[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP0363503B1 - Pumpenstufe für eine Hochvakuumpumpe - Google Patents

Pumpenstufe für eine Hochvakuumpumpe Download PDF

Info

Publication number
EP0363503B1
EP0363503B1 EP88116749A EP88116749A EP0363503B1 EP 0363503 B1 EP0363503 B1 EP 0363503B1 EP 88116749 A EP88116749 A EP 88116749A EP 88116749 A EP88116749 A EP 88116749A EP 0363503 B1 EP0363503 B1 EP 0363503B1
Authority
EP
European Patent Office
Prior art keywords
pump
pump stage
rotor
stator
webs
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP88116749A
Other languages
English (en)
French (fr)
Other versions
EP0363503A1 (de
Inventor
Hans-Peter Dr. Kabelitz
Winfried Kaiser
Hans-Günter Dr. Stüber
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Balzers und Leybold Deutschland Holding AG
Original Assignee
Leybold AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Leybold AG filed Critical Leybold AG
Priority to EP88116749A priority Critical patent/EP0363503B1/de
Priority to DE88116749T priority patent/DE3885899D1/de
Priority to JP1262311A priority patent/JP3048583B2/ja
Priority to US07/419,194 priority patent/US4978276A/en
Publication of EP0363503A1 publication Critical patent/EP0363503A1/de
Application granted granted Critical
Publication of EP0363503B1 publication Critical patent/EP0363503B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/02Multi-stage pumps
    • F04D19/04Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps
    • F04D19/046Combinations of two or more different types of pumps

Definitions

  • the invention relates to a pump stage for a high vacuum pump with a rotor and a stator surrounding it, in which the rotor or the stator is provided with a structure which effects the gas delivery.
  • a turbomolecular pump with interlocking stator and rotor blades is known from CH-B-532 199.
  • the inclination of the individual blades decreases from the suction side to the pressure side, and the same applies to their width (radial extension).
  • Turbomolecular pump stages of this type have a relatively low compression (pressure ratio of pressure-side pressure to suction-side pressure) a relatively high pumping speed (pump speed, volume flow per unit of time).
  • their manufacture and assembly is complex and expensive because a large number of pump stages (rotor and stator stages) are required in order to achieve adequate compression.
  • Molecular pump stages have a relatively high compression, but their pumping speed is poor.
  • the present invention has for its object to provide a pump stage of the type mentioned with improved pump properties.
  • a pump stage with these features has both better compression and a higher pumping speed than the usual screw pump stages, especially at relatively high pressures on the suction side. It is compact. Only either the stator or the rotor must be equipped with the webs according to the invention, so that their manufacture, assembly and thus also the service work are considerably easier compared to turbomolecular pump stages.
  • the pump stage according to the invention is particularly suitable for being combined with a thread pump stage, but in particular with two thread pump stages.
  • a high-vacuum pump of this type almost achieves the pump properties of a corresponding turbomolecular pump in terms of compression, pumping speed and ultimate pressure.
  • it also has the advantage that it can be used at higher pressures, up to the viscous flow area, so that the effort for the pre-vacuum generation can be reduced.
  • the high vacuum pump according to FIG. 1 has an outer housing 1 with a central bearing bush 2 projecting inwards.
  • the shaft 3 is supported in the bearing bush 2 by means of a spindle bearing 4.
  • the drive motor 5 and the rotor system 6, 7 are coupled to the shaft 3.
  • the one-piece rotor system has two differently designed rotors 6 and 7.
  • Rotor 6 is cylindrical with smooth outer and inner surfaces 8, 9.
  • the housing 1 is equipped on its inside with a thread 10 and thus simultaneously forms the stator of a thread pump stage.
  • the surface 8 and the thread 10 are the pump-active surfaces of this known thread pump stage, which conveys molecules reaching the pump gap 11 towards the outlet 12.
  • the outside of the bearing bushes 2 is provided with a thread 13 and thus forms the stator of a further thread pump stage.
  • the thread 13 and the inner surface 9 are the pump-active surfaces of the further thread pump stage with the pump gap 14.
  • the gases conveyed upward through the pump gap 14 flow through bores 15 in the bearing bush 2 to the outlet 12.
  • the thread pump stage 8, 10 is preceded by a pump stage according to the invention.
  • This has the rotor 7, which consists of a conically shaped hub part 23 and the webs 24. These webs 24 form a pump stage 7, 25 with the surrounding stator wall 25 in the housing 1. Gas molecules that get between the individual webs 24 or into the gap 26 are transferred from the pump stage 24, 25 according to the invention in the direction of the pump gap 11 of the molecular pump stage 6 , 10 promoted.
  • the webs 24 are provided on the conical hub part 23 and rotate with the rotor system 6, 7.
  • the webs 24 are provided on the stator wall 25.
  • the gap 26 is between the smooth outer surface of the hub part 23 in this case and the inner edges of the webs 24.
  • the width of the gaps 11, 14 and 26 should be as small as possible. In practice, as is known for molecular pump stages, it is a few tenths of a millimeter.
  • FIG. 2 Details of the design of the rotor 7 of the pump stage according to the invention can be seen in FIG. 2.
  • the outer radius r of the rotor 7 is practically identical to the radius of the cylindrical stator inner wall 25 (except for the gap 26).
  • the webs 24 On the suction side, the webs 24 have an inclination or an angle of attack ⁇ of approximately 45 °.
  • width b1 corresponds to about a third of the radius r, where r z. B. can be 50 to 60 mm. With these size ratios, the annular area (gas inlet area) defined by the width b 1 of the webs 24 makes up more than 50% of the rotor end face.
  • the webs 24 On the pressure side, the webs 24 have an inclination or a setting angle ⁇ of approximately 15 °. Their width b2 corresponds to about a tenth of the radius r.
  • the pump channels formed by the hub part 23, the webs 24 and the stator wall 25 open into the thread 10 of the subsequent thread pump stage.
  • nineteen webs 24 are evenly distributed over the circumference of the conical hub part 23. They each extend over the angle ⁇ . This angle is expediently of the order of 90 °.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Non-Positive Displacement Air Blowers (AREA)

Description

  • Die Erfindung bezieht sich auf eine Pumpenstufe für eine Hochvakuumpumpe mit einem Rotor und einem diesen umgebenden Stator, bei welcher der Rotor oder der Stator mit einer die Gasförderung bewirkenden Struktur versehen ist.
  • Es ist bekannt, bei Hochvakuumpumpen Molekularpumpstufen oder Turbomolekularpumpstufen einzusetzen. Bei Molekularpumpen sind eine sich bewegende Rotorwand und eine ruhende Statorwand so gestaltet und beabstandet, daß die von den Wandungen auf dazwischen befindliche Gasmoleküle übertragenen Impuse eine bevorzugte Richtung haben. In der Regel sind Rotor- oder Statorwand mit spiral- oder wendelförmigen Vertiefungen oder Vorsprüngen zur Erzielung der bevorzugten Förderrichtung ausgerüstet. Bei Turbomolekularpumpstufen sind nach Art einer Turbine ineinandergreifende Stator- und Rotorschaufeln vorgesehen. Die Schaufeln übertragen die gewünschten Impulse auf die zu fördernden Gasmoleküle, und zwar bevorzugt in Förderrichtung.
  • Eine Turbomolekularpumpe mit ineinandergreifenden Stator- und Rotorschaufeln ist aus der CH-B-532 199 bekannt. Die Neigung der einzelnen Schaufeln nimmt von der Saugseite zur Druckseite ab, desgl. ihre Breite (radiale Erstreckung). Turbomolekularpumpstufen dieser Art haben eine relativ niedrige Kompression (Druckverhältnis von druckseitigem Druck zu saugseitigem Druck), aber ein relativ hohes Saugvermögen (Pumpgeschwindigkeit, Volumendurchfluß pro Zeiteinheit). Ihre Herstellung und Montage ist jedoch aufwendig und teuer, weil sehr viele Pumpstufen (Rotor- und Statorstufen) benötigt werden, um eine ausreichende Kompression zu erzielen. Molekularpumpstufen haben eine relativ hohe Kompression, ihr Saugvermögen ist jedoch schlecht.
  • Aus der Europäischen Patentanmeldung 142 208 ist es bekannt, das Saugvermögen einer Molekularpumpe dadurch zu verbessern, daß ihr eine gesonderte Pumpstufe saugseitig vorgelagert wird. Diese Pumpstufe umfaßt statorseitig einen wendelförmigen Vorsprung. Dieser Vorsprung ist die Fortsetzung des wendelförmigen Vorsprunges der Molekularpumpe in Richtung Saugseite. Weiterhin sind dem wendelförmigen Vorsprung rotorseitig Schaufelblätter zugeordnet, die sich radial und parallel zur Drehachse des Rotors erstrecken. Eine Pumpenstufe dieser Art ist ebenfalls relativ aufwendig in ihrer Herstellung, da sowohl rotorseitig als auch statorseitig Strukturen vorhanden sein müssen. Außerdem ist die Kompression dieser Pumpenstufen sehr klein.
  • Der vorliegenden Erfindung liegt die Aufgabe zugrunde, eine Pumpenstufe der eingangs genannten Art mit verbesserten Pumpeigenschaften zu schaffen.
  • Erfindungsgemäß wird diese Aufgabe durch die kennzeichnenden Merkmale im Patentanspruch 1 gelöst. Eine Pumpenstufe mit diesen Merkmalen hat im Vergleich zu den üblichen Gewindepumpenstufen sowohl eine bessere Kompression als auch ein höheres Saugvermögen, vor allem bei relativ hohen Drücken auf der Saugseite. Sie ist kompakt. Nur entweder der Stator oder der Rotor müssen mit den erfindungsgemäßen Stegen ausgerüstet sein, so daß ihre Herstellung, Montage und damit auch die Service-Arbeiten im Vergleich zu Turbomolekularpumpstufen wesentlich einfacher sind.
  • Aufgrund ihrer besonderen Pumpeigenschaften ist die erfindungsgemäße Pumpstufe besonders geeignet, mit einer Gewindepumpenstufe, insbesondere aber mit zwei Gewindepumpenstufen, kombiniert zu werden. Eine Hochvakuumpumpe dieser Art erreicht bezüglich Kompression, Saugvermögen und Enddruck nahezu die Pumpeigenschaften einer entsprechenden Turbomolekularpumpe. Darüber hinaus hat sie noch den Vorteil, daß sie zu höheren Drücken hin, bis in den viskosen Strömungsbereich einsetzbar ist, so daß der Aufwand für die Vorvakuumerzeugung reduziert werden kann.
  • Weitere Vorteile und Einzelheiten der Erfindung sollen anhand der Figuren 1 und 2 erläutert werden. Es zeigen
    • Figur 1 einen Schnitt durch eine Hochvakuumpumpe mit einer erfindungsgemäß ausgebildeten Pumpstufe, deren Rotor teilweise in Seitenansicht dargestellt ist, und
    • Figur 2 eine Ansicht des Rotors der erfindungsgemäßen Pumpstufe nach Figur 1.
  • Die Hochvakuumpumpe nach Figur 1 weist ein äußeres Gehäuse 1 mit einer zentralen, nach innen hineinragenden Lagerbuchse 2 auf. In der Lagerbuchse 2 stützt sich die Welle 3 mittels einer Spindellagerung 4 ab. Mit der Welle 3 ist der Antriebsmotor 5 und das Rotorsystem 6, 7 gekoppelt.
  • Das einstückige Rotorsystem weist zwei unterschiedlich gestaltete Rotoren 6 und 7 auf. Rotor 6 ist zylindrisch mit glatter äußerer und innerer Oberfläche 8, 9 ausgebildet. Im Bereich der Oberfläche 8 ist das Gehäuse 1 auf seiner Innenseite mit einem Gewinde 10 ausgerüstet und bildet damit gleichzeitig den Stator einer Gewindepumpenstufe. Die Oberfläche 8 und das Gewinde 10 sind die pumpaktiven Flächen dieser an sich bekannten Gewindepumpenstufe, die in den Pumpspalt 11 gelangende Moleküle in Richtung Auslaß 12 fördert.
  • Im Bereich der inneren Oberfläche 9 des Rotors 6 ist die Außenseite der Lagerbuchsen 2 mit einem Gewinde 13 versehen und bildet damit den Stator einer weiteren Gewindepumpenstufe. Das Gewinde 13 und die innere Oberfläche 9 sind die pumpaktiven Flächen der weiteren Gewindepumpenstufe mit dem Pumpspalt 14. Die durch den Pumpspalt 14 von unten nach oben geförderten Gase strömen durch Bohrungen 15 in der Lagerbuchse 2 zum Auslaß 12.
  • Der Gewindepumpenstufe 8, 10 ist eine Pumpstufe nach der Erfindung vorgelagert. Diese weist den Rotor 7 auf, der aus einem konisch geformten Nabenteil 23 und den Stegen 24 besteht. Diese Stege 24 bilden mit der sie umgebenden Statorwand 25 im Gehäuse 1 eine Pumpstufe 7, 25. Gasmoleküle, die zwischen die einzelnen Stege 24 oder in den Spalt 26 gelangen, werden von der erfindungsgemäßen Pumpenstufe 24, 25 in Richtung des Pumpspaltes 11 der Molekularpumpstufe 6, 10 gefördert.
  • Beim dargestellten Ausführungsbeispiel sind die Stege 24 auf dem konischen Nabenteil 23 vorgesehen und rotieren mit dem Rotorsystem 6, 7. Es besteht auch die Möglichkeit, daß die Stege 24 an der Statorwand 25 vorgesehen sind. Bei einer derartigen Ausbildung befindet sich der Spalt 26 zwischen der in diesem Falle glatten äußeren Oberfläche des Nabenteils 23 und den Innenkanten der Stege 24. Die Breite der Spalte 11, 14 und 26 soll möglichst klein sein. Sie beträgt - wie bei Molekularpumpstufen bekannt - in der Praxis wenige Zehntel Millimeter.
  • Einzelheiten der Gestaltung des Rotors 7 der erfindungsgemäßen Pumpstufe sind der Figur 2 entnehmbar. Der äußere Radius r des Rotors 7 ist praktisch identisch mit dem Radius der zylindrischen Statorinnenwand 25 (bis auf den Spalt 26). Saugseitig haben die Stege 24 eine Neigung bzw. einen Anstellwinkel α von ca. 45°.
  • Ihre Breite b₁ entspricht etwa einem Drittel des Radius r, wobei r z. B. 50 bis 60 mm betragen kann. Bei diesen Größenverhältnissen macht die durch die Breite b₁ der Stege 24 definierte Ringfläche (Gaseintrittsfläche) mehr als 50% der Rotorstirnseite aus.
  • Druckseitig haben die Stege 24 eine Neigung bzw. einen Anstellwinkel β von ca. 15°. Ihre Breite b₂ entspricht etwa einem Zehntel des Radius r. Die vom Nabenteil 23, den Stegen 24 und der Statorwand 25 gebildeten Pumpkanäle münden in das Gewinde 10 der nachfolgenden Gewindepumpenstufe.
  • Beim dargestellten Ausführungsbeispiel sind neunzehn Stege 24 gleichmäßig über den Umfang des konischen Nabenteils 23 verteilt. Sie erstrecken sich jeweils über den Winkel α. Dieser Winkel liegt zweckmäßig in der Größenordnung von 90°.

Claims (10)

  1. Pumpenstufe für eine Hochvakuumpumpe mit einem Rotor (7) und einem Stator (1), bei welcher der Rotor oder der Stator mit einer die Gasförderung bewirkenden Struktur versehen ist, dadurch gekennzeichnet, daß die sich radial erstreckenden Stege (24) die folgenden Merkmale haben:
    - saugseitig beträgt das Verhältnis des Radius r der inneren Oberfläche der Statorwandung (25) zur Stegbreite b₁ 2:1 bis 5:1, vorzugsweise 3:1;
    - druckseitig beträgt das Verhältnis des Radius r der inneren Oberfläche der Statorwandung (25) zur Stegbreite b₂ 10:1 bis 12:1;
    - die Steigung der Stege (24) nimmt von der Saugseite zur Druckseite von 40° bis 50°, vorzugsweise 45°, auf 10° bis 20°, vorzugsweise 15°, ab.
  2. Pumpenstufe nach Anspruch 1, dadurch gekennzeichnet, daß die Stege (24) Bestandteil des Rotors (7) sind.
  3. Pumpenstufe nach Anspruch 1, dadurch gekennzeichnet, daß die Stege (24) Bestandteil des Stators (1, 25) sind.
  4. Pumpenstufe nach einem der Ansprüche 1, 2 oder 3, dadurch gekennzeichnet, daß der Rotor einen konisch geformten Nabenteil (23) aufweist.
  5. Pumpenstufe nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß sich die Stege (24) über etwa 90° des Umfanges des Rotors (7) erstrecken.
  6. Pumpenstufe nach einem der vorhergehenden Ansprüche, dadurch ekennzeichnet, daß zehn bis zwanzig parallel geführte Stege (24) auf dem Umfang gleichmäßig verteilt angeordnet sind.
  7. Pumpenstufe nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß sie mit einer Gewindepumpenstufe (8, 10) kombiniert ist und daß die Rotoren (6, 7) der Pumpenstufe (24, 25) und der Gewindepumpenstufe (8, 10) gemeinsam auf einer Welle (3) angeordnet sind.
  8. Pumpenstufe nach Anspruch 7, dadurch gekennzeichnet, daß sich die Welle (3) in einer Lagerbuchse (2) abstützt, daß der Rotor (6) die Form eines Hohlzylinders hat, daß die Außenseite des Rotors (6) mit dem Stator bzw. Gehäuse (1) eine erste Gewindepumpenstufe (8, 10) mit dem Pumpspalt (11) bildet und daß die Innenseite des Rotors (6) mit der Außenseite der Lagerbuchse (2) eine weitere Gewindestufe (9, 13) mit dem Pumpspalt (14) bildet.
  9. Pumpenstufe nach Anspruch 8, dadurch gekennzeichnet, daß sich der Pumpspalt (14) über Bohrungen (15) in der Lagerbuchse (2) mit dem Auslaß (12) verbunden ist.
  10. Pumpenstufe nach den Ansprüchen 2, 5 oder 6, dadurch gekennzeichnet, daß der Rotor (6, 7) einstückig ausgebildet ist und daß die die Gasförderung bewirkende Struktur der Gewindepumpenstufe(n) (8, 10; 9, 13) statorseitig angeordnet sind.
EP88116749A 1988-10-10 1988-10-10 Pumpenstufe für eine Hochvakuumpumpe Expired - Lifetime EP0363503B1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP88116749A EP0363503B1 (de) 1988-10-10 1988-10-10 Pumpenstufe für eine Hochvakuumpumpe
DE88116749T DE3885899D1 (de) 1988-10-10 1988-10-10 Pumpenstufe für eine Hochvakuumpumpe.
JP1262311A JP3048583B2 (ja) 1988-10-10 1989-10-09 高真空ポンプ用のポンプ段
US07/419,194 US4978276A (en) 1988-10-10 1989-10-10 Pump stage for a high-vacuum pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP88116749A EP0363503B1 (de) 1988-10-10 1988-10-10 Pumpenstufe für eine Hochvakuumpumpe

Publications (2)

Publication Number Publication Date
EP0363503A1 EP0363503A1 (de) 1990-04-18
EP0363503B1 true EP0363503B1 (de) 1993-11-24

Family

ID=8199438

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88116749A Expired - Lifetime EP0363503B1 (de) 1988-10-10 1988-10-10 Pumpenstufe für eine Hochvakuumpumpe

Country Status (4)

Country Link
US (1) US4978276A (de)
EP (1) EP0363503B1 (de)
JP (1) JP3048583B2 (de)
DE (1) DE3885899D1 (de)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0692799B2 (ja) * 1989-11-24 1994-11-16 ダイキン工業株式会社 真空ポンプ
JPH03166251A (ja) * 1989-11-24 1991-07-18 Sekisui Chem Co Ltd 繊維強化塩素含有樹脂組成物、該組成物を用いた成形体及びその製造方法
DE4216237A1 (de) * 1992-05-16 1993-11-18 Leybold Ag Gasreibungsvakuumpumpe
TW504548B (en) * 1998-06-30 2002-10-01 Ebara Corp Turbo molecular pump
GB9927493D0 (en) * 1999-11-19 2000-01-19 Boc Group Plc Improved vacuum pumps
DE10008691B4 (de) * 2000-02-24 2017-10-26 Pfeiffer Vacuum Gmbh Gasreibungspumpe
JP2002138987A (ja) * 2000-10-31 2002-05-17 Seiko Instruments Inc 真空ポンプ
US6503050B2 (en) * 2000-12-18 2003-01-07 Applied Materials Inc. Turbo-molecular pump having enhanced pumping capacity
US6790016B2 (en) * 2002-02-04 2004-09-14 Ching-Yuan Chiang Motor and its blade unit
DE10224604B4 (de) * 2002-06-04 2014-01-30 Oerlikon Leybold Vacuum Gmbh Evakuierungseinrichtung
JP4141199B2 (ja) * 2002-08-13 2008-08-27 株式会社大阪真空機器製作所 分子ポンプのシール構造
GB0322883D0 (en) * 2003-09-30 2003-10-29 Boc Group Plc Vacuum pump
GB0424199D0 (en) * 2004-11-01 2004-12-01 Boc Group Plc Vacuum pump
GB0503946D0 (en) * 2005-02-25 2005-04-06 Boc Group Plc Vacuum pump

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US109926A (en) * 1870-12-06 Improvement in turbine water-wheels
FR887499A (fr) * 1941-11-04 1943-11-15 Brown Pompe moléculaire
US2941780A (en) * 1954-06-17 1960-06-21 Garrett Corp Elastic fluid turbine and compressor wheels
US3697190A (en) 1970-11-03 1972-10-10 Walter D Haentjens Truncated conical drag pump
FR2446934A1 (fr) * 1979-01-19 1980-08-14 Cit Alcatel Pompe rotative a vide eleve
NL8303927A (nl) * 1983-11-16 1985-06-17 Ultra Centrifuge Nederland Nv Hoog-vacuum moleculair pomp.
JPS61145394A (ja) * 1984-12-18 1986-07-03 Tokuda Seisakusho Ltd 分子ポンプ
JPS61226597A (ja) * 1985-03-30 1986-10-08 Shimadzu Corp タ−ボ分子ポンプ用ロ−タ
DE3613344A1 (de) * 1986-04-19 1987-10-22 Pfeiffer Vakuumtechnik Turbomolekular-vakuumpumpe fuer hoeheren druck
FR2611818B1 (fr) * 1987-02-26 1991-04-19 Cit Alcatel Pompe rotative a vide moleculaire du type a canal de gaede

Also Published As

Publication number Publication date
JPH02149798A (ja) 1990-06-08
US4978276A (en) 1990-12-18
EP0363503A1 (de) 1990-04-18
DE3885899D1 (de) 1994-01-05
JP3048583B2 (ja) 2000-06-05

Similar Documents

Publication Publication Date Title
EP0363503B1 (de) Pumpenstufe für eine Hochvakuumpumpe
EP0640185B1 (de) Gasreibungsvakuumpumpe
EP1252445B1 (de) Turbomolekularpumpe
EP2295812A1 (de) Vakuumpumpe
EP1067290B1 (de) Vakuumpumpe
DE102009021620B4 (de) Vakuumpumpe
DE3728154A1 (de) Mehrstufige molekularpumpe
EP2039941B1 (de) Vakuumpumpe
EP1937980A1 (de) Rotor für eine strömungsmaschine und eine strömungsmaschine
EP0567874B1 (de) Strömungsmaschine zur Gasverdichtung
EP1243796B1 (de) Vakuumpumpe
EP2253851A2 (de) Vakuumpumpe
DE3032967C2 (de)
DE1628271C3 (de) Mehrstufiger Flüssigkeitsringverdichter bzw. mehrstufige Flüssigkeitsringpumpe
WO2003031823A1 (de) Axial fördernde reibungsvakuumpumpe
EP3158198A1 (de) Flüssigkeitsring-verdichtungsmaschine
DE10224604A1 (de) Evakuierungseinrichtung
EP1200739A1 (de) Reibungsvakuumpumpe mit pumpaktiven elementen
EP2385257B1 (de) Vakuumpumpstufe
WO2004102003A1 (de) Flüssigkeitsringgaspumpe
DE29809258U1 (de) Flüssigkeitsringgaspumpe in Lagerträgerbauweise
EP0597866B1 (de) Steuerkörper für einen flüssigkeitsringverdichter
DE20200839U1 (de) Zweistufige Flüssigkeitsringpumpe in Blockbauweise
DE3725164A1 (de) Molekularpumpe
EP0284712A2 (de) Flügelzellenpumpe

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE FR GB LI

17P Request for examination filed

Effective date: 19901005

17Q First examination report despatched

Effective date: 19911202

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB LI

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19931130

REF Corresponds to:

Ref document number: 3885899

Country of ref document: DE

Date of ref document: 19940105

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19971002

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19981031

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19981031

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20040913

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20040916

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20040917

Year of fee payment: 17

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051010

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060503

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20051010

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060630

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20060630