EP1474247A2 - Verfahren zur herstellung farb- und/oder effektgebender mehrschichtlackierungen - Google Patents
Verfahren zur herstellung farb- und/oder effektgebender mehrschichtlackierungenInfo
- Publication number
- EP1474247A2 EP1474247A2 EP03702578A EP03702578A EP1474247A2 EP 1474247 A2 EP1474247 A2 EP 1474247A2 EP 03702578 A EP03702578 A EP 03702578A EP 03702578 A EP03702578 A EP 03702578A EP 1474247 A2 EP1474247 A2 EP 1474247A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- actinic radiation
- thermally
- curable
- layer
- groups
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000576 coating method Methods 0.000 title claims abstract description 93
- 230000000694 effects Effects 0.000 title claims description 32
- 238000004519 manufacturing process Methods 0.000 title claims description 13
- 230000005855 radiation Effects 0.000 claims abstract description 94
- 238000000034 method Methods 0.000 claims abstract description 87
- 239000011248 coating agent Substances 0.000 claims abstract description 67
- 239000000463 material Substances 0.000 claims abstract description 54
- 230000008569 process Effects 0.000 claims abstract description 45
- 239000000758 substrate Substances 0.000 claims abstract description 33
- 239000003973 paint Substances 0.000 claims abstract description 23
- 239000002987 primer (paints) Substances 0.000 claims description 69
- -1 norbomenyl Chemical group 0.000 claims description 27
- 239000005056 polyisocyanate Substances 0.000 claims description 21
- 229920001228 polyisocyanate Polymers 0.000 claims description 21
- 239000007787 solid Substances 0.000 claims description 18
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 claims description 17
- 125000000524 functional group Chemical group 0.000 claims description 17
- IQPQWNKOIGAROB-UHFFFAOYSA-N isocyanate group Chemical group [N-]=C=O IQPQWNKOIGAROB-UHFFFAOYSA-N 0.000 claims description 14
- 229920000728 polyester Polymers 0.000 claims description 14
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 13
- 229920001577 copolymer Polymers 0.000 claims description 8
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 claims description 6
- IZSHZLKNFQAAKX-UHFFFAOYSA-N 5-cyclopenta-2,4-dien-1-ylcyclopenta-1,3-diene Chemical group C1=CC=CC1C1C=CC=C1 IZSHZLKNFQAAKX-UHFFFAOYSA-N 0.000 claims description 6
- 125000000555 isopropenyl group Chemical group [H]\C([H])=C(\*)C([H])([H])[H] 0.000 claims description 6
- 229920000642 polymer Polymers 0.000 claims description 6
- 229920005989 resin Polymers 0.000 claims description 6
- 239000011347 resin Substances 0.000 claims description 6
- 239000011203 carbon fibre reinforced carbon Substances 0.000 claims description 5
- 239000004593 Epoxy Substances 0.000 claims description 4
- 125000004369 butenyl group Chemical group C(=CCC)* 0.000 claims description 4
- 229920000570 polyether Polymers 0.000 claims description 4
- QYKIQEUNHZKYBP-UHFFFAOYSA-N Vinyl ether Chemical compound C=COC=C QYKIQEUNHZKYBP-UHFFFAOYSA-N 0.000 claims description 3
- 125000003118 aryl group Chemical group 0.000 claims description 3
- 229920000515 polycarbonate Polymers 0.000 claims description 3
- 239000004417 polycarbonate Substances 0.000 claims description 3
- 239000004814 polyurethane Substances 0.000 claims description 3
- 229920002635 polyurethane Polymers 0.000 claims description 3
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 claims description 3
- MLRCQIICAYVJHD-UHFFFAOYSA-N 1-but-1-enoxybut-1-ene Chemical group CCC=COC=CCC MLRCQIICAYVJHD-UHFFFAOYSA-N 0.000 claims description 2
- WROUWQQRXUBECT-UHFFFAOYSA-N 2-ethylacrylic acid Chemical compound CCC(=C)C(O)=O WROUWQQRXUBECT-UHFFFAOYSA-N 0.000 claims description 2
- 239000004721 Polyphenylene oxide Substances 0.000 claims description 2
- 229920002396 Polyurea Polymers 0.000 claims description 2
- CKUAXEQHGKSLHN-UHFFFAOYSA-N [C].[N] Chemical compound [C].[N] CKUAXEQHGKSLHN-UHFFFAOYSA-N 0.000 claims description 2
- JXBAVRIYDKLCOE-UHFFFAOYSA-N [C].[P] Chemical compound [C].[P] JXBAVRIYDKLCOE-UHFFFAOYSA-N 0.000 claims description 2
- HMDDXIMCDZRSNE-UHFFFAOYSA-N [C].[Si] Chemical compound [C].[Si] HMDDXIMCDZRSNE-UHFFFAOYSA-N 0.000 claims description 2
- 229920000180 alkyd Polymers 0.000 claims description 2
- 229920003180 amino resin Polymers 0.000 claims description 2
- CREMABGTGYGIQB-UHFFFAOYSA-N carbon carbon Chemical compound C.C CREMABGTGYGIQB-UHFFFAOYSA-N 0.000 claims description 2
- 229940114081 cinnamate Drugs 0.000 claims description 2
- LDHQCZJRKDOVOX-NSCUHMNNSA-N crotonic acid Chemical compound C\C=C\C(O)=O LDHQCZJRKDOVOX-NSCUHMNNSA-N 0.000 claims description 2
- 125000004185 ester group Chemical group 0.000 claims description 2
- 239000001257 hydrogen Substances 0.000 claims description 2
- 229910052739 hydrogen Inorganic materials 0.000 claims description 2
- CSJDCSCTVDEHRN-UHFFFAOYSA-N methane;molecular oxygen Chemical compound C.O=O CSJDCSCTVDEHRN-UHFFFAOYSA-N 0.000 claims description 2
- 229920001290 polyvinyl ester Polymers 0.000 claims description 2
- 125000000467 secondary amino group Chemical group [H]N([*:1])[*:2] 0.000 claims description 2
- 150000003573 thiols Chemical class 0.000 claims description 2
- WBYWAXJHAXSJNI-VOTSOKGWSA-M trans-cinnamate Chemical compound [O-]C(=O)\C=C\C1=CC=CC=C1 WBYWAXJHAXSJNI-VOTSOKGWSA-M 0.000 claims description 2
- 229920001567 vinyl ester resin Polymers 0.000 claims description 2
- 125000001841 imino group Chemical group [H]N=* 0.000 claims 1
- 238000001029 thermal curing Methods 0.000 abstract description 7
- 239000010410 layer Substances 0.000 description 65
- 239000013615 primer Substances 0.000 description 59
- 239000000049 pigment Substances 0.000 description 56
- 238000012360 testing method Methods 0.000 description 23
- 230000000052 comparative effect Effects 0.000 description 20
- 150000001252 acrylic acid derivatives Chemical class 0.000 description 17
- 238000001723 curing Methods 0.000 description 17
- 150000001875 compounds Chemical class 0.000 description 14
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 12
- 238000004132 cross linking Methods 0.000 description 12
- 239000003795 chemical substances by application Substances 0.000 description 10
- 229910052751 metal Inorganic materials 0.000 description 10
- 239000002184 metal Substances 0.000 description 10
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 9
- 230000008901 benefit Effects 0.000 description 9
- 238000004040 coloring Methods 0.000 description 9
- 239000000945 filler Substances 0.000 description 9
- 239000004922 lacquer Substances 0.000 description 9
- DKPFZGUDAPQIHT-UHFFFAOYSA-N Butyl acetate Natural products CCCCOC(C)=O DKPFZGUDAPQIHT-UHFFFAOYSA-N 0.000 description 8
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 8
- 239000000470 constituent Substances 0.000 description 8
- 238000002474 experimental method Methods 0.000 description 8
- FUZZWVXGSFPDMH-UHFFFAOYSA-N hexanoic acid Chemical compound CCCCCC(O)=O FUZZWVXGSFPDMH-UHFFFAOYSA-N 0.000 description 8
- 239000003999 initiator Substances 0.000 description 8
- 239000000203 mixture Substances 0.000 description 8
- 239000000178 monomer Substances 0.000 description 8
- 239000004970 Chain extender Substances 0.000 description 7
- 238000006243 chemical reaction Methods 0.000 description 7
- 238000005516 engineering process Methods 0.000 description 7
- 239000000843 powder Substances 0.000 description 7
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 6
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 6
- 239000000654 additive Substances 0.000 description 6
- 239000011230 binding agent Substances 0.000 description 6
- 239000000835 fiber Substances 0.000 description 6
- 238000002360 preparation method Methods 0.000 description 6
- 150000002009 diols Chemical class 0.000 description 5
- 235000013980 iron oxide Nutrition 0.000 description 5
- 230000002829 reductive effect Effects 0.000 description 5
- 239000000243 solution Substances 0.000 description 5
- 239000002904 solvent Substances 0.000 description 5
- FMZCRSUBLPOQGB-UHFFFAOYSA-N 2-isocyanatoprop-2-enoic acid Chemical class OC(=O)C(=C)N=C=O FMZCRSUBLPOQGB-UHFFFAOYSA-N 0.000 description 4
- 125000001931 aliphatic group Chemical group 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- 239000003431 cross linking reagent Substances 0.000 description 4
- 150000004985 diamines Chemical class 0.000 description 4
- 239000000428 dust Substances 0.000 description 4
- UHKJHMOIRYZSTH-UHFFFAOYSA-N ethyl 2-ethoxypropanoate Chemical compound CCOC(C)C(=O)OCC UHKJHMOIRYZSTH-UHFFFAOYSA-N 0.000 description 4
- 125000002768 hydroxyalkyl group Chemical group 0.000 description 4
- 238000002347 injection Methods 0.000 description 4
- 239000007924 injection Substances 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 150000002739 metals Chemical class 0.000 description 4
- 229920003023 plastic Polymers 0.000 description 4
- 239000004033 plastic Substances 0.000 description 4
- 230000004224 protection Effects 0.000 description 4
- 239000004575 stone Substances 0.000 description 4
- 239000005057 Hexamethylene diisocyanate Substances 0.000 description 3
- 230000000996 additive effect Effects 0.000 description 3
- 239000003054 catalyst Substances 0.000 description 3
- 239000000919 ceramic Substances 0.000 description 3
- 239000010941 cobalt Substances 0.000 description 3
- 229910017052 cobalt Inorganic materials 0.000 description 3
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 3
- 238000000151 deposition Methods 0.000 description 3
- 239000003085 diluting agent Substances 0.000 description 3
- 238000007598 dipping method Methods 0.000 description 3
- 239000000975 dye Substances 0.000 description 3
- HNMCSUXJLGGQFO-UHFFFAOYSA-N hexaaluminum;hexasodium;tetrathietane;hexasilicate Chemical compound [Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Al+3].[Al+3].[Al+3].[Al+3].[Al+3].[Al+3].S1SSS1.S1SSS1.[O-][Si]([O-])([O-])[O-].[O-][Si]([O-])([O-])[O-].[O-][Si]([O-])([O-])[O-].[O-][Si]([O-])([O-])[O-].[O-][Si]([O-])([O-])[O-].[O-][Si]([O-])([O-])[O-] HNMCSUXJLGGQFO-UHFFFAOYSA-N 0.000 description 3
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 239000011572 manganese Substances 0.000 description 3
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 239000004408 titanium dioxide Substances 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 2
- GOXQRTZXKQZDDN-UHFFFAOYSA-N 2-Ethylhexyl acrylate Chemical compound CCCCC(CC)COC(=O)C=C GOXQRTZXKQZDDN-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 229920002430 Fibre-reinforced plastic Polymers 0.000 description 2
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 2
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 2
- 239000006096 absorbing agent Substances 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 239000004840 adhesive resin Substances 0.000 description 2
- 229920006223 adhesive resin Polymers 0.000 description 2
- MWPLVEDNUUSJAV-UHFFFAOYSA-N anthracene Chemical compound C1=CC=CC2=CC3=CC=CC=C3C=C21 MWPLVEDNUUSJAV-UHFFFAOYSA-N 0.000 description 2
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 description 2
- 230000000903 blocking effect Effects 0.000 description 2
- 238000009835 boiling Methods 0.000 description 2
- OSGAYBCDTDRGGQ-UHFFFAOYSA-L calcium sulfate Chemical compound [Ca+2].[O-]S([O-])(=O)=O OSGAYBCDTDRGGQ-UHFFFAOYSA-L 0.000 description 2
- 239000004202 carbamide Substances 0.000 description 2
- 150000001735 carboxylic acids Chemical class 0.000 description 2
- 230000000295 complement effect Effects 0.000 description 2
- 150000004696 coordination complex Chemical class 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000004070 electrodeposition Methods 0.000 description 2
- 238000010894 electron beam technology Methods 0.000 description 2
- UHESRSKEBRADOO-UHFFFAOYSA-N ethyl carbamate;prop-2-enoic acid Chemical compound OC(=O)C=C.CCOC(N)=O UHESRSKEBRADOO-UHFFFAOYSA-N 0.000 description 2
- 230000007717 exclusion Effects 0.000 description 2
- 239000011151 fibre-reinforced plastic Substances 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 229920001519 homopolymer Polymers 0.000 description 2
- 238000009863 impact test Methods 0.000 description 2
- 239000003112 inhibitor Substances 0.000 description 2
- 239000000976 ink Substances 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 230000001678 irradiating effect Effects 0.000 description 2
- 239000012948 isocyanate Substances 0.000 description 2
- 150000002513 isocyanates Chemical class 0.000 description 2
- 229910003002 lithium salt Inorganic materials 0.000 description 2
- 159000000002 lithium salts Chemical class 0.000 description 2
- 239000010445 mica Substances 0.000 description 2
- 229910052618 mica group Inorganic materials 0.000 description 2
- GKTNLYAAZKKMTQ-UHFFFAOYSA-N n-[bis(dimethylamino)phosphinimyl]-n-methylmethanamine Chemical compound CN(C)P(=N)(N(C)C)N(C)C GKTNLYAAZKKMTQ-UHFFFAOYSA-N 0.000 description 2
- 239000002105 nanoparticle Substances 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 239000012766 organic filler Substances 0.000 description 2
- 238000010422 painting Methods 0.000 description 2
- 229920005862 polyol Polymers 0.000 description 2
- 238000007639 printing Methods 0.000 description 2
- 238000010526 radical polymerization reaction Methods 0.000 description 2
- 230000000284 resting effect Effects 0.000 description 2
- 238000000518 rheometry Methods 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 229910052596 spinel Inorganic materials 0.000 description 2
- 239000011029 spinel Substances 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- JOUDBUYBGJYFFP-FOCLMDBBSA-N thioindigo Chemical compound S\1C2=CC=CC=C2C(=O)C/1=C1/C(=O)C2=CC=CC=C2S1 JOUDBUYBGJYFFP-FOCLMDBBSA-N 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 239000013638 trimer Substances 0.000 description 2
- 239000008096 xylene Substances 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- 239000011701 zinc Substances 0.000 description 2
- PCHXZXKMYCGVFA-UHFFFAOYSA-N 1,3-diazetidine-2,4-dione Chemical group O=C1NC(=O)N1 PCHXZXKMYCGVFA-UHFFFAOYSA-N 0.000 description 1
- HYZJCKYKOHLVJF-UHFFFAOYSA-N 1H-benzimidazole Chemical compound C1=CC=C2NC=NC2=C1 HYZJCKYKOHLVJF-UHFFFAOYSA-N 0.000 description 1
- FWLHAQYOFMQTHQ-UHFFFAOYSA-N 2-N-[8-[[8-(4-aminoanilino)-10-phenylphenazin-10-ium-2-yl]amino]-10-phenylphenazin-10-ium-2-yl]-8-N,10-diphenylphenazin-10-ium-2,8-diamine hydroxy-oxido-dioxochromium Chemical compound O[Cr]([O-])(=O)=O.O[Cr]([O-])(=O)=O.O[Cr]([O-])(=O)=O.Nc1ccc(Nc2ccc3nc4ccc(Nc5ccc6nc7ccc(Nc8ccc9nc%10ccc(Nc%11ccccc%11)cc%10[n+](-c%10ccccc%10)c9c8)cc7[n+](-c7ccccc7)c6c5)cc4[n+](-c4ccccc4)c3c2)cc1 FWLHAQYOFMQTHQ-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- FDSUVTROAWLVJA-UHFFFAOYSA-N 2-[[3-hydroxy-2,2-bis(hydroxymethyl)propoxy]methyl]-2-(hydroxymethyl)propane-1,3-diol;prop-2-enoic acid Chemical compound OC(=O)C=C.OC(=O)C=C.OC(=O)C=C.OC(=O)C=C.OC(=O)C=C.OCC(CO)(CO)COCC(CO)(CO)CO FDSUVTROAWLVJA-UHFFFAOYSA-N 0.000 description 1
- NQBXSWAWVZHKBZ-UHFFFAOYSA-N 2-butoxyethyl acetate Chemical compound CCCCOCCOC(C)=O NQBXSWAWVZHKBZ-UHFFFAOYSA-N 0.000 description 1
- NLGDWWCZQDIASO-UHFFFAOYSA-N 2-hydroxy-1-(7-oxabicyclo[4.1.0]hepta-1,3,5-trien-2-yl)-2-phenylethanone Chemical compound OC(C(=O)c1cccc2Oc12)c1ccccc1 NLGDWWCZQDIASO-UHFFFAOYSA-N 0.000 description 1
- DSSAWHFZNWVJEC-UHFFFAOYSA-N 3-(ethenoxymethyl)heptane Chemical compound CCCCC(CC)COC=C DSSAWHFZNWVJEC-UHFFFAOYSA-N 0.000 description 1
- WUPHOULIZUERAE-UHFFFAOYSA-N 3-(oxolan-2-yl)propanoic acid Chemical compound OC(=O)CCC1CCCO1 WUPHOULIZUERAE-UHFFFAOYSA-N 0.000 description 1
- RVKPQXGYBPTWPT-UHFFFAOYSA-N 3-methylhexane-2,2-diol Chemical compound CCCC(C)C(C)(O)O RVKPQXGYBPTWPT-UHFFFAOYSA-N 0.000 description 1
- NDWUBGAGUCISDV-UHFFFAOYSA-N 4-hydroxybutyl prop-2-enoate Chemical compound OCCCCOC(=O)C=C NDWUBGAGUCISDV-UHFFFAOYSA-N 0.000 description 1
- PJMDLNIAGSYXLA-UHFFFAOYSA-N 6-iminooxadiazine-4,5-dione Chemical compound N=C1ON=NC(=O)C1=O PJMDLNIAGSYXLA-UHFFFAOYSA-N 0.000 description 1
- 229920005789 ACRONAL® acrylic binder Polymers 0.000 description 1
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 1
- 239000005995 Aluminium silicate Substances 0.000 description 1
- 101100134875 Arabidopsis thaliana LTA2 gene Proteins 0.000 description 1
- 229910001369 Brass Inorganic materials 0.000 description 1
- 229910000906 Bronze Inorganic materials 0.000 description 1
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- VVNCNSJFMMFHPL-VKHMYHEASA-N D-penicillamine Chemical group CC(C)(S)[C@@H](N)C(O)=O VVNCNSJFMMFHPL-VKHMYHEASA-N 0.000 description 1
- 239000001692 EU approved anti-caking agent Substances 0.000 description 1
- WOBHKFSMXKNTIM-UHFFFAOYSA-N Hydroxyethyl methacrylate Chemical compound CC(=C)C(=O)OCCO WOBHKFSMXKNTIM-UHFFFAOYSA-N 0.000 description 1
- OWYWGLHRNBIFJP-UHFFFAOYSA-N Ipazine Chemical compound CCN(CC)C1=NC(Cl)=NC(NC(C)C)=N1 OWYWGLHRNBIFJP-UHFFFAOYSA-N 0.000 description 1
- 239000005058 Isophorone diisocyanate Substances 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- 239000004594 Masterbatch (MB) Substances 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 1
- UEEJHVSXFDXPFK-UHFFFAOYSA-N N-dimethylaminoethanol Chemical compound CN(C)CCO UEEJHVSXFDXPFK-UHFFFAOYSA-N 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- NRCMAYZCPIVABH-UHFFFAOYSA-N Quinacridone Chemical compound N1C2=CC=CC=C2C(=O)C2=C1C=C1C(=O)C3=CC=CC=C3NC1=C2 NRCMAYZCPIVABH-UHFFFAOYSA-N 0.000 description 1
- 235000000126 Styrax benzoin Nutrition 0.000 description 1
- 244000028419 Styrax benzoin Species 0.000 description 1
- 235000008411 Sumatra benzointree Nutrition 0.000 description 1
- WGLPBDUCMAPZCE-UHFFFAOYSA-N Trioxochromium Chemical compound O=[Cr](=O)=O WGLPBDUCMAPZCE-UHFFFAOYSA-N 0.000 description 1
- 230000006750 UV protection Effects 0.000 description 1
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 1
- 239000005083 Zinc sulfide Substances 0.000 description 1
- AUNAPVYQLLNFOI-UHFFFAOYSA-L [Pb++].[Pb++].[Pb++].[O-]S([O-])(=O)=O.[O-][Cr]([O-])(=O)=O.[O-][Mo]([O-])(=O)=O Chemical compound [Pb++].[Pb++].[Pb++].[O-]S([O-])(=O)=O.[O-][Cr]([O-])(=O)=O.[O-][Mo]([O-])(=O)=O AUNAPVYQLLNFOI-UHFFFAOYSA-L 0.000 description 1
- HZEWFHLRYVTOIW-UHFFFAOYSA-N [Ti].[Ni] Chemical compound [Ti].[Ni] HZEWFHLRYVTOIW-UHFFFAOYSA-N 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 229920006243 acrylic copolymer Polymers 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 238000007259 addition reaction Methods 0.000 description 1
- 239000002318 adhesion promoter Substances 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 125000005250 alkyl acrylate group Chemical group 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 1
- 235000012211 aluminium silicate Nutrition 0.000 description 1
- QDHUQRBYCVAWEN-UHFFFAOYSA-N amino prop-2-enoate Chemical class NOC(=O)C=C QDHUQRBYCVAWEN-UHFFFAOYSA-N 0.000 description 1
- PYKYMHQGRFAEBM-UHFFFAOYSA-N anthraquinone Natural products CCC(=O)c1c(O)c2C(=O)C3C(C=CC=C3O)C(=O)c2cc1CC(=O)OC PYKYMHQGRFAEBM-UHFFFAOYSA-N 0.000 description 1
- 150000004056 anthraquinones Chemical class 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 1
- 239000003849 aromatic solvent Substances 0.000 description 1
- 239000002969 artificial stone Substances 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- UHHXUPJJDHEMGX-UHFFFAOYSA-K azanium;manganese(3+);phosphonato phosphate Chemical compound [NH4+].[Mn+3].[O-]P([O-])(=O)OP([O-])([O-])=O UHHXUPJJDHEMGX-UHFFFAOYSA-K 0.000 description 1
- IRERQBUNZFJFGC-UHFFFAOYSA-L azure blue Chemical compound [Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Al+3].[Al+3].[Al+3].[Al+3].[Al+3].[Al+3].[S-]S[S-].[O-][Si]([O-])([O-])[O-].[O-][Si]([O-])([O-])[O-].[O-][Si]([O-])([O-])[O-].[O-][Si]([O-])([O-])[O-].[O-][Si]([O-])([O-])[O-].[O-][Si]([O-])([O-])[O-] IRERQBUNZFJFGC-UHFFFAOYSA-L 0.000 description 1
- 239000012965 benzophenone Substances 0.000 description 1
- 150000008366 benzophenones Chemical class 0.000 description 1
- 239000003139 biocide Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 1
- OHJMTUPIZMNBFR-UHFFFAOYSA-N biuret Chemical compound NC(=O)NC(N)=O OHJMTUPIZMNBFR-UHFFFAOYSA-N 0.000 description 1
- 239000002981 blocking agent Substances 0.000 description 1
- 239000001055 blue pigment Substances 0.000 description 1
- 239000010951 brass Substances 0.000 description 1
- 239000010974 bronze Substances 0.000 description 1
- 230000001680 brushing effect Effects 0.000 description 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 229910052980 cadmium sulfide Inorganic materials 0.000 description 1
- 150000001718 carbodiimides Chemical class 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 239000012952 cationic photoinitiator Substances 0.000 description 1
- 229940090961 chromium dioxide Drugs 0.000 description 1
- 229910000423 chromium oxide Inorganic materials 0.000 description 1
- IAQWMWUKBQPOIY-UHFFFAOYSA-N chromium(4+);oxygen(2-) Chemical compound [O-2].[O-2].[Cr+4] IAQWMWUKBQPOIY-UHFFFAOYSA-N 0.000 description 1
- AYTAKQFHWFYBMA-UHFFFAOYSA-N chromium(IV) oxide Inorganic materials O=[Cr]=O AYTAKQFHWFYBMA-UHFFFAOYSA-N 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000006482 condensation reaction Methods 0.000 description 1
- 239000011231 conductive filler Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- KUNSUQLRTQLHQQ-UHFFFAOYSA-N copper tin Chemical compound [Cu].[Sn] KUNSUQLRTQLHQQ-UHFFFAOYSA-N 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 229910052593 corundum Inorganic materials 0.000 description 1
- 239000010431 corundum Substances 0.000 description 1
- PGWFQHBXMJMAPN-UHFFFAOYSA-N ctk4b5078 Chemical compound [Cd].OS(=O)(=O)[Se]S(O)(=O)=O PGWFQHBXMJMAPN-UHFFFAOYSA-N 0.000 description 1
- 238000007872 degassing Methods 0.000 description 1
- 238000006356 dehydrogenation reaction Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 125000000664 diazo group Chemical group [N-]=[N+]=[*] 0.000 description 1
- 125000005442 diisocyanate group Chemical group 0.000 description 1
- 150000002012 dioxanes Chemical class 0.000 description 1
- PPSZHCXTGRHULJ-UHFFFAOYSA-N dioxazine Chemical compound O1ON=CC=C1 PPSZHCXTGRHULJ-UHFFFAOYSA-N 0.000 description 1
- 150000004862 dioxolanes Chemical class 0.000 description 1
- VAPILSUCBNPFBS-UHFFFAOYSA-L disodium 2-oxido-5-[[4-[(4-sulfophenyl)diazenyl]phenyl]diazenyl]benzoate Chemical compound [Na+].[Na+].Oc1ccc(cc1C([O-])=O)N=Nc1ccc(cc1)N=Nc1ccc(cc1)S([O-])(=O)=O VAPILSUCBNPFBS-UHFFFAOYSA-L 0.000 description 1
- 150000004662 dithiols Chemical class 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000005670 electromagnetic radiation Effects 0.000 description 1
- 239000003995 emulsifying agent Substances 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- OYQYHJRSHHYEIG-UHFFFAOYSA-N ethyl carbamate;urea Chemical compound NC(N)=O.CCOC(N)=O OYQYHJRSHHYEIG-UHFFFAOYSA-N 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- SZVJSHCCFOBDDC-UHFFFAOYSA-N ferrosoferric oxide Chemical compound O=[Fe]O[Fe]O[Fe]=O SZVJSHCCFOBDDC-UHFFFAOYSA-N 0.000 description 1
- 239000002657 fibrous material Substances 0.000 description 1
- 239000003063 flame retardant Substances 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 230000009477 glass transition Effects 0.000 description 1
- 235000019382 gum benzoic Nutrition 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- RRAMGCGOFNQTLD-UHFFFAOYSA-N hexamethylene diisocyanate Chemical compound O=C=NCCCCCCN=C=O RRAMGCGOFNQTLD-UHFFFAOYSA-N 0.000 description 1
- ACCCMOQWYVYDOT-UHFFFAOYSA-N hexane-1,1-diol Chemical compound CCCCCC(O)O ACCCMOQWYVYDOT-UHFFFAOYSA-N 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 235000019239 indanthrene blue RS Nutrition 0.000 description 1
- UHOKSCJSTAHBSO-UHFFFAOYSA-N indanthrone blue Chemical compound C1=CC=C2C(=O)C3=CC=C4NC5=C6C(=O)C7=CC=CC=C7C(=O)C6=CC=C5NC4=C3C(=O)C2=C1 UHOKSCJSTAHBSO-UHFFFAOYSA-N 0.000 description 1
- 239000006115 industrial coating Substances 0.000 description 1
- 239000011256 inorganic filler Substances 0.000 description 1
- 229910003475 inorganic filler Inorganic materials 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- DALUDRGQOYMVLD-UHFFFAOYSA-N iron manganese Chemical compound [Mn].[Fe] DALUDRGQOYMVLD-UHFFFAOYSA-N 0.000 description 1
- VBMVTYDPPZVILR-UHFFFAOYSA-N iron(2+);oxygen(2-) Chemical class [O-2].[Fe+2] VBMVTYDPPZVILR-UHFFFAOYSA-N 0.000 description 1
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 1
- CQUTXCKGINHWKG-UHFFFAOYSA-N isocyanato prop-2-enoate Chemical compound C=CC(=O)ON=C=O CQUTXCKGINHWKG-UHFFFAOYSA-N 0.000 description 1
- ZFSLODLOARCGLH-UHFFFAOYSA-N isocyanuric acid Chemical compound OC1=NC(O)=NC(O)=N1 ZFSLODLOARCGLH-UHFFFAOYSA-N 0.000 description 1
- NIMLQBUJDJZYEJ-UHFFFAOYSA-N isophorone diisocyanate Chemical compound CC1(C)CC(N=C=O)CC(C)(CN=C=O)C1 NIMLQBUJDJZYEJ-UHFFFAOYSA-N 0.000 description 1
- MOUPNEIJQCETIW-UHFFFAOYSA-N lead chromate Chemical compound [Pb+2].[O-][Cr]([O-])(=O)=O MOUPNEIJQCETIW-UHFFFAOYSA-N 0.000 description 1
- 239000010985 leather Substances 0.000 description 1
- 239000004611 light stabiliser Substances 0.000 description 1
- VTHJTEIRLNZDEV-UHFFFAOYSA-L magnesium dihydroxide Chemical compound [OH-].[OH-].[Mg+2] VTHJTEIRLNZDEV-UHFFFAOYSA-L 0.000 description 1
- 239000000347 magnesium hydroxide Substances 0.000 description 1
- 229910001862 magnesium hydroxide Inorganic materials 0.000 description 1
- HCWCAKKEBCNQJP-UHFFFAOYSA-N magnesium orthosilicate Chemical compound [Mg+2].[Mg+2].[O-][Si]([O-])([O-])[O-] HCWCAKKEBCNQJP-UHFFFAOYSA-N 0.000 description 1
- 239000000391 magnesium silicate Substances 0.000 description 1
- 229910052919 magnesium silicate Inorganic materials 0.000 description 1
- 235000019792 magnesium silicate Nutrition 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000006224 matting agent Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 150000002734 metacrylic acid derivatives Chemical class 0.000 description 1
- 229910001092 metal group alloy Inorganic materials 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- NYGZLYXAPMMJTE-UHFFFAOYSA-M metanil yellow Chemical group [Na+].[O-]S(=O)(=O)C1=CC=CC(N=NC=2C=CC(NC=3C=CC=CC=3)=CC=2)=C1 NYGZLYXAPMMJTE-UHFFFAOYSA-M 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 235000010755 mineral Nutrition 0.000 description 1
- 229910001000 nickel titanium Inorganic materials 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 125000001400 nonyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 238000010943 off-gassing Methods 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 150000002917 oxazolidines Chemical class 0.000 description 1
- MPQXHAGKBWFSNV-UHFFFAOYSA-N oxidophosphanium Chemical class [PH3]=O MPQXHAGKBWFSNV-UHFFFAOYSA-N 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- UJRBOEBOIXOEQK-UHFFFAOYSA-N oxo(oxochromiooxy)chromium hydrate Chemical compound O.O=[Cr]O[Cr]=O UJRBOEBOIXOEQK-UHFFFAOYSA-N 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- DGBWPZSGHAXYGK-UHFFFAOYSA-N perinone Chemical compound C12=NC3=CC=CC=C3N2C(=O)C2=CC=C3C4=C2C1=CC=C4C(=O)N1C2=CC=CC=C2N=C13 DGBWPZSGHAXYGK-UHFFFAOYSA-N 0.000 description 1
- 125000002080 perylenyl group Chemical group C1(=CC=C2C=CC=C3C4=CC=CC5=CC=CC(C1=C23)=C45)* 0.000 description 1
- CSHWQDPOILHKBI-UHFFFAOYSA-N peryrene Natural products C1=CC(C2=CC=CC=3C2=C2C=CC=3)=C3C2=CC=CC3=C1 CSHWQDPOILHKBI-UHFFFAOYSA-N 0.000 description 1
- 238000006552 photochemical reaction Methods 0.000 description 1
- IEQIEDJGQAUEQZ-UHFFFAOYSA-N phthalocyanine Chemical compound N1C(N=C2C3=CC=CC=C3C(N=C3C4=CC=CC=C4C(=N4)N3)=N2)=C(C=CC=C2)C2=C1N=C1C2=CC=CC=C2C4=N1 IEQIEDJGQAUEQZ-UHFFFAOYSA-N 0.000 description 1
- 229920000212 poly(isobutyl acrylate) Polymers 0.000 description 1
- 229920002627 poly(phosphazenes) Polymers 0.000 description 1
- 229920002239 polyacrylonitrile Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920000768 polyamine Polymers 0.000 description 1
- 229920000767 polyaniline Polymers 0.000 description 1
- 125000003367 polycyclic group Chemical group 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 150000003077 polyols Chemical class 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 229920006295 polythiol Polymers 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 230000002028 premature Effects 0.000 description 1
- QCTJRYGLPAFRMS-UHFFFAOYSA-N prop-2-enoic acid;1,3,5-triazine-2,4,6-triamine Chemical class OC(=O)C=C.NC1=NC(N)=NC(N)=N1 QCTJRYGLPAFRMS-UHFFFAOYSA-N 0.000 description 1
- ULWHHBHJGPPBCO-UHFFFAOYSA-N propane-1,1-diol Chemical compound CCC(O)O ULWHHBHJGPPBCO-UHFFFAOYSA-N 0.000 description 1
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- FYNROBRQIVCIQF-UHFFFAOYSA-N pyrrolo[3,2-b]pyrrole-5,6-dione Chemical compound C1=CN=C2C(=O)C(=O)N=C21 FYNROBRQIVCIQF-UHFFFAOYSA-N 0.000 description 1
- IZMJMCDDWKSTTK-UHFFFAOYSA-N quinoline yellow Chemical compound C1=CC=CC2=NC(C3C(C4=CC=CC=C4C3=O)=O)=CC=C21 IZMJMCDDWKSTTK-UHFFFAOYSA-N 0.000 description 1
- 238000003847 radiation curing Methods 0.000 description 1
- 239000002516 radical scavenger Substances 0.000 description 1
- 150000003254 radicals Chemical class 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000010992 reflux Methods 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 230000003678 scratch resistant effect Effects 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 150000004760 silicates Chemical class 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 238000010345 tape casting Methods 0.000 description 1
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 239000004753 textile Substances 0.000 description 1
- 239000012815 thermoplastic material Substances 0.000 description 1
- 125000003396 thiol group Chemical group [H]S* 0.000 description 1
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 1
- 229910001887 tin oxide Inorganic materials 0.000 description 1
- 235000013799 ultramarine blue Nutrition 0.000 description 1
- AVWRKZWQTYIKIY-UHFFFAOYSA-N urea-1-carboxylic acid Chemical compound NC(=O)NC(O)=O AVWRKZWQTYIKIY-UHFFFAOYSA-N 0.000 description 1
- LSGOVYNHVSXFFJ-UHFFFAOYSA-N vanadate(3-) Chemical compound [O-][V]([O-])([O-])=O LSGOVYNHVSXFFJ-UHFFFAOYSA-N 0.000 description 1
- 238000009423 ventilation Methods 0.000 description 1
- 238000013022 venting Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 239000000080 wetting agent Substances 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
- 235000014692 zinc oxide Nutrition 0.000 description 1
- 229910052984 zinc sulfide Inorganic materials 0.000 description 1
- UQMZPFKLYHOJDL-UHFFFAOYSA-N zinc;cadmium(2+);disulfide Chemical compound [S-2].[S-2].[Zn+2].[Cd+2] UQMZPFKLYHOJDL-UHFFFAOYSA-N 0.000 description 1
- DRDVZXDWVBGGMH-UHFFFAOYSA-N zinc;sulfide Chemical compound [S-2].[Zn+2] DRDVZXDWVBGGMH-UHFFFAOYSA-N 0.000 description 1
- 229910001928 zirconium oxide Inorganic materials 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D—PROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D7/00—Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
- B05D7/50—Multilayers
- B05D7/56—Three layers or more
- B05D7/57—Three layers or more the last layer being a clear coat
- B05D7/576—Three layers or more the last layer being a clear coat each layer being cured, at least partially, separately
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D—PROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D7/00—Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
- B05D7/14—Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to metal, e.g. car bodies
- B05D7/16—Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to metal, e.g. car bodies using synthetic lacquers or varnishes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/40—High-molecular-weight compounds
- C08G18/62—Polymers of compounds having carbon-to-carbon double bonds
- C08G18/6216—Polymers of alpha-beta ethylenically unsaturated carboxylic acids or of derivatives thereof
- C08G18/625—Polymers of alpha-beta ethylenically unsaturated carboxylic acids; hydrolyzed polymers of esters of these acids
- C08G18/6254—Polymers of alpha-beta ethylenically unsaturated carboxylic acids and of esters of these acids containing hydroxy groups
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/70—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
- C08G18/81—Unsaturated isocyanates or isothiocyanates
- C08G18/8141—Unsaturated isocyanates or isothiocyanates masked
- C08G18/815—Polyisocyanates or polyisothiocyanates masked with unsaturated compounds having active hydrogen
- C08G18/8158—Polyisocyanates or polyisothiocyanates masked with unsaturated compounds having active hydrogen with unsaturated compounds having only one group containing active hydrogen
- C08G18/8175—Polyisocyanates or polyisothiocyanates masked with unsaturated compounds having active hydrogen with unsaturated compounds having only one group containing active hydrogen with esters of acrylic or alkylacrylic acid having only one group containing active hydrogen
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D175/00—Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
- C09D175/04—Polyurethanes
- C09D175/06—Polyurethanes from polyesters
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D175/00—Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
- C09D175/04—Polyurethanes
- C09D175/14—Polyurethanes having carbon-to-carbon unsaturated bonds
- C09D175/16—Polyurethanes having carbon-to-carbon unsaturated bonds having terminal carbon-to-carbon unsaturated bonds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L75/00—Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
- C08L75/04—Polyurethanes
- C08L75/14—Polyurethanes having carbon-to-carbon unsaturated bonds
- C08L75/16—Polyurethanes having carbon-to-carbon unsaturated bonds having terminal carbon-to-carbon unsaturated bonds
Definitions
- the present invention relates to a new process for producing color and / or effect multi-layer coatings.
- Coloring and / or effect multicoat paint systems and processes for their production are known. They are used primarily for painting motor vehicles, especially commercial vehicles and automobiles.
- the so-called automobile construction of the coloring and / or effect-giving multi-layer coatings as defined in Römpp Lexikon Lacke und Druckmaschine, Georg Thieme Verlag, Stuttgart, New York, 1998, page 50, "Automobile painting", generally consists of electrocoating , Primer, filler paint or stone chip protection primer, basecoat and clear coat.
- the coloring and / or effect multicoat paint systems are produced by applying a primer or filler to the electrocoated motor vehicle bodies or the add-on parts, which in most cases is thermally cured for itself.
- a basecoat and a clearcoat are then applied to the resulting filler or stone chip protection primer using the so-called wet-on-wet process, after which the resulting layers are thermally cured together.
- This method has the disadvantage that it is only possible to coat substrates thermally in a particularly stable manner.
- actinic radiation is understood to mean electromagnetic radiation, such as near infrared (NIR), visible light, UV radiation and X-rays, in particular UV radiation, and corpuscular radiation, such as electron beams.
- NIR near infrared
- UV radiation visible light
- UV radiation ultraviolet radiation
- corpuscular radiation such as electron beams.
- the pigmented coating materials such as primers, fillers or stone chip protection primers and basecoats are difficult to cure due to the interaction of actinic radiation with the pigments.
- this problem does not exist with the clear coats, but the resulting clear coats can shrink due to the rapid reactions and the high crosslinking density.
- the shadow zones of complex three-dimensional substrates can only be optimally cured if a high level of equipment is used. In doing so, cavities, folds and other design-related
- coating materials which are curable thermally and with actinic radiation have already been used.
- dual-cure coating materials have the advantage that insufficient thermal curing of the coatings in question on a thermolabile substrate can be compensated for by curing with actinic radiation.
- insufficient radiation curing in shadow areas of complex three-dimensional substrates can be compensated for by thermal curing.
- the disadvantage is that each individual layer applied must be cured both thermally and with actinic radiation. This leads to an undesirable increase in process times and an increase in energy consumption.
- a dual-cure clearcoat for a wet-on-wet process is known from international patent application WO 98/40170, in which a layer of a basecoat is overlaid with a clearcoat, after which the resulting clearcoat layer is baked prior to baking irradiated with actinic radiation.
- the clearcoat contains, based on its solids, 50 to 98% by weight of a system A) which is thermally curable by addition and / or condensation reactions and which is essentially free of free-radically polymerizable double bonds and essentially free of free-radical polymerizable double bonds in the system B) is otherwise reactive groups, and 2 to 50% by weight of a system B) curable under the action of actinic radiation by radical polymerization of olefinic double bonds.
- System A) preferably contains a hydroxy-functional acrylate binder having a hydroxyl number of 30 to 300, preferably 50 to 250 mg KOH / g and a number average molecular weight of 1,000 to 10,000
- Dalton and a crosslinking agent which can also be a polyisocyanate.
- the system B) curable by radical polymerization of olefinic double bonds can contain a hexafunctional, aliphatic urethane acrylate with a theoretical molecular weight of 1,000.
- dual-cure clearcoats which contain isocyanatoacrylates and hydroxy-functional copolymers which essentially consist of (meth) acrylates, hydroxyalkyl (meth) acrylates and optionally styrene and / or other monomers, such as, for , B. acrylonitrile.
- Comparable dual-cure clearcoats which additionally contain reactive thinners containing hydroxyl groups and / or thiol groups, are known from international patent application WO 00/73395.
- (a1 1) at least two functional groups, for example acrylate groups, which are used for crosslinking with actinic radiation, and if appropriate (a12) at least one functional group, for example hydroxyl groups, which can undergo thermal crosslinking reactions with a complementary functional group (a22) in component (a2),
- (a21) at least two functional groups, for example acrylate groups, which are used for crosslinking with actinic radiation, and
- Isocyanate group which can undergo thermal crosslinking reactions with a complementary functional group (a12) in component (a1),
- the dual-cure coating material of German patent application DE 199 20 799 A1 or international patent application WO 00/68323 can also be used as a dual-cure primer.
- An integrated process in which the dual-cure coating material is used both as a dual-cure primer and as a dual-cure clearcoat is not described in the two patent applications.
- attachments are inherently high temperature resistance and can withstand temperatures of 190 to 200 ° C. They show only a slight deformation.
- the complex attachments can be manufactured more easily and with greater accuracy than with this technology with reinforced thermoplastic materials.
- One disadvantage is that the surface of the substrates is microporous and therefore cannot be coated directly, because microbubbling (blistering) occurs in the coating at 70 to 80 ° C due to outgassing monomers such as styrene. The surfaces must therefore be sealed, for which the dual-cure primer of German patent application DE 199 20 799 A1 or international patent application WO 00/68323 is very suitable.
- it is fully dual-cured before the application of additional layers of paint, so that the sealing process does not fully solve the problems associated with the use of dual-cure coating materials in the production of color and / or effect multi-layer coatings with automotive quality can.
- microporous surfaces contain pores with a width of 10 to 1,500 nm.
- the surface in question is coated with at least one coating material curable thermally and with actinic radiation, after which the resulting layer (s) is cured thermally and with actinic radiation, the coating material or at least one of the coating materials
- the SMC and BMC coated with the dual-cure primer or sealer can be overcoated immediately after drying and exposure to actinic radiation, preferably in a state that is not fully cured.
- the seals can be excellently coated with all the usual and known aqueous or conventional, liquid or solid anhydrous and solvent-free primers that can be hardened physically or thermally and / or with actinic radiation, electro-dipping paints, fillers or stone chip protection primers, coloring and / or effect-giving solid-color topcoats or basecoats and clearcoats overpaint, whereby it is not expressly stated whether the seals are fully or partially dual-cured.
- the example shows a method in which the dual-cure primer or sealer is flashed off and dried after application and is then irradiated with UV radiation.
- the resulting partial Hardened, electrically conductive seals could be immediately overpainted with commercially available primers or electro-dipping paints. This was followed by complete curing. The coating of the seals with basecoats and clearcoats is not described.
- the object of the present invention is to provide a new, integrated process for producing color and / or effect multi-layer coatings which no longer has the disadvantage of the processes of the prior art, but rather quickly, reliably, inexpensively, energy-saving and with comparatively little apparatus and measurement and control engineering effort provides color and / or effect multilayer coatings in automotive quality.
- the new, integrated process in the line should manage with fewer coating stations than conventional processes.
- the new, integrated process is intended to avoid the disadvantages associated with the use of thermally curable coating materials and also to allow the coating of thermally labile substrates.
- the new, integrated process should not have the disadvantages associated with the use of coating materials that can only be cured with actinic radiation. In this way, pigmented coating materials should also be able to be cured quickly, and the resultant clearcoats should no longer shrink when curing clearcoats.
- the new, integrated method is intended to reduce the number of additional movable irradiation devices that are usually used for the coating of complex three-dimensional substrates. significantly reduce, or make the mobile radiation devices obsolete.
- the new, integrated process should also avoid the disadvantages associated with the use of dual-cure coating materials.
- it should no longer be necessary to use a plurality of dual-cure curing stations connected in series.
- the process times should be able to be shortened, as a result of which the risk of dust deposition on the partially hardened, color and / or effect multicoat paint systems is significantly reduced.
- the new, integrated process should allow the coating of microporous surfaces, such as those available at SMC, BMC, IMC or RIMC, with microbubble-free, color and / or effect-giving multi-layer coatings in automotive quality.
- At least one thermally and with actinic radiation curable, pigmented or unpigmented primer (A) is applied to a substrate, resulting in at least one primer layer (A), (II) irradiating the primer layer (s) (A) with actinic radiation, resulting in at least one partially hardened primer layer (A) which can still be thermally hardened,
- the layer (s) (B) curable thermally and with actinic radiation is irradiated with actinic radiation, resulting in at least one partially hardened layer (B) which can still be thermally hardened,
- the clear coat (s) (C) (C) curable with actinic radiation and / or thermally and with actinic radiation is irradiated with actinic radiation, whereby at least one clear coat (C) hardened with actinic radiation and / or at least one partially hardened clear coat (C), which can still be thermally hardened, results or result, and (VII) the primer layer (s) (A), the pigmented layer (s) (B) and the still thermally curable clear coat (s) (C) together thermally cured.
- the new, integrated process for producing color and / or effect multi-layer coatings is referred to as the “process according to the invention”.
- the process according to the invention surprisingly delivered quickly, reliably, inexpensively, energy-saving and with comparatively little equipment and measurement and control expenditure, color and / or effect-giving multicoat paint systems in automobile quality, the process according to the invention getting by with fewer coating stations than the conventional processes.
- the method according to the invention also permits the coating of thermally labile substrates.
- the coating materials used could be cured quickly, and the resultant clearcoats no longer shrank when curing clearcoats.
- the number of additional movable irradiation devices, as they usually have to be used for the coating of complex three-dimensional substrates could surprisingly be significantly reduced, whereby in In many cases, the mobile radiation devices could be dispensed with entirely.
- the new, integrated process surprisingly allowed the coating of microporous surfaces, such as those at SMC, BMC, IMG or RIMC, with microbubble-free, coloring and / or effect-giving
- the method according to the invention is an integrated method. This means that the individual process steps of the method according to the invention are precisely coordinated with one another in terms of space and time, so that in operational practice it can be carried out continuously in the paint line of an automobile manufacturer.
- substrates are coated.
- the substrates can be planar or three-dimensional and have a microporous surface. It is an essential advantage of the method according to the invention that even complex three-dimensional substrates, which can also have a microporous surface, can be coated successfully.
- the substrates can consist of a wide variety of materials. Examples of suitable materials are wood, glass, leather, plastics,
- Metals in particular reactive metals, such as iron, steel, Stainless steel, zinc, aluminum, titanium and their alloys with each other and with other metals; Minerals, in particular burned and unfired clay, ceramics, natural and artificial stones; foams; Fiber materials, in particular glass fiber, ceramic fiber, carbon fiber, textile fiber, fuel fiber or metal fiber and composites of these fibers; or fiber-reinforced materials, in particular plastics, which are reinforced with the fibers mentioned above.
- suitable substrates are known from German patent applications DE 199 24 172 A1, page 8, lines 21 to 37, or DE 199 30 067 A1, page 13, line 61, to page 14, line 16.
- the method according to the invention can be advantageously used in a wide variety of technological fields. It is preferably used for the coating of motor vehicle bodies, in particular commercial vehicle and passenger car bodies, and parts, in particular attachments, of them, structures indoors and outdoors, and parts thereof, doors, windows, furniture and hollow glass bodies, as well as in the context of industrial coatings for the Coating of coils, containers, packaging, small parts such as nuts, screws, rims or hubcaps; electrotechnical components, such as winding goods (coils, stators, rotors); and components for white goods, such as radiators, household appliances, refrigerator panels or washing machine panels; usable.
- the very special advantage of the method according to the invention can be seen in the coating of motor vehicle bodies and their attachments, in particular attachments based on SMC, BMC, IMC and RIMC.
- Coating materials applied to the substrates using customary and known application methods The application procedure used in individual cases depends in particular on whether the coating materials are liquid or powdery. Examples of suitable application methods are electrocoating, fluidized bed coating, spraying, spraying, knife coating, brushing, pouring, dipping, trickling or rolling. Spray application methods are preferably used, unless they are powders.
- the applied coating materials are preferably hardened after a certain resting time or flash-off time. It can have a duration of 30 s to 2 h, preferably 1 min to 1 h and in particular 1 to 45 min.
- the resting time is used, for example, for the course and degassing of the applied coating materials and for the evaporation of volatile constituents such as any solvent and / or water present.
- the ventilation can be accelerated by an increased temperature, which is not yet sufficient for hardening, and / or by a reduced air humidity.
- a radiation dose of 10 3 to 4x10 4 preferably 2x10 3 to 3x10 4 , preferably 3x10 3 to 2.5x10 4 and in particular 5x10 3 to 2x10 4 Jr ⁇ 2 is preferably used.
- the radiation intensity is 1x10 ° to 3x10 5 , preferably 2x10 ° to 2x10 5 , preferably 3x10 ° to 1.5x10 5 and in particular 5x10 ° to 1.2x10 5 Wm- 2 .
- the usual and known radiation sources and optical auxiliary measures are used for curing with actinic radiation.
- suitable radiation sources are flash lamps from VISIT,
- High or low pressure mercury vapor lamps which if necessary are doped with lead to open a beam window up to 405 nm, or electron beam sources.
- Their arrangement is known in principle and can be adapted to the conditions of the workpiece and the process parameters.
- the areas which are not directly accessible to radiation can be combined with spotlights, small-area or all-round emitters, with an automatic movement device for the irradiation of Cavities or edges, are cured. It is a particular advantage of the method according to the invention that these movable radiation devices can largely be dispensed with.
- the common thermal curing of the applied coating materials takes place, for example, with the aid of a gaseous, liquid and / or solid, hot medium, such as hot air, heated oil or heated rollers, or by microwave radiation, infrared light and / or near infrared light (NIR).
- the heating is preferably carried out in a forced air oven or by irradiation with IR and / or NIR lamps.
- IR and / or NIR lamps can also be subjected to thermal curing in stages.
- the thermal curing advantageously takes place at temperatures from room temperature to 200.degree.
- At least one, in particular one, pigmented or unpigmented dual-cure primer (A) is applied to the surface of the substrate, resulting in at least one, in particular one, primer layer (A).
- the material composition of the pigmented or unpigmented dual-cure primer is not critical, but it can be from the international patent application WO 00/73395, page 4, lines 4 to 30, page 6, line 13, to page 27, line 13, and page 34, lines 11 to 22, or international patent application WO 00/68323, page 3, line 5, to page 4, line 15, page 7, line 29, to page 28, line 5, and page 34, line 5 to 17, known dual-cure coating materials are used.
- a dual-cure primer (A) is particularly preferably used, the
- the particularly preferred dual-cure primer (A) contains at least one constituent (a1) with a statistical average of at least two, in particular at least three, functional groups (a11) per molecule which contain at least one, in particular one, bond which can be activated with actinic radiation , which is used for crosslinking with actinic radiation, and optionally at least one, in particular at least two, isocyanate-reactive group (s) (a12).
- the dual-cure primer (A) contains on average no more than six, in particular no more than five functional groups (a11) per molecule.
- bonds which can be activated with actinic radiation are carbon-hydrogen single bonds or carbon-carbon, carbon-oxygen, carbon-nitrogen, carbon-phosphorus or carbon-silicon single bonds or double bonds.
- bonds in particular the carbon-carbon double bonds, are preferably used.
- Suitable carbon-carbon double bonds are, for example, in (meth) acrylate, ethacrylate, crotonate, cinnamate, vinyl ether, vinyl ester, ethenylarylene, dicyclopentadienyl, norbomenyl,
- (meth) acrylate groups, in particular acrylate groups are of particular advantage and are therefore used with very particular preference in accordance with the invention.
- Suitable isocyanate-reactive groups (a12) are thiol, primary or secondary amino, imino or hydroxyl groups, in particular hydroxyl groups.
- the component (a1) is oligomeric or polymeric.
- an oligomer is understood to mean a compound which generally has on average 2 to 15 basic structures or monomer units.
- a polymer is understood to mean a compound which generally has on average at least 10 basic structures or monomer units.
- Compounds of this type are also referred to by experts as binders or resins.
- a low-molecular compound is to be understood as a compound which is essentially derived only from a basic structure or a monomer unit.
- Compounds of this type are generally referred to by the experts as reactive diluents.
- the polymers or oligomers used as binders (a1) usually have a number average molecular weight of 500 to 50,000, preferably 1,000 to 5,000. They preferably instruct
- they preferably have a viscosity of 250 to 11,000 mPas at 23 ° C. They are preferably used in an amount of 5 to 50% by weight, preferably 6 to 45% by weight, particularly preferably 7 to 40% by weight, very particularly preferably 8 to 35% by weight and in particular 9 to 30% by weight. -%, each based on the solids of the coating material of the invention applied.
- binders or resins (a1) come from the oligomer and / or polymer classes of the (meth) acrylic-functional (meth) acrylic copolymers, polyether acrylates, polyester acrylates, polyesters, epoxy acrylates, urethane acrylates, amino acrylates, melamine acrylates, silicone acrylates and phosphazene acrylates and the corresponding methacrylates.
- Binders (a1) which are free from aromatic structural units are preferably used. Urethane (meth) acrylates, phosphazene (meth) acrylates and / or polyester (meth) acrylates are therefore particularly preferred
- Urethane (meth) acrylates in particular aliphatic urethane (meth) acrylates, are used.
- the urethane (meth) acrylates (a1) are obtained by reacting a di- or polyisocyanate with a chain extender from the group of the diols / polyols and / or diamines / polyamines and / or dithiols / polythiols and / or alkanolamines and then reacting the remaining - free isocyanate groups with at least one hydroxyalkyl (meth) acrylate or hydroxyalkyl ester of other ethylenically unsaturated carboxylic acids.
- chain extenders, di- or polyisocyanates and hydroxyalkyl esters are preferably chosen so that 1.) the equivalent ratio of the NCO groups to the reactive groups of the chain extender (hydroxyl, amino or mercaptyl groups) is between 3: 1 and 1: 2, preferably 2: 1, and
- the OH groups of the hydroxyalkyl esters of the ethylenically unsaturated carboxylic acids are present in a stoichiometric amount in relation to the free isocyanate groups of the prepolymer from isocyanate and chain extender.
- the urethane (meth) acrylates by first reacting part of the isocyanate groups of a di- or polyisocyanate with at least one hydroxyalkyl ester and then reacting the remaining isocyanate groups with a chain extender.
- the amounts of chain extender, isocyanate and hydroxyalkyl ester are chosen so that the equivalent ratio of the NCO groups to the reactive groups of the chain extender is between 3: 1 and 1: 2, preferably 2: 1, and the equivalent ratio of the remaining NCO Groups to the OH groups of the hydroxyalkyl ester is 1: 1.
- all intermediate forms of these two processes are also possible.
- part of the diisocyanate deflocyanate groups can first be reacted with a diol, then another part of the isocyanate groups can be reacted with the hydroxyalkyl ester and then the remaining isocyanate groups can be reacted with a diamine.
- the urethane (meth) acrylates (a1) can be made more flexible, for example, by using corresponding isocyanate-functional prepolymers or oligomers with longer-chain, aliphatic diols and / or
- Diamines especially aliphatic diols and / or diamines at least 6 carbon atoms are implemented. This flexibilization reaction can be carried out before or after the addition of acrylic or methacrylic acid to the oligomers or prepolymers.
- Hydroxyl-containing urethane (meth) acrylates (a1) are, for example, barren from the patents US ⁇ 4,634,602 A US 4,424,252 A.
- polyphosphazene (meth) acrylate (a1) is the phosphazene dimethacrylate from Idemitsu, Japan.
- the dual-cure primer (A) contains at least one thermally curable component (a2) with at least two, in particular at least three, isocyanate-reactive groups.
- suitable isocyanate-reactive groups are those described above.
- the component (a2) is oligomeric or polymeric.
- suitable constituents (a2) are linear and / or branched and / or block-like, comb-like and / or randomly constructed oligomers or polymers, such as (meth) acrylate (co) polymers, polyesters, alkyds, aminoplast resins, polyurethanes, polylactones, polycarbonates, polyethers , Epoxy resin-amine adducts, (meth) acrylate diols, partially saponified polyvinyl esters or polyureas, of which the (meth) acrylate copolymers, the polyesters, the polyurethanes, the polyethers and the epoxy resin-amine adducts, but especially the polyesters, are advantageous.
- (meth) acrylate (co) polymers such as (meth) acrylate (co) polymers, polyesters, alkyds, aminoplast resins, polyurethanes, polylactones, polycarbonates, polyethers , Epoxy resin-amine adducts, (me
- Suitable binders (a2) are, for example, under the trade names Desmophen® 650, 2089, 1100, 670, 1200 or 2017 from Bayer, under the trade names Priplas or Pripol® from Uniqema, under the trade names Chempol® polyester or polyacrylate-polyol distributed by CCP, under the trade names Crodapol® 0-25, 0-85 or 0-86 by Croda or under the trade name Formrez® ER417 by Witco.
- the proportion of the components (a2) in the coating materials can vary widely and is guided by the requirements "of the case. Preferably, they are in an amount of 5 to 90 wt .-%, preferably 6 to 80 wt .-%, particularly preferably 7 to 70% by weight, very particularly preferably 8 to 60% by weight and in particular 9 to 50% by weight, based in each case on the solids content of the coating material.
- the coating material also contains at least one polyisocyanate (a3).
- the polyisocyanates (a3) are preferably selected from the group consisting of polyisocyanates which contain on average at least 2.0 to 10, preferably 2.1 to 6 blocked and / or unblocked isocyanate groups in the molecule.
- the polyisocyanates are preferably selected from the group consisting of polyisocyanates which contain on average at least one isocyanurate, biuret, allophanate, iminooxadiazinedione, urethane, urea, carbodiimide and / or uretdione group in the molecule.
- Examples of suitable polyisocyanates (a3) are from German patent application DE 199 24 170 A1, column 3, line 61, to column 6, line 14, and column 10, line 60, to column 11, line 38, or the documents CA 2,163,591 A, US 4,419,513 A, US 4,454,317 A, EP 0 646 608 A1, US 4,801,675 A, EP 0 183 976 A1, DE 40 15 155 A1, EP 0 303 150 A1, EP 0 496 208 A1 , EP 0 524 500 A1, EP 0 566 037 A1, US 5,258,482 A1, US 5,290,902 A1, EP 0 649 806 A1, DE 42 29 183 A1 or EP 0 531 820 A1 or they are known in the not previously published German patent application DE 100 05 228.2.
- polyisocyanates (a3) can be partially or completely blocked.
- suitable blocking agents for blocking the free isocyanate groups in the polyisocyanates (a3) are known from German patent application DE 199 24 170 A1, column 6, lines 19 to 53.
- the content of polyisocyanates (a3) in the dual-cure primer (A) can vary very widely and depends on the requirements of the individual case, in particular on the content of constituents (a2) and optionally (a1) of isocyanate-reactive groups.
- the content is preferably 5 to 50% by weight, preferably 6 to 45% by weight, particularly preferably 7 to 40% by weight, very particularly preferably 8 to 35% by weight and in particular 9 to 30% by weight. %, each based on the solid of the dual-cure primer (A).
- the dual-cure primer (A) can also contain at least one pigment and / or a filler. These can be color and / or effect, fluorescent, electrically conductive, magnetically shielding and / or corrosion-protecting pigments, metal powders, scratch-resistant pigments, organic dyes, organic and inorganic, transparent or opaque fillers and / or nanoparticles.
- the coating material is used to produce electrically conductive primers (A), it preferably contains at least one electrically conductive pigment and / or at least one electrically conductive filler.
- suitable effect pigments are metal plate pigments such as commercially available aluminum bronzes, aluminum bronzes chromated according to DE 36 36 183 A1, and commercially available stainless steel bronzes and non-metallic effect pigments, such as pearlescent or Interference pigments, platelet-shaped effect pigments based on iron oxide, which have a color from pink to brown-red, or liquid-crystalline effect pigments.
- metal plate pigments such as commercially available aluminum bronzes, aluminum bronzes chromated according to DE 36 36 183 A1
- non-metallic effect pigments such as pearlescent or Interference pigments, platelet-shaped effect pigments based on iron oxide, which have a color from pink to brown-red, or liquid-crystalline effect pigments.
- Suitable inorganic color pigments are white pigments such as titanium dioxide, zinc white, zinc sulfide or lithopone; Black pigments such as carbon black, iron-manganese black or spinel black; Colored pigments such as chromium oxide, chromium oxide hydrate green, cobalt green or ultramarine green, cobalt blue, ultramarine blue or manganese blue, ultramarine violet or cobalt and manganese violet, iron oxide red, cadmium sulfoselenide, molybdenum red or ultramarine red; Iron oxide brown, mixed brown, spinel and corundum phases or chrome orange; or iron oxide yellow, nickel titanium yellow, chrome titanium yellow, cadmium sulfide, cadmium zinc sulfide, chrome yellow or bismuth vanadate.
- white pigments such as titanium dioxide, zinc white, zinc sulfide or lithopone
- Black pigments such as carbon black, iron-manganese black or spinel black
- suitable organic coloring pigments are monoazo pigments, bisazo pigments, anthraquinone pigments, benzimidazole pigments, quinacridone pigments, quinophthalone pigments, diketopyrrolopyrrole pigments, dioxazine pigments, indanthrone pigments, azomethane pigments, iso-pigment pigments, iso-pigment pigments
- Thioindigo pigments metal complex pigments, perinone pigments, and
- fluorescent pigments are bis (azomethine) pigments.
- Suitable electrically conductive pigments are titanium dioxide / tin oxide pigments.
- magnétiqueally shielding pigments examples include pigments based on iron oxides or chromium dioxide.
- suitable metal powders are powders made of metals and metal alloys such as aluminum, zinc, copper, bronze or brass.
- Suitable soluble organic dyes are lightfast organic dyes with little or no tendency to migrate from the new aqueous multicomponent coating material and the coatings produced therefrom.
- the person skilled in the art can estimate the tendency to migrate on the basis of his general specialist knowledge and / or determine it with the aid of simple preliminary tests, for example in the context of sound tests.
- organic and inorganic fillers are chalk, calcium sulfate, barium sulfate, silicates such as talc, mica or kaolin, Silicas, oxides such as aluminum hydroxide or magnesium hydroxide or organic fillers such as plastic powder, in particular made of polyamide or polyacrylonitrile.
- silicates such as talc, mica or kaolin
- Silicas oxides such as aluminum hydroxide or magnesium hydroxide
- organic fillers such as plastic powder, in particular made of polyamide or polyacrylonitrile.
- suitable transparent fillers are those based on silicon dioxide, aluminum oxide or zirconium oxide, but in particular nanoparticles based on this.
- the content of the pigments and / or fillers described above in the dual-cure primer (A) can vary very widely and depends on the requirements of the individual case. Based on the solids content of the coating material, it is preferably 5 to 50, preferably 5 to 45, particularly preferably 5 to 40, very particularly preferably 5 to 35 and in particular 5 to 30% by weight.
- the dual-cure primer (A) can contain at least one tackifier.
- Tackifiers are polymeric additives for adhesives that increase their tack, ie their inherent tack or self-adhesion, so that they adhere firmly to surfaces after a short pressure (see Ullmann 's Encyclopedia of Industrial Chemistry, CD-ROM, Wiley VCH, Weinheim, 1997, "tackifier").
- Suitable tackifiers are highly flexible resins selected from the group consisting of
- Alkyl acrylates such as poly (isobutyl acrylate) or poly (2-ethylhexyl acrylate), which are available under the Acronal® brand from BASF
- Dynamit Nobel sold under the Skybond® brand by SK Chemicals, Japan, or under the trade name LTW by Hüls;
- non-reactive urethane-urea oligomers made from bis (4,4-isocyanatophenyl) methane, N, N-dimethylethanolamine and diols such as propanediol, hexanediol or dimethylpentanediol and e.g. from Swift Reichold under the Swift brand
- the tackifiers are preferably wholly in an amount of 0.1 to 10% by weight, preferably 0.2 to 9% by weight, particularly preferably 0.3 to 8% by weight particularly preferably 0.4 to 7% by weight and in particular 0.56% by weight, in each case based on the solid of the coating material according to the invention.
- the dual-cure primer (A) can contain at least one photoinitiator. If the coating material is to be crosslinked with UV radiation,. the use of a photoinitiator is generally necessary. If they are also used, they are in the dual-cure primer (A) preferably in proportions of 0.1 to 10% by weight, preferably 0.2 to 8% by weight, particularly preferably 0.3 to 7% by weight .-%, very particularly preferably 0.4 to 6 wt .-% and in particular 0.5 to 5 wt .-%, each based on the solid of the dual-cure primer (A).
- photoinitiators examples include those of the Norrish II type, the mechanism of which is based on an intramolecular variant of the hydrogen abstraction reactions, as occurs in a variety of ways in photochemical reactions (examples here are from Römpp Chemie Lexikon, 9th extended and revised edition, Georg Thieme Verlag Stuttgart, vol. 4, 1991) or cationic photoinitiators (for example, refer to Römpp Lexikon Lacke und Druckmaschine, Georg Thieme Veriag Stuttgart, 1998, pages 444 to 446), in particular benzophenones, benzoins. or benzoin ether or phosphine oxides.
- Irgacure® 184 The products commercially available under the names Irgacure® 184, Irgacure® 1800 and Irgacure® 500 from Ciba Geigy, Grenocure® MBF from Rahn and Lucirin® TPO from BASF AG can also be used, for example.
- the dual-cure primer (A) can have at least one additive selected from the group consisting of thermally curable reactive diluents; , crosslinking agents different from the polyisocyanates (a3); Light stabilizers, such as UV absorbers and reversible radical scavengers (HALS); antioxidants; low and high boiling ("long") organic solvents; Venting means; Wetting agents; emulsifiers; slip additives; polymerization inhibitors; Thermal crosslinking catalysts; thermolabile free radical initiators; Adhesion promoters; Leveling agents; film-forming aids; rheological; Flame retardants; Corrosion inhibitors; anti-caking agents; To grow; driers; Biocides and matting agents.
- thermally curable reactive diluents such as UV absorbers and reversible radical scavengers (HALS); antioxidants; low and high boiling ("long”) organic solvents; Venting means; Wetting agents; emulsifiers; slip additives;
- the ratio of isocyanate groups to the sum of the isocyanate-reactive functional groups is ⁇ 1.3, preferably from 0.5 to 1.25, preferably 0.75 to 1.1, particularly is preferably ⁇ 1 and in particular from 0.75 to 1.
- the thermally curable component (a2) has a non-uniformity in the molecular weight (mass average molecular weight Mn / number average molecular weight Mn) of ⁇ 4, preferably ⁇ 3.5, particularly preferably from 1.5 to 3.5 and in particular from 1.5 to 3.
- the ratio of solids content of components curable with actinic radiation (UV) to solids content of thermally curable components (TH) at (UV) / (TH) 0.2 to 0.6, preferably 0.25 to 0.5 and in particular 0.3 to 0.45.
- the thermally curable component (a2) based on its total amount, has an aromatic structural unit content of ⁇ 5, preferably ⁇ 2 and in particular 0 to ⁇ 2% by weight.
- the dual-cure primer (A) described above is obtained by mixing and homogenizing the components described above with the aid of customary and known mixing methods and devices, such as stirred kettles, agitator mills, extruders, kneaders, Ultraturrax, in-line dissolvers, static mixers, micromixers , Gear rim dispersers, pressure relief nozzles and / or
- Microfluidizer preferably manufactured with the exclusion of actinic radiation.
- the dual-cure primer layer (A) is irradiated with actinic radiation, resulting in a partially hardened primer layer (A) which can still be thermally hardened.
- At least one, in particular one, thermally curable and / or at least one, in particular one, thermally and with actinic radiation is or are applied to the partially cured dual-cure primer layer (A) curable coating material (B) applied. This results in at least one pigmented layer (B) which can also be cured thermally or thermally and with actinic radiation.
- a thermally curable or a thermally curable and with actinic radiation coating material (B) is preferably used.
- the pigmented dual-cure primers (A) described above can be used as dual-cure coating materials (B).
- thermally curable coating materials (B) it is possible to use customary and known basecoats, in particular waterborne basecoats, as described in the patent applications EP 0 089 497 A1, EP 0 256 540 A1, EP 0 260 447 A1, EP 0 297 576 A1, WO 96/12747, EP 0 523 610 A1, EP 0 228 003 A1, EP 0 397 806 A1, EP 0 574 417 A1, EP 0 531 510 A1, EP 0 581 211 A1, EP 0 708 788 A 1, EP 0 593454 A 1, DE-A-43 28 092 A 1, EP 0 299 148 A 1, EP 0 394 737 A 1, EP 0 590 484 A 1, EP 0 234 362 A 1, EP 0 234 361 A1, EP 0 543 817 A1, WO 95/14721, EP 0 521 928 A1, EP 0 522 420 A1, EP 0 522 419 A1, EP 0
- a dual-cure layer (B) is used, it is irradiated with actinic radiation, resulting in a partially hardened layer (B) which can still be thermally hardened.
- At least one, in particular one, dual-cure clear tack (C) is applied to the outer surface of the thermally curable layers (B), resulting in at least one, in particular one, clear lacquer layer (C) curable thermally and with actinic radiation.
- the unpigmented dual-cure primer (A) described above can be used as the dual-cure clearcoat (C).
- dual-cure clearcoat (C) There are also those known from patent applications DE 198 18 735 A1, WO 98/40170, DE 199 08 013 A1, DE 199 08 018 A1, EP 0 844 286 A1 or EP 0 928 10 800 A1, and with Clearcoats, powder clearcoats and powder slurry clearcoats curable by actinic radiation can be considered as dual-cure clearcoats (C).
- At least 15, in particular one, clearcoat (C) curable only with actinic radiation can be applied.
- Suitable clear coats of this type are known from, for example, international patent application WO 98/40171. Dual-cure clearcoats (C) are preferably used.
- the dual-cure clear coat (C) is irradiated with actinic radiation, resulting in a partially hardened clear coat (C) which can still be thermally hardened.
- the clear coat (C) curable with actinic radiation is also irradiated with actinic radiation, resulting in a hardened clear coat (C).
- the color and / or effect multilayer coating results, which comprises at least one primer (A), at least one color and / or effect base coat (B) and at least one clear coat (C).
- the coloring and / or effect multilayer coating produced by the process according to the invention can also be covered with other coating materials, for example with sealer, as described in patent applications DE 199 10 876 A 1, DE 38 36 815 A 1, DE 198 4 3 581 A 1, DE 199 09 877 A1, DE 139 40 858 A1, DE 198 16 136 A1, EP 0 365 027 A2 or EP 0450 625 A1 are known. Sealers are also sold under the Ormocer ® (organically modified ceramic) brand.
- the method according to the invention can be carried out quickly and reliably, inexpensively, in an energy-saving manner and with comparatively little outlay in terms of apparatus and measurement and control technology. Overall, the line requires fewer coating stations than conventional processes. Thermally labile substrates can also be coated using the method according to the invention. The pigmented coating materials are also cured quickly, and when clearcoats are cured, the resulting clearcoats no longer shrink. Last but not least, the number of additional movable irradiation devices, as they usually have to be used for the coating of complex three-dimensional substrates, can be significantly reduced, or in many cases it can be completely dispensed with. In addition, it is no longer necessary to have multiple dual-cure To use hardening stations.
- the process times can be shortened, which significantly reduces the risk of dust depositing on the partially hardened multi-coat paint and / or effect paint.
- the method according to the invention permits the coating of microporous surfaces, such as are present at SMC, BMC, IMC or RIMC, with microbubble-free, color and / or effect-giving multi-layer coatings in automotive quality.
- the adhesion of the color and / or effect multicoat paint systems produced in the process according to the invention and the intercoat adhesion are very good.
- the multi-layer coatings also have a very good overall appearance (appearance).
- HDI trimere (Desmodur® N 3390 from Bayer-Aktienippo, 90%)
- Dropping funnels for the monomer mixture and the initiator solution, nitrogen inlet tube, thermometer, heater and reflux condenser became 650 parts by weight of a fraction of aromatic hydrocarbons weighed in with a boiling range of 158 to 172 ° C.
- the solvent was heated to 140 ° C.
- a monomer mixture of 652 parts by weight of ethyl hexyl acrylate, 383 parts by weight of 2-hydroxyethyl methacrylate, 143 parts by weight of styrene, 212 parts by weight of 4-hydroxybutyl acrylate and 21 parts by weight of acrylic acid were added within four hours and an initiator solution of 113 parts by weight of the aromatic solvent and 113 parts by weight of tert-butyl perethylhexano Evenly metered into the template for 4.5 hours.
- the metering of the monomer mixture and the initiator solution was started simultaneously. After the initiator feed had ended, the resulting reaction mixture was heated to 140 ° C. with stirring for a further two hours and then cooled.
- the resulting solution of the methacrylate copolymer was diluted with a mixture of 1-methoxypropylacetate-2, butylglycol acetate and butyl acetate.
- the resulting solution had a solids content of 65% by weight, determined in a forced air oven (one hour / 130 ° C.), an acid number of 15 mg KOH / g solids, an OH number of 175 mg KOH / g solids and a glass transition temperature from -21 ° C to.
- the dual-cure clearcoat material (C) was prepared by mixing the components shown in Table 1 and homogenizing the resulting mixture.
- Table 1 The material composition of the dual-cure clearcoat (C) Part by weight:
- UV absorber substituted hydroxyphenyltriaziri
- HALS N-methyl-2,2,6,6-tetramethylpiperidinyl ester
- Irgacure ⁇ 184 (commercially available photo initiator from Ciba Specialty Chemicals) 1, 0
- Lucirin ⁇ TPO commercially available photo initiator from
- Crosslinking agent 1 Isocyanatoacrylat Roskydal ⁇ UA VPLS 2337 from Bayer AG (basis: trimer hexamethylene diisocyanate; content of isocyanate groups: 12% by weight) 26.02
- Crosslinking agent 2 Isocyanatoacrylat Roskydal ⁇ UA VP FWO 3003-77 from Bayer AG based on the trimers of isophorone diisocyanate (70.5% in butyl acetate; viscosity: 1,500 mPas; content of isocyanate groups: 6.7% by weight) 6 , 52
- the dual-cure primer (A 1) from Preparation Example 1 was used for Examples 2, 4 and 6 and for the comparative experiments V 2, V 4 and V 6.
- V 5 the dual-cure primer (A 2) from preparation example 2 was used.
- the dual-cure primers (A) were applied with the aid of pneumatic spray guns in a wet layer thickness such that primers (A) had a dry layer thickness of 25 to 27 ⁇ m after curing.
- the resulting primer layers (A) were additionally thermally cured at 80 ° C. for 20 minutes, after which they were fully cured.
- a thermally curable commercially available waterborne basecoat (B) (night black from BASF Coatings AG) was applied pneumatically in a wet film thickness such that the base coats (B) had a dry film thickness after complete curing from 12 to 15 ⁇ m.
- the applied basecoat films (B) were dried at 80 ° C. for ten minutes.
- the dual-cure clearcoat (C) from preparation example 4 was applied pneumatically to the dried basecoat layers (B) in a cross-coat.
- the wet film thickness was adjusted so that after complete curing, clear coats (C) resulted in a dry film thickness of 40 to 45 ⁇ m.
- the clear lacquer was dried at 80 ° C. for ten minutes, irradiated with UV radiation at a dose of 1.5 ⁇ 10 4 ⁇ m 2 and finally cured at 90 ° C. for 30 minutes.
- the adhesion properties of the multi-layer paint systems of the examples and comparative tests were tested using the steam jet test. For this purpose, a cross was carved into the multi-layer paintwork. The scratched areas were sprayed with a water jet (device from Walter type LTA2; pressure: 80 bar; water temperature: 80 ° C; distance from nozzle tip / test board: 12 cm; load duration: 30 seconds; device setting: F 2).
- a water jet device from Walter type LTA2; pressure: 80 bar; water temperature: 80 ° C; distance from nozzle tip / test board: 12 cm; load duration: 30 seconds; device setting: F 2).
- the multicoat paint systems of Examples 5 and 6 and of the comparative tests V 5 and V 6 were also subjected to the cross-hatch test according to DIN ISO 2409: 1994-10.
- the cutting edge distance was 2 mm.
- Table 2 gives an overview of the test results obtained.
- the test results support that with
- Multi-layer coatings using the process according to the invention were obtained which were completely on a par with the multi-layer coatings which were produced by a customary and known process - and this although a thermal curing step had to be used less in the process according to the invention than in the conventional process.
- the multi-layer coatings were on par and of the best automotive quality.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Wood Science & Technology (AREA)
- Health & Medical Sciences (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Application Of Or Painting With Fluid Materials (AREA)
- Paints Or Removers (AREA)
- Cosmetics (AREA)
Description
Claims
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10206225A DE10206225C1 (de) | 2002-02-15 | 2002-02-15 | Verfahren zur Herstellung farb- und/oder effektgebender Mehrschichtlackierungen |
DE10206225 | 2002-02-15 | ||
PCT/EP2003/000967 WO2003068417A2 (de) | 2002-02-15 | 2003-01-31 | Verfahren zur herstellung farb- und/oder effektgebender mehrschichtlackierungen |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1474247A2 true EP1474247A2 (de) | 2004-11-10 |
EP1474247B1 EP1474247B1 (de) | 2010-03-24 |
Family
ID=27674650
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP03702578A Expired - Lifetime EP1474247B1 (de) | 2002-02-15 | 2003-01-31 | Verfahren zur herstellung farb- und/oder effektgebender mehrschichtlackierungen |
Country Status (8)
Country | Link |
---|---|
US (1) | US7479308B2 (de) |
EP (1) | EP1474247B1 (de) |
AT (1) | ATE461756T1 (de) |
AU (1) | AU2003205718A1 (de) |
CA (1) | CA2474837A1 (de) |
DE (2) | DE10206225C1 (de) |
MX (1) | MXPA04007523A (de) |
WO (1) | WO2003068417A2 (de) |
Families Citing this family (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10113884B4 (de) * | 2001-03-21 | 2005-06-02 | Basf Coatings Ag | Verfahren zum Beschichten mikroporöser Oberflächen und Verwendung des Verfahrens |
DE10316890A1 (de) * | 2003-04-12 | 2004-11-04 | Basf Coatings Ag | Mit aktinischer Strahlung aktivierbare Initiatoren enthaltende Mischungen sowie Zwei- und Mehrkomponentensysteme, Verfahren zu ihrer Herstellung und ihre Verwendung |
US20050064183A1 (en) * | 2003-09-23 | 2005-03-24 | 3M Innovative Properties Company | Adhesive articles including a nanoparticle primer and methods for preparing same |
DE102004016093A1 (de) * | 2004-04-01 | 2005-10-20 | Volkswagen Ag | Verfahren zur Trocknung wenigstens einer Lackschicht auf einem Substrat |
DE102004026423A1 (de) * | 2004-05-29 | 2005-12-22 | Basf Coatings Ag | Integriertes Dual-Cure-Beschichtungsstoffsystem und seine Verwendung für die Innen- und Außenbeschichtung komplex geformter dreidimensionaler Substrate |
US20080044586A1 (en) * | 2004-05-29 | 2008-02-21 | Basf Coatings Ag | Integrated Dual-Cure Coating Material System and Use Thereof for the Internal and External Coating of Complex Shaped Three-Dimensional Substrates |
US8754166B2 (en) * | 2005-09-12 | 2014-06-17 | Axalta Coating Systems Ip Co., Llc | Coatings system with common activator and common volumetric mix ratio |
WO2007046741A1 (en) * | 2005-10-18 | 2007-04-26 | Perstorp Specialty Chemicals Ab | Dual cure composition |
US7906214B2 (en) * | 2007-01-26 | 2011-03-15 | Transitions Optical, Inc. | Optical elements comprising compatiblizing coatings and methods of making the same |
DE102008054283A1 (de) * | 2008-11-03 | 2010-06-02 | Basf Coatings Japan Ltd., Yokohama | Farb- und/oder effektgebende Mehrschichtlackierungen mit pigmentfreien Lackierungen als Füller-Ersatz, ihre Herstellung und Verwendung |
US20100183820A1 (en) * | 2009-01-16 | 2010-07-22 | Ford Global Technologies, Llc | Methods for curing uv-curable coatings |
DE102010008541A1 (de) * | 2010-02-18 | 2011-08-18 | BASF Coatings GmbH, 48165 | Wässrige, pigmentierte Beschichtungsmittel, Verfahren zu deren Herstellung und deren Verwendung zur Herstellung von Mehrschichtlackierungen |
US8513321B2 (en) | 2010-11-05 | 2013-08-20 | Ppg Industries Ohio, Inc. | Dual cure coating compositions, methods of coating a substrate, and related coated substrates |
US8901198B2 (en) | 2010-11-05 | 2014-12-02 | Ppg Industries Ohio, Inc. | UV-curable coating compositions, multi-component composite coatings, and related coated substrates |
CN102284409B (zh) * | 2011-07-19 | 2013-10-16 | 奇瑞汽车股份有限公司 | 一种轿车面漆缩孔修补方法 |
EP2565033B1 (de) * | 2011-09-01 | 2016-02-10 | Senosan GmbH | Verbundkörper |
US9023431B2 (en) | 2011-09-19 | 2015-05-05 | Basf Se | Method for coating light alloy rims |
EP2570197A1 (de) * | 2011-09-19 | 2013-03-20 | Basf Se | Verfahren zur Beschichtung von Leichtmetallfelgen |
US8691915B2 (en) | 2012-04-23 | 2014-04-08 | Sabic Innovative Plastics Ip B.V. | Copolymers and polymer blends having improved refractive indices |
DE102012107017A1 (de) * | 2012-08-01 | 2014-02-06 | Dr. Ing. H.C. F. Porsche Aktiengesellschaft | Verfahren zur Sicherstellung einer störungsfreien Übertragung von Elektronik-Signalen |
CN110719817A (zh) | 2017-06-07 | 2020-01-21 | 诺维尔里斯公司 | 用于罐盖的多层饰面 |
EP3740521B1 (de) * | 2018-01-18 | 2021-09-22 | BASF Coatings GmbH | Verfahren zum beschichten von faserverbundplatten bei niedrigen einbrenntemperaturen |
EP3793819B1 (de) | 2018-05-17 | 2023-08-30 | Avery Dennison Corporation | Mehrschichtiges dämpfendes laminat mit teilweiser abdeckung |
JP7205100B2 (ja) * | 2018-07-30 | 2023-01-17 | 荒川化学工業株式会社 | アンダーコート剤及びフィルム |
EP4136176A1 (de) * | 2020-04-15 | 2023-02-22 | Sun Chemical Corporation | Verfahren zur verbesserung der aktinischen härtung von energiehärtbaren tinten und beschichtungen |
EP4277956B1 (de) * | 2021-03-03 | 2024-05-29 | Sun Chemical Corporation | Energiehärtbare tinten und beschichtungen mit peroxiden |
Family Cites Families (105)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4025407A (en) | 1971-05-05 | 1977-05-24 | Ppg Industries, Inc. | Method for preparing high solids films employing a plurality of curing mechanisms |
DE2259360C2 (de) | 1972-12-04 | 1982-06-09 | Basf Ag, 6700 Ludwigshafen | Verfahren zur Herstellung von dünnen Schichten auf Basis von Polyurethan-Elastomeren |
US4229679A (en) | 1974-06-05 | 1980-10-21 | Lode Tenny D | Plasma control system |
US4139385A (en) | 1975-06-20 | 1979-02-13 | General Electric Company | Coating method and composition using cationic photoinitiators polythio components and polyolefin components |
JPS534048A (en) | 1975-12-26 | 1978-01-14 | Dainippon Toryo Co Ltd | Method of forming multi-layer coating film |
US4247578A (en) | 1977-01-14 | 1981-01-27 | Henkel Corporation | Interpenetrating dual cure resin compositions |
US4128600A (en) | 1977-01-14 | 1978-12-05 | General Mills Chemicals, Inc. | Interpenetrating dual cure resin compositions |
US4342793A (en) | 1977-01-14 | 1982-08-03 | Henkel Corporation | Interpenetrating dual cure resin compositions |
NL7707669A (nl) | 1977-07-08 | 1979-01-10 | Akzo Nv | Werkwijze voor het bekleden van een substraat met een stralingshardbare bekledingscompositie. |
US4192762A (en) | 1978-04-20 | 1980-03-11 | Union Carbide Corporation | Radiation curable urethane compositions |
US4287116A (en) | 1979-05-22 | 1981-09-01 | Ici Americas Inc. | Polyester urethane-containing molding compositions |
US4675234A (en) | 1980-10-01 | 1987-06-23 | Tarkett Ab | Radiation cured coating and process therefor |
US4377457A (en) | 1980-11-21 | 1983-03-22 | Freeman Chemical Corporation | Dual cure coating compositions |
US4481093A (en) | 1981-10-13 | 1984-11-06 | Desoto, Inc. | Ultraviolet curable basecoats for vacuum metallization |
DE3210051A1 (de) | 1982-03-19 | 1983-09-29 | Basf Farben + Fasern Ag, 2000 Hamburg | Wasserverduennbares ueberzugsmittel zur herstellung der basisschicht eines mehrschichtueberzuges |
US4444954A (en) | 1982-09-30 | 1984-04-24 | The Sherwin-Williams Company | Water reducible quaternary ammonium salt containing polymers |
US4514460A (en) | 1982-10-25 | 1985-04-30 | Becton, Dickinson And Company | Slip resistant surfaces |
US4415604A (en) | 1982-11-12 | 1983-11-15 | Loctite Corporation | Conformal coating and potting system |
US4424252A (en) | 1982-11-12 | 1984-01-03 | Loctite Corporation | Conformal coating systems |
US4532021A (en) | 1983-07-18 | 1985-07-30 | Desoto, Inc. | Adherent ultraviolet cured coatings |
US4526939A (en) | 1983-07-18 | 1985-07-02 | Desoto, Inc. | Thermosetting coating compositions for the sealing of fiber reinforced plastics |
DE3407087C2 (de) | 1984-02-27 | 1994-07-07 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V., 8000 München | Verfahren und Lack zur Herstellung von kratzfesten Beschichtungen |
US4607084A (en) | 1984-06-11 | 1986-08-19 | Celanese Specialty Resins, Inc. | Radiation curable acrylated polyurethane oligomer compositions |
US4618632A (en) | 1985-02-07 | 1986-10-21 | Westinghouse Electric Corp. | UV curable high tensile strength resin composition |
US4634602A (en) | 1986-01-02 | 1987-01-06 | Ppg Industries, Inc. | Primer composition |
DE3606513C2 (de) | 1986-02-28 | 1998-05-07 | Basf Coatings Ag | Dispersionen von vernetzten Polymermikroteilchen in wäßrigen Medien und Verfahren zur Herstellung dieser Dispersionen |
DE3606512A1 (de) | 1986-02-28 | 1987-09-03 | Basf Lacke & Farben | Dispersionen von vernetzten polymermikroteilchen in waessrigen medien, verfahren zur herstellung dieser dispersionen und beschichtungszusammensetzungen, die diese dispersionen enthalten |
US4710542A (en) | 1986-05-16 | 1987-12-01 | American Cyanamid Company | Alkylcarbamylmethylated amino-triazine crosslinking agents and curable compositions containing the same |
DE3628124A1 (de) | 1986-08-19 | 1988-03-03 | Herberts Gmbh | Waessriges ueberzugsmittel, verfahren zu seiner herstellung und dessen verwendung |
DE3628125A1 (de) | 1986-08-19 | 1988-03-03 | Herberts Gmbh | Waessriges ueberzugsmittel, verfahren zu seiner herstellung und dessen verwendung |
US4761435A (en) | 1986-10-03 | 1988-08-02 | Desoto, Inc. | Polyamine-polyene ultraviolet coatings |
US5089376A (en) | 1986-12-08 | 1992-02-18 | Armstrong World Industries, Inc. | Photoimagable solder mask coating |
US4791168A (en) | 1987-04-15 | 1988-12-13 | Basf Corporation, Inmont Division | Polyurethane resins in water-dilutable basecoats having low flash and quick-drying characteristics |
US4786657A (en) | 1987-07-02 | 1988-11-22 | Minnesota Mining And Manufacturing Company | Polyurethanes and polyurethane/polyureas crosslinked using 2-glyceryl acrylate or 2-glyceryl methacrylate |
US4794147A (en) | 1987-07-24 | 1988-12-27 | Basf Corporation, Inmont Division | Novel non-ionic polyurethane resins having polyether backbones in water-dilutable basecoats |
US4952612A (en) | 1987-08-28 | 1990-08-28 | Minnesota Mining And Manufacturing Company | Energy-induced curable compositions |
US4950696A (en) | 1987-08-28 | 1990-08-21 | Minnesota Mining And Manufacturing Company | Energy-induced dual curable compositions |
US4985340A (en) | 1988-06-01 | 1991-01-15 | Minnesota Mining And Manufacturing Company | Energy curable compositions: two component curing agents |
DE3825278A1 (de) | 1988-07-26 | 1990-02-01 | Basf Lacke & Farben | Verfahren zur herstellung von mehrschichtigen, schuetzenden und/oder dekorativen ueberzuegen auf substratoberflaechen |
US4939213A (en) | 1988-12-19 | 1990-07-03 | American Cyanamid Company | Triazine crosslinking agents and curable compositions containing the same |
US5084541A (en) | 1988-12-19 | 1992-01-28 | American Cyanamid Company | Triazine crosslinking agents and curable compositions |
US5013631A (en) | 1989-03-03 | 1991-05-07 | Westinghouse Electric Corp. | Ultraviolet curable conformal coatings |
US4978708A (en) | 1989-04-25 | 1990-12-18 | Basf Corporation | Aqueous-based coating compositions comprising anionic polyurethane principal resin and anionic acrylic grind resin |
EP0402894B1 (de) | 1989-06-16 | 1995-07-26 | Ciba-Geigy Ag | Photoresist |
US5169719A (en) | 1989-10-06 | 1992-12-08 | Basf Corporation | Nonionically and partially anionically stabilized water-dispersible polyurethane/acrylic graft copolymers |
US5601880A (en) | 1990-03-28 | 1997-02-11 | Basf Lacke & Farben, Ag | Process for the production of a multicoat finish and aqueous basecoat suitable for this process |
DE4010176A1 (de) | 1990-03-30 | 1991-10-02 | Basf Lacke & Farben | Verfahren zur herstellung einer mehrschichtigen lackierung und waessriger lack |
CA2048232A1 (en) | 1990-09-05 | 1992-03-06 | Jerry W. Williams | Energy curable pressure-sensitive compositions |
DE4107136A1 (de) | 1991-03-06 | 1992-09-10 | Basf Lacke & Farben | Verfahren zur herstellung einer mehrschichtigen, schuetzenden und/oder dekorativen lackierung |
US5236995A (en) | 1991-03-26 | 1993-08-17 | Basf Corporation | Post-extended anionic polyurethane dispersion |
WO1992020719A1 (en) | 1991-05-15 | 1992-11-26 | Sokol Andrew A | Finishing composition which is curable by uv light and method of using same |
DE4119857A1 (de) | 1991-06-17 | 1992-12-24 | Basf Lacke & Farben | Ueberzugsmittel auf der basis von carboxylgruppenhaltigen polymeren und epoxidharzen |
DE4122265A1 (de) | 1991-07-05 | 1993-01-07 | Hoechst Ag | Polyurethan-dispersionen |
DE4122743C1 (de) | 1991-07-10 | 1992-11-26 | Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung Ev, 8000 Muenchen, De | |
US5234970A (en) | 1991-07-16 | 1993-08-10 | W. R. Grace & Co.-Conn. | Dual curing composition based on isocyanate trimer and use thereof |
DE4123860A1 (de) | 1991-07-18 | 1993-01-21 | Herberts Gmbh | Waessriges ueberzugsmittel und dessen verwendung |
DE4133704A1 (de) | 1991-10-11 | 1993-04-15 | Herberts Gmbh | Katalysatorfreies einkomponenten-ueberzugsmittel und dessen verwendung zur herstellung von saeurebestaendigen lackierungen |
SE9200564L (sv) | 1992-02-26 | 1993-03-15 | Perstorp Ab | Dendritisk makromolekyl av polyestertyp, foerfarande foer framstaellning daerav samt anvaendning daerav |
DE4215070A1 (de) | 1992-05-07 | 1993-11-11 | Herberts Gmbh | Verfahren zur Herstellung von Mehrschichtlackierungen |
DE4222194A1 (de) | 1992-07-07 | 1994-01-13 | Basf Lacke & Farben | Verfahren zur Herstellung einer zweischichtigen Lackierung und für dieses Verfahren geeignete Pulverlacke |
DE4224617A1 (de) | 1992-07-25 | 1994-01-27 | Herberts Gmbh | Wäßriges Überzugsmittel, Verfahren zu dessen Herstellung und dessen Verwendung bei Verfahren zur Mehrschichtlackierung |
DE4228510A1 (de) | 1992-08-27 | 1994-03-03 | Herberts Gmbh | Wäßrige Polyurethanharzdispersion, Verfahren zu deren Herstellung und deren Verwendung in wäßrigen Überzugsmitteln |
US5300328A (en) | 1992-10-23 | 1994-04-05 | Basf Corporation | Partially-defunctionalized aminoplast curing for polymer compositions |
US5356669A (en) | 1992-10-23 | 1994-10-18 | Basf Corporation | Composite color-plus-clear coating utilizing carbamate-functional polymer composition in the clearcoat |
US5605965A (en) | 1992-10-23 | 1997-02-25 | Basf Corporation | High gloss and/or high DOI coating utilizing carbamate-functional polymer composition |
US5747582A (en) * | 1992-10-29 | 1998-05-05 | Bayer Aktiengesellschaft | Aqueous coating compositions and their use for the preparation of coatings that are permeable to water vapor |
US5610224A (en) | 1992-10-30 | 1997-03-11 | Basf Corporation | Water dispersible ionic and nonionic polyamide modified polyurethane resins for use in coating composition |
US6103816A (en) | 1992-10-30 | 2000-08-15 | Ppg Industries Ohio, Inc. | Aqueous aminoplast curable film-forming compositions providing films having resistance to acid etching |
US5409740A (en) | 1992-12-18 | 1995-04-25 | Lord Corporation | Dual-cure method of forming industrial threads |
FR2701268B1 (fr) | 1993-02-05 | 1995-04-14 | Atochem Elf Sa | Peintures à base de poudres de polyamide destinées au revêtement de profilés PVC. |
US6534187B2 (en) | 1993-02-08 | 2003-03-18 | Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. | Coating material and process for the production of functional coatings |
DE4310414A1 (de) | 1993-03-31 | 1994-10-06 | Basf Lacke & Farben | Verfahren zur Herstellung einer zweischichtigen Decklackierung auf einer Substratoberfläche |
DE4320969A1 (de) | 1993-06-24 | 1995-01-05 | Basf Lacke & Farben | Verfahren zur Herstellung von Polyurethanharzen und deren Verwendung sowie die Verwendung von Ethoxyethylpropionat zur Herstellung von Polyurethanharzen |
CA2127761C (en) | 1993-07-16 | 2005-10-18 | Armin Gobel | An aqueous dispersion of polyurethane resins, a method of manufacturing them, coating agents containing them and use thereof |
DE4336206A1 (de) | 1993-10-23 | 1995-04-27 | Hoechst Ag | Wäßrige selbstvernetzende Polyurethan-Vinyl-Hybrid-Dispersionen |
DE4339870A1 (de) | 1993-11-23 | 1995-05-24 | Basf Lacke & Farben | Verfahren zur Herstellung einer zweischichtigen Lackierung und wäßrige Lacke |
DE4406547A1 (de) | 1994-02-28 | 1995-08-31 | Herberts Gmbh | Wäßrige Polyurethanharzdispersion, deren Herstellung und hierzu geeignete Polyurethanmakromere, und ihre Verwendung in wäßrigen Überzugsmitteln |
DE4413737A1 (de) | 1994-04-21 | 1995-10-26 | Herberts Gmbh | Wäßrige Dispersion auf der Basis von Polymer/Polyurethan-Harzen, Verfahren zu deren Herstellung, Überzugsmittel und deren Verwendung |
DE4437535A1 (de) | 1994-10-20 | 1996-04-25 | Basf Lacke & Farben | Polyurethanmodifziertes Polyacrylat |
SE503342C2 (sv) | 1994-10-24 | 1996-05-28 | Perstorp Ab | Hyperförgrenad makromolekyl av polyestertyp samt förfarande för dess framställning |
WO1996037561A2 (de) | 1995-05-19 | 1996-11-28 | Basf Coatings Ag | Wässrige pulverlack-dispersion |
US5965213A (en) | 1996-04-04 | 1999-10-12 | Basf Coatings Ag | Aqueous dispersions of a transparent powder coating |
US5728769A (en) | 1996-06-24 | 1998-03-17 | Ppg Industries, Inc. | Aqueous urethane resins and coating compositins having enhanced humidity resistance |
US5739194A (en) | 1996-06-24 | 1998-04-14 | Ppg Industries, Inc. | Humidity resistant aqueous urethane/acrylic resins and coating compositions |
US5922473A (en) | 1996-12-26 | 1999-07-13 | Morton International, Inc. | Dual thermal and ultraviolet curable powder coatings |
DE19709560C1 (de) | 1997-03-07 | 1998-05-07 | Herberts Gmbh | Überzugsmittel zur Mehrschichtlackierung und Verwendung der Überzugsmittel in einem Verfahren zur Lackierung |
EP0973815B1 (de) | 1997-04-08 | 2003-10-22 | DSM IP Assets B.V. | Strahlungshärtbare bindemittelzusammensetzung mit hoher bruchdehnung und zähigkeit nach härtung |
DE19716020A1 (de) | 1997-04-17 | 1998-10-22 | Basf Ag | Dispersionen enthaltend ein Polyurethan und ein strahlenhärtbares Präpolymer |
EP0903363B1 (de) | 1997-09-22 | 2005-09-28 | Basf Aktiengesellschaft | Verfahren zur Herstellung strahlungshärtbarer, Urethangruppen enthaltender Prepolymere |
DE19853813A1 (de) | 1997-12-10 | 1999-06-17 | Henkel Kgaa | Klebstoff mit mehrstufiger Aushärtung und dessen Verwendung bei der Herstellung von Verbundmaterialien |
EP1084199A2 (de) | 1998-04-01 | 2001-03-21 | BASF Coatings AG | Nicht-ionisch stabilisierte pulverklarlack-dispersion |
DE19814872A1 (de) | 1998-04-02 | 1999-10-07 | Basf Ag | Strahlungshärtbare Zubereitungen |
DE19818735A1 (de) | 1998-04-27 | 1999-10-28 | Herberts Gmbh | Strahlungshärtbare Beschichtungsmittel und deren Verwendung |
US6103316A (en) * | 1998-07-17 | 2000-08-15 | 3M Innovative Properties Company | Method of making electron beam polymerized emulsion-based acrylate pressure sensitive adhesives |
DE19855116A1 (de) | 1998-11-30 | 2000-05-31 | Basf Coatings Ag | Bautenanstrichstoff, Verfahren zu seiner Herstellung und seine Verwendung |
DE19920799A1 (de) * | 1999-05-06 | 2000-11-16 | Basf Coatings Ag | Thermisch und mit aktinischer Strahlung härtbarer Beschichtungsstoff und seine Verwendung |
DE19924674C2 (de) * | 1999-05-29 | 2001-06-28 | Basf Coatings Ag | Thermisch und mit aktinischer Strahlung härtbarer Beschichtungsstoff und seine Verwendung |
DE19930067A1 (de) * | 1999-06-30 | 2001-01-11 | Basf Coatings Ag | Beschichtungsstoff und seine Verwendung zur Herstellung von Füllerschichten und Steinschlagschutzgrundierungen |
DE19930665A1 (de) * | 1999-07-02 | 2001-01-11 | Basf Coatings Ag | Basislack und seine Verwendung zur Herstellung von farb- und/oder effektgebenden Basislackierungen und Mehrschichtlackierung |
DE10004498A1 (de) * | 2000-02-02 | 2001-08-09 | Basf Coatings Ag | Diethyloctandioldicarbamate und Diethyloctandioldiallophanate, Verfahren zu ihrer Herstellung und ihre Verwendung |
ES2250489T3 (es) * | 2000-10-25 | 2006-04-16 | Akzo Nobel Coatings International B.V. | Composicion de revestimiento en suspension en agua fotoactivable. |
US20030083397A1 (en) * | 2001-08-28 | 2003-05-01 | Bradford Christopher J. | Dual cure coating composition and process for using the same |
US20030077394A1 (en) * | 2001-08-28 | 2003-04-24 | Bradford Christophen J. | Dual cure coating composition and process for using the same |
US6835759B2 (en) * | 2001-08-28 | 2004-12-28 | Basf Corporation | Dual cure coating composition and processes for using the same |
US20030078315A1 (en) * | 2001-08-28 | 2003-04-24 | Bradford Christopher J. | Dual cure coating composition and processes for using the same |
-
2002
- 2002-02-15 DE DE10206225A patent/DE10206225C1/de not_active Revoked
-
2003
- 2003-01-31 WO PCT/EP2003/000967 patent/WO2003068417A2/de not_active Application Discontinuation
- 2003-01-31 EP EP03702578A patent/EP1474247B1/de not_active Expired - Lifetime
- 2003-01-31 AU AU2003205718A patent/AU2003205718A1/en not_active Abandoned
- 2003-01-31 US US10/500,741 patent/US7479308B2/en not_active Expired - Fee Related
- 2003-01-31 CA CA002474837A patent/CA2474837A1/en not_active Abandoned
- 2003-01-31 DE DE50312549T patent/DE50312549D1/de not_active Expired - Lifetime
- 2003-01-31 MX MXPA04007523A patent/MXPA04007523A/es active IP Right Grant
- 2003-01-31 AT AT03702578T patent/ATE461756T1/de not_active IP Right Cessation
Non-Patent Citations (1)
Title |
---|
See references of WO03068417A2 * |
Also Published As
Publication number | Publication date |
---|---|
MXPA04007523A (es) | 2004-11-10 |
AU2003205718A8 (en) | 2003-09-04 |
DE10206225C1 (de) | 2003-09-18 |
US7479308B2 (en) | 2009-01-20 |
WO2003068417A2 (de) | 2003-08-21 |
WO2003068417A3 (de) | 2004-02-19 |
CA2474837A1 (en) | 2003-08-21 |
ATE461756T1 (de) | 2010-04-15 |
AU2003205718A1 (en) | 2003-09-04 |
EP1474247B1 (de) | 2010-03-24 |
US20050079293A1 (en) | 2005-04-14 |
DE50312549D1 (de) | 2010-05-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1474247B1 (de) | Verfahren zur herstellung farb- und/oder effektgebender mehrschichtlackierungen | |
EP1337350B1 (de) | Farb- und/oder effektgebende mehrschichtlackierung, verfahren zu ihrer herstellung und ihre verwendung | |
DE10113884B4 (de) | Verfahren zum Beschichten mikroporöser Oberflächen und Verwendung des Verfahrens | |
EP1242496A1 (de) | Verfahren zur herstellung von beschichtungen aus thermisch und mit aktinischer strahlung härtbaren beschichtungsstoffen | |
WO2004035651A1 (de) | Thermisch und mit aktinischer strahlung härtbarer beschichtungsstoff und verfahren zum beschichten mikroporöser oberflächen | |
DE10041634C2 (de) | Wäßrige Dispersion und ihre Verwendung zur Herstellung von thermisch und mit aktinischer Strahlung härtbaren Beschichtungsstoffen, Klebstoffen und Dichtungsmassen | |
EP1322690B1 (de) | Beschichtungsstoffsystem für die herstellung farb- und/oder effektgebender mehrschichtlackierungen auf der basis von mehrkomponentenbeschichtungsstoffen | |
WO2002031015A1 (de) | Lösemittelhaltiges, thermisch und mit aktinischer strahlung härtbares mehrkomponentensystem und seine verwendung | |
WO2001060506A1 (de) | Wässrige pulverlackdispersionen (pulverslurries) und verfahren zu ihrer herstellung | |
WO2001068777A1 (de) | Verfahren zur herstellung mit aktinischer strahlung härtbaren beschichtungen klebschichten und dichtungen | |
WO2004090057A1 (de) | Mit aktinischer strahlung aktivierbare initiatoren enthaltende mischungen sowie zwei- und mehrkomponentensysteme, verfahren zu ihrer herstellung und ihre verwendung | |
DE102005024362A1 (de) | Verfahren zur Herstellung kratzfester gehärteter Materialien | |
DE102004018014A1 (de) | Mindestens drei Komponenten enthaltendes Mehrkomponentensystem, Verfahren zu seiner Herstellung und seine Verwendung | |
WO2002050172A2 (de) | Schaumstofflaminat, verfahren zu seiner herstellung und seine verwendung | |
DE10060399A1 (de) | Wäßriger, effektgebender Beschichtungsstoff, Verfahren zu seiner Herstellung und seine Verwendung | |
DE10101103A1 (de) | Verfahren zur Verhinderung der Vergilbung von Klarlackierungen in farb- und/oder effektgebenden Mehrschichtlackierungen | |
WO2003000432A2 (de) | Verfahren zur reparaturlackierung oder doppellackierung von beschichtungen |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20040408 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL LT LV MK RO |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
RAP2 | Party data changed (patent owner data changed or rights of a patent transferred) |
Owner name: BASF COATINGS GMBH |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REF | Corresponds to: |
Ref document number: 50312549 Country of ref document: DE Date of ref document: 20100506 Kind code of ref document: P |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: VDEP Effective date: 20100324 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100324 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100324 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FD4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100324 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100324 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100625 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100705 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100324 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100324 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100624 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100324 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100324 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100324 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100726 |
|
26N | No opposition filed |
Effective date: 20101228 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100324 |
|
BERE | Be: lapsed |
Owner name: BASF COATINGS A.G. Effective date: 20110131 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110131 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20110131 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20110930 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110131 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110131 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110131 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110131 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110131 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 461756 Country of ref document: AT Kind code of ref document: T Effective date: 20110131 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110131 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100324 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110131 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100324 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100324 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20180329 Year of fee payment: 16 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 50312549 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190801 |