[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2024201959A1 - Variable nozzle device, turbine, and turbocharger - Google Patents

Variable nozzle device, turbine, and turbocharger Download PDF

Info

Publication number
WO2024201959A1
WO2024201959A1 PCT/JP2023/013411 JP2023013411W WO2024201959A1 WO 2024201959 A1 WO2024201959 A1 WO 2024201959A1 JP 2023013411 W JP2023013411 W JP 2023013411W WO 2024201959 A1 WO2024201959 A1 WO 2024201959A1
Authority
WO
WIPO (PCT)
Prior art keywords
nozzle
housing
mount
curved surface
turbine
Prior art date
Application number
PCT/JP2023/013411
Other languages
French (fr)
Japanese (ja)
Inventor
航介 内海
永護 加藤
Original Assignee
三菱重工エンジン&ターボチャージャ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工エンジン&ターボチャージャ株式会社 filed Critical 三菱重工エンジン&ターボチャージャ株式会社
Priority to PCT/JP2023/013411 priority Critical patent/WO2024201959A1/en
Publication of WO2024201959A1 publication Critical patent/WO2024201959A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D17/00Regulating or controlling by varying flow
    • F01D17/10Final actuators
    • F01D17/12Final actuators arranged in stator parts
    • F01D17/14Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits

Definitions

  • This disclosure relates to a variable nozzle device, and a turbine and turbocharger equipped with the variable nozzle device.
  • Turbochargers that use the energy of exhaust gas from an internal combustion engine to supercharge the intake air of the engine are known to include a variable geometry turbine (see, for example, Patent Document 1).
  • a variable geometry turbine has multiple nozzle vanes arranged in the circumferential direction of the turbine wheel in an exhaust gas flow path that sends exhaust gas from the scroll flow path of the turbine to the turbine wheel, and the blade angle of these nozzle vanes can be changed from the outside by an actuator to adjust the flow path cross-sectional area of the exhaust gas flow path (flow path between adjacent nozzle vanes).
  • a variable geometry turbine adjusts the flow path cross-sectional area of the exhaust gas flow path to change the flow speed and pressure of the exhaust gas led to the turbine wheel, thereby enhancing the supercharging effect.
  • Patent Document 1 discloses a nozzle support that is fixed to one of two annular plate members (nozzle mount, nozzle plate) that form an exhaust gas flow path and abuts against the other.
  • the high-temperature exhaust gas flowing through the exhaust gas flow path causes thermal deformation of the two annular plate members, and the difference in thermal deformation of the two annular plate members causes relatively high stress between the nozzle support and the annular plate member with which the nozzle support abuts, which may cause the nozzle support to break or be damaged.
  • At least one embodiment of the present disclosure aims to provide a variable nozzle device that can reduce stress generated between a nozzle support and another member with which the nozzle support abuts, and a turbine and turbocharger that include the variable nozzle device.
  • a variable nozzle device includes: A variable nozzle device accommodated together with a turbine wheel in a housing, A nozzle mount, At least one nozzle support, one side of which is supported by the nozzle mount and the other side of which is configured to abut against another member; a biasing member configured to bias the nozzle mount toward the other member, the nozzle mount and the at least one nozzle support are supported between the other member and the biasing member in the axial direction by a biasing force of the biasing member,
  • the at least one nozzle support comprises: a contact surface that contacts the other member; a curved surface having an inner edge connected to an outer edge of the abutment surface, the curved surface having a contour shape that is convexly curved in a direction away from the central axis of the nozzle support.
  • a turbine includes: The variable nozzle device; The turbine wheel; and a housing that houses the turbine wheel and the variable nozzle device.
  • a turbocharger includes: The turbine; and a centrifugal compressor configured to be driven by the turbine.
  • At least one embodiment of the present disclosure provides a variable nozzle device that can reduce stress between a nozzle support and another member with which the nozzle support abuts, and a turbine and turbocharger that include the variable nozzle device.
  • FIG. 1 is a schematic diagram of an internal combustion engine system including a turbocharger and an internal combustion engine according to an embodiment of the present disclosure.
  • 1 is a schematic cross-sectional view of a turbine along its axis according to an embodiment of the present disclosure
  • FIG. 1 is a schematic diagram of a variable nozzle device according to an embodiment of the present disclosure viewed from one side in the axial direction.
  • FIG. 1 is a schematic cross-sectional view taken along an axis of a variable nozzle device according to an embodiment of the present disclosure.
  • 7 is an explanatory diagram for explaining thermal deformation of a variable nozzle device according to a comparative example.
  • FIG. 1 is an explanatory diagram for explaining thermal deformation of a variable nozzle device according to an embodiment of the present disclosure.
  • FIG. 1 is a schematic cross-sectional view of a turbine along its axis according to an embodiment of the present disclosure;
  • FIG. 1 is a schematic diagram of an internal combustion engine system 10 including a turbocharger (supercharger) 1 and an internal combustion engine (engine) 11 according to an embodiment of the present disclosure.
  • FIG. 2 is a schematic cross-sectional view along an axis line LA of a turbine 12 according to an embodiment of the present disclosure.
  • the turbine 12 according to the present disclosure can be mounted on, for example, a turbocharger (supercharger) 1 for automobiles, ships, or industries (for example, for land-based power generation).
  • the turbine 12 mounted on the turbocharger 1 will be described as an example, but the turbine 12 according to the present disclosure is not limited to being mounted on the turbocharger 1.
  • the working fluid of the turbine 12 does not need to be limited to exhaust gas.
  • the turbine 12 according to the present disclosure may be configured as a single turbine 12 or may be configured in combination with a mechanism or device other than the centrifugal compressor 13 as long as it is capable of converting the working fluid energy into mechanical power (for example, rotational force).
  • a turbocharger 1 is configured to be driven by the energy of exhaust gas discharged from an internal combustion engine 11 and to compress a fluid (e.g., air).
  • the turbocharger 1 includes a turbine 12 and a centrifugal compressor 13 configured to be driven by the turbine 12.
  • the turbine 12 includes a variable nozzle device 2, a turbine wheel 3, and a housing 4 configured to accommodate the variable nozzle device 2 and the turbine wheel 3.
  • the housing 4 includes a first housing (turbine housing) 4A and a second housing (bearing housing) 4B configured to accommodate the variable nozzle device 2 and the turbine wheel 3 between the first housing 4A and the second housing 4B.
  • the centrifugal compressor 13 includes a centrifugal impeller 14 and a compressor housing 15 configured to rotatably accommodate the impeller 14 between the second housing 4B.
  • the turbocharger 1 further includes a rotating shaft 16 having the turbine wheel 3 connected to one side and the impeller 14 connected to the other side, and a bearing 17 configured to rotatably support the rotating shaft 16 between the turbine wheel 3 and the impeller 14.
  • the second housing 4B is disposed between the first housing 4A and the compressor housing 15, and is connected to each of the first housing 4A and the compressor housing 15 via fastening members (not shown), such as bolts and nuts.
  • the second housing 4B may be configured to accommodate the bearing 17, as shown in FIG. 1.
  • the turbine 12 of the turbocharger 1 is configured to rotate the turbine wheel 3 using the energy of exhaust gas discharged from the internal combustion engine 11.
  • the impeller 14 is coaxially connected to the turbine wheel 3 via a rotating shaft 16, and is therefore driven to rotate about the axis LA in conjunction with the rotation of the turbine wheel 3.
  • the centrifugal compressor 13 of the turbocharger 1 is configured to draw air (combustion gas) into the compressor housing 15, compress the air, and send the compressed air to the internal combustion engine 11 by driving the impeller 14 to rotate about the axis LA.
  • the compressed air sent from the centrifugal compressor 13 to the internal combustion engine 11 is used as an oxidizer for combustion in the internal combustion engine 11.
  • the exhaust gas generated by the combustion in the internal combustion engine 11 is sent from the internal combustion engine 11 to the turbine 12, which rotates the turbine wheel 3.
  • the impeller 14 is configured to guide air introduced along the axial direction of the impeller 14 to the outside in the radial direction of the impeller 14.
  • the impeller 14 is an open-type impeller that does not include an annular member surrounding the outer periphery of the blades of the impeller 14.
  • the compressor housing 15 is formed with a gas introduction passage 151 and a scroll passage 152.
  • the gas introduction passage 151 is a passage for taking in air (combustion gas) from outside the compressor housing 15 and guiding the taken-in air to the impeller 14.
  • the gas introduction passage 151 extends along the axial direction of the impeller 14 and is provided on one side of the impeller 14 in the axial direction. By driving the impeller 14 to rotate, air is taken in from outside the compressor housing 15 into the gas introduction passage 151, and the taken-in air flows through the gas introduction passage 151 toward the impeller 14 and is guided to the impeller 14.
  • the scroll passage 152 is provided radially outside the impeller 14 so as to surround the periphery of the impeller 14, and consists of a spiral passage extending along the circumferential direction of the impeller 14. Air that passes through the impeller 14 and is compressed by the impeller 14 is guided to the scroll passage 152. The compressed air that has passed through the scroll passage 152 is guided to the internal combustion engine 11.
  • the direction in which the axis LA of the turbine wheel 3 extends is referred to as the axial direction of the turbine wheel 3, the direction perpendicular to the axis LA is referred to as the radial direction of the turbine wheel 3, and the circumferential direction around the axis LA is referred to as the circumferential direction of the turbine wheel 3.
  • the axial direction, radial direction, and circumferential direction of the turbine wheel 3 may be simply referred to as the axial direction, radial direction, and circumferential direction, respectively.
  • the side where the first housing 4A is located relative to the second housing 4B the right side in FIG.
  • the turbine wheel 3 includes a hub 31 having a substantially truncated cone shape and a plurality of turbine blades 32 provided on the outer circumferential surface of the hub 31.
  • the plurality of turbine blades 32 are arranged at intervals from one another in the circumferential direction around the axis line LA.
  • the hub 31 and the plurality of turbine blades 32 are provided so as to be rotatable integrally with the rotating shaft 16 about the axis line LA.
  • the turbine wheel 3 is configured to guide exhaust gas introduced from the outside in the radial direction of the turbine wheel 3 to the front side of the turbine wheel 3 along the axial direction of the turbine wheel 3.
  • the turbine wheel 3 is an open-type impeller that does not include an annular member surrounding the outer periphery of the turbine blades 32.
  • the first housing 4A is formed with a scroll passage 41 for guiding exhaust gas discharged from the internal combustion engine 11 to the turbine wheel 3, and an exhaust gas discharge passage 42 for discharging exhaust gas that has passed through the turbine wheel 3 to the outside of the first housing 4A (turbine 12).
  • the first housing 4A has the scroll passage 41 and the exhaust gas discharge passage 42.
  • the scroll passage 41 is provided on the outer side in the radial direction of the turbine wheel 3 so as to surround the periphery of the turbine wheel 3, and is composed of a spiral passage extending along the circumferential direction.
  • the exhaust gas discharge passage 42 extends toward the front side along the axial direction.
  • an internal space 43 is formed between the first housing 4A and the second housing 4B, connecting the scroll passage 41 and the exhaust gas discharge passage 42.
  • the variable nozzle device 2 and the turbine wheel 3 are disposed in the internal space 43, which is formed radially inward from the scroll passage 41.
  • the turbine wheel 3 is accommodated rotatably relative to the first housing 4A and the second housing 4B.
  • the exhaust gas discharged from the internal combustion engine 11 is guided to the turbine wheel 3 via the scroll passage 41, and drives the turbine wheel 3 to rotate.
  • the exhaust gas that drives the turbine wheel 3 to rotate is discharged to the outside of the first housing 4A (turbine 12) via the exhaust gas discharge passage 42.
  • variable nozzle device 2 includes a nozzle mount 5, at least one nozzle support 6 configured to have one side supported by the nozzle mount 5 and the other side in contact with another member 100, and a biasing member 7 configured to bias the nozzle mount 5 toward the other member 100.
  • the nozzle mount 5 and the at least one nozzle support 6 are supported in the axial direction between the other member 100 and the biasing member 7 by the biasing force of the biasing member 7.
  • the variable nozzle device 2 further includes a nozzle plate 8, at least one variable nozzle vane 21 (plural in the illustrated example), an annular member (drive ring) 22, and at least one link member (lever plate) 23 (plural in the illustrated example).
  • the direction in which the axis LB of the variable nozzle device 2 extends is referred to as the axial direction of the variable nozzle device 2
  • the direction perpendicular to the axis LB is referred to as the radial direction of the variable nozzle device 2
  • the circumferential direction around the axis LB is referred to as the circumferential direction of the variable nozzle device 2.
  • the extension direction of the axis LB is the direction along the extension direction of the axis LA.
  • the nozzle mount 5 forms a gas flow passage 43A from the scroll flow passage 41 toward the turbine wheel 3 between it and another member 100 (nozzle plate 8 in Fig. 2).
  • the gas flow passage 43A is provided between the scroll flow passage 41 and the turbine wheel 3 in the radial direction of the turbine wheel 3 so as to surround the periphery (the outer side in the radial direction) of the turbine wheel 3.
  • the gas flow passage 43A is a part of the internal space 43, and is formed on the outer circumferential side of the accommodation space that accommodates the turbine wheel 3 in the internal space 43.
  • the nozzle mount 5 is located rearward of the gas flow passage 43A, and the other member 100 is located forward of the gas flow passage 43A.
  • the nozzle mount 5 includes an annular plate portion 51 that extends circumferentially around the variable nozzle device 2.
  • the annular plate portion 51 is disposed on the outer circumferential side of the turbine wheel 3.
  • the annular plate portion 51 has an annular mount-side flow passage surface 52 that faces the gas flow passage 43A on one side in the thickness direction of the annular plate portion 51, i.e., the front side.
  • the annular plate portion 51 has an annular mount-side back surface 53 on the other side in the thickness direction of the annular plate portion 51 (the opposite side to the mount-side flow passage surface 52), i.e., the rear side.
  • the nozzle plate 8 includes an annular plate extending along the circumferential direction of the variable nozzle device 2.
  • the nozzle plate 8 is disposed opposite the annular plate portion 51 with a gap therebetween, and forms a gas flow path 43A between the nozzle plate 8 and the annular plate portion 51.
  • the nozzle plate 8 has an annular plate-side flow path surface 81 facing the gas flow path 43A on one side in the thickness direction of the nozzle plate 8, i.e., the rear side.
  • the nozzle plate 8 has an annular plate-side back surface 82 on the other side in the thickness direction of the nozzle plate 8 (the opposite side to the plate-side flow path surface 81), i.e., the front side.
  • the gas flow passage 43A is formed between the mount side flow passage surface 52 and the plate side flow passage surface 81.
  • the exhaust gas introduced into the inside of the turbine 12 passes through the scroll flow passage 41, then through the gas flow passage 43A, and is then led to the turbine wheel 3, causing the turbine wheel 3 to rotate.
  • the second housing 4B has an opposing surface 45 that faces the rear surface of the turbine wheel 3 with a gap therebetween, and a recess 46 that is recessed rearward of the opposing surface 45, outside the outer edge of the opposing surface 45 in the radial direction.
  • the bottom surface 461 of the recess 46 faces the mount-side rear surface 53, sandwiching a rear space 43B between it and the mount-side rear surface 53.
  • the rear space 43B is part of the internal space 43, and is formed on the opposite side of the nozzle mount 5 to the gas flow path 43A.
  • Each of the multiple variable nozzle vanes 21 is disposed in the gas flow passage 43A, and is supported by the annular plate portion 51 so as to be rotatable about its own rotation center RC.
  • the multiple variable nozzle vanes 21 are disposed at intervals in the circumferential direction of the turbine wheel 3.
  • the annular member (drive ring) 22 is disposed in the rear space 43B, and is configured to rotate about the axis LB of the variable nozzle device 2 relative to the nozzle mount 5 by an external driving force.
  • the turbine 12 further includes a drive mechanism (actuator) 25 configured to transmit a driving force to the annular member 22 to rotate the annular member 22 about its axis LB, and a control device (controller) 26 configured to control the rotation of the annular member 22 about the axis LB.
  • the drive mechanism 25 includes an electric motor that generates a driving force, an air cylinder that transmits the driving force, and the like.
  • FIG. 3 is a schematic diagram of the variable nozzle device 2 according to an embodiment of the present disclosure, viewed from one axial side (rear side).
  • the variable nozzle device 2 includes the same number of link members (lever plates) 23 as the variable nozzle vanes 21.
  • Each of the multiple link members 23 is disposed in the rear space 43B, has one end 231 connected to the annular member 22, and has the other end 232 connected to the corresponding variable nozzle vane 21, and is configured to change the blade angle of the variable nozzle vane 21 connected to the other end 232 in conjunction with the rotation of the annular member 22.
  • each link member 23 includes a fitting portion 231A that fits into a fitting portion 221 formed in the annular member 22.
  • the fitting portion 221 includes a groove portion 221A formed in the outer periphery of the annular member 22, and the fitting portion 231A is accommodated inside the groove portion 221A and is adapted to fit loosely into the groove portion 221A.
  • the annular plate portion 51 has a plurality of through holes 55 penetrating the mount side flow passage surface 52 and the mount side back surface 53.
  • the plurality of through holes 55 are arranged at intervals in the circumferential direction of the variable nozzle device 2.
  • the annular plate portion 51 has the same number of through holes 55 as the variable nozzle vanes 21 and link members 23.
  • the other end 232 of each link member 23 is inserted through the through hole 55 that individually corresponds to the link member 23, and is connected to the variable nozzle vane 21 that individually corresponds to the link member 23.
  • the variable nozzle device 2 transmits the driving force from the drive mechanism 25 to the multiple variable nozzle vanes 21 via the annular member 22 and multiple link members 23, causing the multiple variable nozzle vanes 21 to rotate around their respective rotation centers RC, changing the blade angle of each, thereby adjusting the flow path cross-sectional area of the gas flow path 43A.
  • the turbine 12 can change the flow velocity and pressure of the exhaust gas guided to the turbine wheel 3 by increasing or decreasing the flow path cross-sectional area of the gas flow path 43A using the variable nozzle device 2, thereby controlling the boost pressure of the turbine 12.
  • the biasing member 7 is an annular elastic member (disc spring) disposed in a compressed state in the axial direction between the opposing surface 45 of the second housing 4B and the mount-side back surface 53 of the nozzle mount 5.
  • the biasing member 7 biases the mount-side back surface 53 toward the other member 100 (forward) by the opposing surface 45 receiving a reaction force of the biasing member 7.
  • the nozzle mount 5 and the nozzle support 6 are supported between the biasing member 7 and the other member 100 in the axial direction by the biasing force of the biasing member 7.
  • the nozzle mount 5 and the nozzle support 6 are not restricted in their movement along the axial direction between the biasing member 7 and the other member 100 in the axial direction.
  • the first housing 4A has a rear scroll flow passage surface 441 facing the rear side of the scroll flow passage 41, and has an inward protrusion 44 extending radially inward along the radial direction.
  • the nozzle mount 5 is not in contact with the inward protrusion 44, with the outer peripheral end of the annular plate portion 51 facing the inner peripheral end of the inward protrusion 44 with a gap between them.
  • variable nozzle device 2 further includes a positioning pin 56 that limits the movement of the nozzle mount 5 in the radial direction.
  • One end of the positioning pin 56 is inserted into a first hole formed in the mount-side rear surface 53 of the nozzle mount 5, and the other end is inserted into a second hole formed in the surface of the second housing 4B that faces the mount-side rear surface 53.
  • the positioning pin 56 is loosely inserted into at least one of the first hole or the second hole, and does not limit the movement of the nozzle mount 5 in the axial direction caused by the biasing force of the biasing member 7, but does limit the movement of the nozzle mount 5 in the radial direction.
  • each of the multiple turbine blades 32 is arranged with a predetermined gap from the shroud surface 47, which is the inner surface of the first housing 4A.
  • the first housing 4A has an annular recess 48 formed therein, the recess 48 being composed of an outer peripheral surface 481 extending forward from the outer peripheral end of the shroud surface 47 along the axial direction, and an annular bottom surface 482 extending outward from the forward end of the outer peripheral surface 481 along the radial direction.
  • the nozzle plate 8 is inserted into the recess 48.
  • the first housing 4A has an annular protruding portion 483 that protrudes radially outward from the bottom surface 482 and toward the rear side from the bottom surface 482.
  • the protruding portion 483 has an annular housing-side abutment surface 484 facing the gas flow path 43A on the rear side.
  • the nozzle plate 8 is configured such that the inner peripheral end of the nozzle plate 8 faces the outer peripheral surface 481 with a gap therebetween, and the plate-side back surface 82 abuts against the housing-side abutment surface 484.
  • the nozzle plate 8 is supported between the nozzle support 6 and the first housing 4A in the axial direction by being biased toward the first housing 4A in the axial direction by the biasing force of the biasing member 7 via the nozzle support 6.
  • FIG. 4 is a schematic cross-sectional view taken along the axis LB of the variable nozzle device 2 according to an embodiment of the present disclosure.
  • the nozzle support 6 supports two members (the nozzle mount 5 and the nozzle plate 8 in Fig. 2) that form the above-mentioned gas flow passage 43A in a state spaced apart from each other.
  • the variable nozzle device 2 includes a plurality of nozzle supports 6 that are spaced apart from each other in the circumferential direction of the variable nozzle device 2 as shown in Fig. 2. Each of the plurality of nozzle supports 6 is disposed radially outward of the plurality of variable nozzle vanes 21.
  • each of the nozzle supports 6 is a rod-shaped member extending along the central axis LD of the nozzle support 6.
  • the nozzle support 6 has a fixing portion 61 fixed to the nozzle mount 5 on one axial side of the nozzle support 6, and a main body portion 62 arranged in the gas flow path 43A on the other axial side of the nozzle support 6.
  • the fixing portion 61 is fixed to the nozzle mount 5 by being swaged into a hole 54 formed in the mount-side flow path surface 52 of the nozzle mount 5.
  • the fixing portion 61 may be fixed to the nozzle mount 5 by a fixing method other than swaging, such as by being pressed into the nozzle mount 5.
  • each of the nozzle supports 6 biases each of the nozzle supports 6 toward the other member 100 via the nozzle mount 5.
  • the main body 62 of each of the nozzle supports 6 has an abutment surface 63 that abuts against the other member 100 that forms a gas flow path 43A between the nozzle mount 5 (see FIG. 4).
  • the abutment surface 63 is an end face opposite to the side integrally connected to the fixed portion 61 of the main body 62.
  • each of the nozzle supports 6 has a central axis LD that extends in a direction parallel to the axis LB.
  • Each of the nozzle supports 6 has an abutment surface 63 that abuts against the plate-side flow path surface 81.
  • each of the multiple nozzle supports 6 includes the above-mentioned abutment surface 63 that abuts against the other member 100, and a curved surface 64 whose inner edge is connected to the outer edge of the abutment surface 63.
  • the curved surface 64 has a contour shape that is convexly curved in a direction away from the central axis LD of the nozzle support 6 on which the curved surface 64 is formed.
  • the curved surface 64 is formed on the main body portion 62, and the outer edge of the curved surface 64 is connected to the outer surface (outer peripheral surface) 621 of the main body portion 62.
  • FIG. 5 is an explanatory diagram for explaining thermal deformation of a variable nozzle device 02 according to a comparative example.
  • FIG. 6 is an explanatory diagram for explaining thermal deformation of a variable nozzle device 2 according to an embodiment of the present disclosure.
  • the nozzle support 06 provided in the variable nozzle device 02 has a fixing part 061 fixed to the nozzle mount 5 and a main body part 062 arranged in the gas flow path 43A.
  • the main body part 062 has an abutment surface 063 that abuts against another member 100.
  • the outer edge 0631 of the abutment surface 063 is connected to the outer surface (outer peripheral surface) of the main body part 062.
  • the outer edge 0631 may be subjected to R processing to the extent that is normally performed.
  • exhaust gas flowing through gas flow path 43A causes thermal deformation in the two components (nozzle mount 5 and other component 100) that form gas flow path 43A, and due to the difference in thermal deformation of the two components, nozzle support 6 may come into contact with other component 100 with its central axis LD tilted relative to a direction parallel to axis LB.
  • nozzle mount 5 and other component 100 are thermally deformed in directions that move them away from each other in the axial direction, and nozzle support 6 is tilted so that the other component 100 side of nozzle support 6 is farther away from axis LB than the nozzle mount 5 side.
  • variable nozzle device 02 In the variable nozzle device 02 according to the comparative example, as shown in Figure 5, when the outer edge 0631 of the abutment surface 063 comes into contact with another member 100 due to the above-mentioned thermal deformation, localized stress concentration occurs at the outer edge 0631 of the abutment surface 063, and there is a risk that the nozzle support 6 may be broken or damaged.
  • the contour shape of the curved surface 64 can alleviate stress concentration at the curved surface 64.
  • the nozzle support 6 by providing the nozzle support 6 with a curved surface 64, stress concentration can be alleviated when the curved surface 64 of the nozzle support 6 comes into contact with the other member 100 due to the difference in thermal deformation that occurs between the nozzle mount 5 and the other member 100.
  • stress concentration of the nozzle support 6 breakage or damage caused by stress concentration of the nozzle support 6 can be suppressed.
  • variable nozzle device 2 includes a nozzle plate 8 having a plate-side flow path surface 81 that forms a gas flow path 43A between the nozzle mount 5 and the nozzle plate 8, and against which the abutment surface 63 of at least one nozzle support 6 described above abuts.
  • the other member 100 described above is made of the nozzle plate 8.
  • the above configuration reduces stress concentration when the curved surface 64 of the nozzle support 6 abuts against the plate-side flow path surface 81 due to the difference in thermal deformation that occurs between the nozzle mount 5 and the nozzle plate 8.
  • FIG. 7 is a schematic cross-sectional view along the axis LA of the turbine 12 according to one embodiment of the present disclosure.
  • the other member 100 described above is made of a housing 4 (first housing 4A).
  • the first housing 4A has a housing side flow path surface 491 that forms a gas flow path 43A between itself and the nozzle mount 5, and has a housing side flow path surface 491 against which the abutment surface 63 of at least one nozzle support 6 described above abuts.
  • the first housing 4A includes a flow passage surface forming portion 49 having a housing side flow passage surface 491.
  • the housing side flow passage surface 491 is an annular surface extending along the circumferential direction and extends along the radial direction.
  • the inner peripheral end of the housing side flow passage surface 491 is connected to the outer peripheral end of the shroud surface 47 and is continuous with the shroud surface 47.
  • variable nozzle device 2 As shown in FIG. 4, at least one of the nozzle supports 6 described above satisfies the condition 0.1D1 ⁇ R1, where D1 is the maximum diameter of the outer surface 621 of the nozzle support 6 and R1 is the radius of curvature of the curved surface 64.
  • the curved surface 64 that satisfies the condition 0.1D1 ⁇ R1 has a contour shape that is gentler than a machined surface formed by normal R machining, and therefore can effectively alleviate stress concentration when the curved surface 64 of the nozzle support 6 abuts against another member 100.
  • At least one nozzle support 6 includes a constricted portion 65 formed on the outer surface 621 of the nozzle support 6.
  • the constricted portion 65 includes a concave curved surface portion 651 that is recessed inward in the radial direction from one side (the nozzle mount 5 side) toward the other side (the other member 100 side) in the axial direction, and a convex curved surface portion 652 that bulges outward in the radial direction from the one side (the nozzle mount 5 side) toward the other side (the other member 100 side).
  • At least one nozzle support 6 described above satisfies the conditions R1 ⁇ R2 and R1 ⁇ R3 when the radius of curvature of the curved surface 64 is R1, the radius of curvature of the concave curved surface portion 651 is R2, and the radius of curvature of the convex curved surface portion 652 is R3.
  • R1 ⁇ R2 and R1 ⁇ R3 are not satisfied.
  • At least one of the nozzle supports 6 satisfies the condition D2 ⁇ D3 when the diameter (maximum diameter) of the contact surface 63 is D2 and the minimum diameter of the constricted portion 65 is D3.
  • the contact surface 63 that satisfies the condition D2 ⁇ D3 has a relatively small diameter D2, so the contour shape of the curved surface 64 can be made gentler than when the diameter D2 is large, and this effectively reduces stress concentration when the curved surface 64 of the nozzle support 6 abuts against another member 100. Note that the present disclosure is also applicable to cases where the condition D2 ⁇ D3 is not satisfied.
  • the turbine 12 includes the variable nozzle device 2 described above, a turbine wheel 3, and a housing 4 that accommodates the turbine wheel 3 and the variable nozzle device 2.
  • the turbocharger 1 includes the turbine 12 described above and the centrifugal compressor 13 described above. In this case, the variable nozzle device 2 described above suppresses damage to the nozzle support 6, thereby improving the reliability of the turbine 12 and turbocharger 1 that include the variable nozzle device 2.
  • expressions expressing relative or absolute configuration do not only strictly represent such a configuration, but also represent a state in which there is a relative displacement with a tolerance or an angle or distance to the extent that the same function is obtained.
  • expressions indicating that things are in an equal state such as “identical,””equal,” and “homogeneous,” not only indicate a state of strict equality, but also indicate a state in which there is a tolerance or a difference to the extent that the same function is obtained.
  • expressions describing shapes such as a rectangular shape or a cylindrical shape do not only refer to shapes such as a rectangular shape or a cylindrical shape in the strict geometric sense, but also refer to shapes that include uneven portions, chamfered portions, etc., to the extent that the same effect can be obtained.
  • the expressions "comprise,””include,” or “have” a certain element are not exclusive expressions that exclude the presence of other elements.
  • a variable nozzle device (2) according to at least one embodiment of the present disclosure, A variable nozzle device (2) housed together with a turbine wheel (3) in a housing (4), A nozzle mount (5); At least one nozzle support (6) configured such that one side is supported by the nozzle mount (5) and the other side is in contact with another member (100); and a biasing member (7) configured to bias the nozzle mount (5) toward the other member (100), the nozzle mount (5) and the at least one nozzle support (6) are supported between the other member (100) and the biasing member (7) in the axial direction by the biasing force of the biasing member (7);
  • the at least one nozzle support (6) An abutment surface (63) that abuts against the other member (100); and a curved surface (64) whose inner edge is connected to the outer edge of the abutment surface (63), the curved surface (64) having a contour shape that is convexly curved in a direction away from the central axis (LD) of the nozzle support (6)
  • variable nozzle device (2) described in 1) above, a nozzle plate (8) having a plate-side flow path surface (81) that forms a gas flow path (43A) toward the turbine wheel (12) between the nozzle mount (5) and the plate-side flow path surface (81) with which the abutment surface (63) of the at least one nozzle support (6) abuts;
  • the other member (100) is composed of the nozzle plate (8).
  • the configuration of 2) above allows stress concentration to be alleviated when the curved surface (64) of the nozzle support (6) abuts against the plate-side flow path surface (81) due to the difference in thermal deformation that occurs between the nozzle mount (5) and the nozzle plate (8).
  • variable nozzle device (2) described in 1) above is composed of the housing (4) having a housing side flow path surface (491) that forms a gas flow path (43A) toward the turbine wheel (12) between the nozzle mount (5) and the housing (4), and the housing side flow path surface (491) with which the abutment surface (63) of the at least one nozzle support (6) abuts.
  • variable nozzle device (2) according to any one of 1) to 3) above,
  • the at least one nozzle support (6) satisfies the condition 0.1D1 ⁇ R1, where D1 is the maximum diameter of the outer surface (621) of the nozzle support (6) and R1 is the radius of curvature of the curved surface (64).
  • the curved surface (64) that satisfies the condition 0.1D1 ⁇ R1 has a contour shape that is gentler than the processed surface formed by normal R processing, so that it is possible to effectively reduce stress concentration when the curved surface (64) of the nozzle support (6) abuts against another member (100).
  • variable nozzle device (2) according to any one of 1) to 4) above,
  • the at least one nozzle support (6) a constriction portion (65) formed on an outer surface (621) of the nozzle support (6), the constriction portion (65) including a concave curved surface portion (651) that is recessed radially inward as it moves from the one side to the other side, and a convex curved surface portion (652) that bulges radially outward as it moves from the one side to the other side,
  • the radius of curvature of the curved surface (64) is R1
  • the radius of curvature of the concave curved surface portion (651) is R2
  • the radius of curvature of the convex curved surface portion (652) is R3
  • the conditions R1 ⁇ R2 and R1 ⁇ R3 are satisfied.
  • the contour shapes of the concave curved surface portion (651) and the convex curved surface portion (652) are made gentler than the contour shape of the curved surface (64), thereby preventing stress concentration in the constricted portion (65).
  • variable nozzle device (2) according to any one of 1) to 5) above,
  • the at least one nozzle support (6) a constriction portion (65) formed on an outer surface (621) of the nozzle support (6), the constriction portion (65) including a concave curved surface portion (651) that is recessed radially inward as it moves from the one side to the other side, and a convex curved surface portion (652) that bulges radially outward as it moves from the one side to the other side,
  • the diameter of the contact surface (63) is D2
  • the minimum diameter of the constricted portion (65) is D3
  • the condition D2 ⁇ D3 is satisfied.
  • the contact surface (63) that satisfies the condition D2 ⁇ D3 has a relatively small diameter D2, and therefore the contour shape of the curved surface (64) can be made gentler than when the diameter D2 is large, and this effectively reduces stress concentration when the curved surface (64) of the nozzle support (6) contacts another member (100).
  • a turbine (12) according to at least one embodiment of the present disclosure, A variable nozzle device (2) according to any one of 1) to 6) above; The turbine wheel (3); and the housing (4) that houses the turbine wheel (3) and the variable nozzle device (2).
  • the configuration of 7) above can improve the reliability of the turbine (12) by suppressing damage to the nozzle support (6) of the variable nozzle device (2).
  • a turbocharger (1) according to at least one embodiment of the present disclosure, A turbine (12) according to 7) above; and a centrifugal compressor (13) configured to be driven by the turbine (12).
  • the configuration of 8) above can improve the reliability of the turbocharger (1) by suppressing damage to the nozzle support (6) of the variable nozzle device (2).
  • turbocharger 2 variable nozzle device 3 turbine wheel 4 housing 4A first housing 4B second housing 5 nozzle mount 6 nozzle support 7 biasing member 8 nozzle plate 10 internal combustion engine system 11 internal combustion engine 12 turbine 13 centrifugal compressor 14 impeller 15 compressor housing 16 rotating shaft 17 bearing 21 variable nozzle vane 22 annular member 23 link member 25 drive mechanism 31 hub 32 turbine blade 41 scroll passage 42 exhaust gas discharge passage 43 internal space 43A gas passage 43B rear space 44 inward protrusion 45 opposing surface 46, 48 recess 47 shroud surface 51 annular plate portion 52 mount side passage surface 53 mount side back surface 56 positioning pin 61, 061 fixing portion 62, 062 main body portion 63, 063 abutment surface 64 curved surface 65 constricted portion 81 Plate side flow passage surface 82 Plate side back surface 100

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Supercharger (AREA)

Abstract

This variable nozzle device is stored in a housing together with a turbine wheel, the variable nozzle device comprising: a nozzle mount; at least one nozzle support configured such that one side thereof is supported by the nozzle mount, and the other side thereof abuts another member; and a biasing member configured to bias the nozzle mount toward the other member side. The nozzle mount and the at least one nozzle support are supported between the other member and the biasing member in the axial direction by a biasing force of the biasing member, and the at least one nozzle support includes an abutting surface that abuts the other member, and a curved surface having an inner edge connected to an outer edge of the abutting surface, and having a contour shape curved to protrude toward a direction away from the center axis of the nozzle support.

Description

可変ノズル装置、タービン及びターボチャージャVariable nozzle device, turbine and turbocharger
 本開示は、可変ノズル装置、該可変ノズル装置を備えるタービン及びターボチャージャに関する。 This disclosure relates to a variable nozzle device, and a turbine and turbocharger equipped with the variable nozzle device.
 内燃機関(エンジン)の排ガスのエネルギを利用して内燃機関の吸気を過給するターボチャージャ(過給機)として、可変容量タービンを備えるものが知られている(例えば、特許文献1参照)。可変容量タービンは、該タービンのスクロール流路からタービンホイールに排ガスを送るための排ガス流路に複数のノズルベーンがタービンホイールの周方向に並んで配置されており、これらのノズルベーンの翼角を外部からアクチュエータにより変化させることで、排ガス流路の流路断面積(隣接するノズルベーン間の流路)を調整できるようになっている。可変容量タービンは、排ガス流路の流路断面積を調整することで、タービンホイールに導かれる排ガスの流速や圧力を変化させて過給効果を高めるものである。 Turbochargers that use the energy of exhaust gas from an internal combustion engine to supercharge the intake air of the engine are known to include a variable geometry turbine (see, for example, Patent Document 1). A variable geometry turbine has multiple nozzle vanes arranged in the circumferential direction of the turbine wheel in an exhaust gas flow path that sends exhaust gas from the scroll flow path of the turbine to the turbine wheel, and the blade angle of these nozzle vanes can be changed from the outside by an actuator to adjust the flow path cross-sectional area of the exhaust gas flow path (flow path between adjacent nozzle vanes). A variable geometry turbine adjusts the flow path cross-sectional area of the exhaust gas flow path to change the flow speed and pressure of the exhaust gas led to the turbine wheel, thereby enhancing the supercharging effect.
 特許文献1には、排ガス流路を形成する2つの環状板部材(ノズルマウント、ノズルプレート)の一方に固定され、他方に当接するノズルサポートが開示されている。 Patent Document 1 discloses a nozzle support that is fixed to one of two annular plate members (nozzle mount, nozzle plate) that form an exhaust gas flow path and abuts against the other.
米国特許第8684678号明細書U.S. Pat. No. 8,684,678
 特許文献1に記載の発明では、排ガス流路を流れる高温の排ガスにより、2つの環状板部材が熱変形を生じ、2つの環状板部材の熱変形の差により、ノズルサポートとノズルサポートが当接する環状板部材との間に比較的高い応力が生じてノズルサポートを破損又は損傷させる虞がある。 In the invention described in Patent Document 1, the high-temperature exhaust gas flowing through the exhaust gas flow path causes thermal deformation of the two annular plate members, and the difference in thermal deformation of the two annular plate members causes relatively high stress between the nozzle support and the annular plate member with which the nozzle support abuts, which may cause the nozzle support to break or be damaged.
 上述の事情に鑑みて、本開示の少なくとも一実施形態は、ノズルサポートと該ノズルサポートが当接する他部材との間に生じる応力を低減できる可変ノズル装置、該可変ノズル装置を備えるタービン及びターボチャージャを提供することを目的とする。 In view of the above circumstances, at least one embodiment of the present disclosure aims to provide a variable nozzle device that can reduce stress generated between a nozzle support and another member with which the nozzle support abuts, and a turbine and turbocharger that include the variable nozzle device.
 本開示の少なくとも一実施形態に係る可変ノズル装置は、
 ハウジング内にタービンホイールとともに収容される可変ノズル装置であって、
 ノズルマウントと、
 前記ノズルマウントに一方側が支持され、他方側が他部材に当接するように構成された少なくとも1つのノズルサポートと、
 前記ノズルマウントを前記他部材側に付勢するように構成された付勢部材と、を備え、
 前記ノズルマウント及び前記少なくとも1つのノズルサポートは、前記付勢部材の付勢力により軸方向において前記他部材と前記付勢部材との間に支持され、
 前記少なくとも1つのノズルサポートは、
 前記他部材に当接する当接面と、
 前記当接面の外縁に内縁が接続される湾曲面であって、前記ノズルサポートの中心軸線から離隔する方向に向かって凸状に湾曲する輪郭形状を有する湾曲面と、を含む。
A variable nozzle device according to at least one embodiment of the present disclosure includes:
A variable nozzle device accommodated together with a turbine wheel in a housing,
A nozzle mount,
At least one nozzle support, one side of which is supported by the nozzle mount and the other side of which is configured to abut against another member;
a biasing member configured to bias the nozzle mount toward the other member,
the nozzle mount and the at least one nozzle support are supported between the other member and the biasing member in the axial direction by a biasing force of the biasing member,
The at least one nozzle support comprises:
a contact surface that contacts the other member;
a curved surface having an inner edge connected to an outer edge of the abutment surface, the curved surface having a contour shape that is convexly curved in a direction away from the central axis of the nozzle support.
 本開示の少なくとも一実施形態に係るタービンは、
 前記可変ノズル装置と、
 前記タービンホイールと、
 前記タービンホイール及び前記可変ノズル装置を収容する前記ハウジングと、を備える。
A turbine according to at least one embodiment of the present disclosure includes:
The variable nozzle device;
The turbine wheel;
and a housing that houses the turbine wheel and the variable nozzle device.
 本開示の少なくとも一実施形態に係るターボチャージャは、
 前記タービンと、
 前記タービンにより駆動されるように構成された遠心圧縮機と、を備える。
A turbocharger according to at least one embodiment of the present disclosure includes:
The turbine;
and a centrifugal compressor configured to be driven by the turbine.
 本開示の少なくとも一実施形態によれば、ノズルサポートと該ノズルサポートが当接する他部材との間に生じる応力を低減できる可変ノズル装置、該可変ノズル装置を備えるタービン及びターボチャージャが提供される。 At least one embodiment of the present disclosure provides a variable nozzle device that can reduce stress between a nozzle support and another member with which the nozzle support abuts, and a turbine and turbocharger that include the variable nozzle device.
本開示の一実施形態に係るターボチャージャ及び内燃機関を備える内燃機関システムの概略図である。1 is a schematic diagram of an internal combustion engine system including a turbocharger and an internal combustion engine according to an embodiment of the present disclosure. 本開示の一実施形態に係るタービンの軸線に沿った概略断面図である。1 is a schematic cross-sectional view of a turbine along its axis according to an embodiment of the present disclosure; FIG. 本開示の一実施形態に係る可変ノズル装置の軸方向の一方側から視た概略図である。1 is a schematic diagram of a variable nozzle device according to an embodiment of the present disclosure viewed from one side in the axial direction. FIG. 本開示の一実施形態に係る可変ノズル装置の軸線に沿った概略断面図である。1 is a schematic cross-sectional view taken along an axis of a variable nozzle device according to an embodiment of the present disclosure. 比較例に係る可変ノズル装置の熱変形を説明するための説明図である。7 is an explanatory diagram for explaining thermal deformation of a variable nozzle device according to a comparative example. FIG. 本開示の一実施形態に係る可変ノズル装置の熱変形を説明するための説明図である。1 is an explanatory diagram for explaining thermal deformation of a variable nozzle device according to an embodiment of the present disclosure. FIG. 本開示の一実施形態に係るタービンの軸線に沿った概略断面図である。1 is a schematic cross-sectional view of a turbine along its axis according to an embodiment of the present disclosure; FIG.
 以下、添付図面を参照して本開示の幾つかの実施形態について説明する。ただし、実施形態として記載されている又は図面に示されている構成部品の寸法、材質、形状、その相対的配置等は、本開示の範囲をこれに限定する趣旨ではなく、単なる説明例にすぎない。 Below, several embodiments of the present disclosure will be described with reference to the attached drawings. However, the dimensions, materials, shapes, relative positions, etc. of the components described as the embodiments or shown in the drawings are not intended to limit the scope of the present disclosure and are merely illustrative examples.
(ターボチャージャ)
 図1は、本開示の一実施形態に係るターボチャージャ(過給機)1及び内燃機関(エンジン)11を備える内燃機関システム10の概略図である。図2は、本開示の一実施形態に係るタービン12の軸線LAに沿った概略断面図である。本開示に係るタービン12は、例えば、自動車用、舶用又は産業用(例えば、陸上発電用)のターボチャージャ(過給機)1などに搭載可能である。以下の実施形態では、ターボチャージャ1に搭載されるタービン12を例に挙げて説明するが、本開示に係るタービン12は、ターボチャージャ1に搭載されるものに限定されない。また、タービン12の作動流体を排ガスに限定する必要はない。すなわち、本開示のタービン12は、作動流体エネルギを機械的動力(例えば、回転力)に変換することが可能であればよく、タービン12単体で構成しても、遠心圧縮機13以外の機構や装置と複合して構成してもよい。また、タービン12の用途等を限定する必要もない。
(Turbocharger)
FIG. 1 is a schematic diagram of an internal combustion engine system 10 including a turbocharger (supercharger) 1 and an internal combustion engine (engine) 11 according to an embodiment of the present disclosure. FIG. 2 is a schematic cross-sectional view along an axis line LA of a turbine 12 according to an embodiment of the present disclosure. The turbine 12 according to the present disclosure can be mounted on, for example, a turbocharger (supercharger) 1 for automobiles, ships, or industries (for example, for land-based power generation). In the following embodiment, the turbine 12 mounted on the turbocharger 1 will be described as an example, but the turbine 12 according to the present disclosure is not limited to being mounted on the turbocharger 1. In addition, the working fluid of the turbine 12 does not need to be limited to exhaust gas. In other words, the turbine 12 according to the present disclosure may be configured as a single turbine 12 or may be configured in combination with a mechanism or device other than the centrifugal compressor 13 as long as it is capable of converting the working fluid energy into mechanical power (for example, rotational force). In addition, there is no need to limit the use of the turbine 12.
 幾つかの実施形態に係るターボチャージャ1は、図1に示されるように、内燃機関11から排出された排ガスのエネルギにより駆動し、流体(例えば、空気)を圧縮するように構成されている。ターボチャージャ1は、タービン12と、タービン12により駆動されるように構成された遠心圧縮機13と、を備える。 As shown in FIG. 1, a turbocharger 1 according to some embodiments is configured to be driven by the energy of exhaust gas discharged from an internal combustion engine 11 and to compress a fluid (e.g., air). The turbocharger 1 includes a turbine 12 and a centrifugal compressor 13 configured to be driven by the turbine 12.
 タービン12は、図2に示されるように、可変ノズル装置2と、タービンホイール3と、可変ノズル装置2及びタービンホイール3を収容するように構成されたハウジング4と、を備える。図示される実施形態では、ハウジング4は、第1ハウジング(タービンハウジング)4Aと、第1ハウジング4Aとの間に可変ノズル装置2及びタービンホイール3を収容するように構成された第2ハウジング(軸受ハウジング)4Bと、を備える。 2, the turbine 12 includes a variable nozzle device 2, a turbine wheel 3, and a housing 4 configured to accommodate the variable nozzle device 2 and the turbine wheel 3. In the illustrated embodiment, the housing 4 includes a first housing (turbine housing) 4A and a second housing (bearing housing) 4B configured to accommodate the variable nozzle device 2 and the turbine wheel 3 between the first housing 4A and the second housing 4B.
 遠心圧縮機13は、図1に示されるように、遠心式のインペラ14と、第2ハウジング4Bとの間にインペラ14を回転可能に収容するように構成されたコンプレッサハウジング15と、を備える。 As shown in FIG. 1, the centrifugal compressor 13 includes a centrifugal impeller 14 and a compressor housing 15 configured to rotatably accommodate the impeller 14 between the second housing 4B.
 ターボチャージャ1は、図1に示されるように、タービンホイール3が一方側に連結され、他方側にインペラ14が連結された回転シャフト16と、タービンホイール3とインペラ14の間において回転シャフト16を回転可能に支持するように構成された軸受17と、をさらに備える。第2ハウジング4Bは、第1ハウジング4Aとコンプレッサハウジング15の間に配置され、例えば、ボルトやナットなどの締結部材(不図示)を介して第1ハウジング4A及びコンプレッサハウジング15の夫々に連結されている。第2ハウジング4Bは、図1に示されるように、軸受17を収容するように構成されていてもよい。 1, the turbocharger 1 further includes a rotating shaft 16 having the turbine wheel 3 connected to one side and the impeller 14 connected to the other side, and a bearing 17 configured to rotatably support the rotating shaft 16 between the turbine wheel 3 and the impeller 14. The second housing 4B is disposed between the first housing 4A and the compressor housing 15, and is connected to each of the first housing 4A and the compressor housing 15 via fastening members (not shown), such as bolts and nuts. The second housing 4B may be configured to accommodate the bearing 17, as shown in FIG. 1.
 ターボチャージャ1のタービン12は、内燃機関11から排出された排ガスのエネルギによりタービンホイール3を回転させるように構成されている。インペラ14は、回転シャフト16を介してタービンホイール3と同軸上に連結されているため、タービンホイール3の回転に連動して軸線LA回りに回転駆動する。ターボチャージャ1の遠心圧縮機13は、インペラ14を軸線LA回りに回転駆動させることにより、コンプレッサハウジング15の内部に空気(燃焼用気体)を吸入し、該空気を圧縮し、圧縮された空気を内燃機関11に送るように構成されている。 The turbine 12 of the turbocharger 1 is configured to rotate the turbine wheel 3 using the energy of exhaust gas discharged from the internal combustion engine 11. The impeller 14 is coaxially connected to the turbine wheel 3 via a rotating shaft 16, and is therefore driven to rotate about the axis LA in conjunction with the rotation of the turbine wheel 3. The centrifugal compressor 13 of the turbocharger 1 is configured to draw air (combustion gas) into the compressor housing 15, compress the air, and send the compressed air to the internal combustion engine 11 by driving the impeller 14 to rotate about the axis LA.
 遠心圧縮機13から内燃機関11に送られた圧縮空気は、内燃機関11における燃焼に酸化剤として供されるようになっている。内燃機関11における燃焼により生じた排ガスは、内燃機関11からタービン12に送られ、タービンホイール3を回転させるようになっている。 The compressed air sent from the centrifugal compressor 13 to the internal combustion engine 11 is used as an oxidizer for combustion in the internal combustion engine 11. The exhaust gas generated by the combustion in the internal combustion engine 11 is sent from the internal combustion engine 11 to the turbine 12, which rotates the turbine wheel 3.
(インペラ)
 インペラ14は、インペラ14の軸方向に沿って導入される空気をインペラ14の径方向における外側に導くように構成されている。図示される実施形態では、インペラ14は、インペラ14の翼の外周を囲む環状部材を含まないオープンタイプのインペラからなる。
(Impeller)
The impeller 14 is configured to guide air introduced along the axial direction of the impeller 14 to the outside in the radial direction of the impeller 14. In the illustrated embodiment, the impeller 14 is an open-type impeller that does not include an annular member surrounding the outer periphery of the blades of the impeller 14.
(コンプレッサハウジング)
 コンプレッサハウジング15には、気体導入流路151とスクロール流路152とが形成されている。気体導入流路151は、コンプレッサハウジング15の外部から空気(燃焼用気体)を取り込み、取り込んだ空気をインペラ14に導くための流路である。気体導入流路151は、インペラ14の軸方向に沿って延在し、インペラ14よりも上記軸方向における一方側に設けられている。インペラ14を回転駆動させることで、気体導入流路151にコンプレッサハウジング15の外部から空気が取り込まれ、取り込まれた空気が気体導入流路151をインペラ14に向かって流れてインペラ14に導かれる。
(Compressor housing)
The compressor housing 15 is formed with a gas introduction passage 151 and a scroll passage 152. The gas introduction passage 151 is a passage for taking in air (combustion gas) from outside the compressor housing 15 and guiding the taken-in air to the impeller 14. The gas introduction passage 151 extends along the axial direction of the impeller 14 and is provided on one side of the impeller 14 in the axial direction. By driving the impeller 14 to rotate, air is taken in from outside the compressor housing 15 into the gas introduction passage 151, and the taken-in air flows through the gas introduction passage 151 toward the impeller 14 and is guided to the impeller 14.
 スクロール流路152は、インペラ14の周囲を囲むようにインペラ14の径方向における外側に設けられ、インペラ14の周方向に沿って延在する渦巻状の流路からなる。インペラ14を通過してインペラ14により圧縮された空気は、スクロール流路152に導かれる。スクロール流路152を通過した圧縮空気は、内燃機関11に導かれる。 The scroll passage 152 is provided radially outside the impeller 14 so as to surround the periphery of the impeller 14, and consists of a spiral passage extending along the circumferential direction of the impeller 14. Air that passes through the impeller 14 and is compressed by the impeller 14 is guided to the scroll passage 152. The compressed air that has passed through the scroll passage 152 is guided to the internal combustion engine 11.
 以下、タービンホイール3の軸線LAが延在する方向をタービンホイール3の軸方向とし、軸線LAに直交する方向をタービンホイール3の径方向とし、軸線LA回りの周方向をタービンホイール3の周方向とする。本開示において、タービンホイール3の軸方向、径方向、周方向の各々を単に軸方向、径方向、周方向と云うことがある。タービンホイール3の軸方向において第2ハウジング4Bに対して第1ハウジング4Aが位置する側(図2中右側)を前方側と定義し、第1ハウジング4Aに対して第2ハウジング4Bが位置する側(上記前方側とは反対側、図2中左側)を後方側と定義する。なお、本開示における「或る方向に沿って」とは、或る方向だけでなく、或る方向に対して±15°以内の範囲において傾斜する方向をも含むものである。 Hereinafter, the direction in which the axis LA of the turbine wheel 3 extends is referred to as the axial direction of the turbine wheel 3, the direction perpendicular to the axis LA is referred to as the radial direction of the turbine wheel 3, and the circumferential direction around the axis LA is referred to as the circumferential direction of the turbine wheel 3. In this disclosure, the axial direction, radial direction, and circumferential direction of the turbine wheel 3 may be simply referred to as the axial direction, radial direction, and circumferential direction, respectively. In the axial direction of the turbine wheel 3, the side where the first housing 4A is located relative to the second housing 4B (the right side in FIG. 2) is defined as the front side, and the side where the second housing 4B is located relative to the first housing 4A (the side opposite to the front side, the left side in FIG. 2) is defined as the rear side. Note that in this disclosure, "along a certain direction" includes not only a certain direction, but also a direction inclined within a range of ±15° relative to a certain direction.
(タービンホイール)
 タービンホイール3は、図2に示されるように、略円錐台形状のハブ31と、ハブ31の外周面に設けられた複数のタービン翼32と、を含む。複数のタービン翼32の夫々は、軸線LA周りの周方向に互いに間隔を開けて配置されている。ハブ31や複数のタービン翼32は、軸線LAを中心として回転シャフト16と一体的に回転可能に設けられている。タービンホイール3は、タービンホイール3の径方向における外側から導入される排ガスをタービンホイール3の軸方向に沿ってタービンホイール3の前方側に導くように構成されている。図示される実施形態では、タービンホイール3は、タービン翼32の外周を囲む環状部材を含まないオープンタイプのインペラからなる。
(Turbine wheel)
As shown in Fig. 2, the turbine wheel 3 includes a hub 31 having a substantially truncated cone shape and a plurality of turbine blades 32 provided on the outer circumferential surface of the hub 31. The plurality of turbine blades 32 are arranged at intervals from one another in the circumferential direction around the axis line LA. The hub 31 and the plurality of turbine blades 32 are provided so as to be rotatable integrally with the rotating shaft 16 about the axis line LA. The turbine wheel 3 is configured to guide exhaust gas introduced from the outside in the radial direction of the turbine wheel 3 to the front side of the turbine wheel 3 along the axial direction of the turbine wheel 3. In the illustrated embodiment, the turbine wheel 3 is an open-type impeller that does not include an annular member surrounding the outer periphery of the turbine blades 32.
(スクロール流路、排ガス排出流路)
 第1ハウジング4Aには、内燃機関11から排出された排ガスをタービンホイール3に導くためのスクロール流路41と、タービンホイール3を通過した排ガスを第1ハウジング4A(タービン12)の外部に排出するための排ガス排出流路42が形成されている。換言すると、第1ハウジング4Aは、スクロール流路41及び排ガス排出流路42を有する。スクロール流路41は、タービンホイール3の周囲を囲むようにタービンホイール3の径方向における外側に設けられ、上記周方向に沿って延在する渦巻状の流路からなる。排ガス排出流路42は、上記軸方向に沿って前方側に向かって延在している。
(Scroll passage, exhaust gas discharge passage)
The first housing 4A is formed with a scroll passage 41 for guiding exhaust gas discharged from the internal combustion engine 11 to the turbine wheel 3, and an exhaust gas discharge passage 42 for discharging exhaust gas that has passed through the turbine wheel 3 to the outside of the first housing 4A (turbine 12). In other words, the first housing 4A has the scroll passage 41 and the exhaust gas discharge passage 42. The scroll passage 41 is provided on the outer side in the radial direction of the turbine wheel 3 so as to surround the periphery of the turbine wheel 3, and is composed of a spiral passage extending along the circumferential direction. The exhaust gas discharge passage 42 extends toward the front side along the axial direction.
 第1ハウジング4Aと第2ハウジング4Bとが締結されることで、第1ハウジング4Aと第2ハウジング4Bの間に、スクロール流路41と排ガス排出流路42とを繋ぐ内部空間43が形成される。可変ノズル装置2及びタービンホイール3は、スクロール流路41よりも上記径方向における内側に形成される内部空間43に配置される。タービンホイール3は、第1ハウジング4A及び第2ハウジング4Bに対して回転可能に収容されている。 By fastening the first housing 4A and the second housing 4B together, an internal space 43 is formed between the first housing 4A and the second housing 4B, connecting the scroll passage 41 and the exhaust gas discharge passage 42. The variable nozzle device 2 and the turbine wheel 3 are disposed in the internal space 43, which is formed radially inward from the scroll passage 41. The turbine wheel 3 is accommodated rotatably relative to the first housing 4A and the second housing 4B.
 内燃機関11から排出された排ガスは、スクロール流路41を介してタービンホイール3に導かれ、タービンホイール3を回転駆動させる。タービンホイール3を回転駆動させた排ガスは、排ガス排出流路42を介して第1ハウジング4A(タービン12)の外部に排出される。 The exhaust gas discharged from the internal combustion engine 11 is guided to the turbine wheel 3 via the scroll passage 41, and drives the turbine wheel 3 to rotate. The exhaust gas that drives the turbine wheel 3 to rotate is discharged to the outside of the first housing 4A (turbine 12) via the exhaust gas discharge passage 42.
(可変ノズル装置)
 可変ノズル装置2は、図2に示されるように、ノズルマウント5と、ノズルマウント5に一方側が支持され、他方側が他部材100に当接するように構成された少なくとも1つのノズルサポート6と、ノズルマウント5を他部材100側に付勢するように構成された付勢部材7と、を備える。ノズルマウント5及び少なくとも1つのノズルサポート6は、付勢部材7の付勢力により軸方向において他部材100と付勢部材7との間に支持されている。図2に示される実施形態では、可変ノズル装置2は、ノズルプレート8と、少なくとも1つ(図示例では複数)の可変ノズルベーン21と、環状部材(ドライブリング)22と、少なくとも1つ(図示例では複数)のリンク部材(レバープレート)23と、をさらに備える。
(Variable nozzle device)
2, the variable nozzle device 2 includes a nozzle mount 5, at least one nozzle support 6 configured to have one side supported by the nozzle mount 5 and the other side in contact with another member 100, and a biasing member 7 configured to bias the nozzle mount 5 toward the other member 100. The nozzle mount 5 and the at least one nozzle support 6 are supported in the axial direction between the other member 100 and the biasing member 7 by the biasing force of the biasing member 7. In the embodiment shown in FIG. 2, the variable nozzle device 2 further includes a nozzle plate 8, at least one variable nozzle vane 21 (plural in the illustrated example), an annular member (drive ring) 22, and at least one link member (lever plate) 23 (plural in the illustrated example).
 以下、可変ノズル装置2の軸線LBが延在する方向を可変ノズル装置2の軸方向とし、軸線LBに直交する方向を可変ノズル装置2の径方向とし、軸線LB回りの周方向を可変ノズル装置2の周方向とする。軸線LBの延在方向は、軸線LAの延在方向に沿った方向である。 Hereinafter, the direction in which the axis LB of the variable nozzle device 2 extends is referred to as the axial direction of the variable nozzle device 2, the direction perpendicular to the axis LB is referred to as the radial direction of the variable nozzle device 2, and the circumferential direction around the axis LB is referred to as the circumferential direction of the variable nozzle device 2. The extension direction of the axis LB is the direction along the extension direction of the axis LA.
(ノズルマウント)
 ノズルマウント5は、図2に示されるように、他部材100(図2では、ノズルプレート8)との間にスクロール流路41からタービンホイール3に向かうガス流路43Aを形成するようになっている。ガス流路43Aは、タービンホイール3の周囲(径方向における外側)を囲むように、タービンホイール3の径方向においてスクロール流路41とタービンホイール3との間に設けられる。ガス流路43Aは、内部空間43の一部であり、内部空間43におけるタービンホイール3を収容する収容空間よりも外周側に形成される。ノズルマウント5は、ガス流路43Aよりも後方側に位置しており、他部材100は、ガス流路43Aよりも前方側に位置している。
(Nozzle mount)
As shown in Fig. 2, the nozzle mount 5 forms a gas flow passage 43A from the scroll flow passage 41 toward the turbine wheel 3 between it and another member 100 (nozzle plate 8 in Fig. 2). The gas flow passage 43A is provided between the scroll flow passage 41 and the turbine wheel 3 in the radial direction of the turbine wheel 3 so as to surround the periphery (the outer side in the radial direction) of the turbine wheel 3. The gas flow passage 43A is a part of the internal space 43, and is formed on the outer circumferential side of the accommodation space that accommodates the turbine wheel 3 in the internal space 43. The nozzle mount 5 is located rearward of the gas flow passage 43A, and the other member 100 is located forward of the gas flow passage 43A.
 ノズルマウント5は、可変ノズル装置2の周方向に沿って延在する環状板部51を含む。環状板部51は、タービンホイール3の外周側に配置される。環状板部51は、環状板部51の厚さ方向における一方側、すなわち、上記前方側にガス流路43Aに面する環状のマウント側流路面52を有する。環状板部51は、環状板部51の厚さ方向における他方側(マウント側流路面52とは反対側)、すなわち、上記後方側に環状のマウント側背面53を有する。 The nozzle mount 5 includes an annular plate portion 51 that extends circumferentially around the variable nozzle device 2. The annular plate portion 51 is disposed on the outer circumferential side of the turbine wheel 3. The annular plate portion 51 has an annular mount-side flow passage surface 52 that faces the gas flow passage 43A on one side in the thickness direction of the annular plate portion 51, i.e., the front side. The annular plate portion 51 has an annular mount-side back surface 53 on the other side in the thickness direction of the annular plate portion 51 (the opposite side to the mount-side flow passage surface 52), i.e., the rear side.
(ノズルプレート)
 ノズルプレート8は、図2に示されるように、可変ノズル装置2の周方向に沿って延在する環状板を含む。ノズルプレート8は、環状板部51に隙間を有して対向して配置され、環状板部51との間にガス流路43Aを形成するようになっている。ノズルプレート8は、ノズルプレート8の厚さ方向における一方側、すなわち、上記後方側にガス流路43Aに面する環状のプレート側流路面81を有する。ノズルプレート8は、ノズルプレート8の厚さ方向における他方側(プレート側流路面81とは反対側)、すなわち、上記前方側に環状のプレート側背面82を有する。
(Nozzle plate)
2, the nozzle plate 8 includes an annular plate extending along the circumferential direction of the variable nozzle device 2. The nozzle plate 8 is disposed opposite the annular plate portion 51 with a gap therebetween, and forms a gas flow path 43A between the nozzle plate 8 and the annular plate portion 51. The nozzle plate 8 has an annular plate-side flow path surface 81 facing the gas flow path 43A on one side in the thickness direction of the nozzle plate 8, i.e., the rear side. The nozzle plate 8 has an annular plate-side back surface 82 on the other side in the thickness direction of the nozzle plate 8 (the opposite side to the plate-side flow path surface 81), i.e., the front side.
 ガス流路43Aは、マウント側流路面52とプレート側流路面81の間に形成される。タービン12の内部に導入された排ガスは、スクロール流路41を通り、その次にガス流路43Aを通った後に、タービンホイール3に導かれて、タービンホイール3を回転させる。 The gas flow passage 43A is formed between the mount side flow passage surface 52 and the plate side flow passage surface 81. The exhaust gas introduced into the inside of the turbine 12 passes through the scroll flow passage 41, then through the gas flow passage 43A, and is then led to the turbine wheel 3, causing the turbine wheel 3 to rotate.
 第2ハウジング4Bは、図2に示されるように、タービンホイール3の背面に隙間を有して対向する対向面45と、対向面45の外縁よりも上記径方向における外側において、対向面45よりも後方側に凹む凹部46と、を有する。凹部46の底面461は、マウント側背面53との間に後方側空間43Bを挟んで対向する。後方側空間43Bは、内部空間43の一部であり、ノズルマウント5を挟んでガス流路43Aとは反対側に形成される。 As shown in FIG. 2, the second housing 4B has an opposing surface 45 that faces the rear surface of the turbine wheel 3 with a gap therebetween, and a recess 46 that is recessed rearward of the opposing surface 45, outside the outer edge of the opposing surface 45 in the radial direction. The bottom surface 461 of the recess 46 faces the mount-side rear surface 53, sandwiching a rear space 43B between it and the mount-side rear surface 53. The rear space 43B is part of the internal space 43, and is formed on the opposite side of the nozzle mount 5 to the gas flow path 43A.
(可変ノズルベーン)
 複数の可変ノズルベーン21の各々は、ガス流路43Aに配置され、環状板部51に各々の回転中心RC回りに回動可能に支持されている。複数の可変ノズルベーン21は、タービンホイール3の周方向に夫々が間隔をおいて配置されている。
(Variable nozzle vane)
Each of the multiple variable nozzle vanes 21 is disposed in the gas flow passage 43A, and is supported by the annular plate portion 51 so as to be rotatable about its own rotation center RC. The multiple variable nozzle vanes 21 are disposed at intervals in the circumferential direction of the turbine wheel 3.
 環状部材(ドライブリング)22は、後方側空間43Bに配置され、外部からの駆動力によりノズルマウント5に対して可変ノズル装置2の軸線LB回りに回動するように構成されている。タービン12は、図2に示されるように、環状部材22に駆動力を伝達して、環状部材22をその軸線LB回りに回動させるように構成された駆動機構部(アクチュエータ)25と、環状部材22の軸線LB回りの回転を制御するように構成された制御装置(コントローラ)26と、をさらに備える。駆動機構部25は、駆動力を発生させる電動モータや駆動力を伝達するエアシリンダなどを含む。 The annular member (drive ring) 22 is disposed in the rear space 43B, and is configured to rotate about the axis LB of the variable nozzle device 2 relative to the nozzle mount 5 by an external driving force. As shown in FIG. 2, the turbine 12 further includes a drive mechanism (actuator) 25 configured to transmit a driving force to the annular member 22 to rotate the annular member 22 about its axis LB, and a control device (controller) 26 configured to control the rotation of the annular member 22 about the axis LB. The drive mechanism 25 includes an electric motor that generates a driving force, an air cylinder that transmits the driving force, and the like.
(リンク部材)
 図3は、本開示の一実施形態に係る可変ノズル装置2の軸方向の一方側(後方側)から視た概略図である。可変ノズル装置2は、図3に示されるように、可変ノズルベーン21と同数のリンク部材(レバープレート)23を備える。複数のリンク部材23の各々は、後方側空間43Bに配置され、環状部材22に一端231が連結され、対応する可変ノズルベーン21に他端232が連結されており、環状部材22の回動に連動して他端232に連結された可変ノズルベーン21の翼角を変化させるように構成されている。
(Link member)
Fig. 3 is a schematic diagram of the variable nozzle device 2 according to an embodiment of the present disclosure, viewed from one axial side (rear side). As shown in Fig. 3, the variable nozzle device 2 includes the same number of link members (lever plates) 23 as the variable nozzle vanes 21. Each of the multiple link members 23 is disposed in the rear space 43B, has one end 231 connected to the annular member 22, and has the other end 232 connected to the corresponding variable nozzle vane 21, and is configured to change the blade angle of the variable nozzle vane 21 connected to the other end 232 in conjunction with the rotation of the annular member 22.
 図3に示される実施形態では、各リンク部材23の一端231は、環状部材22に形成された被嵌合部221に嵌合する嵌合部231Aを含む。被嵌合部221は、環状部材22の外周縁部に形成される溝部221Aを含み、嵌合部231Aは、溝部221Aの内部に収容され、溝部221Aに緩く嵌合するようになっている。 In the embodiment shown in FIG. 3, one end 231 of each link member 23 includes a fitting portion 231A that fits into a fitting portion 221 formed in the annular member 22. The fitting portion 221 includes a groove portion 221A formed in the outer periphery of the annular member 22, and the fitting portion 231A is accommodated inside the groove portion 221A and is adapted to fit loosely into the groove portion 221A.
 環状板部51は、マウント側流路面52及びマウント側背面53を貫通する複数の貫通孔55を有する。複数の貫通孔55は、可変ノズル装置2の周方向に夫々が間隔をおいて配置されている。環状板部51には、可変ノズルベーン21及びリンク部材23と同数の貫通孔55が形成されている。各リンク部材23の他端232は、該リンク部材23に個別に対応する貫通孔55を挿通し、該リンク部材23に個別に対応する可変ノズルベーン21に連結されている。 The annular plate portion 51 has a plurality of through holes 55 penetrating the mount side flow passage surface 52 and the mount side back surface 53. The plurality of through holes 55 are arranged at intervals in the circumferential direction of the variable nozzle device 2. The annular plate portion 51 has the same number of through holes 55 as the variable nozzle vanes 21 and link members 23. The other end 232 of each link member 23 is inserted through the through hole 55 that individually corresponds to the link member 23, and is connected to the variable nozzle vane 21 that individually corresponds to the link member 23.
 環状部材22を可変ノズル装置2の周方向における一方側に回転させると、上記周方向において隣接する可変ノズルベーン21同士が互いに離れる方向に移動(回転)し、可変ノズルベーン21間のガス流路43Aの流路断面積が大きくなる。また、環状部材22を可変ノズル装置2の周方向における他方側に回転させると、上記周方向において隣接する可変ノズルベーン21同士が互いに近づく方向に移動(回動)し、可変ノズルベーン21間のガス流路43Aの流路断面積が小さくなる。 When the annular member 22 is rotated to one side in the circumferential direction of the variable nozzle device 2, adjacent variable nozzle vanes 21 in the circumferential direction move (rotate) away from each other, and the flow path cross-sectional area of the gas flow path 43A between the variable nozzle vanes 21 increases. When the annular member 22 is rotated to the other side in the circumferential direction of the variable nozzle device 2, adjacent variable nozzle vanes 21 in the circumferential direction move (rotate) toward each other, and the flow path cross-sectional area of the gas flow path 43A between the variable nozzle vanes 21 decreases.
 可変ノズル装置2は、環状部材22及び複数のリンク部材23を介して駆動機構部25からの駆動力を複数の可変ノズルベーン21に伝達させることで、複数の可変ノズルベーン21を各々の回転中心RC回りに回動させ、各々の翼角を変化させることで、ガス流路43Aの流路断面積を調整できる。タービン12は、可変ノズル装置2によりガス流路43Aの流路断面積を増減させることで、タービンホイール3に導かれる排ガスの流速や圧力を変化させることができ、これによりタービン12の過給圧を制御できる。 The variable nozzle device 2 transmits the driving force from the drive mechanism 25 to the multiple variable nozzle vanes 21 via the annular member 22 and multiple link members 23, causing the multiple variable nozzle vanes 21 to rotate around their respective rotation centers RC, changing the blade angle of each, thereby adjusting the flow path cross-sectional area of the gas flow path 43A. The turbine 12 can change the flow velocity and pressure of the exhaust gas guided to the turbine wheel 3 by increasing or decreasing the flow path cross-sectional area of the gas flow path 43A using the variable nozzle device 2, thereby controlling the boost pressure of the turbine 12.
(付勢部材)
 図2に示される実施形態では、付勢部材7は、第2ハウジング4Bの対向面45と、ノズルマウント5のマウント側背面53の間に上記軸方向において圧縮された状態で配置された環状の弾性部材(皿バネ)である。付勢部材7は、対向面45が付勢部材7の反力を受けることで、マウント側背面53を他部材100側(前方側)に付勢するようになっている。ノズルマウント5及びノズルサポート6は、付勢部材7の付勢力により上記軸方向において付勢部材7と他部材100との間に支持されている。
(Using member)
2, the biasing member 7 is an annular elastic member (disc spring) disposed in a compressed state in the axial direction between the opposing surface 45 of the second housing 4B and the mount-side back surface 53 of the nozzle mount 5. The biasing member 7 biases the mount-side back surface 53 toward the other member 100 (forward) by the opposing surface 45 receiving a reaction force of the biasing member 7. The nozzle mount 5 and the nozzle support 6 are supported between the biasing member 7 and the other member 100 in the axial direction by the biasing force of the biasing member 7.
 ノズルマウント5及びノズルサポート6は、上記軸方向における付勢部材7と他部材100との間において、上記軸方向に沿った移動が制限されていない。図2に示される実施形態では、第1ハウジング4Aは、スクロール流路41の上記後方側に面する後方側スクロール流路面441を有し、上記径方向に沿って上記径方向における内側に向かって延在する内方突出部44を有する。ノズルマウント5は、環状板部51の外周端部が内方突出部44の内周端部との間に隙間を有して対向しており、内方突出部44と非接触である。 The nozzle mount 5 and the nozzle support 6 are not restricted in their movement along the axial direction between the biasing member 7 and the other member 100 in the axial direction. In the embodiment shown in FIG. 2, the first housing 4A has a rear scroll flow passage surface 441 facing the rear side of the scroll flow passage 41, and has an inward protrusion 44 extending radially inward along the radial direction. The nozzle mount 5 is not in contact with the inward protrusion 44, with the outer peripheral end of the annular plate portion 51 facing the inner peripheral end of the inward protrusion 44 with a gap between them.
 図2に示される実施形態では、可変ノズル装置2は、ノズルマウント5の上記径方向における移動を制限する位置決めピン56をさらに備える。位置決めピン56は、ノズルマウント5のマウント側背面53に形成された第1孔に一端が挿入され、第2ハウジング4Bのマウント側背面53に対向する面に形成された第2孔に他端が挿入されている。位置決めピン56は、第1孔又は第2孔の少なくとも一方に緩く挿入されており、付勢部材7の付勢力によるノズルマウント5の上記軸方向における移動を制限しないが、ノズルマウント5の上記径方向における移動を制限するようになっている。 In the embodiment shown in FIG. 2, the variable nozzle device 2 further includes a positioning pin 56 that limits the movement of the nozzle mount 5 in the radial direction. One end of the positioning pin 56 is inserted into a first hole formed in the mount-side rear surface 53 of the nozzle mount 5, and the other end is inserted into a second hole formed in the surface of the second housing 4B that faces the mount-side rear surface 53. The positioning pin 56 is loosely inserted into at least one of the first hole or the second hole, and does not limit the movement of the nozzle mount 5 in the axial direction caused by the biasing force of the biasing member 7, but does limit the movement of the nozzle mount 5 in the radial direction.
 図2に示される実施形態では、複数のタービン翼32の各々は、第1ハウジング4Aの内面であるシュラウド面47に対して、所定の隙間をあけて配置される。第1ハウジング4Aは、シュラウド面47の外周端から上記軸方向に沿って前方側に延在する外周面481と、外周面481の前方端から上記径方向に沿って外側に延在する環状の底面482と、により構成される環状の凹部48が形成されている。ノズルプレート8は、凹部48に挿入される。 In the embodiment shown in FIG. 2, each of the multiple turbine blades 32 is arranged with a predetermined gap from the shroud surface 47, which is the inner surface of the first housing 4A. The first housing 4A has an annular recess 48 formed therein, the recess 48 being composed of an outer peripheral surface 481 extending forward from the outer peripheral end of the shroud surface 47 along the axial direction, and an annular bottom surface 482 extending outward from the forward end of the outer peripheral surface 481 along the radial direction. The nozzle plate 8 is inserted into the recess 48.
 図2に示される実施形態では、第1ハウジング4Aは、底面482よりも上記径方向の外側において底面482よりも上記後方側に突出する環状の突出部483を有する。突出部483は、上記後方側にガス流路43Aに面する環状のハウジング側当接面484を有する。ノズルプレート8は、ノズルプレート8の内周端部が外周面481に隙間を有して対向し、プレート側背面82がハウジング側当接面484に当接するようになっている。ノズルプレート8は、ノズルサポート6を介した付勢部材7の付勢力により、上記軸方向において第1ハウジング4A側に向かって付勢されることで、上記軸方向においてノズルサポート6と第1ハウジング4Aとの間に支持されている。 In the embodiment shown in FIG. 2, the first housing 4A has an annular protruding portion 483 that protrudes radially outward from the bottom surface 482 and toward the rear side from the bottom surface 482. The protruding portion 483 has an annular housing-side abutment surface 484 facing the gas flow path 43A on the rear side. The nozzle plate 8 is configured such that the inner peripheral end of the nozzle plate 8 faces the outer peripheral surface 481 with a gap therebetween, and the plate-side back surface 82 abuts against the housing-side abutment surface 484. The nozzle plate 8 is supported between the nozzle support 6 and the first housing 4A in the axial direction by being biased toward the first housing 4A in the axial direction by the biasing force of the biasing member 7 via the nozzle support 6.
(ノズルサポート)
 図4は、本開示の一実施形態に係る可変ノズル装置2の軸線LBに沿った概略断面図である。ノズルサポート6は、上述したガス流路43Aを形成する2つの部材(図2では、ノズルマウント5及びノズルプレート8)を互いに離間した状態で支持するものである。図示される実施形態では、可変ノズル装置2は、図2に示されるように、可変ノズル装置2の周方向に夫々が間隔をおいて配置される複数のノズルサポート6を備える。複数のノズルサポート6の各々は、複数の可変ノズルベーン21よりも可変ノズル装置2の径方向における外側に配置されている。
(Nozzle support)
Fig. 4 is a schematic cross-sectional view taken along the axis LB of the variable nozzle device 2 according to an embodiment of the present disclosure. The nozzle support 6 supports two members (the nozzle mount 5 and the nozzle plate 8 in Fig. 2) that form the above-mentioned gas flow passage 43A in a state spaced apart from each other. In the illustrated embodiment, the variable nozzle device 2 includes a plurality of nozzle supports 6 that are spaced apart from each other in the circumferential direction of the variable nozzle device 2 as shown in Fig. 2. Each of the plurality of nozzle supports 6 is disposed radially outward of the plurality of variable nozzle vanes 21.
 複数のノズルサポート6の各々は、図4に示されるように、ノズルサポート6の中心軸線LDに沿って延在する棒状部材である。図2に示されるように、ノズルサポート6は、ノズルサポート6の軸方向の一方側にノズルマウント5に固定される固定部61を有し、ノズルサポート6の軸方向の他方側にガス流路43Aに配置される本体部62を有する。図示される実施形態では、ノズルマウント5のマウント側流路面52に形成された孔54に固定部61がカシメにより固定されることで、固定部61がノズルマウント5に固定されている。なお、固定部61は、ノズルマウント5に圧入される等のカシメ以外の固定方法によりノズルマウント5に固定されていてもよい。 As shown in FIG. 4, each of the nozzle supports 6 is a rod-shaped member extending along the central axis LD of the nozzle support 6. As shown in FIG. 2, the nozzle support 6 has a fixing portion 61 fixed to the nozzle mount 5 on one axial side of the nozzle support 6, and a main body portion 62 arranged in the gas flow path 43A on the other axial side of the nozzle support 6. In the illustrated embodiment, the fixing portion 61 is fixed to the nozzle mount 5 by being swaged into a hole 54 formed in the mount-side flow path surface 52 of the nozzle mount 5. The fixing portion 61 may be fixed to the nozzle mount 5 by a fixing method other than swaging, such as by being pressed into the nozzle mount 5.
 上述した付勢部材7は、ノズルマウント5を介して複数のノズルサポート6の各々を他部材100側に付勢するようになっている。複数のノズルサポート6の各々の本体部62は、ノズルマウント5との間にガス流路43Aを形成する他部材100に当接する当接面63を有する(図4参照)。当接面63は、本体部62の固定部61に一体的に接続される側とは反対側の端面である。図4に示される実施形態では、複数のノズルサポート6の各々は、中心軸線LDが軸線LBに対して平行な方向に沿って延在するようになっている。複数のノズルサポート6の各々は、当接面63がプレート側流路面81に当接するようになっている。 The biasing member 7 described above biases each of the nozzle supports 6 toward the other member 100 via the nozzle mount 5. The main body 62 of each of the nozzle supports 6 has an abutment surface 63 that abuts against the other member 100 that forms a gas flow path 43A between the nozzle mount 5 (see FIG. 4). The abutment surface 63 is an end face opposite to the side integrally connected to the fixed portion 61 of the main body 62. In the embodiment shown in FIG. 4, each of the nozzle supports 6 has a central axis LD that extends in a direction parallel to the axis LB. Each of the nozzle supports 6 has an abutment surface 63 that abuts against the plate-side flow path surface 81.
 幾つかの実施形態では、図4に示されるように、複数のノズルサポート6の各々は、他部材100に当接する上述した当接面63と、当接面63の外縁に内縁が接続される湾曲面64と、を含む。湾曲面64は、湾曲面64が形成されたノズルサポート6の中心軸線LDから離隔する方向に向かって凸状に湾曲する輪郭形状を有する。図4に示される実施形態では、湾曲面64は、本体部62に形成され、湾曲面64の外縁が本体部62の外面(外周面)621に接続されている。 In some embodiments, as shown in FIG. 4, each of the multiple nozzle supports 6 includes the above-mentioned abutment surface 63 that abuts against the other member 100, and a curved surface 64 whose inner edge is connected to the outer edge of the abutment surface 63. The curved surface 64 has a contour shape that is convexly curved in a direction away from the central axis LD of the nozzle support 6 on which the curved surface 64 is formed. In the embodiment shown in FIG. 4, the curved surface 64 is formed on the main body portion 62, and the outer edge of the curved surface 64 is connected to the outer surface (outer peripheral surface) 621 of the main body portion 62.
 図5は、比較例に係る可変ノズル装置02の熱変形を説明するための説明図である。図6は、本開示の一実施形態に係る可変ノズル装置2の熱変形を説明するための説明図である。可変ノズル装置02が備えるノズルサポート06は、ノズルマウント5に固定される固定部061と、ガス流路43Aに配置される本体部062を有する。本体部062は、他部材100に当接する当接面063を有する。当接面063の外縁0631は、本体部062の外面(外周面)に接続されている。なお、外縁0631には、通常行われる程度のR加工が施されていてもよい。 FIG. 5 is an explanatory diagram for explaining thermal deformation of a variable nozzle device 02 according to a comparative example. FIG. 6 is an explanatory diagram for explaining thermal deformation of a variable nozzle device 2 according to an embodiment of the present disclosure. The nozzle support 06 provided in the variable nozzle device 02 has a fixing part 061 fixed to the nozzle mount 5 and a main body part 062 arranged in the gas flow path 43A. The main body part 062 has an abutment surface 063 that abuts against another member 100. The outer edge 0631 of the abutment surface 063 is connected to the outer surface (outer peripheral surface) of the main body part 062. The outer edge 0631 may be subjected to R processing to the extent that is normally performed.
 図5及び図6に示されるように、ガス流路43Aを流れる排ガスによりガス流路43Aを形成する2つの部材(ノズルマウント5及び他部材100)に熱変形が生じ、該2つの部材の熱変形の差により、ノズルサポート6の中心軸線LDが軸線LBに平行な方向に対して傾斜した状態で、ノズルサポート6が他部材100に当接することがある。図5及び図6に示される実施形態では、ノズルマウント5及び他部材100が上記軸方向において互いに離隔する方向に熱変形を生じ、ノズルサポート6の他部材100側がノズルマウント5側よりも軸線LBから離隔するように、ノズルサポート6が傾斜している。 As shown in Figures 5 and 6, exhaust gas flowing through gas flow path 43A causes thermal deformation in the two components (nozzle mount 5 and other component 100) that form gas flow path 43A, and due to the difference in thermal deformation of the two components, nozzle support 6 may come into contact with other component 100 with its central axis LD tilted relative to a direction parallel to axis LB. In the embodiment shown in Figures 5 and 6, nozzle mount 5 and other component 100 are thermally deformed in directions that move them away from each other in the axial direction, and nozzle support 6 is tilted so that the other component 100 side of nozzle support 6 is farther away from axis LB than the nozzle mount 5 side.
 比較例に係る可変ノズル装置02では、図5に示されるように、上記熱変形により、当接面063の外縁0631が他部材100に当接するような状態になると、当接面063の外縁0631において局部的な応力集中が生じ、ノズルサポート6が破損又は損傷する虞がある。これに対して、本開示の可変ノズル装置2では、図6に示されるように、上記熱変形により、湾曲面64が他部材100に当接するような状態になった際に、湾曲面64の輪郭形状により湾曲面64における応力集中を緩和できる。 In the variable nozzle device 02 according to the comparative example, as shown in Figure 5, when the outer edge 0631 of the abutment surface 063 comes into contact with another member 100 due to the above-mentioned thermal deformation, localized stress concentration occurs at the outer edge 0631 of the abutment surface 063, and there is a risk that the nozzle support 6 may be broken or damaged. In contrast, in the variable nozzle device 2 of the present disclosure, as shown in Figure 6, when the curved surface 64 comes into contact with another member 100 due to the above-mentioned thermal deformation, the contour shape of the curved surface 64 can alleviate stress concentration at the curved surface 64.
 上記の構成によれば、ノズルサポート6に湾曲面64を設けることで、ノズルマウント5と他部材100との間に生じる熱変形の差により、ノズルサポート6の湾曲面64が他部材100に当接した際の応力集中を緩和できる。ノズルサポート6の応力集中を緩和することで、ノズルサポート6の応力集中による破損や損傷を抑制できる。 According to the above configuration, by providing the nozzle support 6 with a curved surface 64, stress concentration can be alleviated when the curved surface 64 of the nozzle support 6 comes into contact with the other member 100 due to the difference in thermal deformation that occurs between the nozzle mount 5 and the other member 100. By alleviating the stress concentration of the nozzle support 6, breakage or damage caused by stress concentration of the nozzle support 6 can be suppressed.
 幾つかの実施形態に係る可変ノズル装置2は、図2に示されるように、ノズルマウント5との間にガス流路43Aを形成するプレート側流路面81であって、上述した少なくとも1つのノズルサポート6の当接面63が当接するプレート側流路面81を有するノズルプレート8を備える。上述した他部材100は、ノズルプレート8からなる。 As shown in FIG. 2, the variable nozzle device 2 according to some embodiments includes a nozzle plate 8 having a plate-side flow path surface 81 that forms a gas flow path 43A between the nozzle mount 5 and the nozzle plate 8, and against which the abutment surface 63 of at least one nozzle support 6 described above abuts. The other member 100 described above is made of the nozzle plate 8.
 上記の構成によれば、ノズルマウント5とノズルプレート8との間に生じる熱変形の差により、ノズルサポート6の湾曲面64がプレート側流路面81に当接した際の応力集中を緩和できる。 The above configuration reduces stress concentration when the curved surface 64 of the nozzle support 6 abuts against the plate-side flow path surface 81 due to the difference in thermal deformation that occurs between the nozzle mount 5 and the nozzle plate 8.
 本開示は、上述したノズルプレート8を備えない可変ノズル装置2にも適用可能である。図7は、本開示の一実施形態に係るタービン12の軸線LAに沿った概略断面図である。幾つかの実施形態に係る可変ノズル装置2では、図7に示されるように、上述した他部材100は、ハウジング4(第1ハウジング4A)からなる。第1ハウジング4Aは、ノズルマウント5との間にガス流路43Aを形成するハウジング側流路面491であって、上述した少なくとも1つのノズルサポート6の当接面63が当接するハウジング側流路面491を有する。 This disclosure is also applicable to a variable nozzle device 2 that does not include the nozzle plate 8 described above. FIG. 7 is a schematic cross-sectional view along the axis LA of the turbine 12 according to one embodiment of the present disclosure. In the variable nozzle device 2 according to some embodiments, as shown in FIG. 7, the other member 100 described above is made of a housing 4 (first housing 4A). The first housing 4A has a housing side flow path surface 491 that forms a gas flow path 43A between itself and the nozzle mount 5, and has a housing side flow path surface 491 against which the abutment surface 63 of at least one nozzle support 6 described above abuts.
 図7に示される実施形態では、第1ハウジング4Aは、ハウジング側流路面491を有する流路面形成部49を備える。ハウジング側流路面491は、上記周方向に沿って延在する環状面からなり、上記径方向に沿って延在する。ハウジング側流路面491の内周端は、シュラウド面47の外周端に接続され、シュラウド面47に連なるようになっている。 In the embodiment shown in FIG. 7, the first housing 4A includes a flow passage surface forming portion 49 having a housing side flow passage surface 491. The housing side flow passage surface 491 is an annular surface extending along the circumferential direction and extends along the radial direction. The inner peripheral end of the housing side flow passage surface 491 is connected to the outer peripheral end of the shroud surface 47 and is continuous with the shroud surface 47.
 幾つかの実施形態に係る可変ノズル装置2では、図4に示されるように、上述した少なくとも1つのノズルサポート6は、ノズルサポート6の外面621の最大径をD1とし、湾曲面64の曲率半径をR1とした場合において、0.1D1≦R1の条件を満たす。0.1D1≦R1の条件を満たす湾曲面64は、通常のR加工により形成される加工面よりも緩やかな輪郭形状を有するため、ノズルサポート6の湾曲面64が他部材100に当接した際の応力集中を効果的に緩和できる。 In the variable nozzle device 2 according to some embodiments, as shown in FIG. 4, at least one of the nozzle supports 6 described above satisfies the condition 0.1D1≦R1, where D1 is the maximum diameter of the outer surface 621 of the nozzle support 6 and R1 is the radius of curvature of the curved surface 64. The curved surface 64 that satisfies the condition 0.1D1≦R1 has a contour shape that is gentler than a machined surface formed by normal R machining, and therefore can effectively alleviate stress concentration when the curved surface 64 of the nozzle support 6 abuts against another member 100.
 幾つかの実施形態に係る可変ノズル装置2では、図4に示されるように、上述した少なくとも1つのノズルサポート6は、ノズルサポート6の外面621に形成されたくびれ部65を含む。くびれ部65は、上記軸方向の一方側(ノズルマウント5側)から他方側(他部材100側)に向かうにつれて上記径方向の内側に向けて凹む凹曲面部651と、上記一方側(ノズルマウント5側)から上記他方側(他部材100側)に向かうにつれて上記径方向の外側に向けて膨出する凸曲面部652と、を含む。 In the variable nozzle device 2 according to some embodiments, as shown in FIG. 4, at least one nozzle support 6 includes a constricted portion 65 formed on the outer surface 621 of the nozzle support 6. The constricted portion 65 includes a concave curved surface portion 651 that is recessed inward in the radial direction from one side (the nozzle mount 5 side) toward the other side (the other member 100 side) in the axial direction, and a convex curved surface portion 652 that bulges outward in the radial direction from the one side (the nozzle mount 5 side) toward the other side (the other member 100 side).
 幾つかの実施形態では、上述した少なくとも1つのノズルサポート6は、図4に示されるように、湾曲面64の曲率半径をR1とし、凹曲面部651の曲率半径をR2とし、凸曲面部652の曲率半径をR3とした場合において、R1<R2、且つR1<R3の条件を満たす。この場合には、凹曲面部651や凸曲面部652の輪郭形状を湾曲面64の輪郭形状よりも緩やかなものとすることで、くびれ部65に応力集中が生じることを抑制できる。なお、本開示は、R1<R2、且つR1<R3の条件を満たさない場合にも適用可能である。 In some embodiments, as shown in FIG. 4, at least one nozzle support 6 described above satisfies the conditions R1<R2 and R1<R3 when the radius of curvature of the curved surface 64 is R1, the radius of curvature of the concave curved surface portion 651 is R2, and the radius of curvature of the convex curved surface portion 652 is R3. In this case, by making the contour shapes of the concave curved surface portion 651 and the convex curved surface portion 652 gentler than the contour shape of the curved surface 64, it is possible to suppress stress concentration in the constriction portion 65. Note that the present disclosure is also applicable to cases where the conditions R1<R2 and R1<R3 are not satisfied.
 幾つかの実施形態では、上述した少なくとも1つのノズルサポート6は、図4に示されるように、上述した当接面63の径(最大径)をD2とし、上述したくびれ部65の最小径をD3とした場合において、D2≦D3の条件を満たす。この場合には、D2≦D3の条件を満たす当接面63は、径D2が比較的小さいため、径D2が大きい場合に比べて、湾曲面64の輪郭形状を緩やかなものとすることができ、これにより、ノズルサポート6の湾曲面64が他部材100に当接した際の応力集中を効果的に緩和できる。なお、本開示は、D2≦D3の条件を満たさない場合にも適用可能である。 In some embodiments, as shown in FIG. 4, at least one of the nozzle supports 6 satisfies the condition D2≦D3 when the diameter (maximum diameter) of the contact surface 63 is D2 and the minimum diameter of the constricted portion 65 is D3. In this case, the contact surface 63 that satisfies the condition D2≦D3 has a relatively small diameter D2, so the contour shape of the curved surface 64 can be made gentler than when the diameter D2 is large, and this effectively reduces stress concentration when the curved surface 64 of the nozzle support 6 abuts against another member 100. Note that the present disclosure is also applicable to cases where the condition D2≦D3 is not satisfied.
 幾つかの実施形態に係るタービン12は、図2及び図7に示されるように、上述した可変ノズル装置2と、タービンホイール3と、タービンホイール3及び可変ノズル装置2を収容するハウジング4と、を備える。幾つかの実施形態に係るターボチャージャ1は、図1に示されるように、上述したタービン12と、上述した遠心圧縮機13と、を備える。この場合には、上述した可変ノズル装置2により、ノズルサポート6の損傷を抑制することで、該可変ノズル装置2を備えるタービン12及びターボチャージャ1の信頼性の向上が図れる。 As shown in Figures 2 and 7, the turbine 12 according to some embodiments includes the variable nozzle device 2 described above, a turbine wheel 3, and a housing 4 that accommodates the turbine wheel 3 and the variable nozzle device 2. As shown in Figure 1, the turbocharger 1 according to some embodiments includes the turbine 12 described above and the centrifugal compressor 13 described above. In this case, the variable nozzle device 2 described above suppresses damage to the nozzle support 6, thereby improving the reliability of the turbine 12 and turbocharger 1 that include the variable nozzle device 2.
 本明細書において、「ある方向に」、「ある方向に沿って」、「平行」、「直交」、「中心」、「同心」或いは「同軸」等の相対的或いは絶対的な配置を表す表現は、厳密にそのような配置を表すのみならず、公差、若しくは、同じ機能が得られる程度の角度や距離をもって相対的に変位している状態も表すものとする。
 例えば、「同一」、「等しい」及び「均質」等の物事が等しい状態であることを表す表現は、厳密に等しい状態を表すのみならず、公差、若しくは、同じ機能が得られる程度の差が存在している状態も表すものとする。
 また、本明細書において、四角形状や円筒形状等の形状を表す表現は、幾何学的に厳密な意味での四角形状や円筒形状等の形状を表すのみならず、同じ効果が得られる範囲で、凹凸部や面取り部等を含む形状も表すものとする。
 また、本明細書において、一の構成要素を「備える」、「含む」、又は、「有する」という表現は、他の構成要素の存在を除外する排他的な表現ではない。
In this specification, expressions expressing relative or absolute configuration, such as "in a certain direction,""along a certain direction,""parallel,""orthogonal,""center,""concentric," or "coaxial," do not only strictly represent such a configuration, but also represent a state in which there is a relative displacement with a tolerance or an angle or distance to the extent that the same function is obtained.
For example, expressions indicating that things are in an equal state, such as "identical,""equal," and "homogeneous," not only indicate a state of strict equality, but also indicate a state in which there is a tolerance or a difference to the extent that the same function is obtained.
Furthermore, in this specification, expressions describing shapes such as a rectangular shape or a cylindrical shape do not only refer to shapes such as a rectangular shape or a cylindrical shape in the strict geometric sense, but also refer to shapes that include uneven portions, chamfered portions, etc., to the extent that the same effect can be obtained.
In addition, in this specification, the expressions "comprise,""include," or "have" a certain element are not exclusive expressions that exclude the presence of other elements.
 本開示は上述した実施形態に限定されることはなく、上述した実施形態に変形を加えた形態や、これらの形態を適宜組み合わせた形態も含む。 This disclosure is not limited to the above-described embodiments, but also includes modifications to the above-described embodiments and appropriate combinations of these embodiments.
 上述した幾つかの実施形態に記載の内容は、例えば以下のように把握されるものである。 The contents described in the above-mentioned embodiments can be understood, for example, as follows:
1)本開示の少なくとも一実施形態に係る可変ノズル装置(2)は、
 ハウジング(4)内にタービンホイール(3)とともに収容される可変ノズル装置(2)であって、
 ノズルマウント(5)と、
 前記ノズルマウント(5)に一方側が支持され、他方側が他部材(100)に当接するように構成された少なくとも1つのノズルサポート(6)と、
 前記ノズルマウント(5)を前記他部材(100)側に付勢するように構成された付勢部材(7)と、を備え、
 前記ノズルマウント(5)及び前記少なくとも1つのノズルサポート(6)は、前記付勢部材(7)の付勢力により軸方向において前記他部材(100)と前記付勢部材(7)との間に支持され、
 前記少なくとも1つのノズルサポート(6)は、
 前記他部材(100)に当接する当接面(63)と、
 前記当接面(63)の外縁に内縁が接続される湾曲面(64)であって、前記ノズルサポート(6)の中心軸線(LD)から離隔する方向に向かって凸状に湾曲する輪郭形状を有する湾曲面(64)と、を含む。
1) A variable nozzle device (2) according to at least one embodiment of the present disclosure,
A variable nozzle device (2) housed together with a turbine wheel (3) in a housing (4),
A nozzle mount (5);
At least one nozzle support (6) configured such that one side is supported by the nozzle mount (5) and the other side is in contact with another member (100);
and a biasing member (7) configured to bias the nozzle mount (5) toward the other member (100),
the nozzle mount (5) and the at least one nozzle support (6) are supported between the other member (100) and the biasing member (7) in the axial direction by the biasing force of the biasing member (7);
The at least one nozzle support (6)
An abutment surface (63) that abuts against the other member (100);
and a curved surface (64) whose inner edge is connected to the outer edge of the abutment surface (63), the curved surface (64) having a contour shape that is convexly curved in a direction away from the central axis (LD) of the nozzle support (6).
 上記1)の構成によれば、ノズルサポート(6)に湾曲面(64)を設けることで、ノズルマウント(5)と他部材(100)との間に生じる熱変形の差により、ノズルサポート(6)の湾曲面(64)が他部材(100)に当接した際の応力集中を緩和できる。ノズルサポート(6)の応力集中を緩和することで、ノズルサポート(6)の損傷を抑制できる。 According to the configuration of 1) above, by providing the nozzle support (6) with a curved surface (64), stress concentration can be alleviated when the curved surface (64) of the nozzle support (6) abuts against the other member (100) due to the difference in thermal deformation that occurs between the nozzle mount (5) and the other member (100). By alleviating the stress concentration on the nozzle support (6), damage to the nozzle support (6) can be suppressed.
2)幾つかの実施形態では、上記1)に記載の可変ノズル装置(2)であって、
 前記ノズルマウント(5)との間に前記タービンホイール(12)に向かうガス流路(43A)を形成するプレート側流路面(81)であって、前記少なくとも1つのノズルサポート(6)の前記当接面(63)が当接するプレート側流路面(81)を有するノズルプレート(8)をさらに備え、
 前記他部材(100)は、前記ノズルプレート(8)からなる。
2) In some embodiments, the variable nozzle device (2) described in 1) above,
a nozzle plate (8) having a plate-side flow path surface (81) that forms a gas flow path (43A) toward the turbine wheel (12) between the nozzle mount (5) and the plate-side flow path surface (81) with which the abutment surface (63) of the at least one nozzle support (6) abuts;
The other member (100) is composed of the nozzle plate (8).
 上記2)の構成によれば、ノズルマウント(5)とノズルプレート(8)との間に生じる熱変形の差により、ノズルサポート(6)の湾曲面(64)がプレート側流路面(81)に当接した際の応力集中を緩和できる。 The configuration of 2) above allows stress concentration to be alleviated when the curved surface (64) of the nozzle support (6) abuts against the plate-side flow path surface (81) due to the difference in thermal deformation that occurs between the nozzle mount (5) and the nozzle plate (8).
3)幾つかの実施形態では、上記1)に記載の可変ノズル装置(2)であって、
 前記他部材(100)は、前記ノズルマウント(5)との間に前記タービンホイール(12)に向かうガス流路(43A)を形成するハウジング側流路面(491)であって、前記少なくとも1つのノズルサポート(6)の前記当接面(63)が当接するハウジング側流路面(491)を有する前記ハウジング(4)からなる。
3) In some embodiments, the variable nozzle device (2) described in 1) above,
The other member (100) is composed of the housing (4) having a housing side flow path surface (491) that forms a gas flow path (43A) toward the turbine wheel (12) between the nozzle mount (5) and the housing (4), and the housing side flow path surface (491) with which the abutment surface (63) of the at least one nozzle support (6) abuts.
 上記3)の構成によれば、ノズルマウント(5)とハウジング(4)との間に生じる熱変形の差により、ノズルサポート(6)の湾曲面(64)がハウジング側流路面(491)に当接した際の応力集中を緩和できる。 The configuration of 3) above reduces stress concentration when the curved surface (64) of the nozzle support (6) abuts against the housing side flow path surface (491) due to the difference in thermal deformation that occurs between the nozzle mount (5) and the housing (4).
4)幾つかの実施形態では、上記1)から3)までの何れかに記載の可変ノズル装置(2)であって、
 前記少なくとも1つのノズルサポート(6)は、前記ノズルサポート(6)の外面(621)の最大径をD1とし、前記湾曲面(64)の曲率半径をR1とした場合において、0.1D1≦R1の条件を満たす。
4) In some embodiments, the variable nozzle device (2) according to any one of 1) to 3) above,
The at least one nozzle support (6) satisfies the condition 0.1D1≦R1, where D1 is the maximum diameter of the outer surface (621) of the nozzle support (6) and R1 is the radius of curvature of the curved surface (64).
 上記4)の構成によれば、0.1D1≦R1の条件を満たす湾曲面(64)は、通常のR加工により形成される加工面よりも緩やかな輪郭形状を有するため、ノズルサポート(6)の湾曲面(64)が他部材(100)に当接した際の応力集中を効果的に緩和できる。 According to the configuration of 4) above, the curved surface (64) that satisfies the condition 0.1D1≦R1 has a contour shape that is gentler than the processed surface formed by normal R processing, so that it is possible to effectively reduce stress concentration when the curved surface (64) of the nozzle support (6) abuts against another member (100).
5)幾つかの実施形態では、上記1)から4)までの何れかに記載の可変ノズル装置(2)であって、
 前記少なくとも1つのノズルサポート(6)は、
 前記ノズルサポート(6)の外面(621)に形成されたくびれ部(65)であって、前記一方側から前記他方側に向かうにつれて径方向の内側に向けて凹む凹曲面部(651)と、前記一方側から前記他方側に向かうにつれて前記径方向の外側に向けて膨出する凸曲面部(652)と、を含むくびれ部(65)を含み、
 前記湾曲面(64)の曲率半径をR1とし、前記凹曲面部(651)の曲率半径をR2とし、前記凸曲面部(652)の曲率半径をR3とした場合において、R1<R2、且つR1<R3の条件を満たす。
5) In some embodiments, the variable nozzle device (2) according to any one of 1) to 4) above,
The at least one nozzle support (6)
a constriction portion (65) formed on an outer surface (621) of the nozzle support (6), the constriction portion (65) including a concave curved surface portion (651) that is recessed radially inward as it moves from the one side to the other side, and a convex curved surface portion (652) that bulges radially outward as it moves from the one side to the other side,
When the radius of curvature of the curved surface (64) is R1, the radius of curvature of the concave curved surface portion (651) is R2, and the radius of curvature of the convex curved surface portion (652) is R3, the conditions R1<R2 and R1<R3 are satisfied.
 上記5)の構成によれば、凹曲面部(651)や凸曲面部(652)の輪郭形状を湾曲面(64)の輪郭形状よりも緩やかなものとすることで、くびれ部(65)に応力集中が生じることを抑制できる。 In the configuration of 5) above, the contour shapes of the concave curved surface portion (651) and the convex curved surface portion (652) are made gentler than the contour shape of the curved surface (64), thereby preventing stress concentration in the constricted portion (65).
6)幾つかの実施形態では、上記1)から5)までの何れかに記載の可変ノズル装置(2)であって、
 前記少なくとも1つのノズルサポート(6)は、
 前記ノズルサポート(6)の外面(621)に形成されたくびれ部(65)であって、前記一方側から前記他方側に向かうにつれて径方向の内側に向けて凹む凹曲面部(651)と、前記一方側から前記他方側に向かうにつれて前記径方向の外側に向けて膨出する凸曲面部(652)と、を含むくびれ部(65)を含み、
 前記当接面(63)の径をD2とし、前記くびれ部(65)の最小径をD3とした場合において、D2≦D3の条件を満たす。
6) In some embodiments, the variable nozzle device (2) according to any one of 1) to 5) above,
The at least one nozzle support (6)
a constriction portion (65) formed on an outer surface (621) of the nozzle support (6), the constriction portion (65) including a concave curved surface portion (651) that is recessed radially inward as it moves from the one side to the other side, and a convex curved surface portion (652) that bulges radially outward as it moves from the one side to the other side,
When the diameter of the contact surface (63) is D2 and the minimum diameter of the constricted portion (65) is D3, the condition D2≦D3 is satisfied.
 上記6)の構成によれば、D2≦D3の条件を満たす当接面(63)は、径D2が比較的小さいため、径D2が大きい場合に比べて、湾曲面(64)の輪郭形状を緩やかなものとすることができ、これにより、ノズルサポート(6)の湾曲面(64)が他部材(100)に当接した際の応力集中を効果的に緩和できる。 According to the configuration of 6) above, the contact surface (63) that satisfies the condition D2≦D3 has a relatively small diameter D2, and therefore the contour shape of the curved surface (64) can be made gentler than when the diameter D2 is large, and this effectively reduces stress concentration when the curved surface (64) of the nozzle support (6) contacts another member (100).
7)本開示の少なくとも一実施形態に係るタービン(12)は、
 上記1)から6)までの何れかに記載の可変ノズル装置(2)と、
 前記タービンホイール(3)と、
 前記タービンホイール(3)及び前記可変ノズル装置(2)を収容する前記ハウジング(4)と、を備える。
7) A turbine (12) according to at least one embodiment of the present disclosure,
A variable nozzle device (2) according to any one of 1) to 6) above;
The turbine wheel (3);
and the housing (4) that houses the turbine wheel (3) and the variable nozzle device (2).
 上記7)の構成によれば、可変ノズル装置(2)のノズルサポート(6)の損傷を抑制することで、タービン(12)の信頼性の向上が図れる。 The configuration of 7) above can improve the reliability of the turbine (12) by suppressing damage to the nozzle support (6) of the variable nozzle device (2).
8)本開示の少なくとも一実施形態に係るターボチャージャ(1)は、
 上記7)に記載のタービン(12)と、
 前記タービン(12)により駆動されるように構成された遠心圧縮機(13)と、を備える。
8) A turbocharger (1) according to at least one embodiment of the present disclosure,
A turbine (12) according to 7) above;
and a centrifugal compressor (13) configured to be driven by the turbine (12).
 上記8)の構成によれば、可変ノズル装置(2)のノズルサポート(6)の損傷を抑制することで、ターボチャージャ(1)の信頼性の向上が図れる。 The configuration of 8) above can improve the reliability of the turbocharger (1) by suppressing damage to the nozzle support (6) of the variable nozzle device (2).
1     ターボチャージャ
2     可変ノズル装置
3     タービンホイール
4     ハウジング
4A    第1ハウジング
4B    第2ハウジング
5     ノズルマウント
6     ノズルサポート
7     付勢部材
8     ノズルプレート
10    内燃機関システム
11    内燃機関
12    タービン
13    遠心圧縮機
14    インペラ
15    コンプレッサハウジング
16    回転シャフト
17    軸受
21    可変ノズルベーン
22    環状部材
23    リンク部材
25    駆動機構部
31    ハブ
32    タービン翼
41    スクロール流路
42    排ガス排出流路
43    内部空間
43A   ガス流路
43B   後方側空間
44    内方突出部
45    対向面
46,48 凹部
47    シュラウド面
51    環状板部
52    マウント側流路面
53    マウント側背面
56    位置決めピン
61,061 固定部
62,062 本体部
63,063 当接面
64    湾曲面
65    くびれ部
81    プレート側流路面
82    プレート側背面
100 他部材
1 turbocharger 2 variable nozzle device 3 turbine wheel 4 housing 4A first housing 4B second housing 5 nozzle mount 6 nozzle support 7 biasing member 8 nozzle plate 10 internal combustion engine system 11 internal combustion engine 12 turbine 13 centrifugal compressor 14 impeller 15 compressor housing 16 rotating shaft 17 bearing 21 variable nozzle vane 22 annular member 23 link member 25 drive mechanism 31 hub 32 turbine blade 41 scroll passage 42 exhaust gas discharge passage 43 internal space 43A gas passage 43B rear space 44 inward protrusion 45 opposing surface 46, 48 recess 47 shroud surface 51 annular plate portion 52 mount side passage surface 53 mount side back surface 56 positioning pin 61, 061 fixing portion 62, 062 main body portion 63, 063 abutment surface 64 curved surface 65 constricted portion 81 Plate side flow passage surface 82 Plate side back surface 100 Other members

Claims (8)

  1.  ハウジング内にタービンホイールとともに収容される可変ノズル装置であって、
     ノズルマウントと、
     前記ノズルマウントに一方側が支持され、他方側が他部材に当接するように構成された少なくとも1つのノズルサポートと、
     前記ノズルマウントを前記他部材側に付勢するように構成された付勢部材と、を備え、
     前記ノズルマウント及び前記少なくとも1つのノズルサポートは、前記付勢部材の付勢力により軸方向において前記他部材と前記付勢部材との間に支持され、
     前記少なくとも1つのノズルサポートは、
     前記他部材に当接する当接面と、
     前記当接面の外縁に内縁が接続される湾曲面であって、前記ノズルサポートの中心軸線から離隔する方向に向かって凸状に湾曲する輪郭形状を有する湾曲面と、を含む、
    可変ノズル装置。
    A variable nozzle device accommodated together with a turbine wheel in a housing,
    A nozzle mount,
    At least one nozzle support, one side of which is supported by the nozzle mount and the other side of which is configured to abut against another member;
    a biasing member configured to bias the nozzle mount toward the other member,
    the nozzle mount and the at least one nozzle support are supported between the other member and the biasing member in the axial direction by a biasing force of the biasing member,
    The at least one nozzle support comprises:
    a contact surface that contacts the other member;
    a curved surface having an inner edge connected to an outer edge of the abutment surface, the curved surface having a contour shape that is convexly curved in a direction away from the central axis of the nozzle support,
    Variable nozzle device.
  2.  前記ノズルマウントとの間に前記タービンホイールに向かうガス流路を形成するプレート側流路面であって、前記少なくとも1つのノズルサポートの前記当接面が当接するプレート側流路面を有するノズルプレートをさらに備え、
     前記他部材は、前記ノズルプレートからなる、
    請求項1に記載の可変ノズル装置。
    a nozzle plate having a plate-side flow path surface that forms a gas flow path toward the turbine wheel between the nozzle mount and the nozzle plate, the plate-side flow path surface being in contact with the abutment surface of the at least one nozzle support;
    The other member is the nozzle plate.
    The variable nozzle device according to claim 1 .
  3.  前記他部材は、前記ノズルマウントとの間に前記タービンホイールに向かうガス流路を形成するハウジング側流路面であって、前記少なくとも1つのノズルサポートの前記当接面が当接するハウジング側流路面を有する前記ハウジングからなる、
    請求項1に記載の可変ノズル装置。
    the other member is a housing having a housing-side flow path surface that forms a gas flow path toward the turbine wheel between the nozzle mount and the housing, the housing having a housing-side flow path surface with which the abutment surface of the at least one nozzle support abuts;
    The variable nozzle device according to claim 1 .
  4.  前記少なくとも1つのノズルサポートは、前記ノズルサポートの外面の最大径をD1とし、前記湾曲面の曲率半径をR1とした場合において、0.1D1≦R1の条件を満たす、
    請求項1乃至3の何れか1項に記載の可変ノズル装置。
    the at least one nozzle support satisfies the condition 0.1D1≦R1, where D1 is a maximum diameter of an outer surface of the nozzle support and R1 is a radius of curvature of the curved surface;
    The variable nozzle device according to any one of claims 1 to 3.
  5.  前記少なくとも1つのノズルサポートは、
     前記ノズルサポートの外面に形成されたくびれ部であって、前記一方側から前記他方側に向かうにつれて径方向の内側に向けて凹む凹曲面部と、前記一方側から前記他方側に向かうにつれて前記径方向の外側に向けて膨出する凸曲面部と、を含むくびれ部を含み、
     前記湾曲面の曲率半径をR1とし、前記凹曲面部の曲率半径をR2とし、前記凸曲面部の曲率半径をR3とした場合において、R1<R2、且つR1<R3の条件を満たす、
    請求項1乃至3の何れか1項に記載の可変ノズル装置。
    The at least one nozzle support comprises:
    a constricted portion formed on an outer surface of the nozzle support, the constricted portion including a concave curved surface portion that is concave inward in the radial direction as it moves from the one side to the other side, and a convex curved surface portion that bulges outward in the radial direction as it moves from the one side to the other side,
    When the radius of curvature of the curved surface is R1, the radius of curvature of the concave curved surface portion is R2, and the radius of curvature of the convex curved surface portion is R3, the conditions R1<R2 and R1<R3 are satisfied.
    The variable nozzle device according to any one of claims 1 to 3.
  6.  前記少なくとも1つのノズルサポートは、
     前記ノズルサポートの外面に形成されたくびれ部であって、前記一方側から前記他方側に向かうにつれて径方向の内側に向けて凹む凹曲面部と、前記一方側から前記他方側に向かうにつれて前記径方向の外側に向けて膨出する凸曲面部と、を含むくびれ部を含み、
     前記当接面の径をD2とし、前記くびれ部の最小径をD3とした場合において、D2≦D3の条件を満たす、
    請求項1乃至3の何れか1項に記載の可変ノズル装置。
    The at least one nozzle support comprises:
    a constricted portion formed on an outer surface of the nozzle support, the constricted portion including a concave curved surface portion that is concave inward in the radial direction as it moves from the one side to the other side, and a convex curved surface portion that bulges outward in the radial direction as it moves from the one side to the other side,
    When the diameter of the contact surface is D2 and the minimum diameter of the constricted portion is D3, the condition D2≦D3 is satisfied.
    The variable nozzle device according to any one of claims 1 to 3.
  7.  請求項1乃至3の何れか1項に記載の可変ノズル装置と、
     前記タービンホイールと、
     前記タービンホイール及び前記可変ノズル装置を収容する前記ハウジングと、を備える、タービン。
    A variable nozzle device according to any one of claims 1 to 3;
    The turbine wheel;
    the housing containing the turbine wheel and the variable nozzle device.
  8.  請求項7に記載のタービンと、
     前記タービンにより駆動されるように構成された遠心圧縮機と、を備える
    ターボチャージャ。
    A turbine according to claim 7;
    a centrifugal compressor configured to be driven by the turbine.
PCT/JP2023/013411 2023-03-30 2023-03-30 Variable nozzle device, turbine, and turbocharger WO2024201959A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2023/013411 WO2024201959A1 (en) 2023-03-30 2023-03-30 Variable nozzle device, turbine, and turbocharger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2023/013411 WO2024201959A1 (en) 2023-03-30 2023-03-30 Variable nozzle device, turbine, and turbocharger

Publications (1)

Publication Number Publication Date
WO2024201959A1 true WO2024201959A1 (en) 2024-10-03

Family

ID=92904442

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/013411 WO2024201959A1 (en) 2023-03-30 2023-03-30 Variable nozzle device, turbine, and turbocharger

Country Status (1)

Country Link
WO (1) WO2024201959A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008509340A (en) * 2004-08-10 2008-03-27 ダイムラー・アクチェンゲゼルシャフト Exhaust gas turbocharger for internal combustion engines
US20150308330A1 (en) * 2014-04-29 2015-10-29 Honeywell International Inc. Turbocharger with variable-vane turbine nozzle having a gas pressure-responsive vane clearance control member
JP2016017408A (en) * 2014-07-04 2016-02-01 株式会社Ihi Variable nozzle unit and variable displacement turbocharger
WO2018167931A1 (en) * 2017-03-16 2018-09-20 三菱重工業株式会社 Variable nozzle device and variable capacity-type exhaust turbo supercharger
US20190242262A1 (en) * 2018-02-04 2019-08-08 Garrett Transportation I Inc. Turbocharger turbine assembly

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008509340A (en) * 2004-08-10 2008-03-27 ダイムラー・アクチェンゲゼルシャフト Exhaust gas turbocharger for internal combustion engines
US20150308330A1 (en) * 2014-04-29 2015-10-29 Honeywell International Inc. Turbocharger with variable-vane turbine nozzle having a gas pressure-responsive vane clearance control member
JP2016017408A (en) * 2014-07-04 2016-02-01 株式会社Ihi Variable nozzle unit and variable displacement turbocharger
WO2018167931A1 (en) * 2017-03-16 2018-09-20 三菱重工業株式会社 Variable nozzle device and variable capacity-type exhaust turbo supercharger
US20190242262A1 (en) * 2018-02-04 2019-08-08 Garrett Transportation I Inc. Turbocharger turbine assembly

Similar Documents

Publication Publication Date Title
EP1691034A2 (en) Variable geometry exhaust turbocharger and method of manufacturing
JP6331423B2 (en) Variable capacity turbocharger
US9121302B2 (en) Radial compressor blade clearance control system
CN107835889B (en) Variable pitch blade control ring for a turbine
CN106121737B (en) Turbocharger with variable vane turbine nozzle with integrated bypass mechanism
US10280836B2 (en) Variable nozzle unit and variable geometry system turbocharger
CN105782073B (en) Multistage radial compressor baffle
US9903379B2 (en) Variable nozzle unit and variable geometry system turbocharger
JP5039730B2 (en) Variable displacement exhaust turbocharger
KR20160147014A (en) Variable geometry turbine assembly
CN109154231B (en) Variable capacity turbocharger
US10907496B2 (en) Turbocharger
WO2024201959A1 (en) Variable nozzle device, turbine, and turbocharger
US20220325631A1 (en) Turbine arrangement with separate guide device
CN212615553U (en) Bearing housing, housing assembly and turbocharger
CN110691891B (en) Gas turbine engine rotor disk retention assembly
WO2024201963A1 (en) Variable displacement turbocharger and assembling method for variable displacement turbocharger
US11713709B2 (en) Nozzle device and exhaust turbocharger
WO2024009430A1 (en) Variable nozzle unit, turbine, and turbocharger
JP7302738B2 (en) Variable displacement turbocharger
WO2019077962A1 (en) Seal structure for supercharger
WO2024053060A1 (en) Compressor wheel and centrifugal compressor
WO2024013970A1 (en) Turbine and turbocharger
WO2020171813A1 (en) Nozzle ring for a radial turbine and exhaust gas turbocharger including the same
WO2024009433A1 (en) Turbine and turbocharger