[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP1403242B1 - Verfahren zur Herstellung von Polyisocyanaten der Diphenylmethanreihe durch Phosgenierung von nicht-neutralisiertem Polyamin der Diphenylmethanreihe - Google Patents

Verfahren zur Herstellung von Polyisocyanaten der Diphenylmethanreihe durch Phosgenierung von nicht-neutralisiertem Polyamin der Diphenylmethanreihe Download PDF

Info

Publication number
EP1403242B1
EP1403242B1 EP03020534A EP03020534A EP1403242B1 EP 1403242 B1 EP1403242 B1 EP 1403242B1 EP 03020534 A EP03020534 A EP 03020534A EP 03020534 A EP03020534 A EP 03020534A EP 1403242 B1 EP1403242 B1 EP 1403242B1
Authority
EP
European Patent Office
Prior art keywords
aniline
polyamines
hcl
water
diphenylmethane series
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP03020534A
Other languages
English (en)
French (fr)
Other versions
EP1403242A1 (de
Inventor
Daniel Dr. Koch
Hans-Georg Dr. Pirkl
Torsten Dr. Hagen
Stefan Dr. Wershofen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Covestro Deutschland AG
Original Assignee
Bayer MaterialScience AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer MaterialScience AG filed Critical Bayer MaterialScience AG
Publication of EP1403242A1 publication Critical patent/EP1403242A1/de
Application granted granted Critical
Publication of EP1403242B1 publication Critical patent/EP1403242B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/02Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/76Polyisocyanates or polyisothiocyanates cyclic aromatic
    • C08G18/7657Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings
    • C08G18/7664Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings containing alkylene polyphenyl groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C209/00Preparation of compounds containing amino groups bound to a carbon skeleton
    • C07C209/68Preparation of compounds containing amino groups bound to a carbon skeleton from amines, by reactions not involving amino groups, e.g. reduction of unsaturated amines, aromatisation, or substitution of the carbon skeleton
    • C07C209/78Preparation of compounds containing amino groups bound to a carbon skeleton from amines, by reactions not involving amino groups, e.g. reduction of unsaturated amines, aromatisation, or substitution of the carbon skeleton from carbonyl compounds, e.g. from formaldehyde, and amines having amino groups bound to carbon atoms of six-membered aromatic rings, with formation of methylene-diarylamines
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C263/00Preparation of derivatives of isocyanic acid
    • C07C263/10Preparation of derivatives of isocyanic acid by reaction of amines with carbonyl halides, e.g. with phosgene

Definitions

  • the invention relates to a process for the preparation of polyisocyanates of the diphenylmethane series, which are obtained by reacting the corresponding polyamines of the diphenylmethane series with phosgene.
  • Polyisocyanates of the diphenylmethane series are understood as meaning isocyanates and isocyanate mixtures of the following type:
  • polyamines of the diphenylmethane series are understood as meaning compounds and mixtures of the following types:
  • the continuous, discontinuous or semi-continuous preparation of polyamines of the diphenylmethane series also referred to below as MDA
  • MDA diphenylmethane series
  • the preparation is carried out by reacting aniline and formaldehyde in the presence of acidic catalysts.
  • acidic catalysts Usually, HCl is used as the acidic catalyst.
  • the acidic catalyst is neutralized according to the prior art at the end of the process before the final work-up steps (such as the distillative removal of excess aniline) by the addition of a base and thus consumed.
  • the main products of the acid-catalyzed reaction of aniline and formaldehyde are the diamine 4,4'-MDA, its positional isomers 2,4'-MDA and 2,2'-MDA and higher homologous polyamines of the diphenylmethane series.
  • the polyisocyanates of the diphenylmethane series referred to below as MDI, are prepared by phosgenation of the corresponding polyamines.
  • the polyisocyanates of the diphenylmethane series thus prepared contain the various isocyanate isomers and their higher homologs in the same composition as the polyamines from which they were prepared.
  • the control variable for influencing the isomer distribution is the amount of acid catalyst used in the acid-catalyzed reaction of aniline and formaldehyde in the process.
  • acid catalyst used in the acid-catalyzed reaction of aniline and formaldehyde in the process.
  • it is therefore necessary in some cases to use considerable amounts of acid catalyst and correspondingly considerable amounts of base for the neutralization of the acidic catalyst. This also results in larger amounts of saline wastewater streams and accordingly a high workup and disposal costs.
  • WO-A1-0174755 describes the preparation of polyamines of the diphenylmethane series in the presence of heterogeneous catalysts which take over the function of the acidic catalyst.
  • This type of catalyst can be easily separated from the reaction mixture in contrast to the homogeneous catalysts usually used and therefore need not be neutralized before working up.
  • a disadvantage of this process is that the acidic solid deactivates over time and that the product spectrum accessible via these catalysts is limited.
  • EP-A1-1167343 describes the MDA preparation according to the prior art, extended by an additional separation of the 2,4'-MDA and 2,2'-MDA isomers, and their reaction with formaldehyde and recycling of this mixture to the beginning of the process ,
  • the recycled isomers are thus preferably converted to higher molecular weight MDA components.
  • a disadvantage of this process is that the reaction of the recycled isomers to higher MDA homologs can adversely affect the product properties of the MDI prepared by subsequent phosgenation, and that for the separation of isomers additional equipment expense for the distillation is required.
  • the object of the present invention was therefore to provide a technical process for the preparation of polyisocyanates of the diphenylmethane series, with which the consumption of acidic catalyst and, correspondingly, of base for neutralizing the acid catalyst at the MDA stage can be reduced or avoided.
  • the process can be carried out continuously, discontinuously or semicontinuously.
  • polyisocyanates of the diphenylmethane series can be prepared without neutralization of the acidic catalyst HCl at the stage of MDA production.
  • the polyamine or polyamine mixture of the diphenylmethane series prepared by the process in step a) is obtained by condensation of aniline and formaldehyde in the presence of the acid catalyst (HJ Twitchett, Chem. Soc. Rev. 3 (2), 209 (1974), MV Moore in:.... Kirk-Othmer encycl Chem Technol, 3 rd Ed, New York, 2, 338-348 (1978)).
  • the acid catalyst HJ Twitchett, Chem. Soc. Rev. 3 (2), 209 (1974), MV Moore in:.... Kirk-Othmer encycl Chem Technol, 3 rd Ed, New York, 2, 338-348 (1978).
  • Suitable polyamine mixtures of the diphenylmethane series are usually obtained by condensation of aniline and formaldehyde in the molar Stoffinengen notice 20: 1 to 1.6: 1, preferably 10: 1 to 1.8: 1 and a molar molar ratio of aniline and HCl of 50: 1 to 1: 1, preferably 20: 1 to 2: 1.
  • Formaldehyde is technically usually used as an aqueous solution.
  • other methylene group-providing compounds e.g. Polyoxymethylene glycol, para-formaldehyde or trioxane can be used.
  • Acid catalysts for MDA production have proven to be strong organic and preferably inorganic acids.
  • HCl preferably in the form of the aqueous solution, is suitable as the acidic catalyst.
  • aniline and HCl are first combined.
  • This mixture is, optionally after removal of heat, mixed in a further step with formaldehyde at temperatures between 20 ° C and 100 ° C, preferably at 30 ° C to 70 ° C in a suitable manner and then subjected in a suitable residence time of a pre-reaction.
  • the pre-reaction takes place at temperatures between 20 ° C to 100 ° C, preferably in the temperature range 30 ° C to 80 ° C.
  • the temperature of the reaction mixture is brought to 100 ° C. to 250 ° C., preferably to 100 ° C. to 180 ° C., particularly preferably to 100 ° C. to 160 ° C., in stages or continuously and optionally under overpressure.
  • aniline and formaldehyde in the absence of HCl in the temperature range from 5 ° C to 130 ° C, preferably from 40 ° C to 110 ° C, more preferably from 60 ° C to 100 ° C, and so on to react.
  • water present in the reaction mixture can be removed by phase separation or other suitable process steps, for example by distillation.
  • the condensation product is then mixed in a further process step with HCl in a suitable manner and in a residence time at 20 ° C to 100 ° C, preferably 30 ° C to 80 ° C subjected to a pre-reaction.
  • the temperature of the reaction mixture in stages or continuously and optionally under overpressure to 100 ° C to 250 ° C, preferably to 100 ° C to 180 ° C, more preferably brought to 100 ° C to 160 ° C.
  • reaction of aniline and formaldehyde in the presence of HCl into polyamines of the diphenylmethane series may be carried out in the presence of other substances (for example, solvents, salts, organic and inorganic acids).
  • the product mixture obtained in step a) contains in addition to the desired MDA still excessively used aniline, water, HCl as a catalyst and optionally other substances which have been added to the process. Prior to the reaction of this mixture to the corresponding MDI by means of phosgenation, the excess aniline and the water must be largely removed from the mixture.
  • Aniline contents of at most 10% by weight, preferably not more than 2% by weight, more preferably not more than 0.2% by weight, based on the polyamines and water contents of not more than 5% by weight, preferably not more than 1% by weight, must be used .-%, more preferably of at most 0.1 wt .-% based on the polyamines can be adjusted.
  • aniline in step b) is achieved by distillation, although the aniline is present at least partially protonated by reaction with HCl.
  • water which is present anyway in the reaction mixture and must also be removed, used as an entraining agent for the removal of aniline.
  • entrainer it is also possible to use other organic or inorganic entrainers.
  • the separation of aniline and water is advantageously carried out in such a way that the acidic reaction mixture of the aniline / formaldehyde condensation is fed to a distillation column.
  • the mixture of aniline and water and optionally additional entraining agent is removed as low-boiling fraction at the top of the column.
  • the aniline can optionally be recycled to the MDA preparation after work-up (for example by phase separation).
  • the product mixture remaining in the bottoms is largely aniline and anhydrous and contains aniline with contents of at most 10.0 wt .-% based on the polyamines contained and water with contents of at most 5.0 wt .-% based on the polyamines contained.
  • an additional supply of water and / or other entrainer is required. This can e.g. be done by the incoming material into the distillation stage, a corresponding amount of water and / or solvent is supplied. But it is also possible to introduce the required amount of water or solvent vapor in the distillation stage and thus at the same time enter the necessary energy for the distillation.
  • the separation of aniline and water can first be carried out by distillation with water as entrainer and then in a second distillation step, the water separation using a different entraining agent are performed.
  • the product mixture thus obtained contains polyamines of the diphenylmethane series and HCl as the main components and optionally residual contents of aniline and water, the polyamines and optionally aniline being partially present in protonated form. Nevertheless, this product mixture can then be reacted with phosgene in an inert organic solvent to give the corresponding isocyanates.
  • the molar ratio of polyamine to phosgene is expediently such that 1 to 10 moles, preferably 1.2 to 6 moles of phosgene are used per mole of amine function in the polyamine.
  • chlorinated aromatic hydrocarbons e.g.
  • Monochlorobenzene, dichlorobenzenes, trichlorobenzenes, the corresponding (possibly chlorinated) toluenes and xylenes and chloroethylbenzene proven.
  • monochlorobenzene, dichlorobenzene or mixtures of these chlorobenzenes are used as inert organic solvents.
  • the amount of solvent is preferably such that the reaction mixture has an MDI content of from 2 to 50% by weight, preferably between 5 and 30% by weight, based on the total weight of the reaction mixture.
  • the separated HCl is composed of the HCl formed in the phosgenation of MDA with phosgene and the HCl used as catalyst for the reaction of aniline with formaldehyde to form MDA.
  • the product obtained is MDI, which can be subjected to further processing steps.
  • the inventive method has the advantage that it can dispense with the use of a base such as NaOH to neutralize the HCl used. hereby saline wastewater streams and the associated workup and disposal costs are avoided.
  • the HCl used as catalyst in the condensation of aniline and formaldehyde is recovered as a valuable material in the phosgenation and can be recycled to the MDA process after appropriate workup. Furthermore, a neutralization and washing step in the MDA process can be dispensed with.
  • the resulting MDI has an NCO content of 32.5 wt .-% based on MDI.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Polyurethanes Or Polyureas (AREA)

Description

  • Die Erfindung betrifft ein Verfahren zur Herstellung von Polyisocyanaten der Diphenylmethanreihe, welche durch Umsetzung der entsprechenden Polyamine der Diphenylmethanreihe mit Phosgen gewonnen werden.
  • Unter Polyisocyanaten der Diphenylmethanreihe werden Isocyanate und Isocyanatgemische folgenden Typs verstanden:
    Figure imgb0001
  • Analog werden unter Polyaminen der Diphenylmethanreihe Verbindungen und Verbindungsgemische folgenden Typs verstanden:
    Figure imgb0002
  • Die großtechnische Herstellung von Isocyanaten durch Umsetzung von Aminen mit Phosgen in Lösungsmitteln ist bekannt und in der Literatur ausführlich beschrieben (Ullmanns Enzyklopädie der technischen Chemie, 4. Auflage, Band 13, Seite 347-357, Verlag Chemie GmbH, Weinheim, 1977). Auf Basis dieses Verfahrens wird das Polyisocyanatgemisch hergestellt, das als Polyisocyanatkomponente bei der Herstellung von Polyurethanschäumen und anderen nach dem Polyadditionsverfahren hergestellten Polyurethankunststoffen dient.
  • Die kontinuierliche, diskontinuierliche oder halbkontinuierliche Herstellung von Polyaminen der Diphenylmethanreihe, nachfolgend auch als MDA bezeichnet, ist in zahlreichen Patenten und Publikationen beschrieben. Üblicherweise erfolgt die Herstellung durch Umsetzung von Anilin und Formaldehyd in Anwesenheit saurer Katalysatoren. Üblicherweise wird HCl als saurer Katalysator eingesetzt. Der saure Katalysator wird gemäß dem Stand der Technik zum Ende des Prozesses vor den abschließenden Aufarbeitungsschritten (wie beispielsweise der destillativen Entfernung von überschüssigem Anilin) durch Zusatz einer Base neutralisiert und somit verbraucht.
  • Hauptprodukte der säurekatalysierten Reaktion von Anilin und Formaldehyd sind das Diamin 4,4'-MDA, seine Stellungsisomere 2,4'-MDA und 2,2'-MDA sowie höhere homologe Polyamine der Diphenylmethanreihe. Die Polyisocyanate der Diphenylmethanreihe, nachfolgend als MDI bezeichnet, werden durch Phosgenierung der entsprechenden Polyamine hergestellt. Die so hergestellten Polyisocyanate der Diphenylmethanreihe enthalten dabei die verschiedenen Isocyanat-Isomeren und deren höhere Homologe in der gleichen Zusammensetzung wie die Polyamine, aus denen sie hergestellt wurden. Steuergröße zur Beeinflussung der Isomerenverteilung ist die bei der säurekatalysierten Reaktion von Anilin und Formaldehyd in den Prozess eingesetzte Menge an saurem Katalysator. Um MDI mit der gewünschten Isomerenverteilung herstellen zu können, müssen daher zum Teil erhebliche Mengen an saurem Katalysator und entsprechend erhebliche Mengen an Base für die Neutralisation des sauren Katalysators eingesetzt werden. Daraus ergeben sich weiterhin größere Mengen an salzhaltigen Abwasserströmen und entsprechend ein hoher Aufarbeitungs- und Entsorgungsaufwand.
  • Das Auffinden von Verfahren zur Umgehung oder Entschärfung dieser Problematik ist seit längerer Zeit das Ziel zahlreicher Versuche und Arbeiten, die in der Literatur beschrieben sind. So beschreibt beispielsweise WO-A1-0174755 die Herstellung von Polyaminen der Diphenylmethanreihe in Gegenwart von heterogenen Katalysatoren, welche die Funktion des sauren Katalysators übernehmen. Dieser Katalysatortyp kann im Gegensatz zu den üblicherweise eingesetzten Homogenkatalysatoren einfach vom Reaktionsgemisch abgetrennt werden und muss demnach vor der Aufarbeitung nicht neutralisiert werden. Nachteilig an diesem Verfahren ist aber, dass der saure Feststoff mit der Zeit desaktiviert, und dass das über diese Katalysatoren zugängliche Produktspektrum eingeschränkt ist. EP-A1-1167343 beschreibt die MDA-Herstellung gemäß dem Stand der Technik, erweitert um eine zusätzliche Abtrennung der 2,4'-MDA und 2,2'-MDA-Isomere, sowie deren Reaktion mit Formaldehyd und Rückführung dieses Gemisches an den Prozessanfang. Die rückgeführten Isomere werden somit bevorzugt zu höhermolekularen MDA-Bestandteilen umgesetzt. Hierdurch wird die enge Kopplung von Katalysatoreinsatz und Bildung von 2,4'- und 2,2'-MDA durch Einführung einer weiteren Steuergröße entschärft. Nachteilig an diesem Verfahren ist jedoch, dass die Umsetzung der rückgeführten Isomere zu höheren MDA-Homologen die Produkteigenschaften des durch anschließende Phosgenierung hergestellten MDI negativ beeinflussen kann, und dass für die Isomerentrennung zusätzlicher apparativer Aufwand für die Destillation erforderlich ist.
  • Aufgabe der vorliegenden Erfindung war es daher, ein technisches Verfahren zur Herstellung von Polyisocyanaten der Diphenylmethanreihe bereit zu stellen, mit dem der Verbrauch an saurem Katalysator und entsprechend von Base zur Neutralisation des sauren Katalysators auf der MDA-Stufe reduziert bzw. vermieden werden kann.
  • Die Aufgabe wird erfindungsgemäß gelöst durch ein Verfahren zur Herstellung von Polyisocyanaten der Diphenylmethanreihe, bei dem man
    • a) Anilin und Formaldehyd in Gegenwart von HCl zu einem Produktgemisch enthaltend Polyamine der Diphenylmethanreihe, HCl, Anilin und Wasser umsetzt, und danach
    • b) überschüssiges Anilin und Wasser durch Destillation in Gegenwast eines Schleppmittels entfernt, wobei man ein Produktgemisch enthaltend Polyamine der Diphenylmethanreihe, HCl sowie Anilin mit einem Gehalt von höchstens 10 Gew.-% bezogen auf die Polyamine und Wasser mit einem Gehalt von höchstens 5 Gew.-% bezogen auf die Polyamine erhält, und danach
    • c) das Produktgemisch enthaltend Polyamine der Diphenylmethanreihe, HCl sowie Anilin mit einem Gehalt von höchstens 10 Gew.-% bezogen auf die Polyamine und Wasser mit einem Gehalt von höchstens 5 Gew.-% bezogen auf die Polyamine phosgeniert.
  • Das Verfahren kann kontinuierlich, diskontinuierlich oder halbkontinuierlich durchgeführt werden. Mit dem Verfahren können Polyisocyanate der Diphenylmethanreihe ohne Neutralisation des sauren Katalysators HCl auf der Stufe der MDA-Herstellung hergestellt werden.
  • Das nach dem Verfahren in Schritt a) hergestellte Polyamin bzw. Polyamingemisch der Diphenylmethanreihe wird durch Kondensation von Anilin und Formaldehyd in Gegenwart des sauren Katalysators erhalten (H.J. Twitchett, Chem. Soc. Rev. 3(2), 209 (1974), M.V. Moore in: Kirk-Othmer Encycl. Chem. Technol., 3rd. Ed., New York, 2, 338-348 (1978)). Für das erfindungsgemäße Verfahren ist es dabei unerheblich, ob Anilin und Formaldehyd zunächst in Abwesenheit von HCl vermischt werden und HCl anschließend zugesetzt wird, oder ob ein Gemisch aus Anilin und HCl mit Formaldehyd zu Reaktion gebracht wird.
  • Geeignete Polyamingemische der Diphenylmethanreihe werden üblicherweise erhalten durch Kondensation von Anilin und Formaldehyd im molaren Stoffinengenverhältnis 20:1 bis 1,6:1, bevorzugt 10:1 bis 1,8:1 sowie einem molaren Stoffmengenverhältnis von Anilin und HCl von 50:1 bis 1:1, bevorzugt 20:1 bis 2:1.
  • Formaldehyd wird technisch üblicherweise als wässrige Lösung eingesetzt. Es können jedoch auch andere methylengruppenliefernde Verbindungen wie z.B. Polyoxymethylenglykol, para-Formaldehyd oder Trioxan eingesetzt werden.
  • Als saure Katalysatoren zur MDA-Herstellung haben sich starke organische und vorzugsweise anorganische Säuren bewährt. Für das erfindungsgemäße Verfahren ist als saurer Katalysator ausschließlich HCl, bevorzugt in Form der wässrigen Lösung, geeignet.
  • In einer bevorzugten Ausführungsform des Verfahrens werden Anilin und HCl zunächst vereinigt. Dieses Gemisch wird, gegebenenfalls nach Abfuhr von Wärme, in einem weiteren Schritt mit Formaldehyd bei Temperaturen zwischen 20°C und 100°C, bevorzugt bei 30°C bis 70°C in geeigneter Weise vermischt und anschließend in einem geeigneten Verweilzeitapparat einer Vorreaktion unterzogen. Die Vorreaktion erfolgt bei Temperaturen zwischen 20°C bis 100°C, vorzugsweise im Temperaturbereich 30°C bis 80°C. Im Anschluss an Vermischung und Vorreaktion wird die Temperatur des Reaktionsgemisches in Stufen oder kontinuierlich und gegebenenfalls unter Überdruck auf 100°C bis 250°C, bevorzugt auf 100°C bis 180°C, besonders bevorzugt auf 100°C bis 160°C gebracht.
  • Es ist jedoch ebenfalls möglich, Anilin und Formaldehyd zunächst in Abwesenheit von HCl im Temperaturbereich von 5°C bis 130°C, bevorzugt von 40°C bis 110°C, besonders bevorzugt von 60°C bis 100°C, zu vermischen und so zur Reaktion zu bringen. Hierbei bilden sich Kondensationsprodukte aus Anilin und Formaldehyd (sog. Aminal). Im Anschluss an die Aminalbildung kann im Reaktionsgemisch vorhandenes Wasser durch Phasentrennung oder andere geeignete Verfahrensschritte, beispielsweise durch Destillation, entfernt werden. Das Kondensationsprodukt wird dann in einem weiteren Verfahrensschritt mit HCl in geeigneter Weise vermischt und in einem Verweilzeitapparat bei 20°C bis 100°C, bevorzugt 30°C bis 80°C einer Vorreaktion unterzogen. Anschließend wird die Temperatur des Reaktionsgemisches in Stufen oder kontinuierlich und ggf. unter Überdruck auf 100°C bis 250°C, bevorzugt auf 100°C bis 180°C, besonders bevorzugt auf 100°C bis 160°C gebracht.
  • Die Umsetzung von Anilin und Formaldehyd in Gegenwart von HCl zu Polyaminen der Diphenylmethanreihe kann in Anwesenheit weiterer Stoffe (z.B. Lösungsmittel, Salze, organische und anorganische Säuren) geschehen.
  • Das in Schritt a) erhaltene Produktgemisch enthält neben dem gewünschten MDA noch überschüssig eingesetztes Anilin, Wasser, HCl als Katalysator sowie gegebenenfalls weitere Stoffe, die dem Prozess zugesetzt wurden. Vor der Umsetzung dieser Mischung zum entsprechenden MDI mittels Phosgenierung muss dem Gemisch das überschüssige Anilin und das Wasser weitgehend entzogen werden. Dabei müssen Anilingehalte von höchstens 10 Gew.-%, bevorzugt von höchstens 2 Gew.-%, besonders bevorzugt von höchstens 0,2 Gew.-% bezogen auf die Polyamine und Wassergehalte von höchstens 5 Gew.-%, bevorzugt von höchstens 1 Gew.-%, besonders bevorzugt von höchstens 0,1 Gew.-% bezogen auf die Polyamine eingestellt werden.
  • Anilin muss dem in Schritt a) erhaltenen Produktgemisch vor der Phosgenierung weitgehend entzogen werden, da Anilin bei der Phosgenierung zu Phenylisocyanat umgesetzt würde. Phenylisocyanat ist aufgrund seiner kettenabbrechenden Monofunktionalität im MDI aber unerwünscht.
  • Die Entfernung von Wasser ist erforderlich, weil bei der Phosgenierung vorhandenes Wasser sowohl mit Phosgen als auch mit den Produkten und Zwischenprodukten der Phosgenierung reagieren würde, und somit eine verringerte. Ausbeute und unerwünschte Nebenprodukte im MDI resultieren würden.
  • Die Entfernung von Anilin in Schritt b) gelingt durch Destillation, obwohl das Anilin durch Reaktion mit HCl zumindest teilweise protoniert vorliegt. Vorzugsweise wird Wasser, welches ohnehin im Reaktionsgemisch vorhanden ist und ebenfalls entfernt werden muss, als Schleppmittel für die Entfernung des Anilins verwendet. Es ist aber auch möglich, andere organische oder anorganische Schleppmittel einzusetzen. Beispielsweise ist es möglich, als Schleppmittel das Lösungsmittel zu verwenden, welches auch in der Phosgenierung eingesetzt wird.
  • Die Abtrennung von Anilin und Wasser erfolgt vorteilhaft in der Weise, dass das saure Reaktionsgemisch der Anilin/Formaldehydkondensation einer Destillationskolonne zugeführt wird. Das Gemisch aus Anilin und Wasser und gegebenenfalls zusätzlichem Schleppmittel wird dabei als Leichtsiederfraktion am Kopf der Kolonne abgenommen. Das Anilin kann gegebenenfalls nach Aufarbeitung (beispielsweise durch Phasentrennung) in die MDA-Herstellung zurückgeführt werden. Das im Sumpf verbleibende Produktgemisch ist weitgehend anilin- und wasserfrei und enthält Anilin mit Gehalten von höchstens 10,0 Gew.-% bezogen auf die enthaltenen Polyamine und Wasser mit Gehalten von höchstens 5,0 Gew.-% bezogen auf die enthaltenen Polyamine. Um die gewünschten niedrigen Anilingehalte einzustellen, ist eine zusätzliche Zufuhr von Wasser und/oder anderem Schleppmittel erforderlich. Dies kann z.B. dadurch geschehen, dass dem in die Destillationsstufe einlaufenden Material eine entsprechende Wassermenge und/oder Lösungsmittelmenge zugeführt wird. Es ist aber auch möglich, die erforderliche Wasser- bzw. Lösungsmittelmenge dampfförmig in die Destillationsstufe einzubringen und damit gleichzeitig die für die Destillation nötige Energie einzutragen.
  • Es ist ebenfalls möglich, die Abtrennung von Anilin und Wasser mehrstufig, vorzugsweise zweistufig durchzuführen. Dabei kann zunächst die Abtrennung von Anilin durch Destillation mit Wasser als Schleppmittel erfolgen und dann in einer zweiten Destillationsstufe die Wasserabtrennung unter Einsatz eines anderen Schleppmittels durchgeführt werden.
  • Dabei müssen Anilingehalte von höchstens 10 Gew.-%, bevorzugt von höchstens 2 Gew.-%, besonders bevorzugt von höchstens 0,2 Gew.-% bezogen auf die Polyamine und Wassergehalte von höchstens 5 Gew.-%, bevorzugt von höchstens 1 Gew.-%, besonders bevorzugt von höchstens 0,1 Gew.-% bezogen auf die Polyamine eingestellt werden.
  • Das so erhaltene Produktgemisch enthält Polyamine der Diphenylmethanreihe und HCl als Hauptkomponenten sowie ggf. Restgehalte an Anilin und Wasser, wobei die Polyamine und ggf. Anilin teilweise in protonierter Form vorliegen. Dennoch kann dieses Produktgemisch anschließend mit Phosgen in einem inerten organischen Lösungsmittel zu den entsprechenden Isocyanaten umgesetzt werden. Das Molverhältnis von Polyamin zu Phosgen wird zweckmäßigerweise so bemessen, dass pro Mol Aminfunktion im Polyamin 1 bis 10 Mol, vorzugsweise 1,2 bis 6 Mol Phosgen eingesetzt werden. Als inerte Lösungsmittel für den Phosgenierschritt haben sich chlorierte, aromatische Kohlenwasserstoffe wie z.B. Monochlorbenzol, Dichlorbenzole, Trichlorbenzole, die entsprechenden (ggf. chlorierten) Toluole und Xylole sowie Chlorethylbenzol bewährt. Insbesondere finden Monochlorbenzol, Dichlorbenzol oder Mischungen dieser Chlorbenzole als inerte organische Lösungsmittel Anwendung. Die Menge an Lösungsmittel wird vorzugsweise so bemessen, dass die Reaktionsmischung einen MDI-Gehalt von 2 bis 50 Gew.-%, vorzugsweise zwischen 5 und 30 Gew.-%, bezogen auf das Gesamtgewicht der Reaktionsmischung, aufweist. Nach Beendigung der Umsetzung von Amin und Phosgen werden aus der Reaktionsmischung überschüssiges Phosgen, inerte organische Lösungsmittel und HCl abgetrennt. Dabei setzt sich das abgetrennte HCl aus dem bei der Phosgenierung von MDA mit Phosgen gebildeten HCl und dem als Katalysator für die Umsetzung von Anilin mit Formaldehyd zu MDA eingesetzten HCl zusammen. Als Produkt wird MDI erhalten, welches weiteren Aufarbeitungsschritten unterzogen werden kann.
  • Das erfindungsgemäße Verfahren hat den Vorteil, dass es auf den Einsatz einer Base wie NaOH zur Neutralisation des eingesetzten HCl verzichten kann. Hierdurch werden salzhaltige Abwasserströme und der damit verbundene Aufarbeitungs- und Entsorgungsaufwand vermieden. Das bei der Kondensation von Anilin und Formaldehyd als Katalysator eingesetzte HCl wird bei der Phosgenierung als Wertstoff zurückgewonnen und kann nach entsprechender Aufarbeitung in den MDA-Prozess zurückgeführt werden. Weiterhin kann auf einen Neutralisations- und Wäscheschritt im MDA-Prozess verzichtet werden.
  • Beispiel
  • Zu 513 g Anilin wurden bei 80°C innerhalb von 20 min zugleich 884 g Anilin und 486 g einer 32%igen wässrigen Formaldehydlösung getropft. Nach der Zugabe wurde noch 10 min gerührt und anschließend eine Phasentrennung bei 70-80°C vorgenommen. Von der organischen Phase wurde eine Menge von 356 g auf 35°C temperiert und anschließend bei dieser Temperatur innerhalb von 30 min mit der restlichen organischen Phase und 427 g einer 32%igen wässrigen Salzsäure versetzt. Nach beendeter Zugabe und einer 30 minütigen Nachrührzeit bei dieser Temperatur wurde während 10 min auf 60°C aufgeheizt und 30 min bei dieser Temperatur gehalten. Anschließend wurde innerhalb von 30 min auf Rückflusstemperatur aufgeheizt und 10 h unter Rückfluss gerührt.
  • 1177 g des hergestellten sauren Kondensationsgemisches wurden in eine diskontinuierliche Destillationsapparatur überführt und mittels Einblasen von Wasserdampf in den Sumpf auf einen Anilingehalt im Sumpf von unter 0,1 Gew.-% bezogen auf Polyamin gebracht. Das so erhaltene, weitgehend anilinfreie, aber noch wasser- und HCl-haltige Sumpfgemisch wurde in einer zweiten Destillationsapparatur so lange kontinuierlich mit Chlorbenzol versetzt und unter Sieden gehalten, bis der Wassergehalt im Sumpf unter 0.1 Gew.-% bezogen auf Polyamin abfiel. Das am Kopf kondensierende Gemisch aus Chlorbenzol und Wasser kann durch Phasentrennung getrennt werden, um das Chlorbenzol in die Destillation zurückzuführen.
  • Das nunmehr als Suspension in Chlorbenzol vorliegende, weitgehend anilin- und wasserfreie saure Umlagerungsgemisch der Anilin/Formaldehydkondensation wurde aus der Destillationsapparatur entnommen. Anschließend wurde Chlorbenzol zugegeben und ein Gehalt an Polyamin von 16 Gew.-% bezogen auf die Suspension eingestellt.
  • Von dieser Suspension wurden 300 g auf 55°C erwärmt und rasch und unter intensivem Rühren zu einer auf 0°C temperierten Lösung von 105 g Phosgen in 310 ml Chlorbenzol gegeben. Das resultierende Reaktionsgemisch wurde unter Durchleiten von Phosgen innerhalb von 45 min auf 100°C und anschließend während 10 min auf Rückflusstemperatur aufgeheizt. Nach weiteren 10 min bei dieser Temperatur wurde das Chlorbenzol unter vermindertem Druck bis zu einer Sumpftemperatur von 100°C abdestilliert. Das klare Roh-Isocyanat wurde anschließend in einer Destillationsapparatur bei einem Druck von 4-6 mbar durch ein auf 260°C erwärmtes Heizbad bis zum beginnenden Produktübergang erhitzt und daraufhin innerhalb von 5 min auf Raumtemperatur abgekühlt.
  • Das erhaltende MDI weist einen NCO-Gehalt von 32,5 Gew.-% bezogen auf MDI auf.

Claims (4)

  1. Verfahren zur Herstellung von Polyisocyanaten der Diphenylmethanreihe, bei dem man
    a) Anilin und Formaldehyd in Gegenwart von HCl zu einem Produktgemisch enthaltend Polyamine der Diphenylmethanreihe, HCl, Anilin und Wasser umsetzt, und danach
    b) überschüssiges Anilin und Wasser durch Destillation in Gegenwast eines Schleppmittels entfernt, wobei man ein Produktgemisch enthaltend Polyamine der Diphenylmethanreihe, HCl sowie Anilin mit einem Gehalt von höchstens 10 Gew.-% bezogen auf die Polyamine und Wasser mit einem Gehalt von höchstens 5 Gew.-% bezogen auf die Polyamine erhält, und danach
    c) das Produktgemisch enthaltend Polyamine der Diphenylmethanreihe, HCl sowie Anilin mit einem Gehalt von höchstens 10 Gew.-% bezogen auf die Polyamine und Wasser mit einem Gehalt von höchstens 5 Gew.-% bezogen auf die Polyamine phosgeniert.
  2. Verfahren nach Anspruch 1, bei dem man die Destillation zweistufig durchführt, wobei man in einer ersten Destillationsstufe Anilin in Gegenwart von Wasser als Schleppmittel entfernt und in einer zweiten Destillationsstufe Wasser entfernt.
  3. Verfahren nach einem der Ansprüche 1 bis 2, bei dem man in Schritt b) ein Produktgemisch enthaltend Polyamine der Diphenylmethanreihe, HCl sowie Anilin mit Gehalten von höchstens 2 Gew.-% bezogen auf die Polyamine und Wasser mit einem Gehalt von höchstens 1 Gew.-% bezogen auf die Polyamine erhält und danach in Schritt c) phosgeniert.
  4. Verfahren nach einem der Ansprüche 1 bis 3, bei dem man in Schritt b) ein Produktgemisch enthaltend Polyamine der Diphenylmethanreihe, HCl sowie Anilin mit Gehalten von höchstens 0,2 Gew.-% bezogen auf die Polyamine und Wasser mit einem Gehalt von höchstens 0,1 Gew.-% bezogen auf die Polyamine erhält und danach in Schritt c) phosgeniert.
EP03020534A 2002-09-30 2003-09-17 Verfahren zur Herstellung von Polyisocyanaten der Diphenylmethanreihe durch Phosgenierung von nicht-neutralisiertem Polyamin der Diphenylmethanreihe Expired - Lifetime EP1403242B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10245703 2002-09-30
DE10245703A DE10245703A1 (de) 2002-09-30 2002-09-30 Verfahren zur Herstellung von Polyisocyanaten der Diphenylmethanreihe durch Phosgenierung von nichtneutralisiertem Polyamin der Diphenylmethanreihe

Publications (2)

Publication Number Publication Date
EP1403242A1 EP1403242A1 (de) 2004-03-31
EP1403242B1 true EP1403242B1 (de) 2006-11-15

Family

ID=31969721

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03020534A Expired - Lifetime EP1403242B1 (de) 2002-09-30 2003-09-17 Verfahren zur Herstellung von Polyisocyanaten der Diphenylmethanreihe durch Phosgenierung von nicht-neutralisiertem Polyamin der Diphenylmethanreihe

Country Status (12)

Country Link
US (1) US7041776B2 (de)
EP (1) EP1403242B1 (de)
JP (1) JP4416465B2 (de)
KR (1) KR20040028563A (de)
CN (1) CN100569741C (de)
AT (1) ATE345323T1 (de)
BR (1) BR0304286A (de)
CA (1) CA2442464A1 (de)
DE (2) DE10245703A1 (de)
ES (1) ES2277009T3 (de)
PT (1) PT1403242E (de)
TW (1) TW200426133A (de)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10228734A1 (de) * 2002-06-27 2004-01-22 Bayer Ag Verfahren zur Herstellung von Polyisocyanaten der Diphenylmethanreihe mit vermindertem Farbwert
DE102004052370A1 (de) * 2004-10-28 2006-05-04 Bayer Materialscience Ag Verfahren zur Herstellung von Di- und Polyaminen der Diphenylmethanreihe
DE102005006692A1 (de) * 2005-02-15 2006-08-24 Bayer Materialscience Ag Verfahren zur Herstellung von Di-und Polyaminen der Diphenylmethanreihe
EP1960346B2 (de) 2005-12-08 2019-03-27 Huntsman International Llc Verfahren zur herstellung von diaminodiphenylmethanen
DE102006004047A1 (de) 2006-01-28 2007-08-02 Bayer Materialscience Ag Verfahren zur Herstellung von Di- und Polyaminen der Diphenylmethanreihe
DE102006004041A1 (de) * 2006-01-28 2007-08-02 Bayer Materialscience Ag Verfahren zur Herstellung von Di- und Polyaminen der Diphenylmethanreihe
DE102006007620A1 (de) * 2006-02-18 2007-08-23 Bayer Materialscience Ag Verfahren zur Herstellung von Anilin
DE102006007619A1 (de) * 2006-02-18 2007-08-23 Bayer Materialscience Ag Verfahren zur Herstellung von Anilin
EP2151274B1 (de) * 2006-12-27 2012-09-19 Ningbo Wanhua Polyurethanes Co., Ltd. Öffnungsstrahl-Injektionsreaktor
JP5479675B2 (ja) * 2007-11-14 2014-04-23 三井化学株式会社 トルエンジイソシアネートの製造方法
DE102008015123A1 (de) 2008-03-20 2009-09-24 Bayer Materialscience Ag Verfahren zur Herstellung von Di- und Polyaminen der Diphenylmethanreihe
JP5158199B2 (ja) * 2008-06-17 2013-03-06 日本ポリウレタン工業株式会社 ポリイソシアネートの製造方法
EP2714650A1 (de) * 2011-05-24 2014-04-09 Basf Se Verfahren zur herstellung von polyisocyanaten aus biomasse
WO2013057069A1 (de) 2011-10-21 2013-04-25 Bayer Intellectual Property Gmbh Mehrkernige aromatische polyamine und verfahren zu ihrer herstellung
WO2018050554A1 (de) 2016-09-19 2018-03-22 Basf Se Cyanethylierte methylcylohexandiamin- (mcda) und toluoldiamin- (tda) derivate
US10759736B2 (en) 2018-10-17 2020-09-01 Covestro Deutschland Ag Process for the preparation of di- and polyamines of the diphenylmethane series
EP3921349A1 (de) * 2019-02-07 2021-12-15 Dow Global Technologies LLC Verfahren zur umwandlung von phenylisocyanat
JP7539391B2 (ja) 2019-08-29 2024-08-23 住友化学株式会社 イソシアナート化合物の製造方法
CN110511163B (zh) * 2019-09-02 2021-09-07 万华化学集团股份有限公司 光化反应制备多异氰酸酯的方法以及制备水性聚氨酯树脂的方法
CN113929596B (zh) * 2021-11-11 2023-09-19 万华化学集团股份有限公司 一种pmdi废水的综合利用工艺及稳定控制方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA864038A (en) * 1968-03-11 1971-02-16 K. Hoeschele Guenther Methylene-bridged polyphenyl polyisocyanates
DE2404775A1 (de) * 1974-02-01 1975-08-21 Basf Ag Verfahren zur herstellung von mehrwertigen isocyanaten
DE3407494A1 (de) * 1984-03-01 1985-09-05 Bayer Ag, 5090 Leverkusen Verfahren zur herstellung von polyaminen und ihre verwendung zur herstellung von polyisocyanaten
US5310769A (en) * 1992-05-01 1994-05-10 Bayer Aktiengesellschaft Process for the production of polyamine mixtures of the polyamino-polyaryl-polymethylene series
IT1318437B1 (it) 2000-03-31 2003-08-25 Eni Spa Procedimento per la preparazione di miscele di metilendianilina e suoi omologhi superiori.

Also Published As

Publication number Publication date
PT1403242E (pt) 2007-01-31
EP1403242A1 (de) 2004-03-31
DE50305669D1 (de) 2006-12-28
KR20040028563A (ko) 2004-04-03
CN1496976A (zh) 2004-05-19
JP4416465B2 (ja) 2010-02-17
JP2004123746A (ja) 2004-04-22
US20040092701A1 (en) 2004-05-13
ATE345323T1 (de) 2006-12-15
US7041776B2 (en) 2006-05-09
BR0304286A (pt) 2004-08-31
CA2442464A1 (en) 2004-03-30
TW200426133A (en) 2004-12-01
ES2277009T3 (es) 2007-07-01
CN100569741C (zh) 2009-12-16
DE10245703A1 (de) 2004-04-01

Similar Documents

Publication Publication Date Title
EP1403242B1 (de) Verfahren zur Herstellung von Polyisocyanaten der Diphenylmethanreihe durch Phosgenierung von nicht-neutralisiertem Polyamin der Diphenylmethanreihe
EP1813598B1 (de) Verfahren zur Herstellung von Di- und Polyaminen der Diphenylmethanreihe
EP1616890B1 (de) Verfahren zur Herstellung von Polyaminen der Diphenylmethanreihe bei niedriger Protonierung
EP2103595B1 (de) Verfahren zur Herstellung von Di- und Polyaminen der Diphenylmethanreihe
EP0792263B1 (de) Verfahren zur herstellung von isocyanaten
EP1344766B1 (de) Verfahren zur Herstellung von Polyisocyanaten der Diphenylmethanreihe mit vermindertem Farbwert
EP1652835B1 (de) Verfahren zur Herstellung von Di-und Polyaminen der Diphenylmethanreihe
EP1270544A1 (de) Verfahren zur Herstellung von Methylendi (phenylamin) und Methylendi (phenylisocyanat)
EP2989078B1 (de) Verfahren zur herstellung von di- und polyaminen der diphenylmethanreihe
EP1288190B1 (de) Verfahren zur Herstellung von Polyisocyanaten der Diphenylmethanreihe mit vermindertem Farbwert
DE102005055189A1 (de) Verfahren zur Herstellung von 4,4'-Diphenylmethandiisocyanat
EP0031423B1 (de) Verfahren zur Herstellung von Polyphenyl-polymethylen-polyaminen
EP0014927B1 (de) Verfahren zur Herstellung von Gemischen von Polyaminen der Polyamino-polyaryl-polymethylenreihe
EP1707557A1 (de) Verfahren zur Herstellung von Di- und Polyaminen der Diphenylmethanreihe
EP2768800B1 (de) Verfahren zur herstellung farbheller polyisocyanate
DE69213678T2 (de) Verfahren zur Herstellung von Polyaminen für helleren auf Polyisocyanat basierenden Schaum
DE102005026864A1 (de) Verfahren zur Herstellung von 4,4'-Diphenylmethandiisocyanat
WO2006103189A1 (de) Mdi herstellung mittels flüssigphasen- und gasphasenphosgenierung
WO2017125302A1 (de) Verfahren zur herstellung eines aromatischen polyamingemisches
DE10228734A1 (de) Verfahren zur Herstellung von Polyisocyanaten der Diphenylmethanreihe mit vermindertem Farbwert
EP0162347B1 (de) Neue cycloaliphatische Triisocyanate, ein Verfahren zu ihrer Herstellung und ihre Verwendung bei der Herstellung von Polyurethankunststoffen
WO2018114765A1 (de) Verfahren zur herstellung von di- und polyaminen der diphenylmethanreihe bei unterschiedlichen produktions-kapazitäten
DE10145787A1 (de) Verfahren zur Herstellung von Methylendi(phenylisocyanat)
DE3245320A1 (de) Diisocyanate oder diisocyanat-gemische, ein verfahren zu ihrer herstellung, sowie ihre verwendung zur herstellung von polyurethankunststoffen
DE1932526B2 (de) Verfahren zur gleichzeitigen herstellung von 4,4'-diphenylmethandiisocyanat und einem gemisch von polymethylenpolyphenylisocyanaten

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

17P Request for examination filed

Effective date: 20040930

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20050506

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061115

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061115

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061115

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061115

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061115

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061115

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 50305669

Country of ref document: DE

Date of ref document: 20061228

Kind code of ref document: P

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20061204

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070215

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070215

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070215

GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 20061115

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

EN Fr: translation not filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2277009

Country of ref document: ES

Kind code of ref document: T3

EN Fr: translation not filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20070817

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061115

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20070927

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070629

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070216

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070930

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070930

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061115

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070917

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080917

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070917

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061115

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070516

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20090903

Year of fee payment: 7

Ref country code: PT

Payment date: 20090917

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20090829

Year of fee payment: 7

Ref country code: ES

Payment date: 20091006

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20090917

Year of fee payment: 7

REG Reference to a national code

Ref country code: PT

Ref legal event code: MM4A

Free format text: LAPSE DUE TO NON-PAYMENT OF FEES

Effective date: 20110317

BERE Be: lapsed

Owner name: BAYER MATERIALSCIENCE A.G.

Effective date: 20100930

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20110401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110317

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50305669

Country of ref document: DE

Effective date: 20110401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110401

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110401

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20111019

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100918