[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP1205667A2 - Gasreibungspumpe - Google Patents

Gasreibungspumpe Download PDF

Info

Publication number
EP1205667A2
EP1205667A2 EP01124630A EP01124630A EP1205667A2 EP 1205667 A2 EP1205667 A2 EP 1205667A2 EP 01124630 A EP01124630 A EP 01124630A EP 01124630 A EP01124630 A EP 01124630A EP 1205667 A2 EP1205667 A2 EP 1205667A2
Authority
EP
European Patent Office
Prior art keywords
gas
rotor
pump
components
gas friction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP01124630A
Other languages
English (en)
French (fr)
Other versions
EP1205667A3 (de
EP1205667B1 (de
Inventor
Armin Conrad
Heinrich Lotz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pfeiffer Vacuum GmbH
Original Assignee
Pfeiffer Vacuum GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pfeiffer Vacuum GmbH filed Critical Pfeiffer Vacuum GmbH
Publication of EP1205667A2 publication Critical patent/EP1205667A2/de
Publication of EP1205667A3 publication Critical patent/EP1205667A3/de
Application granted granted Critical
Publication of EP1205667B1 publication Critical patent/EP1205667B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/02Multi-stage pumps
    • F04D19/04Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps
    • F04D19/046Combinations of two or more different types of pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/08Centrifugal pumps
    • F04D17/16Centrifugal pumps for displacing without appreciable compression
    • F04D17/168Pumps specially adapted to produce a vacuum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/02Multi-stage pumps
    • F04D19/04Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps
    • F04D19/042Turbomolecular vacuum pumps

Definitions

  • the invention relates to a gas friction pump according to the preamble of the first claim.
  • Gas friction pumps of various types are known for the conveyance of gases. Their mode of operation is based on the transmission of impulses from moving Walls on the gas particles. In this way a gas flow is made into the desired one Direction generated.
  • Gas friction pumps operating in a pressure range work in which the mean free path of the gas molecules is large compared to the geometric dimensions of the pump, i.e. in the molecular flow area, are called molecular pumps.
  • the first gas friction pump of this type was presented by Gaede [1], others technical modifications while maintaining the basic principle are constructions by Siegbahn [2], Holweck [3] and Becker [4].
  • the latter is a turbomolecular pump known and has become involved in wide areas of technology and science proven great success. It is therefore used to describe the present invention used as an example.
  • the pumping speed of a turbomolecular pump is essentially dependent on Inlet cross-section of the intake flange, from the average peripheral speed of the rotor blade ring facing the space to be pumped out and its geometric structure, moreover from the internal structure of the pump, through the gradation of pressure ratio and pumping speed between the one individual stages is determined, and not least by that part of the pump or the pump combination, which emits against atmospheric pressure.
  • These conditions can be optimally designed and the speed can be The scope of technical possibilities will be increased so much that the majority of the molecules which are based on the above-mentioned Hit the rotor blade ring and be pumped out can. Not all molecules are recorded that refer to the input cross section of the intake flange.
  • Rotor face which has no gas-promoting structure, formed. Even if the rotor blade ring is further enlarged at the expense of the rotor face, remains the pumping speed is limited by the cross-section of the intake flange. It can no more molecules are pumped out than on the gas producing structure of the Meet entrance level. But a large part of these also bounce off the surface and is therefore not covered by the funding mechanism.
  • the invention has for its object to present a gas friction pump, which compared to conventional constructions with the same cross-section of the intake flange has a significantly higher pumping speed.
  • an additional pump unit is made one or more levels, designed so that most of the Molecules that bounce off the gas-producing structure on another area this structure is reflected and thus subjected to the funding mechanism again is.
  • This effect is due to the essentially concave design of the gas-producing Structure causes.
  • Such a design allows a radial promotion Direction. This allows reflected molecules to be captured again and further be promoted. This means a significant increase in pumping speed with the same intake cross section.
  • the design according to the invention has another great advantage.
  • the concave suction space offers space for components that come from the recipient can protrude into it and thus an extremely effective pumping effect are subject.
  • FIGS. 1-3 the invention is intended to take a turbomolecular pump as an example are explained in more detail. They each show the arrangement according to the invention in Pot-shaped, conical and dome-shaped shape.
  • Fig. 1 shows a gas friction pump with housing 1, which with an intake opening 2 and a gas outlet opening 3 is provided.
  • the rotor shaft 4 is in bearings 5 and 6 fixed and is driven by the motor 7.
  • On the rotor shaft 4 the rotor disks 12 of a turbomolecular pump are attached. These are with one provided gas-producing structure and effect with the stator disks 14, the are also provided with such a structure, the pump effect.
  • the rotor components 21 and the stator components 22 exist each of a cylindrical part 25, 26 and a disc-shaped bottom part 23, 24 and are provided with gas-producing structures.
  • FIG. 2 are a conical design of the additional pump unit 30 with rotor part 31 and stator part 32 and in Fig. 3 a dome-shaped design of the additional Pump unit 40 with rotor part 41 and stator part 42 shown.
  • Molecules e.g. B. coming from A, are partly from the gas-producing structure of the Rotor components recorded and further promoted and partly reflected at B. A large At C, some of the reflected molecules meet a gas-producing structure and can therefore be pumped on or reflected again. As a result a substantial proportion of the molecules that are reflected by the surface, fed back to the conveyor mechanism.
  • suction space 16 created by the concave construction can be used for evacuation and / or degassing components are dipped from the recipient. They are here largely surrounded by pump-active structures and are therefore subject to one extremely effective pumping process.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Non-Positive Displacement Air Blowers (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Rotary Pumps (AREA)

Abstract

Die Erfindung betrifft eine Gasreibungspumpe, welche auf der Seite der Ansaugöffnung (2) mit einer zusätzlichen Pumpeinheit (20) ausgerüstet ist. Diese Pumpeinheit befindet sich innerhalb des Gehäuses (1) und ist konkav ausgebildet. Sie ist derart gestaltet, dass eine Gasförderung auch in radialer Richtung stattfindet. Ein großer Teil der reflektierten Moleküle wird wieder eingefangen und somit dem Fördermechanismus wieder unterworfen. <IMAGE>

Description

Die Erfindung betrifft eine Gasreibungspumpe nach dem Oberbegriff des ersten Patentanspruches.
Zur Förderung von Gasen sind Gasreibungspumpen der verschiedensten Bauart bekannt. Ihre Arbeitsweise beruht auf der Übertragung von Impulsen von bewegten Wänden auf die Gasteilchen. Auf diese Weise wird eine Gasströmung in die gewünschte Richtung erzeugt. Gasreibungspumpen, welche in einem Druckbereich arbeiten, in dem die mittlere freie Weglänge der Gasmoleküle groß ist gegenüber den geometrischen Abmessungen der Pumpe, also im molekularen Strömungsgebiet, werden Molekularpumpen genannt.
Die erste Gasreibungspumpe dieser Art wurde von Gaede [1] vorgestellt, weitere technische Abwandlungen unter Beibehaltung des Grundprinzips sind Konstruktionen von Siegbahn [2], Holweck [3] und Becker [4]. Letztere ist als Turbomolekularpumpe bekannt und hat sich in weiten Bereichen der Technik und Wissenschaft mit großem Erfolg bewährt. Sie wird daher für die Beschreibung der vorliegenden Erfindung als Beispiel herangezogen.
Die im Folgenden beschriebenen Nachteile der bisher bekannten Pumpen und die Beseitigung der Nachteile im Rahmen der Erfindung treffen genau so gut für andere Gasreibungspumpen zu.
Das Saugvermögen einer Turbomolekularpumpe ist im wesentlichen abhängig vom Eingangsquerschnitt des Ansaugflansches, von der mittleren Umfangsgeschwindigkeit des dem auszupumpenden Raum zugewandten Rotorschaufelkranzes und dessen geometrischer Struktur, darüber hinaus von der inneren Struktur der Pumpe, durch die die Abstufung von Druckverhältnis und Saugvermögen zwischen den ein zelnen Stufen bestimmt wird, und nicht zuletzt auch von demjenigen Teil der Pumpe oder der Pumpenkombination, welcher gegen Atmosphärendruck ausstößt. Diese Verhältnisse können so optimal gestaltet werden und die Drehzahl kann im Rahmen der technischen Möglichkeiten so weit erhöht werden, dass der größte Teil der Moleküle, welche auf den o. g. Rotorschaufelkranz treffen, abgepumpt werden können. Hierbei werden nicht alle Moleküle erfasst, welche auf den Eingangsquerschnitt des Ansaugflansches treffen. Ein großer Bereich dieser Fläche wird durch die Rotorstirnfläche, welche keine gasfördernde Struktur aufweist, gebildet. Selbst wenn der Rotorschaufelkranz auf Kosten der Rotorstirnfläche weiter vergrößert wird, bleibt das Saugvermögen durch den Querschnitt des Ansaugflansches begrenzt. Es können nicht mehr Moleküle abgepumpt werden als auf die gasfördernde Struktur der Eingangsstufe treffen. Aber auch von diesen prallt ein großer Teil an der Oberfläche ab und wird somit von dem Fördermechanismus nicht erfasst.
Der Erfindung liegt die Aufgabe zugrunde, eine Gasreibungspumpe vorzustellen, welche gegenüber den herkömmlichen Konstruktionen bei gleichbleibendem Querschnitt des Ansaugflansches ein deutlich höheres Saugvermögen aufweist.
Die Aufgabe wird durch die kennzeichnenden Merkmale des ersten Patentanspruches gelöst. Die Ansprüche 2 - 5 stellen weitere Ausgestaltungsformen der Erfindung dar.
Bei der erfindungsgemäßen Anordnung ist eine zusätzliche Pumpeinheit, die aus einer oder mehreren Stufen bestehen kann, so gestaltet, dass der größte Teil der Moleküle, welche an der gasfördernden Struktur abprallen, auf einen anderen Bereich dieser Struktur reflektiert wird und so dem Fördermechanismus wieder unterworfen ist. Dieser Effekt wird durch die im wesentlichen konkave Bauweise der gasfördernden Struktur bewirkt. Eine solche Bauweise ermöglicht eine Förderung in radialer Richtung. Dadurch können reflektierte Moleküle wieder eingefangen und weiter gefördert werden. Dies bedeutet eine beträchtliche Erhöhung des Saugvermögens bei gleichem Ansaugquerschnitt.
Die erfindungsgemäße Bauweise bringt einen weiteren großen Vorteil mit sich. Der konkav ausgebildete Ansaugraum bietet Platz für Bauteile, welche aus dem Rezipienten dort hinein ragen können und somit einem äußerst effektiven Pumpeffekt unterworfen sind.
Anhand der Figuren 1 - 3 soll die Erfindung am Beispiel einer Turbomolekularpumpe näher erläutert werden. Sie zeigen die erfindungsgemäße Anordnung jeweils in topfförmiger, kegelförmiger und kalottenförmiger Gestalt.
Die Fig. 1 zeigt eine Gasreibungspumpe mit Gehäuse 1, welches mit einer Ansaugöffnung 2 und einer Gasaustrittsöffnung 3 versehen ist. Die Rotorwelle 4 ist in Lagerungen 5 und 6 fixiert und wird durch den Motor 7 angetrieben. Auf der Rotorwelle 4 sind die Rotorscheiben 12 einer Turbomolekularpumpe befestigt. Diese sind mit einer gasfördernden Struktur versehen und bewirken mit den Statorscheiben 14, die ebenfalls mit einer solchen Struktur versehen sind, den Pumpeffekt.
Auf der Seite der Ansaugöffnung 2 ist erfindungsgemäß eine zusätzliche Pumpeinheit 20 angebracht. Diese ist im vorliegenden Beispiel einstufig ausgeführt und weist eine topfförmige Gestalt auf. Die Rotorbauteile 21 und die Statorbauteile 22 bestehen jeweils aus einem zylindrischen Teil 25, 26 und aus einem scheibenförmigen Bodenteil 23, 24 und sind mit gasfördernden Strukturen versehen.
Entsprechend sind in Fig. 2 eine kegelförmige Bauart der zusätzlichen Pumpeinheit 30 mit Rotorteil 31 und Statorteil 32 und in Fig. 3 eine kalottenförmige Bauart der zusätzlichen Pumpeinheit 40 mit Rotorteil 41 und Statorteil 42 dargestellt.
Moleküle, z. B. von A kommend, werden zum Teil von der gasfördernden Struktur der Rotorbauteile erfasst und weiter gefördert und zum Teil bei B reflektiert. Ein großer Teil der reflektierten Moleküle trifft wiederum bei C auf eine gasfördernde Struktur und kann somit weiter gepumpt oder auch wieder reflektiert werden. Als Resultat wird ein wesentlicher Anteil der Moleküle, welche von der Oberfläche reflektiert werden, dem Fördermechanismus wieder zugeführt.
In den durch die konkave Bauweise entstehenden Ansaugraum 16 können zum Evakuieren und/oder Entgasen Bauteile aus dem Rezipienten getaucht werden. Sie sind hier weitgehend von pumpaktiven Strukturen umgeben und unterliegen somit einem äußerst effektiven Pumpprozess.
Literatur
  • [1] W. Gaede, Ann. Phys. 41 (1913) 337 ff.
  • [2] M. Siegbahn, Arch. Math. Astr. Fys. 30 B (1943)
  • [3] F. Holweck, Comptes redus Acad. Science 177 (1923) 43 ff.
  • [4] W. Becker, Vakuum Technik 9/10 (1966)
  • Claims (5)

    1. Gasreibungspumpe, bestehend aus einem Gehäuse (1) mit Ansaugöffnung (2) und Gasaustrittsöffnung (3), wobei sich in dem Gehäuse Rotor- (12) und Statorbauteile (14) zur Förderung von Gasen und zur Erzeugung eines Druckverhältnisses befinden, dadurch gekennzeichnet, dass auf der Seite der Ansaugöffnung (2) innerhalb des Gehäuses (1) eine ein- oder mehrstufige, konkav ausgebildete Pumpeinheit (20, 30, 40) angebracht ist, welche eine gasfördernde Struktur aufweist, die derart gestaltet ist, dass eine Gasförderung in radialer Richtung stattfindet und dass die Rotorbauteile (21, 31, 41) dieser Pumpeinheit und die Rotorbauteile (12) der übrigen Gasreibungspumpe sich auf derselben Rotorwelle (4) befinden.
    2. Gasreibungspumpe nach Anspruch 1, dadurch gekennzeichnet, dass durch die Pumpeinheit (20, 30, 40) eine Gasförderung in axialer und in radialer Richtung stattfindet.
    3. Gasreibungspumpe nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Rotorbauteile (21) und die Statorbauteile (22) der Pumpeinheit (20) jeweils eine topfförmige Gestalt aufweisen.
    4. Gasreibungspumpe nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Rotorbauteile (31) und die Statorbauteile (32) der Pumpeinheit (30) jeweils eine kegelförmige Gestalt aufweisen.
    5. Gasreibungspumpe nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Rotorbauteile (41) und die Statorbauteile (42) der Pumpeinheit (40) eine kalottenförmige Gestalt aufweisen.
    EP01124630A 2000-11-13 2001-10-16 Gasreibungspumpe Expired - Lifetime EP1205667B1 (de)

    Applications Claiming Priority (2)

    Application Number Priority Date Filing Date Title
    DE10056144A DE10056144A1 (de) 2000-11-13 2000-11-13 Gasreibungspumpe
    DE10056144 2000-11-13

    Publications (3)

    Publication Number Publication Date
    EP1205667A2 true EP1205667A2 (de) 2002-05-15
    EP1205667A3 EP1205667A3 (de) 2002-11-20
    EP1205667B1 EP1205667B1 (de) 2009-01-14

    Family

    ID=7663092

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP01124630A Expired - Lifetime EP1205667B1 (de) 2000-11-13 2001-10-16 Gasreibungspumpe

    Country Status (4)

    Country Link
    US (1) US6638010B2 (de)
    EP (1) EP1205667B1 (de)
    JP (1) JP4183409B2 (de)
    DE (2) DE10056144A1 (de)

    Cited By (1)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    EP1852613A3 (de) * 2006-05-04 2014-04-02 Pfeiffer Vacuum Gmbh Vakuumpumpe mit Gehäuse

    Families Citing this family (9)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE10142567A1 (de) * 2001-08-30 2003-03-20 Pfeiffer Vacuum Gmbh Turbomolekularpumpe
    GB0229355D0 (en) * 2002-12-17 2003-01-22 Boc Group Plc Vacuum pumping arrangement
    GB0322883D0 (en) * 2003-09-30 2003-10-29 Boc Group Plc Vacuum pump
    GB0329839D0 (en) * 2003-12-23 2004-01-28 Boc Group Plc Vacuum pump
    KR100610012B1 (ko) * 2004-08-16 2006-08-09 삼성전자주식회사 터보 펌프
    US7927066B2 (en) * 2005-03-02 2011-04-19 Tokyo Electron Limited Reflecting device, communicating pipe, exhausting pump, exhaust system, method for cleaning the system, storage medium storing program for implementing the method, substrate processing apparatus, and particle capturing component
    US20100266426A1 (en) * 2009-04-16 2010-10-21 Marsbed Hablanian Increased volumetric capacity of axial flow compressors used in turbomolecular vacuum pumps
    JP7108377B2 (ja) * 2017-02-08 2022-07-28 エドワーズ株式会社 真空ポンプ、真空ポンプに備わる回転部、およびアンバランス修正方法
    DE102018119747B3 (de) 2018-08-14 2020-02-13 Bruker Daltonik Gmbh Turbomolekularpumpe für massenspektrometer

    Citations (7)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    WO1993023672A1 (de) * 1992-05-16 1993-11-25 Leybold Aktiengesellschaft Gasreibungsvakuumpumpe
    JPH0988872A (ja) * 1995-09-18 1997-03-31 Hitachi Ltd ターボ真空ポンプ
    JPH0988875A (ja) * 1995-09-26 1997-03-31 Daikin Ind Ltd ターボ分子ポンプ
    JPH10246197A (ja) * 1997-03-05 1998-09-14 Ebara Corp ターボ分子ポンプ
    JPH10299688A (ja) * 1997-04-22 1998-11-10 Mitsubishi Heavy Ind Ltd ターボ分子ポンプ
    EP1041287A2 (de) * 1999-03-31 2000-10-04 Seiko Seiki Kabushiki Kaisha Vakuumpumpe
    EP1128069A2 (de) * 2000-02-24 2001-08-29 Pfeiffer Vacuum GmbH Gasreibungspumpe

    Family Cites Families (10)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US3969039A (en) * 1974-08-01 1976-07-13 American Optical Corporation Vacuum pump
    GB8507010D0 (en) * 1985-03-19 1985-04-24 Framo Dev Ltd Compressor unit
    US5020969A (en) * 1988-09-28 1991-06-04 Hitachi, Ltd. Turbo vacuum pump
    FR2641582B1 (fr) * 1989-01-09 1991-03-22 Cit Alcatel Pompe a vide du type a canal de gaede
    JPH05195957A (ja) * 1992-01-23 1993-08-06 Matsushita Electric Ind Co Ltd 真空ポンプ
    GB9318801D0 (en) * 1993-09-10 1993-10-27 Boc Group Plc Improved vacuum pumps
    JPH0886298A (ja) * 1994-09-19 1996-04-02 Hitachi Ltd ドライターボ真空ポンプ
    JP3486000B2 (ja) * 1995-03-31 2004-01-13 日本原子力研究所 ねじ溝真空ポンプ
    GB9725146D0 (en) * 1997-11-27 1998-01-28 Boc Group Plc Improvements in vacuum pumps
    US6193461B1 (en) * 1999-02-02 2001-02-27 Varian Inc. Dual inlet vacuum pumps

    Patent Citations (7)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    WO1993023672A1 (de) * 1992-05-16 1993-11-25 Leybold Aktiengesellschaft Gasreibungsvakuumpumpe
    JPH0988872A (ja) * 1995-09-18 1997-03-31 Hitachi Ltd ターボ真空ポンプ
    JPH0988875A (ja) * 1995-09-26 1997-03-31 Daikin Ind Ltd ターボ分子ポンプ
    JPH10246197A (ja) * 1997-03-05 1998-09-14 Ebara Corp ターボ分子ポンプ
    JPH10299688A (ja) * 1997-04-22 1998-11-10 Mitsubishi Heavy Ind Ltd ターボ分子ポンプ
    EP1041287A2 (de) * 1999-03-31 2000-10-04 Seiko Seiki Kabushiki Kaisha Vakuumpumpe
    EP1128069A2 (de) * 2000-02-24 2001-08-29 Pfeiffer Vacuum GmbH Gasreibungspumpe

    Non-Patent Citations (5)

    * Cited by examiner, † Cited by third party
    Title
    DUDEN REDAKTION: "Der Große Duden - Band 1 - 16., erweiterte Auflage" 1967, DUDENVERLAG , MANNHEIM * Seite 395, Spalte 3, Zeilen 12,13 * *
    PATENT ABSTRACTS OF JAPAN vol. 1997, no. 07, 31. Juli 1997 (1997-07-31) & JP 09 088872 A (HITACHI LTD), 31. März 1997 (1997-03-31) *
    PATENT ABSTRACTS OF JAPAN vol. 1997, no. 07, 31. Juli 1997 (1997-07-31) & JP 09 088875 A (DAIKIN IND LTD), 31. März 1997 (1997-03-31) *
    PATENT ABSTRACTS OF JAPAN vol. 1998, no. 14, 31. Dezember 1998 (1998-12-31) & JP 10 246197 A (EBARA CORP), 14. September 1998 (1998-09-14) *
    PATENT ABSTRACTS OF JAPAN vol. 1999, no. 02, 26. Februar 1999 (1999-02-26) & JP 10 299688 A (MITSUBISHI HEAVY IND LTD;TOKYO ELECTRON LTD), 10. November 1998 (1998-11-10) *

    Cited By (1)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    EP1852613A3 (de) * 2006-05-04 2014-04-02 Pfeiffer Vacuum Gmbh Vakuumpumpe mit Gehäuse

    Also Published As

    Publication number Publication date
    EP1205667A3 (de) 2002-11-20
    US20020064451A1 (en) 2002-05-30
    JP4183409B2 (ja) 2008-11-19
    US6638010B2 (en) 2003-10-28
    JP2002180989A (ja) 2002-06-26
    DE50114655D1 (de) 2009-03-05
    EP1205667B1 (de) 2009-01-14
    DE10056144A1 (de) 2002-05-23

    Similar Documents

    Publication Publication Date Title
    EP1205667A2 (de) Gasreibungspumpe
    EP0828080A2 (de) Gasreibungspumpe
    EP1078166B2 (de) Reibungsvakuumpumpe mit stator und rotor
    WO1993023672A1 (de) Gasreibungsvakuumpumpe
    EP1067290B1 (de) Vakuumpumpe
    DE102012003680A1 (de) Vakuumpumpe
    EP1128069A2 (de) Gasreibungspumpe
    EP0363503B1 (de) Pumpenstufe für eine Hochvakuumpumpe
    DE10353034A1 (de) Mehrstufige Reibungsvakuumpumpe
    EP2039941B1 (de) Vakuumpumpe
    DE3705912C2 (de)
    EP1243796A2 (de) Vakuumpumpe
    DE202004021970U1 (de) Drehbelüfter für Aquarien und Teiche
    WO2000058629A1 (de) Seitenkanalverdichter
    EP0825346A1 (de) Eingangsstufe für eine zweiflutige Gasreibungspumpe
    EP1081387B1 (de) Vakuumpumpe
    EP1164294B1 (de) Gasreibungspumpe
    EP0541989A1 (de) Mehrstufiges Vakuum-Pumpsystem
    DE2526164A1 (de) Turbomolekularvakuumpumpe mit zumindest teilweise glockenfoermig ausgebildetem rotor
    DE10224604B4 (de) Evakuierungseinrichtung
    DE10111546A1 (de) Gasreibungspumpe
    DE112020003410T5 (de) Pumpenaggregat
    DE9305554U1 (de) Zweifach-Verdrängerpumpe
    EP2235376B1 (de) Vorrichtung zum pumpen von gashaltigen suspensionen, insbesondere faserstoffsuspensionen
    DE202018105024U1 (de) Verdichter mit einer Axialdruckausgleichsvorrichtung

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    AK Designated contracting states

    Kind code of ref document: A2

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

    AX Request for extension of the european patent

    Free format text: AL;LT;LV;MK;RO;SI

    PUAL Search report despatched

    Free format text: ORIGINAL CODE: 0009013

    AK Designated contracting states

    Kind code of ref document: A3

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

    AX Request for extension of the european patent

    Free format text: AL;LT;LV;MK;RO;SI

    17P Request for examination filed

    Effective date: 20030425

    AKX Designation fees paid

    Designated state(s): CH DE FR GB IT LI NL

    17Q First examination report despatched

    Effective date: 20080422

    GRAP Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOSNIGR1

    GRAS Grant fee paid

    Free format text: ORIGINAL CODE: EPIDOSNIGR3

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): CH DE FR GB IT LI NL

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: FG4D

    Free format text: NOT ENGLISH

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: EP

    REF Corresponds to:

    Ref document number: 50114655

    Country of ref document: DE

    Date of ref document: 20090305

    Kind code of ref document: P

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: NL

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20090114

    NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed

    Effective date: 20091015

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PL

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: LI

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20091031

    Ref country code: CH

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20091031

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: FR

    Payment date: 20120920

    Year of fee payment: 12

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: ST

    Effective date: 20140630

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20131031

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DE

    Payment date: 20181220

    Year of fee payment: 18

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R119

    Ref document number: 50114655

    Country of ref document: DE

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20200501

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: GB

    Payment date: 20201016

    Year of fee payment: 20

    Ref country code: IT

    Payment date: 20200828

    Year of fee payment: 20

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: PE20

    Expiry date: 20211015

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

    Effective date: 20211015