves set a defined minimum clearance between guide vanes and mating contour of the turbine housing.
  • the spacers are expediently designed in such a way, in particular with regard to their geometry and their material, that they expand or contract with one another in an adjacent temperature gradient approximately in the same way as the guide vanes of the guide grid. In this way, heat-related jamming of the guide vanes in the flow inlet cross section is avoided.
  • 1 is a schematic representation of a supercharged internal combustion engine
  • 2 shows a section through the exhaust gas turbine of the exhaust gas turbocharger, which is used in the internal combustion engine
  • FIGS. 4 to 6 show various spacer sleeves, which are arranged in the flow inlet cross section between the carrier ring and a wall section adjoining it.
  • the internal combustion engine 1 shown in FIG. 1 - an Otto engine or a diesel internal combustion engine - has an exhaust gas turbocharger 2 which comprises an exhaust gas turbine 3 in the exhaust gas line 4 and a compressor 5 in the intake tract 6 of the internal combustion engine.
  • the turbine wheel of the exhaust gas turbine 3 is non-rotatably coupled via a shaft 7 to the compressor wheel in the compressor 5, so that in a drive of the shaft 7 via the Tur ⁇ binenrad in the compressor combustion air from the environment an ⁇ sucked and compressed to an increased boost pressure.
  • Downstream of the compressor 5, the compressed combustion air is first fed to a charge air cooler 8 and cooled there. Subsequently, the combustion air is supplied under boost pressure to the cylinders of the internal combustion engine 1.
  • the exhaust gases emitted by the internal combustion engine 1 flow into the exhaust gas line 4, where they are fed to the exhaust gas turbine 3, where the exhaust gases under overpressure drive the turbine wheel. After passing the departure Gas turbine 3, the exhaust gases are in the relaxed state and are discharged after cleaning in the environment.
  • an exhaust gas recirculation device 9 which comprises a return line between the exhaust line 4 strom ⁇ on the exhaust gas turbine 3 and the intake 6 downstream of the delawheel 8, wherein in the return line an adjustable valve and an exhaust gas cooler are arranged.
  • all adjustable Ag ⁇ gregate of the internal combustion engine can be adjusted depending on state and operating variables. These are, in particular, the valve of the exhaust gas recirculation device 9 and a variable turbine geometry 11 in the exhaust gas turbine 3, via which the effective flow inlet cross section to the turbine wheel is variably adjustable.
  • the variable turbine geometry is to be adjusted in particular between a stowage position which minimizes the free flow inlet cross section and a maximum open position.
  • the exhaust gas turbine 3 shown in section in FIG. 2 has, in a turbine housing 14, an inflow channel 13 formed as a spiral channel, which is upstream of the turbine wheel 12 and is supplied with exhaust gas via the exhaust line of the internal combustion engine.
  • the inflow channel 13 opens radially into a channel via a flow inlet cross-section 16, in which the turbine wheel 12 is rotatably mounted. Exhaust gas flowing in via the flow inlet cross-section 16 impinges radially on the turbine wheel 12.
  • the exhaust gases under pressure drive the turbine wheel 12 and, in the relaxed state, leave the exhaust gas turbine axially via an outlet channel 15.
  • the exhaust gas turbine 3 is equipped with variable turbine geometry 11, which comprises a guide grid with a carrier ring 18 and guide vanes 19 arranged on the carrier ring, which are uniformly distributed over the circumference of the carrier ring and are pivotably held on an end face of the carrier ring.
  • the guide vanes 19 project into the flow inlet cross section 16 and extend axially between the end face of the carrier ring 18, on which the guide vanes are held, and an opposite wall section 21 of the turbine housing 14.
  • the angular position of the guide vanes 19 can be adjusted by means of an actuator, which changes the effective, free flow inlet cross section on the one hand and the flow of the exhaust gas, in particular the swirling gas can be changed, under which the exhaust gas onto the turbine wheel 12 incident.
  • the support ring 18 is received in a separate from the turbine housing 14 bearing housing 17, which is part of the exhaust gas turbocharger and in which the shaft 7 is rotatably mounted.
  • the bearing housing 17 has an axially foundedge ⁇ set shoulder, which forms a recess into which the support ring 18 is inserted.
  • a piston ring 22 is provided on the inner circumferential surface.
  • the rear side of the carrier ring 18, that is to say the wall side of the carrier ring facing away from the guide vanes 19, is connected to the inflow channel 13 via a connecting gap 20.
  • the Ver ⁇ connection gap 20 extends on the radial outer side of the support ring 18. It allows a frictionless Axialbewe ⁇ movement of the support ring 18, since contact between the radially outer circumferential surface of the support ring and the zuge ⁇ walled inner wall of the turbine housing 14 is avoided.
  • the connecting gap 20 branches off in the inflow channel 13 at a distance from the guide vanes 19, in particular at a greater radial distance from the turbine wheel than the guide vanes.
  • the maximum pressure prevailing in the inflow channel 13 is conducted via the connecting gap 20 to the rear side of the carrier ring 18, the rear side of the carrier ring also being arranged with an axial annular gap to the next, adjacent components, as a result of which the rear side also has the full pressure from the inflow channel 13 is beauf ⁇ beat.
  • the support ring 18 has only an axial adjustment, but not a radial mobility.
  • the axial movement is limited on the side facing away from the guide vanes by a stop which is fixedly connected to the bearing housing 17.
  • spacers 24 are arranged axially in the flow inlet cross-section 16, which may be held in particular on the support ring 18, but alternatively are also held on the opposite wall portion 21.
  • Such spacers are distributed over the circumference of the support ring 18 and are shown in detail in Figures 4 to 6.
  • the angular position of the support ring 18 in the bearing housing 17 is determined by means of a positioning pin 25 which is positioned on the bearing housing 17.
  • the positioning pin 25 permits axial movement of the carrier ring 18, but may optionally constitute a stop for the movement away from the wall portion 21.
  • a heat shield 23 is arranged, which shields the heat development emanating from the turbine wheel 12 with respect to the bearing housing 17.
  • the heat shield 23 is executed in the embodiment shown in one piece with the support ring 18 and extends on the radial inner side to the shaft 7th
  • the structural design and mode of operation of the exhaust gas turbine 3 shown in section in FIG. 3 corresponds to that of the previous exemplary embodiment, but with the difference that the heat shield 23 forms a component which is designed separately from the carrier ring 18.
  • the heat shield 23 helps to fix the support ring 18 radially.
  • this heat shield which is designed as a plate spring, allows this 23, to act on the carrier ring 18 with a defined bias, which presses him regardless of the gas forces in the direction of the housing 21.
  • spacer sleeve 24 is hollow-drilled, which leads to a similar thermal expansion behavior as with the guide vanes 19.
  • FIGS. 4 to 6 show various embodiments of the spacer sleeve 24 which is arranged axially in the flow inlet cross section between the carrier ring 18 and the adjacent wall section 21.
  • the spacer sleeve 24 is integrally formed with the support ring 18.
  • the spacer sleeve 25 and the carrier ring 18 are designed as two separate components, wherein an axis 26 of the spacer sleeve 24 projects into a complementarily shaped recess in the carrier ring 18.
  • the axle is formed separately from the spacer sleeve 24, wherein the axle protrudes into the hollow cylindrical inner space of the spacer sleeve.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Supercharger (AREA)

Abstract

An exhaust gas turbocharger for an internal combustion engine comprises an exhaust gas turbine (3) in the exhaust gas line (4) and comprises a compressor (5) in the induction tract (6). An inflow channel (13) is mounted up from the turbine wheel (12) of the exhaust gas turbine. A variable turbine geometry (11) with a support ring (18) with guide vanes (19), which are fixed on the face, is provided in the flow entry cross-section (16) of the inflow channel (13) to the turbine wheel (12). The support ring (18) is mounted in a floating manner in a wall section. The rear of the support ring (18) facing away from the guide vanes (19) is subjected to the action of the pressure inside the inflow channel (13).

Description

Abgasturbolader für eine Brennkraftmaschine Exhaust gas turbocharger for an internal combustion engine
Die Erfindung bezieht sich auf einen Abgasturbolader für eine Brennkraftmaschine nach dem Oberbegriff des Anspruches 1.The invention relates to an exhaust gas turbocharger for an internal combustion engine according to the preamble of claim 1.
In der Druckschrift DE 102 37 413 Al wird ein derartiger Ab¬ gasturbolader beschrieben, der eine Abgasturbine im Abgas¬ strang der Brennkraftmaschine und einen Verdichter im Ansaug¬ trakt umfasst, wobei das Turbinenrad der Abgasturbine über eine Welle das Verdichterrad im Verdichter antreibt. Der Ver¬ dichter saugt Verbrennungsluft aus der Umgebung an und komp¬ rimiert diese auf einen erhöhten Ladedruck, unter dem die Verbrennungsluft den Zylindern der Brennkraftmaschine zuge¬ führt wird. Abgasseitig treiben die unter Druck stehenden Ab¬ gase der Brennkraftmaschine das Turbinenrad an.The publication DE 102 37 413 A1 describes such an exhaust gas turbocharger which comprises an exhaust gas turbine in the exhaust line of the internal combustion engine and a compressor in the intake tract, wherein the turbine wheel of the exhaust gas turbine drives the compressor wheel in the compressor via a shaft. The compressor sucks in combustion air from the environment and compresses it to an increased charge pressure, below which the combustion air is supplied to the cylinders of the internal combustion engine. On the exhaust side, the pressurized exhaust gases of the internal combustion engine drive the turbine wheel.
Zur Verbesserung der Leistung ist die Abgasturbine mit einer variablen Turbinengeometrie ausgestattet, welche eine verän¬ derliche Einstellung des wirksamen Strömungseintrittsquer¬ schnittes zum Turbinenrad ermöglicht. Die variable Turbinen¬ geometrie (VTG) kann sowohl in der befeuerten Antriebsbe¬ triebsweise als auch im Motorbremsbetrieb zur Leistungsstei¬ gerung eingesetzt werden. Sie ist als verstellbares Leitgit¬ ter ausgebildet, welches einen Trägerring mit stirnseitig ge¬ haltenen Leitschaufeln umfasst. Die Leitschaufeln liegen im Strömungseintrittsquerschnitt und können um eine Drehachse zwischen einer minimalen Stauposition und einer maximalen Öffnungsstellung verschwenkt werden.To improve performance, the exhaust gas turbine is equipped with a variable turbine geometry, which allows a variable adjustment of the effective flow inlet cross section to the turbine wheel. The variable turbine geometry (VTG) can be used to increase power both in the fired drive mode and in engine braking mode. It is designed as an adjustable Leitgit¬ ter, which comprises a support ring with frontally held ge vanes. The vanes are located in the flow inlet cross section and can about a rotation axis be pivoted between a minimum stowed position and a maximum open position.
Der zur Gewährleistung der Funktion bei solchen Drehschaufel- Turbinengeometrien notwendige Leitschaufelspalt wird bestimmt durch den Werkstoff und die Geometrie der Leitschaufeln sowie durch die Position und den Werkstoff der Distanzbuchsen, mit denen das Kaltspiel des Leitgitters eingestellt wird. Eine weitere Einflussgröße ist der durch thermische und mechani¬ sche Belastung entstehende Versatz zwischen den beiden Lauf¬ flächen (Stirnseite Leitschaufelträger und bearbeitete Gegen¬ kontur Turbinengehäuse) , zu denen die Leitschaufeln stirnsei¬ tig mit möglichst kleinem Spalt abschließen sollen. Da der Abstand zwischen diesen beiden Laufflächen in der Regel nur durch drei Distanzbuchsen bestimmt wird, kann insbesondere bei den großen Abgasturbinen der Betriebsspalt von einer Leitschaufei zur anderen merklich variieren. Dazu kommt, dass beispielsweise bei einem raschen Anstieg der Abgastemperatur sich die Distanzbuchsen wesentlich langsamer erwärmen und so¬ mit auch dehnen als die Leitschaufeln.The vane clearance necessary to ensure proper functioning in such rotary vane turbine geometries is determined by the material and the geometry of the vanes, as well as the position and material of the spacers used to adjust the cold play of the vane. Another influencing variable is the offset between the two running surfaces resulting from thermal and mechanical loading (end face of the guide blade carrier and machined counter-contour turbine housing), to which the guide vanes are intended to terminate initially with as small a gap as possible. Since the distance between these two treads is usually determined only by three spacers, especially in the large exhaust gas turbines operating gap from one Leitschaufei to another can vary significantly. In addition, for example, in the case of a rapid increase in the exhaust gas temperature, the spacer bushings heat up much more slowly and thus also expand than the guide vanes.
Um ein Klemmen der Leitschaufei bzw. der Leitschaufeln mit dem geringsten Spalt zu verhindern, ist man daher gezwungen, ein relativ großes Kaltspiel vorzusehen und entsprechende Wirkungsgradeinbußen in Kauf zu nehmen.In order to prevent jamming of the Leitschaufei or the vanes with the smallest gap, it is therefore necessary to provide a relatively large cold play and take corresponding loss of efficiency in purchasing.
Von diesem Stand der Technik ausgehend liegt der Erfindung das Problem zugrunde, den Wirkungsgrad von Abgasturbolädern mit einfachen Maßnahmen zu verbessern. Zweckmäßig sollen Spalte zwischen den Stirnseiten von Leitschaufeln im Strö¬ mungseintrittsquerschnitt und der benachbarten Gehäusewandung mit konstruktiven Maßnahmen und ohne Energieverbrauch verrin¬ gert werden. Dieses Problem wird erfindungsgemäß mit den Merkmalen des An¬ spruches 1 gelöst. Die Unteransprüche geben zweckmäßige Wei¬ terbildungen an.Based on this prior art, the invention is based on the problem of improving the efficiency of exhaust gas turbochargers with simple measures. Expediently, gaps between the end faces of guide vanes in the flow inlet cross-section and the adjacent housing wall are to be reduced by structural measures and without energy consumption. This problem is solved according to the invention with the features of An¬ award 1. The subclaims indicate expedient developments.
Der Trägerring als Bestandteil des Leitgitters ist in dem tragenden Wandabschnitt schwimmend gelagert, wodurch die Mög¬ lichkeit einer axialen Ausgleichsbewegung gegeben ist. Des Weiteren ist beim erfindungsgemäßen Abgasturbolader die Rück¬ seite des Trägerringes, welche den Leitschaufeln abgewandt ist, mit dem Druck beaufschlagt, welcher in dem Zuströmkanal des Abgasturboladers herrscht . Da im Strömungseintrittsquer¬ schnitt zum Turbinenrad aufgrund der Strδmungsbeschleunigung im Leitgitter ein geringerer Druck als im Zuströmkanal herrscht, stellt sich eine auf den Trägerring axial wirkende Kraftresultierende ein, die den Trägerring in Richtung des den Strömungseintrittsquerschnitt begrenzenden Wandabschnit¬ tes beaufschlagt. Die Leitschaufeln, welche am Trägerring ge¬ halten sind, werden durch diese Kraftresultierende an die den Stirnseiten der Leitschaufeln benachbarte Wandung gedrückt, wodurch Spaltmaße zuverlässig verhindert werden und Leckage- ströme unterbunden werden. Dadurch wird der Wirkungsgrad des Abgasturboladers erheblich verbessert und kann insbesondere unter allen Betriebsbedingungen, also sowohl im kalten Zu¬ stand als auch im warmen Betriebszustand, aufrechterhalten werden. Da die Kraftresultierende allein aus der Druckdiffe¬ renz zwischen Vorderseite und Rückseite des Trägerrings des Leitgitters entsteht, sind keine aktiven, Energie konsumie¬ renden Stellorgane für die Verstellung des Leitgitters erfor¬ derlich. So können aufwändige Steuerungen entfallen. Die Druckdifferenz zwischen Rückseite des Trägerringes (hoher Druck) und Vorderseite des Trägerringes (niedrigerer Druck) reicht aus, den Trägerring einschließlich der Leitschaufeln in die gewünschte Richtung zu verstellen. Grundsätzlich ist es ausreichend, dass der Trägerring in ei¬ nem radialen Abschnitt des Lagergehäuses oder des Turbinenge¬ häuses schwimmend gelagert ist und somit relativ zu diesem tragenden Wandabschnitt eine axiale Bewegung ausführen kann. Dagegen ist es nicht erforderlich, auch den Wandabschnitt ge¬ genüber den umgebenden Gehäuseteilen des Turbinengehäuses be¬ weglich auszubilden. Der den Trägerring aufnehmende Wandab¬ schnitt kann vielmehr als fester und unbeweglicher Bestand¬ teil des Gehäuses, insbesondere eines Lagergehäuses ausge¬ führt sein, welches die drehbar gelagerte Laderwelle aufnimmt und Bestandteil des Abgasturboladers ist . Da der Trägerring ein nur relativ geringes Gewicht aufweist, reichen auch ver¬ hältnismäßig kleine Druckdifferenzen zwischen Vorder- und Rückseite des Trägerringes aus, um diesen mit einer Stell- kraft in Richtung gegenüberliegendem Wandabschnitt zu beauf¬ schlagen.The support ring as part of the guide grid is floatingly mounted in the supporting wall section, whereby the possi bility of an axial compensating movement is given. Furthermore, in the exhaust gas turbocharger according to the invention, the rear side of the carrier ring, which faces away from the guide vanes, is acted upon by the pressure prevailing in the inflow channel of the exhaust gas turbocharger. Since a lower pressure than in the inflow channel prevails in the flow inlet cross section to the turbine wheel owing to the acceleration of the flow in the guide grid, a force resultant on the carrier ring arises which acts on the carrier ring in the direction of the wall section defining the flow inlet cross section. The guide vanes, which are held on the carrier ring, are pressed by this resultant force to the wall adjacent to the end faces of the guide vanes, whereby gap dimensions are reliably prevented and leakage flows are prevented. As a result, the efficiency of the exhaust gas turbocharger is considerably improved and can be maintained, in particular under all operating conditions, that is to say both in the cold state and in the warm operating state. Since the resultant force arises solely from the pressure difference between the front side and the rear side of the carrier ring of the guide grid, no active energy-consuming actuators are required for the adjustment of the guide grid. This way, complex control systems can be omitted. The pressure difference between the back of the carrier ring (high pressure) and the front of the carrier ring (lower pressure) is sufficient to adjust the carrier ring including the vanes in the desired direction. In principle, it is sufficient for the carrier ring to be mounted in a floating manner in a radial section of the bearing housing or of the turbine housing and thus to be able to execute an axial movement relative to this bearing wall section. By contrast, it is not necessary to also form the wall section in relation to the surrounding housing parts of the turbine housing. The wall section receiving the carrier ring can rather be designed as a fixed and immovable component of the housing, in particular a bearing housing, which accommodates the rotatably mounted supercharger shaft and is part of the exhaust-gas turbocharger. Since the carrier ring has only a relatively low weight, relatively small pressure differences between the front and rear sides of the carrier ring are also sufficient to beat it with an actuating force in the direction of the opposite wall section.
Um auf der Rückseite des Trägerringes einen ausreichend hohen Druck bereitzustellen, kommuniziert die Rückseite vorteilhaft über einen Verbindungsspalt mit dem Zuströmkanal, wobei der Verbindungsspalt bevorzugt mit Abstand zu den Leitschaufeln von dem Zuströmkanal abzweigt, um sicherzustellen, dass der maximale Druck im Zuströmkanal auf die Rückseite des Träger¬ ringes geleitet wird. Im Bereich der Leitschaufeln, die auf der Vorderseite des Trägerrings angeordnet sind, herrscht be¬ reits ein Druckabfall, wodurch die Druckdifferenz zwischen Vorder- und Rückseite des Trägerringes zustande kommt. Um diese Druckdifferenz aufrecht erhalten zu können, ist an der inneren Mantelfläche des Trägerrings eine Abdichtung, zweck¬ mäßigerweise durch einen Kolbenring, notwendig. Anstelle ei¬ nes Kolbenringes kommt auch ein Dichtring in Betracht.In order to provide a sufficiently high pressure on the rear side of the carrier ring, the rear side communicates advantageously via a connecting gap with the inflow channel, wherein the connecting gap preferably branches away from the inflow channel at a distance from the guide vanes, to ensure that the maximum pressure in the inflow channel to the back of the Träger¬ ringes is passed. In the region of the guide vanes, which are arranged on the front side of the carrier ring, be¬ already a pressure drop, whereby the pressure difference between the front and back of the carrier ring comes about. To be able to maintain this pressure difference, a seal, zweck¬ moderately by a piston ring, on the inner circumferential surface of the support ring, necessary. Instead of ei¬ nes piston ring is also a sealing ring into consideration.
Der Verbindungsspalt, über den die Rückseite des Trägerringes mit dem Zuströmkanal kommuniziert, verläuft bevorzugt entlang der radial außen liegenden Mantelseite des Trägerringes. Da¬ durch erfüllt der Verbindungsspalt eine doppelte Funktion: Zum einen leitet er den Druck vom Zuströmkanal auf die Rück¬ seite des Trägerringes, zum anderen ist sichergestellt, dass der Trägerring auf seiner radialen Außenseite reibungs- und hindernisfrei geführt ist, sodass die axiale Stellbewegung des Trägerringes nicht gehemmt wird.The connecting gap, via which the rear side of the carrier ring communicates with the inflow channel, preferably runs along the radially outer shell side of the support ring. On the one hand it directs the pressure from the inflow channel on the Rück¬ side of the support ring, on the other hand it is ensured that the support ring is guided free of friction and obstacle on its radial outer side, so that the axial adjusting movement of the Carrier ring is not inhibited.
Der axiale Freiweg, innerhalb dem sich der Trägerring axial bewegen kann, ist zweckmäßig in beide Richtungen begrenzt. Zum einen kann ein gehäuseseitiger Anschlag vorgesehen sein, der die axiale Beweglichkeit des Trägerrings auf der den Leitschaufeln abgewandten Seite begrenzt. Zum anderen können im Strömungseintrittsquerschnitt Distanzhülsen angeordnet sein, die sich zwischen dem Trägerring und der Wandung erstrecken, an der die Stirnseiten der Leitschaufeln anlie¬ gen. Mit diesen Distanzhülsen wird ein definiertes Minimal- Spiel zwischen Leitschaufeln und Gegenkontur des Turbinenge¬ häuses eingestellt. Die Distanzhülsen sind zweckmäßig derart ausgebildet, insbesondere im Hinblick auf ihre Geometrie so¬ wie ihr Material, dass diese sich bei einem anliegenden Tem¬ peraturgradienten etwa in gleicher Weise dehnen bzw. zusam¬ menziehen wie die Leitschaufeln des Leitgitters. Auf diese Weise wird ein wärmebedingtes Verklemmen der Leitschaufeln im Strömungseintrittsquerschnitt vermieden.The axial free travel, within which the carrier ring can move axially, is expediently limited in both directions. On the one hand, a housing-side stop can be provided which limits the axial mobility of the carrier ring on the side facing away from the guide vanes. On the other hand, spacer sleeves can be arranged in the flow inlet cross section and extend between the carrier ring and the wall against which the end faces of the guide vanes abut. These spacer sleeves set a defined minimum clearance between guide vanes and mating contour of the turbine housing. The spacers are expediently designed in such a way, in particular with regard to their geometry and their material, that they expand or contract with one another in an adjacent temperature gradient approximately in the same way as the guide vanes of the guide grid. In this way, heat-related jamming of the guide vanes in the flow inlet cross section is avoided.
Weitere Vorteile und zweckmäßige Ausführungen sind den weite¬ ren Ansprüchen, der Figurenbeschreibung und den Zeichnungen zu entnehmen. Es zeigen:Further advantages and expedient embodiments can be found in the further claims, the description of the figures and the drawings. Show it:
Fig. 1 eine schematische Darstellung einer aufgeladenen Brennkraftmaschine, Fig. 2 einen Schnitt durch die Abgasturbine des Abgastur¬ boladers, welcher in der Brennkraftmaschine einge¬ setzt wird,1 is a schematic representation of a supercharged internal combustion engine, 2 shows a section through the exhaust gas turbine of the exhaust gas turbocharger, which is used in the internal combustion engine,
Fig. 3 einen Schnitt durch eine Abgasturbine in einer al¬ ternativen Ausführung,3 shows a section through an exhaust gas turbine in an alternative embodiment,
Fig. 4 bis 6 diverse Distanzhülsen, welche im Strömungsein¬ trittsquerschnitt zwischen Trägerring und einem be¬ grenzenden Wandabschnitt angeordnet sind.FIGS. 4 to 6 show various spacer sleeves, which are arranged in the flow inlet cross section between the carrier ring and a wall section adjoining it.
In den Figuren sind gleiche Bauteile mit gleichen Bezugszei¬ chen versehen.In the figures, the same components are provided with the same Bezugszei¬ Chen.
Die in Fig. 1 dargestellte Brennkraftmaschine 1 - ein Otto- Motor oder eine Dieselbrennkraftmaschine - weist einen Abgas- turbolader 2 auf, welcher eine Abgasturbine 3 im Abgasstrang 4 und einen Verdichter 5 im Ansaugtrakt 6 der Brennkraftma¬ schine umfasst. Das Turbinenrad der Abgasturbine 3 ist über eine Welle 7 drehfest mit dem Verdichterrad im Verdichter 5 gekoppelt, sodass bei einem Antrieb der Welle 7 über das Tur¬ binenrad im Verdichter Verbrennungsluft aus der Umgebung an¬ gesaugt und auf einen erhöhten Ladedruck verdichtet wird. Stromab des Verdichters 5 wird die komprimierte Verbrennungs- luft zunächst einem Ladeluftkühler 8 zugeführt und dort ge¬ kühlt. Anschließend wird die Verbrennungsluft unter Ladedruck den Zylindern der Brennkraftmaschine 1 zugeleitet.The internal combustion engine 1 shown in FIG. 1 - an Otto engine or a diesel internal combustion engine - has an exhaust gas turbocharger 2 which comprises an exhaust gas turbine 3 in the exhaust gas line 4 and a compressor 5 in the intake tract 6 of the internal combustion engine. The turbine wheel of the exhaust gas turbine 3 is non-rotatably coupled via a shaft 7 to the compressor wheel in the compressor 5, so that in a drive of the shaft 7 via the Tur¬ binenrad in the compressor combustion air from the environment an¬ sucked and compressed to an increased boost pressure. Downstream of the compressor 5, the compressed combustion air is first fed to a charge air cooler 8 and cooled there. Subsequently, the combustion air is supplied under boost pressure to the cylinders of the internal combustion engine 1.
Auf der Abgasseite strömen die von der Brennkraftmaschine 1 ausgestoßenen Abgase in den Abgasstrang 4 und werden dort der Abgasturbine 3 zugeführt, wo die unter Überdruck stehenden Abgase das Turbinenrad antreiben. Nach dem Passieren der Ab- gasturbine 3 befinden sich die Abgase im entspannten Zustand und werden nach einer Reinigung in die Umgebung abgeleitet.On the exhaust side, the exhaust gases emitted by the internal combustion engine 1 flow into the exhaust gas line 4, where they are fed to the exhaust gas turbine 3, where the exhaust gases under overpressure drive the turbine wheel. After passing the departure Gas turbine 3, the exhaust gases are in the relaxed state and are discharged after cleaning in the environment.
Des Weiteren ist eine Abgasrückführeinrichtung 9 vorgesehen, welche eine Rückführleitung zwischen dem Abgasstrang 4 strom¬ auf der Abgasturbine 3 und dem Ansaugtrakt 6 stromab des La- deluftkühlers 8 umfasst, wobei in der Rückführleitung ein einstellbares Ventil sowie ein Abgaskühler angeordnet sind.Furthermore, an exhaust gas recirculation device 9 is provided, which comprises a return line between the exhaust line 4 strom¬ on the exhaust gas turbine 3 and the intake 6 downstream of the delawheel 8, wherein in the return line an adjustable valve and an exhaust gas cooler are arranged.
Über eine Steuer- und Regeleinheit 10 können in Abhängigkeit von Zustands- und Betriebsgrößen sämtliche einstellbaren Ag¬ gregate der Brennkraftmaschine eingestellt werden. Hierbei handelt es sich insbesondere um das Ventil der Abgasrückführ¬ einrichtung 9 sowie um eine variable Turbinengeometrie 11 in der Abgasturbine 3, über die der wirksame Strömungseintritts¬ querschnitt zum Turbinenrad veränderlich einstellbar ist. Die variable Turbinengeometrie ist insbesondere zwischen einer den freien Strömungseintrittsquerschnitt minimierenden Stau¬ stellung und einer maximalen Öffnungsstellung zu verstellen.Via a control and regulating unit 10, all adjustable Ag¬ gregate of the internal combustion engine can be adjusted depending on state and operating variables. These are, in particular, the valve of the exhaust gas recirculation device 9 and a variable turbine geometry 11 in the exhaust gas turbine 3, via which the effective flow inlet cross section to the turbine wheel is variably adjustable. The variable turbine geometry is to be adjusted in particular between a stowage position which minimizes the free flow inlet cross section and a maximum open position.
Die in Fig. 2 im Schnitt dargestellte Abgasturbine 3 weist in einem Turbinengehäuse 14 einen als Spiralkanal ausgebildeten Zuströmkanal 13 auf, welcher dem Turbinenrad 12 vorgelagert ist und über den Abgasstrang der Brennkraftmaschine mit Abgas versorgt wird. Der Zuströmkanal 13 mündet über einen Strö¬ mungseintrittsquerschnitt 16 radial in einen Kanal, in wel¬ chem das Turbinenrad 12 drehbar gelagert ist. Über den Strö¬ mungseintrittsquerschnitt 16 zuströmendes Abgas trifft radial auf das Turbinenrad 12 auf. Die unter Überdruck stehenden Ab¬ gase treiben das Turbinenrad 12 an und verlassen in entspann¬ tem Zustand die Abgasturbine axial über einen Auslasskanal 15. Die Abgasturbine 3 ist mit variabler Turbinengeometrie 11 ausgestattet, welche ein Leitgitter mit einem Trägerring 18 und am Trägerring angeordnete Leitschaufeln 19 umfasst, wel¬ che über den Umfang des Trägerrings gleichmäßig verteilt und an einer Stirnseite des Trägerringes schwenkbar gehalten sind. Die Leitschaufeln 19 ragen in den Strömungseintritts- querschnitt 16 ein und erstrecken sich axial zwischen der Stirnseite des Trägerrings 18, an der die Leitschaufeln ge¬ halten sind, sowie einem gegenüberliegenden Wandabschnitt 21 des Turbinengehäuses 14.The exhaust gas turbine 3 shown in section in FIG. 2 has, in a turbine housing 14, an inflow channel 13 formed as a spiral channel, which is upstream of the turbine wheel 12 and is supplied with exhaust gas via the exhaust line of the internal combustion engine. The inflow channel 13 opens radially into a channel via a flow inlet cross-section 16, in which the turbine wheel 12 is rotatably mounted. Exhaust gas flowing in via the flow inlet cross-section 16 impinges radially on the turbine wheel 12. The exhaust gases under pressure drive the turbine wheel 12 and, in the relaxed state, leave the exhaust gas turbine axially via an outlet channel 15. The exhaust gas turbine 3 is equipped with variable turbine geometry 11, which comprises a guide grid with a carrier ring 18 and guide vanes 19 arranged on the carrier ring, which are uniformly distributed over the circumference of the carrier ring and are pivotably held on an end face of the carrier ring. The guide vanes 19 project into the flow inlet cross section 16 and extend axially between the end face of the carrier ring 18, on which the guide vanes are held, and an opposite wall section 21 of the turbine housing 14.
Die Winkelposition der Leitschaufeln 19 ist über ein Stellor¬ gan einstellbar, wodurch sich zum einen der wirksame, freie Strömungseintrittsquerschnitt ändert und zum anderen die Durchströmung des Abgases, insbesondere der dem Abgas aufzu¬ prägende Drall veränderbar ist, unter dem das Abgas auf das Turbinenrad 12 auftrifft.The angular position of the guide vanes 19 can be adjusted by means of an actuator, which changes the effective, free flow inlet cross section on the one hand and the flow of the exhaust gas, in particular the swirling gas can be changed, under which the exhaust gas onto the turbine wheel 12 incident.
Der Trägerring 18 ist in einem vom Turbinengehäuse 14 separat ausgeführten Lagergehäuse 17 aufgenommen, welches Bestandteil des Abgasturboladers ist und in dem auch die Welle 7 drehbar gelagert ist. Das Lagergehäuse 17 weist eine axial zurückge¬ setzte Schulter auf, welche eine Ausnehmung bildet, in die der Trägerring 18 eingesetzt ist. Die dem Wandabschnitt 21 zugewandte Stirn- bzw. Vorderseite des Trägerringes 18, an der die Leitschaufeln 19 angeordnet sind, bildet eine den Strδmungseintrittsquerschnitt 16 begrenzende Wandung.The support ring 18 is received in a separate from the turbine housing 14 bearing housing 17, which is part of the exhaust gas turbocharger and in which the shaft 7 is rotatably mounted. The bearing housing 17 has an axially zurückge¬ set shoulder, which forms a recess into which the support ring 18 is inserted. The wall section 21 facing the front or front side of the support ring 18, on which the guide vanes 19 are arranged, forms a Strδmungseintrittsquerschnitt 16 limiting wall.
Um die Druckdifferenz zwischen der dem Strömungseintritts- querschnitt 16 zugewandten Seite und der dem Lagergehäuse 17 zugewandten Seite des Trägerrings 18 zu verhindern, wird an dessen inneren Mantelfläche ein Kolbenring 22 vorgesehen. Die Rückseite des Trägerringes 18, also die den Leitschaufeln 19 abgewandte Wandseite des Trägerringes, ist über einen Ver¬ bindungsspalt 20 mit dem Zuströmkanal 13 verbunden. Der Ver¬ bindungsspalt 20 verläuft auf der radialen Außenseite des Trägerringes 18. Er ermöglicht eine reibungsfreie Axialbewe¬ gung des Trägerringes 18, da ein Kontakt zwischen der radial außen liegenden Mantelfläche des Trägerringes und der zuge¬ wandten Innenwandung des Turbinengehäuses 14 vermieden wird. Der Verbindungsspalt 20 zweigt im Zuströmkanal 13 mit Abstand zu den Leitschaufeln 19 ab, insbesondere mit größerer radia¬ ler Entfernung gegenüber dem Turbinenrad als die Leitschau¬ feln. Dadurch wird über den Verbindungsspalt 20 der maximale, im Zuströmkanal 13 herrschende Druck auf die Rückseite des Trägerringes 18 geleitet, wobei die Rückseite des Trägerrin¬ ges ebenfalls mit einem axialen Ringspalt zu den nächsten, benachbarten Bauteilen angeordnet ist, wodurch auch die Rück¬ seite mit dem vollen Druck aus dem Zuströmkanal 13 beauf¬ schlagt wird.In order to prevent the pressure difference between the flow inlet cross section 16 facing side and the bearing housing 17 facing side of the support ring 18, a piston ring 22 is provided on the inner circumferential surface. The rear side of the carrier ring 18, that is to say the wall side of the carrier ring facing away from the guide vanes 19, is connected to the inflow channel 13 via a connecting gap 20. The Ver¬ connection gap 20 extends on the radial outer side of the support ring 18. It allows a frictionless Axialbewe¬ movement of the support ring 18, since contact between the radially outer circumferential surface of the support ring and the zuge¬ walled inner wall of the turbine housing 14 is avoided. The connecting gap 20 branches off in the inflow channel 13 at a distance from the guide vanes 19, in particular at a greater radial distance from the turbine wheel than the guide vanes. As a result, the maximum pressure prevailing in the inflow channel 13 is conducted via the connecting gap 20 to the rear side of the carrier ring 18, the rear side of the carrier ring also being arranged with an axial annular gap to the next, adjacent components, as a result of which the rear side also has the full pressure from the inflow channel 13 is beauf¬ beat.
Im Bereich der Leitschaufeln 19 herrscht dagegen radial von außen nach innen fortschreitend ein erheblicher Druckabfall, was zur Folge hat, dass auf der dem Strömungseintrittsquer¬ schnitt 16 benachbarten Vorderseite des Trägerringes 18 ein geringerer Druck herrscht als auf der Rückseite des Träger¬ ringes. Hieraus ergibt sich eine mit dem Pfeil in Axialrich¬ tung auf den Wandabschnitt 21 wirkende Kraftresultierende, die den Trägerring 18 einschließlich der Leitschaufeln 19 be¬ aufschlagt. Durch diese Kraftresultierende werden die Stirn¬ seiten der Leitschaufeln 19 gegen den zugewandten Wandab¬ schnitt 21 des Turbinengehäuses 14 gedrückt. Die Leitschau¬ felspalte werden so bis auf einen durch die Distanzhülsen 24 vorgegebenen Minimalwert reduziert. Im Rahmen der erfindungs¬ gemäßen Ausführung sind Minimalwerte dieses Leitschaufei- (kalt-) spiels zwischen 0.02 und 0.1 mm realisierbar. Zweckmäßig besitzt der Trägerring 18 lediglich eine axiale Verstellmöglichkeit, nicht jedoch eine radiale Beweglichkeit. Die axiale Bewegung wird auf der den Leitschaufeln abgewand¬ ten Seite von einem Anschlag begrenzt, welcher fest mit dem Lagergehäuse 17 verbunden ist. Zur Begrenzung der Stellbewe¬ gung in Gegenrichtung sind Distanzhülsen 24 im Strömungsein¬ trittsquerschnitt 16 axial angeordnet, die insbesondere am Trägerring 18 gehalten sein können, alternativ aber auch am gegenüberliegenden Wandabschnitt 21 gehalten sind. Derartige Distanzhülsen verteilen sich über den Umfang des Trägerringes 18 und sind im Detail in den Figuren 4 bis 6 dargestellt.In the area of the guide vanes 19, on the other hand, a considerable pressure drop progresses radially from outside to inside, with the result that a lower pressure prevails on the front side of the carrier ring 18 adjacent to the flow inlet cross section 16 than on the rear side of the carrier ring. This results in a force resultant on the wall section 21 acting on the axial direction with the arrow in axial direction, which acts on the carrier ring 18 including the guide vanes 19. As a result of this resultant of force, the end faces of the guide vanes 19 are pressed against the facing wall section 21 of the turbine housing 14. The Leitschau¬ felspalte be reduced to a predetermined by the spacers 24 minimum value. Within the scope of the embodiment according to the invention, minimum values of this Leitschaufei- (cold) game between 0.02 and 0.1 mm can be realized. Suitably, the support ring 18 has only an axial adjustment, but not a radial mobility. The axial movement is limited on the side facing away from the guide vanes by a stop which is fixedly connected to the bearing housing 17. To limit the Stellbewe¬ supply in the opposite direction spacers 24 are arranged axially in the flow inlet cross-section 16, which may be held in particular on the support ring 18, but alternatively are also held on the opposite wall portion 21. Such spacers are distributed over the circumference of the support ring 18 and are shown in detail in Figures 4 to 6.
Die Winkellage des Trägerringes 18 im Lagergehäuse 17 wird mithilfe eines Positionierstiftes 25 festgelegt, welcher am Lagergehäuse 17 positioniert ist. Der Positionierstift 25 er¬ laubt eine axiale Bewegung des Trägerringes 18, und kann aber gegebenenfalls einen Anschlag für die Bewegung weg von dem Wandabschnitt 21 darstellen.The angular position of the support ring 18 in the bearing housing 17 is determined by means of a positioning pin 25 which is positioned on the bearing housing 17. The positioning pin 25 permits axial movement of the carrier ring 18, but may optionally constitute a stop for the movement away from the wall portion 21.
Auf der stirnseitigen Rückwand des Turbinenrades 12 ist ein Hitzeschild 23 angeordnet, welches die von dem Turbinenrad 12 ausgehende Wärmeentwicklung gegenüber dem Lagergehäuse 17 ab¬ schirmt. Der Hitzeschild 23 ist in der gezeigten Ausführung einteilig mit dem Trägerring 18 ausgeführt und erstreckt sich auf dessen radialer Innenseite bis zur Welle 7.On the end-side rear wall of the turbine wheel 12, a heat shield 23 is arranged, which shields the heat development emanating from the turbine wheel 12 with respect to the bearing housing 17. The heat shield 23 is executed in the embodiment shown in one piece with the support ring 18 and extends on the radial inner side to the shaft 7th
Die konstruktive Ausführung und Wirkungsweise der in Fig. 3 im Schnitt dargestellten Abgasturbine 3 entspricht derjenigen aus dem vorangegangenen Ausführungsbeispiel, jedoch mit dem Unterschied, dass der Hitzeschild 23 ein von dem Trägerring 18 separat ausgeführtes Bauteil bildet. Der Hitzeschild 23 hilft, den Trägerring 18 radial zu fixieren. Darüber hin¬ aus erlaubt dieser als Tellerfeder ausgeführte Hitzeschild 23, den Trägerring 18 mit einer definierten Vorspannung zu beaufschlagen, welche ihn unabhängig von den Gaskräften in Richtung Gehäusewandung 21 drückt.The structural design and mode of operation of the exhaust gas turbine 3 shown in section in FIG. 3 corresponds to that of the previous exemplary embodiment, but with the difference that the heat shield 23 forms a component which is designed separately from the carrier ring 18. The heat shield 23 helps to fix the support ring 18 radially. Moreover, this heat shield, which is designed as a plate spring, allows this 23, to act on the carrier ring 18 with a defined bias, which presses him regardless of the gas forces in the direction of the housing 21.
Außerdem ist dieser Darstellung zu entnehmen, dass die Dis¬ tanzhülse 24 hohlgebohrt ist, was zu einem ähnlichen Wärme¬ dehnungsverhalten wie bei den Leitschaufeln 19 führt.In addition, it can be seen from this illustration that the spacer sleeve 24 is hollow-drilled, which leads to a similar thermal expansion behavior as with the guide vanes 19.
In den Fig. 4 bis 6 sind verschiedene Ausführungen der Dis¬ tanzhülse 24 dargestellt, welche im Strömungseintrittsquer¬ schnitt axial zwischen Trägerring 18 und benachbartem Wandab¬ schnitt 21 angeordnet ist. Gemäß Fig. 4 ist die Distanzhülse 24 einteilig mit dem Trägerring 18 ausgebildet. Gemäß Fig. 5 sind Distanzhülse 25 und Trägerring 18 als zwei separate Bau¬ teile ausgeführt, wobei eine Achse 26 der Distanzhülse 24 in eine komplementär geformte Ausnehmung im Trägerring 18 ein¬ ragt. Gemäß Fig. 6 ist die Achse separat von der Distanzhülse 24 ausgebildet, wobei die Achse in den hohlzylindrischen In¬ nenraum der Distanzhülse einragt. FIGS. 4 to 6 show various embodiments of the spacer sleeve 24 which is arranged axially in the flow inlet cross section between the carrier ring 18 and the adjacent wall section 21. 4, the spacer sleeve 24 is integrally formed with the support ring 18. According to FIG. 5, the spacer sleeve 25 and the carrier ring 18 are designed as two separate components, wherein an axis 26 of the spacer sleeve 24 projects into a complementarily shaped recess in the carrier ring 18. According to FIG. 6, the axle is formed separately from the spacer sleeve 24, wherein the axle protrudes into the hollow cylindrical inner space of the spacer sleeve.

Claims

Patentansprüche claims
1. Abgasturbolader für eine Brennkraftmaschine, mit einer Ab- gasturbine (3) im Abgasstrang (4) und einem Verdichter (5) im Ansaugtrakt (6) der Brennkraftmaschine (1) , wobei in dem Tur¬ binengehäuse (14) der Abgasturbine (3) ein dem Turbinenrad1. Exhaust gas turbocharger for an internal combustion engine, with an exhaust gas turbine (3) in the exhaust line (4) and a compressor (5) in the intake tract (6) of the internal combustion engine (1), wherein in the Tur¬ binengehäuse (14) of the exhaust gas turbine (3 ) on the turbine wheel
(12) vorgelagerter Zuströmkanal (13) ausgebildet und im Strö¬ mungseintrittsquerschnitt (16) des Zustrόmkanals (13) zum Turbinenrad (12) eine variable Turbinengeometrie (11) ange¬ ordnet ist, welche als verstellbares Leitgitter ausgebildet ist, das einen Trägerring (18) mit stirnseitig gehaltenen Leitschaufeln (19) umfasst, wobei der Trägerring (18) in ei¬ nem Abschnitt (21) des Gehäuses (14, 17) (14) aufgenommen ist, dadurch gekennzeichnet, dass der Trägerring (18) im Abschnitt (21) schwimmend gela¬ gert ist und dass die den Leitschaufeln (19) abgewandte Rück¬ seite des Trägerrings (18) mit dem Druck im Zuströmkanal (13) beaufschlagt ist.(12) vorgelagerter inflow channel (13) is formed and in Strö¬ mungseintrittsquerschnitt (16) of the Zustrόmkanals (13) to the turbine wheel (12) a variable turbine geometry (11) ange¬ is arranged, which is designed as an adjustable guide grid, a support ring (18 with guide vanes (19) held on the front side, the carrier ring (18) being accommodated in a section (21) of the housing (14, 17) (14), characterized in that the carrier ring (18) in the section (21 ) is in a floating manner and that the back side of the carrier ring (18) facing away from the guide vanes (19) is acted upon by the pressure in the inflow channel (13).
2. Abgasturbolader nach Anspruch 1, dadurch gekennzeichnet, dass der Trägerring (18) an seiner inneren Mantelfläche über einen Kolbenring (22) zum Lagergehäuse (17) abgedichtet ist. 2. Exhaust gas turbocharger according to claim 1, characterized in that the carrier ring (18) on its inner circumferential surface via a piston ring (22) to the bearing housing (17) is sealed.
3. Abgasturbolader nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Trägerring (18) ausschließlich axial beweglich im Gehäuse (17) gehalten ist.3. Exhaust gas turbocharger according to claim 1 or 2, characterized in that the carrier ring (18) is held only axially movable in the housing (17).
4. Abgasturbolader nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Rückseite des Trägerrings (18) über einen Verbin¬ dungsspalt (20) mit dem Zuströmkanal (13) kommuniziert.4. The exhaust gas turbocharger according to one of claims 1 to 3, characterized in that the rear side of the carrier ring (18) via a Verbin¬ tion gap (20) communicates with the inflow channel (13).
5. Abgasturbolader nach Anspruch 4, dadurch gekennzeichnet, dass der Verbindungsspalt (20) mit Abstand zu den Leitschau¬ feln (19) vom Zuströmkanal (13) abzweigt.5. Exhaust gas turbocharger according to claim 4, characterized in that the connecting gap (20) at a distance from the Leitschau¬ blades (19) branches off from the inflow channel (13).
6. Abgasturbolader nach Anspruch 4 oder 5, dadurch gekennzeichnet, dass der Verbindungsspalt (20) zwischen der radial außenlie¬ genden Mantelseite des Trägerrings (18) und dem Gehäuse (17) verläuft.6. Exhaust gas turbocharger according to claim 4 or 5, characterized in that the connecting gap (20) extends between the radially außenlie¬ ing shell side of the carrier ring (18) and the housing (17).
7. Abgasturbolader nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass der Trägerring (18) über die Distanzhülsen (24) am Wand¬ abschnitt (21) des Turbinengehäuses (14) aufgenommen ist und, abgesehen von Distanzhülsen (24) , ausschließlich die Leit¬ schaufeln (19) in den Strömungseintrittsquerschnitt (16) des Zuströmkanals (13) zum Turbinenrad (12) einragen.7. Exhaust gas turbocharger according to one of claims 1 to 6, characterized in that the carrier ring (18) on the spacers (24) on Wand¬ section (21) of the turbine housing (14) is received and, apart from spacers (24), exclusively the guide vanes (19) protrude into the flow inlet cross-section (16) of the inflow channel (13) to the turbine wheel (12).
8. Abgasturbolader nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass der Strömungseintrittsquerschnitt (16) von benachbarten Wandungen begrenzt ist, in denen Distanzhülsen (24) angeord- net sind, welche den stirnseitigen Betriebsspalt der Leit¬ schaufeln (19) definieren.8. Exhaust gas turbocharger according to one of claims 1 to 7, characterized in that the flow inlet cross section (16) is bounded by adjacent walls, in which spacer sleeves (24) angeord- are net, which define the frontal operating gap of Leit¬ paddles (19).
9. Abgasturbolader nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass der im kalten Zustand gemessene stirnseitige Betriebs¬ spalt der Leitschaufeln zwischen 0.02 mm und 0.1 mm beträgt.9. Exhaust gas turbocharger according to one of claims 1 to 8, characterized in that the measured in the cold state frontal operating gap of the guide vanes is between 0.02 mm and 0.1 mm.
10. Abgasturbolader nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass auf der rückseitigen Stirnwand des Turbinenrades (12) ein Hitzeschild (23) angeordnet ist.10. Exhaust gas turbocharger according to one of claims 1 to 9, characterized in that on the rear end wall of the turbine wheel (12) a heat shield (23) is arranged.
11. Abgasturbolader nach Anspruch 10, dadurch gekennzeichnet, dass der Hitzeschild (23) den Trägerring (18) radial führt.11. Exhaust gas turbocharger according to claim 10, characterized in that the heat shield (23) radially guides the carrier ring (18).
12. Abgasturbolader nach Anspruch 10 oder 11, dadurch gekennzeichnet, dass der Hitzeschild (23) und der Trägerring (18) als separa¬ te Bauteile ausgeführt sind.12. Exhaust gas turbocharger according to claim 10 or 11, characterized in that the heat shield (23) and the support ring (18) are designed as separa¬ te components.
13. Abgasturbolader nach einem der Ansprüche 10 bis 12, dadurch gekennzeichnet, dass über den als Tellerfeder ausgeführten Hitzeschild (23) eine Vorspannung auf den Trägerring (18) aufgebracht wird, die den Trägerring (18) gegen den Wandabschnitt (21) des Tur¬ binengehäuses (14) drückt.13. Exhaust gas turbocharger according to one of claims 10 to 12, characterized in that on the heat shield (23) designed as a plate spring, a bias on the carrier ring (18) is applied, the carrier ring (18) against the wall portion (21) of Tur¬ binengehäuses (14) presses.
14. Abgasturbolader nach Anspruch 10 bis 13, dadurch gekennzeichnet, dass der Hitzeschild (23) und der Trägerring (18) als ein ge¬ meinsames Bauteil ausgeführt sind. 14. Exhaust gas turbocharger according to claim 10 to 13, characterized in that the heat shield (23) and the support ring (18) are designed as a ge common component.
15. Abgasturbolader nach einem der Ansprüche 1 bis 14, dadurch gekennzeichnet, dass das Gehäuse, in welchem der Trägerring (18) aufgenommen ist, ein Lagergehäuse (17) ist, in welchem auch die Laderwel¬ le (7) gelagert ist.15. Exhaust gas turbocharger according to one of claims 1 to 14, characterized in that the housing in which the support ring (18) is accommodated, a bearing housing (17), in which also the Laderwel¬ le (7) is mounted.
16. Abgasturbolader nach einem der Ansprüche 1 bis 15, dadurch gekennzeichnet, dass die axiale Beweglichkeit des Trägerrings (18) auf der den Leitschaufeln (19) abgewandten Seite von einem gehäuse- seitigen Anschlag begrenzt ist. 16. Exhaust gas turbocharger according to one of claims 1 to 15, characterized in that the axial mobility of the carrier ring (18) on the guide vanes (19) facing away from the side of a housing-side stop is limited.
EP05774990A 2004-08-10 2005-08-09 Exhaust gas turbocharger for an internal combustion engine Withdrawn EP1778952A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004038748A DE102004038748A1 (en) 2004-08-10 2004-08-10 Exhaust gas turbocharger for an internal combustion engine
PCT/EP2005/008632 WO2006018187A1 (en) 2004-08-10 2005-08-09 Exhaust gas turbocharger for an internal combustion engine

Publications (1)

Publication Number Publication Date
EP1778952A1 true EP1778952A1 (en) 2007-05-02

Family

ID=35149571

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05774990A Withdrawn EP1778952A1 (en) 2004-08-10 2005-08-09 Exhaust gas turbocharger for an internal combustion engine

Country Status (5)

Country Link
US (1) US7600379B2 (en)
EP (1) EP1778952A1 (en)
JP (1) JP4750791B2 (en)
DE (1) DE102004038748A1 (en)
WO (1) WO2006018187A1 (en)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007148145A1 (en) * 2006-06-19 2007-12-27 Turbo Energy Limited Variable stator blade mechanism for turbochargers
DE102007057345A1 (en) 2007-11-28 2009-06-04 Bayerische Motoren Werke Aktiengesellschaft Diaphragm for a turbine of an exhaust gas turbocharger
DE102008005405B4 (en) * 2008-01-21 2021-03-04 BMTS Technology GmbH & Co. KG Turbine, in particular for an exhaust gas turbocharger, as well as an exhaust gas turbocharger
DE102008000776B4 (en) * 2008-01-21 2022-04-14 BMTS Technology GmbH & Co. KG Turbine with variable turbine geometry, in particular for an exhaust gas turbocharger, and exhaust gas turbocharger
DE102008005404A1 (en) 2008-01-21 2009-07-23 Bosch Mahle Turbo Systems Gmbh & Co. Kg turbocharger
DE102008032492A1 (en) * 2008-07-05 2010-01-07 Daimler Ag Turbine housing for an exhaust gas turbocharger of an internal combustion engine
DE102008032808A1 (en) * 2008-07-11 2010-01-14 Bosch Mahle Turbo Systems Gmbh & Co. Kg Exhaust gas turbocharger for a motor vehicle
DE102008034751A1 (en) 2008-07-24 2010-01-28 Benteler Automobiltechnik Gmbh Exhaust gas turbocharger for internal combustion engine, has floatingly mounted spacer ring provided between guide vanes and turbine housing, linked with inflowing exhaust gas via pressure channel and rearwardly subjected with exhaust gas
DE102008035749B4 (en) 2008-07-31 2018-05-30 Bosch Mahle Turbo Systems Gmbh & Co. Kg turbocharger
DE102008049689A1 (en) * 2008-09-30 2010-04-01 Daimler Ag An air supply device for a fuel cell stack, fuel cell system and method for operating an air supply device
DE102009009129B4 (en) * 2009-02-17 2022-11-03 BMTS Technology GmbH & Co. KG Turbocharger with variable turbine geometry
KR20120086743A (en) 2009-12-17 2012-08-03 가부시키가이샤 아이에이치아이 Turbocharger
US8915704B2 (en) 2011-06-15 2014-12-23 Honeywell International Inc. Turbocharger variable-nozzle assembly with vane sealing ring
DE102011121394A1 (en) 2011-12-17 2013-06-20 Ihi Charging Systems International Gmbh Adjustable control device for use in turbine of turbo-supercharger in combustion engine, has carrier ring axially positionable by rotary ring along symmetry axis, where carrier ring and rotary ring are arranged in force-transferable manner
DE102012001603B4 (en) 2012-01-26 2019-11-21 Ihi Charging Systems International Gmbh turbocharger
US9765687B2 (en) * 2014-04-29 2017-09-19 Honeywell International Inc. Turbocharger with variable-vane turbine nozzle having a gas pressure-responsive vane clearance control member
JP6331736B2 (en) * 2014-06-13 2018-05-30 株式会社Ihi Variable nozzle unit and variable capacity turbocharger
CN106939828A (en) * 2017-05-11 2017-07-11 奕森科技(上海)有限公司 It is a kind of effectively to prevent the variable-nozzle ring assemblies of blade clamping stagnation
DE102021121533A1 (en) 2021-08-19 2023-02-23 Ihi Charging Systems International Gmbh Exhaust gas turbocharger with adjustable diffuser
WO2024201959A1 (en) * 2023-03-30 2024-10-03 三菱重工エンジン&ターボチャージャ株式会社 Variable nozzle device, turbine, and turbocharger

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4657476A (en) * 1984-04-11 1987-04-14 Turbotech, Inc. Variable area turbine
JPH0352987Y2 (en) * 1984-10-04 1991-11-19
US4804316A (en) * 1985-12-11 1989-02-14 Allied-Signal Inc. Suspension for the pivoting vane actuation mechanism of a variable nozzle turbocharger
CA1270120A (en) * 1985-12-11 1990-06-12 Alliedsignal Inc. Suspension for the pivoting vane actuation mechanism of a variable nozzle turbocharger
JPS62214232A (en) * 1986-03-17 1987-09-21 Hitachi Ltd Turbine driven by exhaust gas from internal combustion engine
US4907952A (en) * 1986-12-05 1990-03-13 Honda Giken Kogyo Kabushiki Kaisha Turbocharger
JP3664761B2 (en) * 1994-12-22 2005-06-29 三菱重工業株式会社 Exhaust turbocharger variable capacity turbine
JP2001289050A (en) * 1999-05-20 2001-10-19 Hitachi Ltd Variable capacity turbo supercharger
DE10013335A1 (en) * 2000-03-17 2001-09-20 Abb Turbo Systems Ag Baden Conducting apparatus is for position alteration of conducting blades in turbocharger exhaust gas turbine has blades arranged axially symmetrically to the turbine axis in an exhaust gas flow channel and can be pivoted by a pivot device
CN1304732C (en) * 2000-07-19 2007-03-14 霍尼韦尔国际公司 Variable nozzle turbocharger with sheet metal shroud
DE10209484B4 (en) * 2002-03-05 2004-06-24 Borgwarner Turbo Systems Gmbh Turbocharger for vehicles with improved suspension for the actuation mechanism of the variable nozzles
JP2004052589A (en) * 2002-07-17 2004-02-19 Toyota Motor Corp Turbocharger with variable nozzle vane
DE10237413B4 (en) * 2002-08-16 2004-07-15 Daimlerchrysler Ag Exhaust gas turbocharger for an internal combustion engine
EP1394363B1 (en) * 2002-08-26 2006-03-01 BorgWarner Inc. Variable guide vane system for a turbine unit
EP1543220B1 (en) * 2002-09-05 2008-05-21 Honeywell International Inc. Turbocharger comprising a variable nozzle device
DE50207509D1 (en) * 2002-09-10 2006-08-24 Borgwarner Inc Guiding gratings of variable geometry and turbocharger with such a guide grille
JP2006504021A (en) * 2002-09-18 2006-02-02 ハネウェル・インターナショナル・インコーポレーテッド Turbocharger with variable nozzle device
DE50304673D1 (en) * 2003-10-27 2006-09-28 Borgwarner Inc Turbomachine and method for producing a Leitgitters
EP1536103B1 (en) * 2003-11-28 2013-09-04 BorgWarner, Inc. Turbo machine having inlet guide vanes and attachment arrangement therefor
JP4234107B2 (en) * 2005-02-10 2009-03-04 三菱重工業株式会社 Variable displacement exhaust turbocharger and variable nozzle mechanism component manufacturing method
JP4275081B2 (en) * 2005-02-10 2009-06-10 三菱重工業株式会社 Scroll structure of variable displacement exhaust turbocharger and method of manufacturing the same
DE102005012048A1 (en) * 2005-03-08 2006-09-14 Dr.Ing.H.C. F. Porsche Ag Turbine housing of an exhaust gas turbocharger with adjustable turbine geometry
US7559199B2 (en) * 2006-09-22 2009-07-14 Honeywell International Inc. Variable-nozzle cartridge for a turbocharger

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2006018187A1 *

Also Published As

Publication number Publication date
JP2008509340A (en) 2008-03-27
US20070180825A1 (en) 2007-08-09
JP4750791B2 (en) 2011-08-17
WO2006018187A1 (en) 2006-02-23
US7600379B2 (en) 2009-10-13
DE102004038748A1 (en) 2006-02-23

Similar Documents

Publication Publication Date Title
WO2006018187A1 (en) Exhaust gas turbocharger for an internal combustion engine
EP1290314B1 (en) Exhaust gas turbocharger for an internal combustion engine
DE60030894T2 (en) TURBOKOMPRESSOR WITH AXIAL MOVABLE SHOVELS WHERE THE GEOMETRY IN LENGTH DIRECTION IS DIFFERENT
EP1543232B1 (en) Internal combustion engine comprising a compressor in the induction tract
DE102004035044A1 (en) Compressor in an exhaust gas turbocharger for an internal combustion engine and method for operating a compressor
WO2006133838A1 (en) Waste gas turbine in a waste gas turbocharger
EP1639245B1 (en) Internal combustion engine comprising a compressor in the suction part and method therefor
DE102006018055A1 (en) Exhaust gas turbocharger for an internal combustion engine
DE112009004309T5 (en) Simplified turbocharger with variable geometry and changeable can
DE10049198A1 (en) Exhaust gas turbosupercharger has adjustable locking member in compressor inlet channel upstream of compressor vane wheel
DE112009004260T5 (en) Simplified turbocharger with variable geometry and vane rings
EP3455477B1 (en) Turbine for a turbocharger with two scrolls housing and valve arrangement for scroll connexion and wastegate control
EP3682115B1 (en) Compressor for a charging device of an internal combustion engine, and charging device for an internal combustion engine
DE10223876A1 (en) Compressor, for the turbo charger of an IC motor, has a covering ring at the compressor wheel, radially around the wheel paddles, to form tunnel air flow channels between the paddles between the ring and the hub
EP1530671B1 (en) Exhaust gas turbocharger for an internal combustion engine
DE112013005711T5 (en) Asymmetric actuator rotary shaft bushing for VTG turbocharger
DE10237413B4 (en) Exhaust gas turbocharger for an internal combustion engine
EP2859190B1 (en) Turbine housing for a turbocharger
EP1673525B1 (en) Compressor in the induction tract of an internal combustion engine
DE10153301B4 (en) Exhaust gas turbocharger for an internal combustion engine
DE102008060251B4 (en) Exhaust gas turbocharger with variable turbine geometry
WO2012065675A1 (en) Turbine for an exhaust-gas turbocharger of an internal combustion engine
DE102004051889A1 (en) Loaded internal combustion engine operating method, involves obtaining high pressure by upstream of compressor in engine low load/speed range, and adjusting variable turbine geometry in direction of holdup position upto turbine efficiency
DE102010054914A1 (en) Guide device for fluid energy machine, particularly exhaust gas turbocharger, comprises inner ring and outer ring surrounding inner ring from outer peripheral side, where inner ring and outer ring are rotatable around rotation axis
DE19836443C1 (en) Engine brake for internal combustion engine has exhaust driven turbine with vane grid having movable closure

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

17P Request for examination filed

Effective date: 20070209

RBV Designated contracting states (corrected)

Designated state(s): DE FR GB IT

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: DAIMLER AG

17Q First examination report despatched

Effective date: 20071213

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: IHI CHARGING SYSTEMS INTERNATIONAL GMBH

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20160301