[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP1258786A1 - Self-compensating spring for a mechanical oscillator of balance-spring type - Google Patents

Self-compensating spring for a mechanical oscillator of balance-spring type Download PDF

Info

Publication number
EP1258786A1
EP1258786A1 EP01810497A EP01810497A EP1258786A1 EP 1258786 A1 EP1258786 A1 EP 1258786A1 EP 01810497 A EP01810497 A EP 01810497A EP 01810497 A EP01810497 A EP 01810497A EP 1258786 A1 EP1258786 A1 EP 1258786A1
Authority
EP
European Patent Office
Prior art keywords
cte
oscillator
spring
coefficient
balance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP01810497A
Other languages
German (de)
French (fr)
Other versions
EP1258786B1 (en
Inventor
Jacques Baur
Francois Paschoud
Patrick Sol
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rolex SA
Original Assignee
Montres Rolex SA
Rolex SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Montres Rolex SA, Rolex SA filed Critical Montres Rolex SA
Priority to DE60132878T priority Critical patent/DE60132878T2/en
Priority to EP01810497A priority patent/EP1258786B1/en
Priority to DE1258786T priority patent/DE1258786T1/en
Priority to US10/139,526 priority patent/US6705601B2/en
Priority to JP2002142837A priority patent/JP4813742B2/en
Publication of EP1258786A1 publication Critical patent/EP1258786A1/en
Application granted granted Critical
Publication of EP1258786B1 publication Critical patent/EP1258786B1/en
Priority to JP2009254944A priority patent/JP2010044090A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C27/00Alloys based on rhenium or a refractory metal not mentioned in groups C22C14/00 or C22C16/00
    • C22C27/02Alloys based on vanadium, niobium, or tantalum
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B17/00Mechanisms for stabilising frequency
    • G04B17/04Oscillators acting by spring tension
    • G04B17/06Oscillators with hairsprings, e.g. balance
    • G04B17/066Manufacture of the spiral spring
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B17/00Mechanisms for stabilising frequency
    • G04B17/20Compensation of mechanisms for stabilising frequency
    • G04B17/22Compensation of mechanisms for stabilising frequency for the effect of variations of temperature
    • G04B17/227Compensation of mechanisms for stabilising frequency for the effect of variations of temperature composition and manufacture of the material used

Definitions

  • the present invention relates to a self-compensating hairspring for mechanical balance-spring oscillator watch movement or other precision instrument, in Nb-Hf paramagnetic alloy with a thermal coefficient of the positive Young's module (CTE), able to compensate for thermal expansions of the balance spring and balance.
  • CTE positive Young's module
  • the coefficients of thermal expansion ⁇ b of the most widely used balance wheel materials are in the range of 10 to 20 ppm / ° C.
  • the spiral alloys must therefore have a corresponding self-compensation term.
  • the precision desired for watches requires the ability to adjust the self-compensation term in manufacturing, in a controlled manner, with a tolerance of a few ppm / ° C around the value sought.
  • Ferromagnetic alloys based on iron, nickel or cobalt currently used for the production of hairsprings have an abnormally positive CTE in a range of approximately 30 ° C around room temperature, due to proximity of their Curie temperature. In the vicinity of this temperature, the magnetostrictive effects which decrease the Young's modulus of these alloys disappear, causing an increase in the module. Besides the fact that this range of temperature is relatively narrow, these alloys are sensitive to the effects of magnetic fields. These modify the elastic properties of hairsprings irreversibly and thereby change the natural frequency of the oscillator mechanical. In addition, the elastic properties of ferromagnetic alloys vary with the rate of work hardening cold, which requires controlling this parameter exactly during the production of the hairspring.
  • the CTE values sought for the balance springs produced with this family of alloys are adjusted by treatment thermal precipitation which also fixes the shape final hairspring by relaxation.
  • Document D3 cites in particular as being susceptible to be suitable for the production of balance springs for oscillators watch movements, alloys in which Nb or Ta are combined with Zr, Ti or Hf which found in these alloys in such proportions that they are able to precipitate in two phases.
  • the adjustment of the CTE during the fixing operation is hard to handle. Indeed, the texture that controls the CTE is modified during fixing by recrystallization.
  • the triggering of the recrystallization and its course depend on the concentration oxygen, work hardening rate and temperature. It has been found that with these alloys, the range of temperature on which the recrystallization takes place is very narrow (around 50 ° C).
  • the variation of CTE induced is large, around 150 ppm / ° C between start and the end of recrystallization.
  • the narrow temperature range in which the recrystallization takes place and this strong variation in the CTE makes the adjustment of the CTE of Nb-Zr-O alloys difficult to reproduce.
  • the narrowness of this temperature range is due to the fact that this reaction is triggered by the precipitation of the phases rich in Zr from the solid solution.
  • the object of the present invention is an alloy which allows the disadvantages to be remedied, at least in part of the above-mentioned alloys.
  • the invention therefore relates to a self-compensating hairspring for mechanical balance-spring oscillator watch movement or other precision instrument, in Nb-Hf paramagnetic alloy with a thermal coefficient of the positive Young's module (CTE), able to compensate for thermal expansion of the balance spring and balance wheel, depending on the claim 1.
  • CTE positive Young's module
  • the alloy from which the hairspring object of the invention has several advantages.
  • Hf is in solid solution in Nb on a very wide concentration range (up to 30% at.).
  • the low concentration of Hf necessary for having the required CTE of 13 ppm / ° C improves the deformation capacity hairspring and facilitates wire drawing operations.
  • the Nb-Hf alloy hairspring may still contain a or several additional elements like Ti, Ta, Zr, V, Mo, W, Cr in concentrations such that no precipitation has place during the fixing operation of the hairspring shape.

Landscapes

  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Springs (AREA)

Abstract

Ce spiral autocompensateur pour oscillateur mécanique balancier-spiral de mouvement d'horlogerie ou autre instrument de précision, en alliage paramagnétique Nb-Hf possédant un coefficient thermique du module de Young (CTE) tel, qu'il permet d'annuler substantiellement l'expression: ((1) / (E))((dE) / (dT))+3αs -2αb avec: E: module de Young du spiral de l'oscillateur, (1/E) (dE/dT) = CTE = coefficient thermique du module de Young du spiral de l'oscillateur, αs : coefficient de dilatation thermique du spiral de l'oscillateur, αb : coefficient de dilatation du balancier de l'oscillateur, contient entre 2% et 30% at. de Hf. <IMAGE>This self-compensating hairspring for mechanical oscillator balance-spring of clockwork movement or other precision instrument, made of Nb-Hf paramagnetic alloy having a Young's modulus thermal coefficient (CTE) such that it allows to substantially cancel the expression : ((1) / (E)) ((dE) / (dT)) + 3αs -2αb with: E: Young's modulus of the oscillating hairspring, (1 / E) (dE / dT) = CTE = thermal coefficient of Young's modulus of the oscillator balance spring, αs: coefficient of thermal expansion of the oscillator balance spring, αb: coefficient of expansion of the oscillator pendulum, contains between 2% and 30% at. from Hf. <IMAGE>

Description

La présente invention se rapporte à un spiral auto-compensateur pour oscillateur mécanique balancier-spiral de mouvement d'horlogerie ou autre instrument de précision, en alliage paramagnétique Nb-Hf possédant un coefficient thermique du module de Young (CTE) positif, apte à compenser les dilatations thermiques du spiral et du balancier.The present invention relates to a self-compensating hairspring for mechanical balance-spring oscillator watch movement or other precision instrument, in Nb-Hf paramagnetic alloy with a thermal coefficient of the positive Young's module (CTE), able to compensate for thermal expansions of the balance spring and balance.

Toutes les méthodes proposées pour compenser ces variations de fréquence sont basées sur la considération que cette fréquence propre dépend exclusivement du rapport entre la constante du couple de rappel exercé par le spiral sur le balancier et le moment d'inertie de ce dernier, comme indiqué dans la relation suivante: F = 1 C I

  • F = fréquence propre de l'oscillateur avec
  • C = constante du couple de rappel exercé par le spiral de l'oscillateur
  • I = moment d'inertie du balancier de l'oscillateur
  • All the methods proposed to compensate for these frequency variations are based on the consideration that this natural frequency depends exclusively on the ratio between the constant of the restoring torque exerted by the balance spring on the balance wheel and the moment of inertia of the latter, as indicated in the following relationship: F = 1 VS I
  • F = natural frequency of the oscillator with
  • C = constant of the restoring torque exerted by the oscillator hairspring
  • I = moment of inertia of the oscillator pendulum
  • Depuis la découverte des alliages à base de Fe-Ni possédant un coefficient thermique du module de Young (ci-après CTE) positif, la compensation thermique de l'oscillateur mécanique est obtenue en ajustant le CTE du spiral en fonction des coefficients de dilatation thermique du spiral et du balancier. En effet, en exprimant le couple et l'inertie à partir des caractéristiques du spiral et du balancier, puis en dérivant l'équation (1) par rapport à la température, on obtient la variation thermique relative de la fréquence propre:

    Figure 00020001
    avec:

  • E: module de Young du spiral de l'oscillateur 1 / E dE / dT= CTE = coefficient thermique du module de Young du spiral de l'oscillateur
  • αs : coefficient de dilatation thermique du spiral de l'oscillateur
  • αb : coefficient de dilatation thermique du balancier de l'oscillateur
  • Since the discovery of Fe-Ni-based alloys with a positive Young's modulus thermal coefficient (hereinafter CTE), the thermal compensation of the mechanical oscillator is obtained by adjusting the CTE of the hairspring according to the coefficients of thermal expansion balance spring and balance wheel. Indeed, by expressing the torque and inertia from the characteristics of the balance spring and the pendulum, then by deriving equation (1) with respect to the temperature, we obtain the relative thermal variation of the natural frequency:
    Figure 00020001
    with:
  • E: Young's modulus of the oscillator hairspring 1 / E dE / dT = CTE = thermal coefficient of the Young's modulus of the oscillator hairspring
  • α s : coefficient of thermal expansion of the balance spring of the oscillator
  • α b : coefficient of thermal expansion of the pendulum of the oscillator
  • En ajustant le terme d'autocompensation A = ½(CTE+3αs ) à la valeur du coefficient de dilatation thermique du balancier, il est possible d'annuler l'équation (2). Ainsi, la variation thermique de la fréquence propre de l'oscillateur mécanique peut être éliminée.By adjusting the self-compensation term A = ½ ( CTE +3 α s ) to the value of the thermal expansion coefficient of the pendulum, it is possible to cancel equation (2). Thus, the thermal variation of the natural frequency of the mechanical oscillator can be eliminated.

    Les coefficients de dilatation thermique αb des matériaux pour balanciers les plus utilisés, comme les alliages de cuivre, d'argent, d'or, de platine ou d'acier se situent dans un domaine de l'ordre de 10 à 20 ppm/°C. Pour compenser les effets des variations de température sur la fréquence propre des oscillateurs dues à sa dilatation, les alliages pour spiraux doivent donc avoir un terme d'auto-compensation correspondant. La précision désirée pour les montres exige de pouvoir ajuster en fabrication, de manière contrôlée, le terme d'auto-compensation avec une tolérance de quelques ppm/°C autour de la valeur recherchée.The coefficients of thermal expansion α b of the most widely used balance wheel materials, such as copper, silver, gold, platinum or steel alloys are in the range of 10 to 20 ppm / ° C. To compensate for the effects of temperature variations on the natural frequency of the oscillators due to its expansion, the spiral alloys must therefore have a corresponding self-compensation term. The precision desired for watches requires the ability to adjust the self-compensation term in manufacturing, in a controlled manner, with a tolerance of a few ppm / ° C around the value sought.

    Les alliages ferromagnétiques à base de fer, nickel ou cobalt utilisés actuellement pour la fabrication des spiraux possèdent un CTE anormalement positif dans une plage d'environ 30°C autour de la température ambiante, dû à la proximité de leur température de Curie. Au voisinage de cette température, les effets magnétostrictifs qui diminuent le module de Young de ces alliages disparaissent, entraínant une augmentation du module. Outre le fait que cette plage de température est relativement étroite, ces alliages sont sensibles aux effets des champs magnétiques. Ceux-ci modifient les propriétés élastiques des spiraux de manière irréversible et changent de ce fait la fréquence propre de l'oscillateur mécanique. En outre, les propriétés élastiques des alliages ferromagnétiques varient avec le taux d'écrouissage à froid, ce qui nécessite de contrôler exactement ce paramètre lors de la fabrication du spiral.Ferromagnetic alloys based on iron, nickel or cobalt currently used for the production of hairsprings have an abnormally positive CTE in a range of approximately 30 ° C around room temperature, due to proximity of their Curie temperature. In the vicinity of this temperature, the magnetostrictive effects which decrease the Young's modulus of these alloys disappear, causing an increase in the module. Besides the fact that this range of temperature is relatively narrow, these alloys are sensitive to the effects of magnetic fields. These modify the elastic properties of hairsprings irreversibly and thereby change the natural frequency of the oscillator mechanical. In addition, the elastic properties of ferromagnetic alloys vary with the rate of work hardening cold, which requires controlling this parameter exactly during the production of the hairspring.

    Les valeurs de CTE recherchées pour les spiraux réalisés avec cette famille d'alliages sont ajustées par un traitement thermique de précipitation qui fixe également la forme définitive du spiral par relaxation.The CTE values sought for the balance springs produced with this family of alloys are adjusted by treatment thermal precipitation which also fixes the shape final hairspring by relaxation.

    On a déjà proposé dans le CH-551 032 (D1), dans le CH-557 557 (D2) et dans le DE-C3-15 58 816 (D3) des alliages paramagnétiques à forte susceptibilité magnétique et coefficient thermique de la susceptibilité négatif, comme alternative aux alliages ferromagnétiques pour la fabrication de spiraux autocompensateurs et de ressorts de précision. Ces alliages possèdent un CTE anormalement positif et ont l'avantage d'avoir des propriétés élastiques insensibles aux champs magnétiques. Leurs propriétés élastiques dépendent de la texture créée lors du tréfilage du spiral, mais peu du taux d'écrouissage, au contraire des alliages ferromagnétiques. De plus, comme mentionné dans le document D3, ces alliages offrent un domaine de compensation thermique des oscillateurs mécaniques qui s'étend sur plus de 100°C autour de la température ambiante. We have already proposed in CH-551 032 (D1), in CH-557 557 (D2) and DE-C3-15 58 816 (D3) alloys paramagnetic with high magnetic susceptibility and coefficient thermal of negative susceptibility, as an alternative to ferromagnetic alloys for the manufacture of self-compensating hairsprings and precision springs. These alloys have an abnormally positive CTE and have the advantage of having elastic properties insensitive to magnetic fields. Their elastic properties depend on the texture created during the drawing of the hairspring, but little of the work hardening rate, unlike ferromagnetic alloys. In addition, as mentioned in document D3, these alloys provide an area of thermal compensation for mechanical oscillators that extends over 100 ° C around of room temperature.

    Les causes physiques qui créent le CTE anormalement positif de ces alliages paramagnétiques sont expliquées dans les documents susmentionnés. Selon eux, ces alliages possèdent une forte densité d'états électronique au niveau de Fermi, ainsi qu'un fort couplage électron-phonon, ce qui engendre ce comportement anormal du CTE.The physical causes that create the CTE abnormally positive of these paramagnetic alloys are explained in the above documents. According to them, these alloys have a high density of electronic states at the level of Fermi, as well as a strong electron-phonon coupling, which generates this abnormal behavior of the CTE.

    Le document D3 cite en particulier comme étant susceptibles de convenir à la fabrication de spiraux pour oscillateurs de mouvements d'horlogerie, des alliages dans lesquels le Nb ou le Ta sont alliés au Zr, au Ti ou à l'Hf qui se trouvent dans ces alliages dans des proportions telles qu'ils sont capables de précipiter en deux phases.Document D3 cites in particular as being susceptible to be suitable for the production of balance springs for oscillators watch movements, alloys in which Nb or Ta are combined with Zr, Ti or Hf which found in these alloys in such proportions that they are able to precipitate in two phases.

    On a encore proposé dans le EP 0 886 195 (D4) un alliage Nb-Zr contenant entre 5% et 25% en poids de Zr et au moins 500 ppm en poids d'un agent dopant formé au moins en partie d'oxygène. Avec cet alliage, le CTE est contrôlé par la texture. La précipitation qui se produit au cours du processus de fixage induit une recristallisation qui modifie la texture et permet d'ajuster le CTE. L'oxygène influence la précipitation et la recristallisation et donc le CTE.We have also proposed in EP 0 886 195 (D4) a Nb-Zr alloy containing between 5% and 25% by weight of Zr and at minus 500 ppm by weight of a doping agent formed at least in part of oxygen. With this alloy, the CTE is controlled by the texture. The precipitation that occurs during the fixing process induces recrystallization which modifies texture and allows you to adjust the CTE. Oxygen influences precipitation and recrystallization and therefore the CTE.

    L'ajustement du CTE lors de l'opération de fixage est difficile à maítriser. En effet, la texture qui contrôle le CTE est modifiée au cours du fixage par la recristallisation. Or, dans les alliages de Nb-Zr-O, le déclenchement de la recristallisation et son déroulement dépendent de la concentration d'oxygène, du taux d'écrouissage et de la température. On a constaté qu'avec ces alliages, la plage de température sur laquelle se déroule la recristallisation est très étroite (environ 50°C). De plus, la variation de CTE induite est grande, de l'ordre de 150 ppm/°C entre le début et la fin de recristallisation. L'étroit intervalle de température dans lequel se déroule la recristallisation et cette forte variation du CTE rendent l'ajustement du CTE des alliages Nb-Zr-O difficilement reproductible. L'étroitesse de cet intervalle de température est due au fait que cette réaction est déclenchée par la précipitation des phases riches en Zr à partir de la solution solide.The adjustment of the CTE during the fixing operation is hard to handle. Indeed, the texture that controls the CTE is modified during fixing by recrystallization. However, in the alloys of Nb-Zr-O, the triggering of the recrystallization and its course depend on the concentration oxygen, work hardening rate and temperature. It has been found that with these alloys, the range of temperature on which the recrystallization takes place is very narrow (around 50 ° C). In addition, the variation of CTE induced is large, around 150 ppm / ° C between start and the end of recrystallization. The narrow temperature range in which the recrystallization takes place and this strong variation in the CTE makes the adjustment of the CTE of Nb-Zr-O alloys difficult to reproduce. The narrowness of this temperature range is due to the fact that this reaction is triggered by the precipitation of the phases rich in Zr from the solid solution.

    Alors que le document D3 se fonde sur la capacité des composants de l'alliage de précipiter en deux phases. Le ressort avec CTE anormalement positif est fabriqué à partir de l'alliage recuit à haute température puis refroidi rapidement de manière à obtenir une solution solide sursaturée. Dans cet état, l'alliage est ensuite déformé à froid à plus de 85%. Cette forte déformation induit une texture favorable à un CTE positif. Pour ajuster le CTE à la valeur désirée, l'alliage est finalement traité thermiquement dans un intervalle de température qui permet la précipitation de la solution solide sursaturée. Les phases qui précipitent à partir de la solution solide ont des CTE plus faibles, ce qui entraíne une diminution du CTE global et permet son ajustement à la valeur désirée. La recristallisation après la précipitation en deux phases est relativement difficile à maítriser. En outre, dans le cas du Hf, la proportion de Hf doit être supérieure à 30% at., puisque jusqu'à cette concentration, cet élément est en solution solide dans le Nb. La capacité de déformation en est donc réduite.Whereas document D3 is based on the capacity of components of the alloy to precipitate in two phases. The spring with abnormally positive CTE is made from alloy annealed at high temperature and then rapidly cooled so as to obtain a supersaturated solid solution. In this state, the alloy is then cold deformed to more 85%. This strong deformation induces a favorable texture to a positive CTE. To adjust the CTE to the desired value, the alloy is finally heat treated in an interval of temperature which allows the precipitation of the solution supersaturated solid. The phases that precipitate from solid solution have lower CTEs, which results in a decrease in the overall CTE and allows its adjustment to the desired value. Recrystallization after precipitation in two phases is relatively difficult to master. Furthermore, in the case of Hf, the proportion of Hf must be greater than 30% at., since up to this concentration, this element is in solid solution in Nb. The deformation capacity is therefore reduced.

    Le but de la présente invention est un alliage qui permette de remédier, au moins en partie, aux inconvénients des alliages susmentionnés.The object of the present invention is an alloy which allows the disadvantages to be remedied, at least in part of the above-mentioned alloys.

    On a découvert, de façon surprenante, que des alliages Nb-Hf avec de très faibles proportions de Hf, c'est-à-dire, des proportions qui se situent bien au-dessous de la limite à partir de laquelle le Hf précipite, permettait d'obtenir un CTE positif, cette limite s'abaissant jusqu'à 2% at.It has surprisingly been discovered that alloys Nb-Hf with very small proportions of Hf, that is to say, proportions that are well below the limit from which Hf precipitates, allowed to obtain a positive CTE, this limit lowering up to 2% at.

    L'invention a par conséquent pour objet un spiral autocompensateur pour oscillateur mécanique balancier-spiral de mouvement d'horlogerie ou autre instrument de précision, en alliage paramagnétique Nb-Hf possédant un coefficient thermique du module de Young (CTE) positif, apte à compenser les dilatations thermiques du spiral et du balancier, selon la revendication 1.The invention therefore relates to a self-compensating hairspring for mechanical balance-spring oscillator watch movement or other precision instrument, in Nb-Hf paramagnetic alloy with a thermal coefficient of the positive Young's module (CTE), able to compensate for thermal expansion of the balance spring and balance wheel, depending on the claim 1.

    L'alliage à partir duquel le spiral objet de l'invention est réalisé présente plusieurs avantages.The alloy from which the hairspring object of the invention has several advantages.

    Le Hf est en solution solide dans le Nb sur une très large gamme de concentration (jusqu'à 30% at.).Hf is in solid solution in Nb on a very wide concentration range (up to 30% at.).

    La contribution du Hf au CTE positif est très forte, de sorte que de faibles proportions de Hf sont nécessaires. C'est ainsi qu'environ 2% at. de Hf suffisent à rendre le CTE positif. Il s'est avéré, après essais, qu'un alliage Nb-Hf 4% at. possède un CTE de 13 ppm/°C après recristallisation partielle, ce qui correspond tout à fait aux valeurs requises dans le cas d'un système balancier-spiral.The contribution of Hf to positive CTE is very strong, from so that small proportions of Hf are required. This is how about 2% at. of Hf are enough to make the CTE positive. It turned out, after testing, that an Nb-Hf alloy 4% at. has a CTE of 13 ppm / ° C after recrystallization partial, which corresponds perfectly to the values required in the case of a balance-spring system.

    Avec cet alliage Nb-Hf 4% at., l'ajustement du CTE plus facile à maítriser parce que:

  • 1. La variation de CTE au cours de la recristallisation n'est que de 50 ppm/°C, soit trois fois moins que pour un alliage Nb-Zr.
  • 2. La recristallisation n'étant pas déclenchée par une précipitation, elle est plus lente et a lieu sur une très large plage de température (env. 400°C) comme le montre la figure annexée.
  • With this Nb-Hf 4% at. Alloy, the adjustment of the CTE is easier to control because:
  • 1. The variation in CTE during recrystallization is only 50 ppm / ° C, ie three times less than for an Nb-Zr alloy.
  • 2. Since recrystallization is not triggered by precipitation, it is slower and takes place over a very wide temperature range (approx. 400 ° C) as shown in the appended figure.
  • Enfin, la faible concentration de Hf nécessaire pour avoir le CTE requis de 13 ppm/°C améliore la capacité de déformation du spiral et facilite les opérations de tréfilage.Finally, the low concentration of Hf necessary for having the required CTE of 13 ppm / ° C improves the deformation capacity hairspring and facilitates wire drawing operations.

    Le spiral en alliage de Nb-Hf peut encore contenir un ou plusieurs éléments additionnels comme Ti, Ta, Zr, V, Mo, W, Cr en concentrations telles qu'aucune précipitation n'ait lieu durant l'opération de fixage de la forme du spiral. The Nb-Hf alloy hairspring may still contain a or several additional elements like Ti, Ta, Zr, V, Mo, W, Cr in concentrations such that no precipitation has place during the fixing operation of the hairspring shape.

    L'effet de l'oxygène sur le spiral Nb-Hf s'est révélé faible, voire nul.The effect of oxygen on the Nb-Hf hairspring was revealed weak or even zero.

    Claims (3)

    Spiral autocompensateur pour oscillateur mécanique balancier-spiral de mouvement d'horlogerie ou autre instrument de précision, en alliage paramagnétique Nb-Hf possédant un coefficient thermique du module de Young (CTE) tel, qu'il permet d'annuler substantiellement l'expression: 1 E dE dT +3α s - 2α b avec: E: module de Young du spiral de l'oscillateur
    1 / E dE / dT= CTE = coefficient thermique du module de Young du spiral de l'oscillateur
    αs : coefficient de dilatation thermique du spiral de l'oscillateur αb : coefficient de dilatation du balancier de l'oscillateur,
       caractérisé en ce qu'il contient entre 2% et 30% at. de Hf.
    Self-compensating hairspring for mechanical oscillator balance-spring of clockwork movement or other precision instrument, made of Nb-Hf paramagnetic alloy having a Young Modulus thermal coefficient (CTE) such that it allows to substantially cancel the expression: 1 E of dT + 3α s - 2α b with: E: Young's modulus of the oscillator hairspring
    1 / E dE / dT = CTE = thermal coefficient of the Young's modulus of the oscillator hairspring
    α s : coefficient of thermal expansion of the balance spring of the oscillator α b : coefficient of expansion of the pendulum of the oscillator,
    characterized in that it contains between 2% and 30% at. from Hf.
    Spiral selon la revendication 1, dans lequel l'alliage comporte au moins un des éléments additionnels suivants : Ti, Ta, Zr, V, Mo, W, Cr en concentrations telles qu'aucune précipitation n'ait lieu au cours de l'opération de fixage de sa forme.Spiral according to claim 1, wherein the alloy contains at least one of the following additional elements : Ti, Ta, Zr, V, Mo, W, Cr in concentrations such no precipitation takes place during the operation fixing its shape. Spiral selon l'une des revendications précédentes, dans lequel l'alliage contient moins de 10% at. de Hf.Spiral according to one of the preceding claims, wherein the alloy contains less than 10% at. from Hf.
    EP01810497A 2001-05-18 2001-05-18 Self-compensating spring for a mechanical oscillator of balance-spring type Expired - Lifetime EP1258786B1 (en)

    Priority Applications (6)

    Application Number Priority Date Filing Date Title
    DE60132878T DE60132878T2 (en) 2001-05-18 2001-05-18 Self-compensating spring for a mechanical oscillator of the balance spring type
    EP01810497A EP1258786B1 (en) 2001-05-18 2001-05-18 Self-compensating spring for a mechanical oscillator of balance-spring type
    DE1258786T DE1258786T1 (en) 2001-05-18 2001-05-18 Self-compensating spring for a mechanical oscillator of the balance spring type
    US10/139,526 US6705601B2 (en) 2001-05-18 2002-05-06 Self-compensating spiral spring for a mechanical balance-spiral spring oscillator
    JP2002142837A JP4813742B2 (en) 2001-05-18 2002-05-17 Self-compensating spiral spring for mechanical balance spiral spring vibrator
    JP2009254944A JP2010044090A (en) 2001-05-18 2009-11-06 Self-compensating spiral spring for mechanical oscillator of balance-spring type

    Applications Claiming Priority (1)

    Application Number Priority Date Filing Date Title
    EP01810497A EP1258786B1 (en) 2001-05-18 2001-05-18 Self-compensating spring for a mechanical oscillator of balance-spring type

    Publications (2)

    Publication Number Publication Date
    EP1258786A1 true EP1258786A1 (en) 2002-11-20
    EP1258786B1 EP1258786B1 (en) 2008-02-20

    Family

    ID=8183922

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP01810497A Expired - Lifetime EP1258786B1 (en) 2001-05-18 2001-05-18 Self-compensating spring for a mechanical oscillator of balance-spring type

    Country Status (4)

    Country Link
    US (1) US6705601B2 (en)
    EP (1) EP1258786B1 (en)
    JP (2) JP4813742B2 (en)
    DE (2) DE60132878T2 (en)

    Cited By (11)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    WO2014006229A1 (en) 2012-07-06 2014-01-09 Rolex Sa Method for treating a surface of a timepiece component, and timepiece component obtained from such a method
    EP3159746A1 (en) 2015-10-19 2017-04-26 Rolex Sa Heavily doped silicon hairspring for timepiece
    CN109116712A (en) * 2017-06-26 2019-01-01 尼瓦洛克斯-法尔股份有限公司 spiral clock spring
    EP3422115A1 (en) * 2017-06-26 2019-01-02 Nivarox-FAR S.A. Timepiece hairspring
    EP3502785A1 (en) * 2017-12-21 2019-06-26 Nivarox-FAR S.A. Hairspring for clock movement and method for manufacturing same
    US10338529B2 (en) 2016-06-01 2019-07-02 Rolex Sa Fastening part for a hairspring
    US10409223B2 (en) 2016-06-01 2019-09-10 Rolex Sa Fastening part of a hairspring
    EP3663867A1 (en) * 2018-12-05 2020-06-10 Cartier International AG Niobium-molybdenum alloy compensating balance spring for a watch or clock movement
    EP3671359A1 (en) * 2018-12-21 2020-06-24 Nivarox-FAR S.A. Timepiece spiral spring made of titanium
    EP3736639A1 (en) * 2019-05-07 2020-11-11 Nivarox-FAR S.A. Method for manufacturing a hairspring for clock movement
    US11002872B2 (en) 2015-12-14 2021-05-11 Covidien Lp Surgical adapter assemblies and wireless detection of surgical loading units

    Families Citing this family (13)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE60132878T2 (en) * 2001-05-18 2009-03-26 Rolex Sa Self-compensating spring for a mechanical oscillator of the balance spring type
    FR2842313B1 (en) * 2002-07-12 2004-10-22 Gideon Levingston MECHANICAL OSCILLATOR (BALANCING SYSTEM AND SPIRAL SPRING) IN MATERIALS FOR REACHING A HIGHER LEVEL OF PRECISION, APPLIED TO A WATCHMAKING MOVEMENT OR OTHER PRECISION INSTRUMENT
    GB0324439D0 (en) * 2003-10-20 2003-11-19 Levingston Gideon R Minimal thermal variation and temperature compensating non-magnetic balance wheels and methods of production of these and their associated balance springs
    JP5606675B2 (en) * 2005-05-14 2014-10-15 カーボンタイム・リミテッド Balance spring and method for forming the same
    US8100579B2 (en) * 2006-09-08 2012-01-24 Gideon Levingston Thermally compensating balance wheel
    US7487805B2 (en) * 2007-01-31 2009-02-10 Weavexx Corporation Papermaker's forming fabric with cross-direction yarn stitching and ratio of top machined direction yarns to bottom machine direction yarns of less than 1
    EP2196825A1 (en) 2007-09-21 2010-06-16 National Institute of Radiological Sciences Beta ray detector and beta ray rebuilding method
    DE602008001778D1 (en) * 2008-03-20 2010-08-26 Nivarox Sa Monoblock double spiral and its manufacturing process
    GB201001897D0 (en) * 2010-02-05 2010-03-24 Levingston Gideon Non magnetic mateial additives and processes for controling the thermoelastic modulus and spring stiffness within springs for precision instruments
    EP2607969B1 (en) * 2011-12-19 2014-09-17 Nivarox-FAR S.A. Clock movement with low magnetic sensitivity
    EP3796102B1 (en) 2017-12-22 2022-04-20 The Swatch Group Research and Development Ltd Method for manufacturing a balance for a timepiece
    EP3534222A1 (en) * 2018-03-01 2019-09-04 Rolex Sa Method for producing a thermally compensated oscillator
    EP3796101B1 (en) * 2019-09-20 2025-02-19 Nivarox-FAR S.A. Hairspring for clock movement

    Citations (6)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    GB892327A (en) * 1958-12-22 1962-03-28 Union Carbide Corp Improvements in columbium alloys
    US3183085A (en) * 1961-09-15 1965-05-11 Westinghouse Electric Corp Tantalum base alloys
    GB1166701A (en) * 1966-06-08 1969-10-08 Vacuumschmelze Gmbh Improvements in or relating to Non-Ferromagnetic Alloys
    CH551032A (en) 1966-04-22 1974-06-28 Paramagnetic metal/semiconductor alloys - for oscillating and spring elements with particular elastic properties
    CH557557A (en) 1966-04-22 1974-12-31
    US5881026A (en) * 1997-06-20 1999-03-09 Montres Rolex S.A. Self-compensating balance spring for a mechanical oscillator of a balance-spring/balance assembly of a watch movement and process for manufacturing this balance-spring

    Family Cites Families (3)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    CH551302A (en) 1973-03-01 1974-07-15 Flury Arthur Ag HEIGHT-ADJUSTABLE DEVICE FOR HANGING A Catenary On A ROPE.
    US6329066B1 (en) * 2000-03-24 2001-12-11 Montres Rolex S.A. Self-compensating spiral for a spiral balance-wheel in watchwork and process for treating this spiral
    DE60132878T2 (en) * 2001-05-18 2009-03-26 Rolex Sa Self-compensating spring for a mechanical oscillator of the balance spring type

    Patent Citations (7)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    GB892327A (en) * 1958-12-22 1962-03-28 Union Carbide Corp Improvements in columbium alloys
    US3183085A (en) * 1961-09-15 1965-05-11 Westinghouse Electric Corp Tantalum base alloys
    CH551032A (en) 1966-04-22 1974-06-28 Paramagnetic metal/semiconductor alloys - for oscillating and spring elements with particular elastic properties
    CH557557A (en) 1966-04-22 1974-12-31
    GB1166701A (en) * 1966-06-08 1969-10-08 Vacuumschmelze Gmbh Improvements in or relating to Non-Ferromagnetic Alloys
    DE1558816A1 (en) 1966-06-08 1972-03-09 Vacuumschmelze Gmbh Process for the production of non-ferromagnetic alloys with adjustable temperature coefficient of the elastic modulus
    US5881026A (en) * 1997-06-20 1999-03-09 Montres Rolex S.A. Self-compensating balance spring for a mechanical oscillator of a balance-spring/balance assembly of a watch movement and process for manufacturing this balance-spring

    Cited By (24)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US10372083B2 (en) 2012-07-06 2019-08-06 Rolex Sa Method for treating a surface of a timepiece component, and timepiece component obtained from such a method
    US11914328B2 (en) 2012-07-06 2024-02-27 Rolex Sa Process for treating a surface of a timepiece component, and timepiece component obtained from such a process
    WO2014006229A1 (en) 2012-07-06 2014-01-09 Rolex Sa Method for treating a surface of a timepiece component, and timepiece component obtained from such a method
    EP4439193A2 (en) 2012-07-06 2024-10-02 Rolex Sa Method for treating a surface of a timepiece component and timepiece component obtained by such a method
    EP3159746A1 (en) 2015-10-19 2017-04-26 Rolex Sa Heavily doped silicon hairspring for timepiece
    US10539926B2 (en) 2015-10-19 2020-01-21 Rolex Sa Balance spring made of heavily doped silicon for a timepiece
    US11002872B2 (en) 2015-12-14 2021-05-11 Covidien Lp Surgical adapter assemblies and wireless detection of surgical loading units
    US10409223B2 (en) 2016-06-01 2019-09-10 Rolex Sa Fastening part of a hairspring
    US10338529B2 (en) 2016-06-01 2019-07-02 Rolex Sa Fastening part for a hairspring
    US12045013B2 (en) 2016-06-01 2024-07-23 Rolex Sa Fastening part for a hairspring
    EP3422115A1 (en) * 2017-06-26 2019-01-02 Nivarox-FAR S.A. Timepiece hairspring
    CN109116712B (en) * 2017-06-26 2020-08-25 尼瓦洛克斯-法尔股份有限公司 Spiral clock spring
    US10795317B2 (en) 2017-06-26 2020-10-06 Nivarox-Far S.A. Spiral timepiece spring
    EP3422116A1 (en) * 2017-06-26 2019-01-02 Nivarox-FAR S.A. Timepiece hairspring
    CN109116712A (en) * 2017-06-26 2019-01-01 尼瓦洛克斯-法尔股份有限公司 spiral clock spring
    US11586146B2 (en) 2017-12-21 2023-02-21 Nivarox-Far S.A. Spiral spring for clock or watch movement and method of manufacture thereof
    EP3502785A1 (en) * 2017-12-21 2019-06-26 Nivarox-FAR S.A. Hairspring for clock movement and method for manufacturing same
    US11966198B2 (en) 2017-12-21 2024-04-23 Nivarox-Far S.A. Spiral spring for clock or watch movement and method of manufacture thereof
    EP3663867A1 (en) * 2018-12-05 2020-06-10 Cartier International AG Niobium-molybdenum alloy compensating balance spring for a watch or clock movement
    CN111349814A (en) * 2018-12-21 2020-06-30 尼瓦罗克斯-法尔股份公司 Titanium base spiral clock spring
    EP3671359A1 (en) * 2018-12-21 2020-06-24 Nivarox-FAR S.A. Timepiece spiral spring made of titanium
    US11550263B2 (en) 2019-05-07 2023-01-10 Nivarox-Far S.A. Method for manufacturing a balance spring for a horological movement
    EP3889691A1 (en) * 2019-05-07 2021-10-06 Nivarox-FAR S.A. Horological hairspring made of a ni-hf alloy
    EP3736639A1 (en) * 2019-05-07 2020-11-11 Nivarox-FAR S.A. Method for manufacturing a hairspring for clock movement

    Also Published As

    Publication number Publication date
    US20020180130A1 (en) 2002-12-05
    DE1258786T1 (en) 2003-08-14
    JP2010044090A (en) 2010-02-25
    DE60132878D1 (en) 2008-04-03
    JP4813742B2 (en) 2011-11-09
    US6705601B2 (en) 2004-03-16
    DE60132878T2 (en) 2009-03-26
    JP2003004866A (en) 2003-01-08
    EP1258786B1 (en) 2008-02-20

    Similar Documents

    Publication Publication Date Title
    EP1258786B1 (en) Self-compensating spring for a mechanical oscillator of balance-spring type
    EP0886195B1 (en) Auto-compensating spring for mechanical oscillatory spiral spring of clockwork movement and method of manufacturing the same
    EP1039352B1 (en) Self-compensating spring for clockwork movement spring balance and method for treating the same
    EP3422116B1 (en) Timepiece hairspring
    EP3502785B1 (en) Hairspring for clock movement and method for manufacturing same
    EP3601628B1 (en) Beta metastable titanium alloy, watch spring based on the said alloy and its method of fabrication
    EP1958031A2 (en) Hairspring made from athermic glass for a timepiece movement and its method of manufacture
    EP3502289A1 (en) Hairspring for clock movement and method for manufacturing same
    CZ293837B6 (en) Process for manufacturing a magnetic component made of an iron-based soft magnetic alloy having a nanocrystalline structure
    WO2015189278A2 (en) Oscillator for a timepiece balance spring assembly
    EP1519250A1 (en) Thermally compensated balance-hairspring resonator
    EP3502288A1 (en) Method for manufacturing a hairspring for clock movement
    EP3671359B1 (en) Manufacturing method of a timepiece spiral spring made of titanium
    CH714492B1 (en) Spiral spring for clock movement
    CN105103057B (en) The mandrel of the removable clock and watch component pivoted
    EP2447387B1 (en) Barrel spring of a timepiece
    CH711913A2 (en) Process for manufacturing a clockwork spiral spring
    US6329066B1 (en) Self-compensating spiral for a spiral balance-wheel in watchwork and process for treating this spiral
    EP3535425B1 (en) Resonator for a clock piece
    EP3422115B1 (en) Timepiece spiral spring
    EP3176651B1 (en) Method for manufacturing a timepiece hairspring
    CH714494A2 (en) Spiral clock spring, in particular a mainspring or a spiral spring.
    CH714491A2 (en) Spiral spring for clockwork and its manufacturing process.
    CN116755316A (en) Hairsprings, watch movements and clocks
    EP4212966A1 (en) Method for limiting the deformation of a silicon timepiece

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

    AX Request for extension of the european patent

    Free format text: AL;LT;LV;MK;RO;SI

    RAP1 Party data changed (applicant data changed or rights of an application transferred)

    Owner name: ROLEX SA

    GBC Gb: translation of claims filed (gb section 78(7)/1977)
    17P Request for examination filed

    Effective date: 20030123

    AKX Designation fees paid

    Designated state(s): CH DE FR GB LI

    DET De: translation of patent claims
    17Q First examination report despatched

    Effective date: 20061227

    GRAP Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOSNIGR1

    GRAS Grant fee paid

    Free format text: ORIGINAL CODE: EPIDOSNIGR3

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): CH DE FR GB LI

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: FG4D

    Free format text: NOT ENGLISH

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: NV

    Representative=s name: MOINAS & SAVOYE SA

    Ref country code: CH

    Ref legal event code: EP

    REF Corresponds to:

    Ref document number: 60132878

    Country of ref document: DE

    Date of ref document: 20080403

    Kind code of ref document: P

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

    Effective date: 20080421

    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed

    Effective date: 20081121

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: GB

    Payment date: 20140520

    Year of fee payment: 14

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DE

    Payment date: 20140509

    Year of fee payment: 14

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: FR

    Payment date: 20140602

    Year of fee payment: 14

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R119

    Ref document number: 60132878

    Country of ref document: DE

    GBPC Gb: european patent ceased through non-payment of renewal fee

    Effective date: 20150518

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: ST

    Effective date: 20160129

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20150518

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20151201

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20150601

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PFA

    Owner name: ROLEX SA, CH

    Free format text: FORMER OWNER: ROLEX SA, CH

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: CH

    Payment date: 20200528

    Year of fee payment: 20

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PL