EP1258786A1 - Self-compensating spring for a mechanical oscillator of balance-spring type - Google Patents
Self-compensating spring for a mechanical oscillator of balance-spring type Download PDFInfo
- Publication number
- EP1258786A1 EP1258786A1 EP01810497A EP01810497A EP1258786A1 EP 1258786 A1 EP1258786 A1 EP 1258786A1 EP 01810497 A EP01810497 A EP 01810497A EP 01810497 A EP01810497 A EP 01810497A EP 1258786 A1 EP1258786 A1 EP 1258786A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- cte
- oscillator
- spring
- coefficient
- balance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 37
- 239000000956 alloy Substances 0.000 claims abstract description 37
- 230000005298 paramagnetic effect Effects 0.000 claims abstract description 6
- 238000001556 precipitation Methods 0.000 claims description 8
- 229910052726 zirconium Inorganic materials 0.000 claims description 4
- 229910052715 tantalum Inorganic materials 0.000 claims description 3
- 229910052719 titanium Inorganic materials 0.000 claims description 3
- 229910052804 chromium Inorganic materials 0.000 claims description 2
- 229910052750 molybdenum Inorganic materials 0.000 claims description 2
- 229910052721 tungsten Inorganic materials 0.000 claims description 2
- 229910052720 vanadium Inorganic materials 0.000 claims description 2
- 238000001953 recrystallisation Methods 0.000 description 11
- 238000004519 manufacturing process Methods 0.000 description 5
- 239000006104 solid solution Substances 0.000 description 5
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 230000005294 ferromagnetic effect Effects 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 229910020018 Nb Zr Inorganic materials 0.000 description 3
- 230000005291 magnetic effect Effects 0.000 description 3
- 238000005482 strain hardening Methods 0.000 description 3
- 229910001029 Hf alloy Inorganic materials 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 229910007746 Zr—O Inorganic materials 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 230000001960 triggered effect Effects 0.000 description 2
- FVUJPXXDENYILK-WITUOYQCSA-N (4S)-5-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-5-amino-1-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-5-amino-1-[[2-[[(2S)-1-[[(2S)-1-amino-3-methyl-1-oxobutan-2-yl]amino]-4-methyl-1-oxopentan-2-yl]amino]-2-oxoethyl]amino]-1,5-dioxopentan-2-yl]amino]-4-methyl-1-oxopentan-2-yl]amino]-4-methyl-1-oxopentan-2-yl]amino]-5-carbamimidamido-1-oxopentan-2-yl]amino]-1,5-dioxopentan-2-yl]amino]-4-methyl-1-oxopentan-2-yl]amino]-5-carbamimidamido-1-oxopentan-2-yl]amino]-1-oxopropan-2-yl]amino]-3-hydroxy-1-oxopropan-2-yl]amino]-3-carboxy-1-oxopropan-2-yl]amino]-5-carbamimidamido-1-oxopentan-2-yl]amino]-4-methyl-1-oxopentan-2-yl]amino]-5-carbamimidamido-1-oxopentan-2-yl]amino]-3-hydroxy-1-oxopropan-2-yl]amino]-4-methyl-1-oxopentan-2-yl]amino]-4-[[(2S)-2-[[(2S,3R)-2-[[(2S)-2-[[(2S,3R)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-amino-3-(1H-imidazol-5-yl)propanoyl]amino]-3-hydroxypropanoyl]amino]-3-carboxypropanoyl]amino]propanoyl]amino]-3-hydroxybutanoyl]amino]-3-phenylpropanoyl]amino]-3-hydroxybutanoyl]amino]-3-hydroxypropanoyl]amino]-5-oxopentanoic acid Chemical compound CC(C)C[C@H](NC(=O)CNC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](C)NC(=O)[C@H](CO)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CO)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CO)NC(=O)[C@@H](NC(=O)[C@H](Cc1ccccc1)NC(=O)[C@@H](NC(=O)[C@H](C)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CO)NC(=O)[C@@H](N)Cc1cnc[nH]1)[C@@H](C)O)[C@@H](C)O)C(=O)N[C@@H](C(C)C)C(N)=O FVUJPXXDENYILK-WITUOYQCSA-N 0.000 description 1
- 206010000117 Abnormal behaviour Diseases 0.000 description 1
- 229910001316 Ag alloy Inorganic materials 0.000 description 1
- 229910000851 Alloy steel Inorganic materials 0.000 description 1
- 229910001020 Au alloy Inorganic materials 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910000881 Cu alloy Inorganic materials 0.000 description 1
- 229910001030 Iron–nickel alloy Inorganic materials 0.000 description 1
- 229910001260 Pt alloy Inorganic materials 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 239000002019 doping agent Substances 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 238000005185 salting out Methods 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 108700043117 vasectrin I Proteins 0.000 description 1
- 238000005491 wire drawing Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C27/00—Alloys based on rhenium or a refractory metal not mentioned in groups C22C14/00 or C22C16/00
- C22C27/02—Alloys based on vanadium, niobium, or tantalum
-
- G—PHYSICS
- G04—HOROLOGY
- G04B—MECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
- G04B17/00—Mechanisms for stabilising frequency
- G04B17/04—Oscillators acting by spring tension
- G04B17/06—Oscillators with hairsprings, e.g. balance
- G04B17/066—Manufacture of the spiral spring
-
- G—PHYSICS
- G04—HOROLOGY
- G04B—MECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
- G04B17/00—Mechanisms for stabilising frequency
- G04B17/20—Compensation of mechanisms for stabilising frequency
- G04B17/22—Compensation of mechanisms for stabilising frequency for the effect of variations of temperature
- G04B17/227—Compensation of mechanisms for stabilising frequency for the effect of variations of temperature composition and manufacture of the material used
Definitions
- the present invention relates to a self-compensating hairspring for mechanical balance-spring oscillator watch movement or other precision instrument, in Nb-Hf paramagnetic alloy with a thermal coefficient of the positive Young's module (CTE), able to compensate for thermal expansions of the balance spring and balance.
- CTE positive Young's module
- the coefficients of thermal expansion ⁇ b of the most widely used balance wheel materials are in the range of 10 to 20 ppm / ° C.
- the spiral alloys must therefore have a corresponding self-compensation term.
- the precision desired for watches requires the ability to adjust the self-compensation term in manufacturing, in a controlled manner, with a tolerance of a few ppm / ° C around the value sought.
- Ferromagnetic alloys based on iron, nickel or cobalt currently used for the production of hairsprings have an abnormally positive CTE in a range of approximately 30 ° C around room temperature, due to proximity of their Curie temperature. In the vicinity of this temperature, the magnetostrictive effects which decrease the Young's modulus of these alloys disappear, causing an increase in the module. Besides the fact that this range of temperature is relatively narrow, these alloys are sensitive to the effects of magnetic fields. These modify the elastic properties of hairsprings irreversibly and thereby change the natural frequency of the oscillator mechanical. In addition, the elastic properties of ferromagnetic alloys vary with the rate of work hardening cold, which requires controlling this parameter exactly during the production of the hairspring.
- the CTE values sought for the balance springs produced with this family of alloys are adjusted by treatment thermal precipitation which also fixes the shape final hairspring by relaxation.
- Document D3 cites in particular as being susceptible to be suitable for the production of balance springs for oscillators watch movements, alloys in which Nb or Ta are combined with Zr, Ti or Hf which found in these alloys in such proportions that they are able to precipitate in two phases.
- the adjustment of the CTE during the fixing operation is hard to handle. Indeed, the texture that controls the CTE is modified during fixing by recrystallization.
- the triggering of the recrystallization and its course depend on the concentration oxygen, work hardening rate and temperature. It has been found that with these alloys, the range of temperature on which the recrystallization takes place is very narrow (around 50 ° C).
- the variation of CTE induced is large, around 150 ppm / ° C between start and the end of recrystallization.
- the narrow temperature range in which the recrystallization takes place and this strong variation in the CTE makes the adjustment of the CTE of Nb-Zr-O alloys difficult to reproduce.
- the narrowness of this temperature range is due to the fact that this reaction is triggered by the precipitation of the phases rich in Zr from the solid solution.
- the object of the present invention is an alloy which allows the disadvantages to be remedied, at least in part of the above-mentioned alloys.
- the invention therefore relates to a self-compensating hairspring for mechanical balance-spring oscillator watch movement or other precision instrument, in Nb-Hf paramagnetic alloy with a thermal coefficient of the positive Young's module (CTE), able to compensate for thermal expansion of the balance spring and balance wheel, depending on the claim 1.
- CTE positive Young's module
- the alloy from which the hairspring object of the invention has several advantages.
- Hf is in solid solution in Nb on a very wide concentration range (up to 30% at.).
- the low concentration of Hf necessary for having the required CTE of 13 ppm / ° C improves the deformation capacity hairspring and facilitates wire drawing operations.
- the Nb-Hf alloy hairspring may still contain a or several additional elements like Ti, Ta, Zr, V, Mo, W, Cr in concentrations such that no precipitation has place during the fixing operation of the hairspring shape.
Landscapes
- Engineering & Computer Science (AREA)
- Metallurgy (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Organic Chemistry (AREA)
- Springs (AREA)
Abstract
Ce spiral autocompensateur pour oscillateur mécanique balancier-spiral de mouvement d'horlogerie ou autre instrument de précision, en alliage paramagnétique Nb-Hf possédant un coefficient thermique du module de Young (CTE) tel, qu'il permet d'annuler substantiellement l'expression: ((1) / (E))((dE) / (dT))+3αs -2αb avec: E: module de Young du spiral de l'oscillateur, (1/E) (dE/dT) = CTE = coefficient thermique du module de Young du spiral de l'oscillateur, αs : coefficient de dilatation thermique du spiral de l'oscillateur, αb : coefficient de dilatation du balancier de l'oscillateur, contient entre 2% et 30% at. de Hf. <IMAGE>This self-compensating hairspring for mechanical oscillator balance-spring of clockwork movement or other precision instrument, made of Nb-Hf paramagnetic alloy having a Young's modulus thermal coefficient (CTE) such that it allows to substantially cancel the expression : ((1) / (E)) ((dE) / (dT)) + 3αs -2αb with: E: Young's modulus of the oscillating hairspring, (1 / E) (dE / dT) = CTE = thermal coefficient of Young's modulus of the oscillator balance spring, αs: coefficient of thermal expansion of the oscillator balance spring, αb: coefficient of expansion of the oscillator pendulum, contains between 2% and 30% at. from Hf. <IMAGE>
Description
La présente invention se rapporte à un spiral auto-compensateur pour oscillateur mécanique balancier-spiral de mouvement d'horlogerie ou autre instrument de précision, en alliage paramagnétique Nb-Hf possédant un coefficient thermique du module de Young (CTE) positif, apte à compenser les dilatations thermiques du spiral et du balancier.The present invention relates to a self-compensating hairspring for mechanical balance-spring oscillator watch movement or other precision instrument, in Nb-Hf paramagnetic alloy with a thermal coefficient of the positive Young's module (CTE), able to compensate for thermal expansions of the balance spring and balance.
Toutes les méthodes proposées pour compenser ces variations
de fréquence sont basées sur la considération que cette
fréquence propre dépend exclusivement du rapport entre la
constante du couple de rappel exercé par le spiral sur le
balancier et le moment d'inertie de ce dernier, comme indiqué
dans la relation suivante:
Depuis la découverte des alliages à base de Fe-Ni possédant
un coefficient thermique du module de Young (ci-après
CTE) positif, la compensation thermique de l'oscillateur mécanique
est obtenue en ajustant le CTE du spiral en fonction
des coefficients de dilatation thermique du spiral et du
balancier. En effet, en exprimant le couple et l'inertie à
partir des caractéristiques du spiral et du balancier, puis
en dérivant l'équation (1) par rapport à la température, on
obtient la variation thermique relative de la fréquence
propre:
avec:
En ajustant le terme d'autocompensation A = ½(CTE+3αs ) à la valeur du coefficient de dilatation thermique du balancier, il est possible d'annuler l'équation (2). Ainsi, la variation thermique de la fréquence propre de l'oscillateur mécanique peut être éliminée.By adjusting the self-compensation term A = ½ ( CTE +3 α s ) to the value of the thermal expansion coefficient of the pendulum, it is possible to cancel equation (2). Thus, the thermal variation of the natural frequency of the mechanical oscillator can be eliminated.
Les coefficients de dilatation thermique αb des matériaux pour balanciers les plus utilisés, comme les alliages de cuivre, d'argent, d'or, de platine ou d'acier se situent dans un domaine de l'ordre de 10 à 20 ppm/°C. Pour compenser les effets des variations de température sur la fréquence propre des oscillateurs dues à sa dilatation, les alliages pour spiraux doivent donc avoir un terme d'auto-compensation correspondant. La précision désirée pour les montres exige de pouvoir ajuster en fabrication, de manière contrôlée, le terme d'auto-compensation avec une tolérance de quelques ppm/°C autour de la valeur recherchée.The coefficients of thermal expansion α b of the most widely used balance wheel materials, such as copper, silver, gold, platinum or steel alloys are in the range of 10 to 20 ppm / ° C. To compensate for the effects of temperature variations on the natural frequency of the oscillators due to its expansion, the spiral alloys must therefore have a corresponding self-compensation term. The precision desired for watches requires the ability to adjust the self-compensation term in manufacturing, in a controlled manner, with a tolerance of a few ppm / ° C around the value sought.
Les alliages ferromagnétiques à base de fer, nickel ou cobalt utilisés actuellement pour la fabrication des spiraux possèdent un CTE anormalement positif dans une plage d'environ 30°C autour de la température ambiante, dû à la proximité de leur température de Curie. Au voisinage de cette température, les effets magnétostrictifs qui diminuent le module de Young de ces alliages disparaissent, entraínant une augmentation du module. Outre le fait que cette plage de température est relativement étroite, ces alliages sont sensibles aux effets des champs magnétiques. Ceux-ci modifient les propriétés élastiques des spiraux de manière irréversible et changent de ce fait la fréquence propre de l'oscillateur mécanique. En outre, les propriétés élastiques des alliages ferromagnétiques varient avec le taux d'écrouissage à froid, ce qui nécessite de contrôler exactement ce paramètre lors de la fabrication du spiral.Ferromagnetic alloys based on iron, nickel or cobalt currently used for the production of hairsprings have an abnormally positive CTE in a range of approximately 30 ° C around room temperature, due to proximity of their Curie temperature. In the vicinity of this temperature, the magnetostrictive effects which decrease the Young's modulus of these alloys disappear, causing an increase in the module. Besides the fact that this range of temperature is relatively narrow, these alloys are sensitive to the effects of magnetic fields. These modify the elastic properties of hairsprings irreversibly and thereby change the natural frequency of the oscillator mechanical. In addition, the elastic properties of ferromagnetic alloys vary with the rate of work hardening cold, which requires controlling this parameter exactly during the production of the hairspring.
Les valeurs de CTE recherchées pour les spiraux réalisés avec cette famille d'alliages sont ajustées par un traitement thermique de précipitation qui fixe également la forme définitive du spiral par relaxation.The CTE values sought for the balance springs produced with this family of alloys are adjusted by treatment thermal precipitation which also fixes the shape final hairspring by relaxation.
On a déjà proposé dans le CH-551 032 (D1), dans le CH-557 557 (D2) et dans le DE-C3-15 58 816 (D3) des alliages paramagnétiques à forte susceptibilité magnétique et coefficient thermique de la susceptibilité négatif, comme alternative aux alliages ferromagnétiques pour la fabrication de spiraux autocompensateurs et de ressorts de précision. Ces alliages possèdent un CTE anormalement positif et ont l'avantage d'avoir des propriétés élastiques insensibles aux champs magnétiques. Leurs propriétés élastiques dépendent de la texture créée lors du tréfilage du spiral, mais peu du taux d'écrouissage, au contraire des alliages ferromagnétiques. De plus, comme mentionné dans le document D3, ces alliages offrent un domaine de compensation thermique des oscillateurs mécaniques qui s'étend sur plus de 100°C autour de la température ambiante. We have already proposed in CH-551 032 (D1), in CH-557 557 (D2) and DE-C3-15 58 816 (D3) alloys paramagnetic with high magnetic susceptibility and coefficient thermal of negative susceptibility, as an alternative to ferromagnetic alloys for the manufacture of self-compensating hairsprings and precision springs. These alloys have an abnormally positive CTE and have the advantage of having elastic properties insensitive to magnetic fields. Their elastic properties depend on the texture created during the drawing of the hairspring, but little of the work hardening rate, unlike ferromagnetic alloys. In addition, as mentioned in document D3, these alloys provide an area of thermal compensation for mechanical oscillators that extends over 100 ° C around of room temperature.
Les causes physiques qui créent le CTE anormalement positif de ces alliages paramagnétiques sont expliquées dans les documents susmentionnés. Selon eux, ces alliages possèdent une forte densité d'états électronique au niveau de Fermi, ainsi qu'un fort couplage électron-phonon, ce qui engendre ce comportement anormal du CTE.The physical causes that create the CTE abnormally positive of these paramagnetic alloys are explained in the above documents. According to them, these alloys have a high density of electronic states at the level of Fermi, as well as a strong electron-phonon coupling, which generates this abnormal behavior of the CTE.
Le document D3 cite en particulier comme étant susceptibles de convenir à la fabrication de spiraux pour oscillateurs de mouvements d'horlogerie, des alliages dans lesquels le Nb ou le Ta sont alliés au Zr, au Ti ou à l'Hf qui se trouvent dans ces alliages dans des proportions telles qu'ils sont capables de précipiter en deux phases.Document D3 cites in particular as being susceptible to be suitable for the production of balance springs for oscillators watch movements, alloys in which Nb or Ta are combined with Zr, Ti or Hf which found in these alloys in such proportions that they are able to precipitate in two phases.
On a encore proposé dans le EP 0 886 195 (D4) un
alliage Nb-Zr contenant entre 5% et 25% en poids de Zr et au
moins 500 ppm en poids d'un agent dopant formé au moins en
partie d'oxygène. Avec cet alliage, le CTE est contrôlé par
la texture. La précipitation qui se produit au cours du
processus de fixage induit une recristallisation qui modifie
la texture et permet d'ajuster le CTE. L'oxygène influence
la précipitation et la recristallisation et donc le CTE.We have also proposed in
L'ajustement du CTE lors de l'opération de fixage est difficile à maítriser. En effet, la texture qui contrôle le CTE est modifiée au cours du fixage par la recristallisation. Or, dans les alliages de Nb-Zr-O, le déclenchement de la recristallisation et son déroulement dépendent de la concentration d'oxygène, du taux d'écrouissage et de la température. On a constaté qu'avec ces alliages, la plage de température sur laquelle se déroule la recristallisation est très étroite (environ 50°C). De plus, la variation de CTE induite est grande, de l'ordre de 150 ppm/°C entre le début et la fin de recristallisation. L'étroit intervalle de température dans lequel se déroule la recristallisation et cette forte variation du CTE rendent l'ajustement du CTE des alliages Nb-Zr-O difficilement reproductible. L'étroitesse de cet intervalle de température est due au fait que cette réaction est déclenchée par la précipitation des phases riches en Zr à partir de la solution solide.The adjustment of the CTE during the fixing operation is hard to handle. Indeed, the texture that controls the CTE is modified during fixing by recrystallization. However, in the alloys of Nb-Zr-O, the triggering of the recrystallization and its course depend on the concentration oxygen, work hardening rate and temperature. It has been found that with these alloys, the range of temperature on which the recrystallization takes place is very narrow (around 50 ° C). In addition, the variation of CTE induced is large, around 150 ppm / ° C between start and the end of recrystallization. The narrow temperature range in which the recrystallization takes place and this strong variation in the CTE makes the adjustment of the CTE of Nb-Zr-O alloys difficult to reproduce. The narrowness of this temperature range is due to the fact that this reaction is triggered by the precipitation of the phases rich in Zr from the solid solution.
Alors que le document D3 se fonde sur la capacité des composants de l'alliage de précipiter en deux phases. Le ressort avec CTE anormalement positif est fabriqué à partir de l'alliage recuit à haute température puis refroidi rapidement de manière à obtenir une solution solide sursaturée. Dans cet état, l'alliage est ensuite déformé à froid à plus de 85%. Cette forte déformation induit une texture favorable à un CTE positif. Pour ajuster le CTE à la valeur désirée, l'alliage est finalement traité thermiquement dans un intervalle de température qui permet la précipitation de la solution solide sursaturée. Les phases qui précipitent à partir de la solution solide ont des CTE plus faibles, ce qui entraíne une diminution du CTE global et permet son ajustement à la valeur désirée. La recristallisation après la précipitation en deux phases est relativement difficile à maítriser. En outre, dans le cas du Hf, la proportion de Hf doit être supérieure à 30% at., puisque jusqu'à cette concentration, cet élément est en solution solide dans le Nb. La capacité de déformation en est donc réduite.Whereas document D3 is based on the capacity of components of the alloy to precipitate in two phases. The spring with abnormally positive CTE is made from alloy annealed at high temperature and then rapidly cooled so as to obtain a supersaturated solid solution. In this state, the alloy is then cold deformed to more 85%. This strong deformation induces a favorable texture to a positive CTE. To adjust the CTE to the desired value, the alloy is finally heat treated in an interval of temperature which allows the precipitation of the solution supersaturated solid. The phases that precipitate from solid solution have lower CTEs, which results in a decrease in the overall CTE and allows its adjustment to the desired value. Recrystallization after precipitation in two phases is relatively difficult to master. Furthermore, in the case of Hf, the proportion of Hf must be greater than 30% at., since up to this concentration, this element is in solid solution in Nb. The deformation capacity is therefore reduced.
Le but de la présente invention est un alliage qui permette de remédier, au moins en partie, aux inconvénients des alliages susmentionnés.The object of the present invention is an alloy which allows the disadvantages to be remedied, at least in part of the above-mentioned alloys.
On a découvert, de façon surprenante, que des alliages Nb-Hf avec de très faibles proportions de Hf, c'est-à-dire, des proportions qui se situent bien au-dessous de la limite à partir de laquelle le Hf précipite, permettait d'obtenir un CTE positif, cette limite s'abaissant jusqu'à 2% at.It has surprisingly been discovered that alloys Nb-Hf with very small proportions of Hf, that is to say, proportions that are well below the limit from which Hf precipitates, allowed to obtain a positive CTE, this limit lowering up to 2% at.
L'invention a par conséquent pour objet un spiral autocompensateur pour oscillateur mécanique balancier-spiral de mouvement d'horlogerie ou autre instrument de précision, en alliage paramagnétique Nb-Hf possédant un coefficient thermique du module de Young (CTE) positif, apte à compenser les dilatations thermiques du spiral et du balancier, selon la revendication 1.The invention therefore relates to a self-compensating hairspring for mechanical balance-spring oscillator watch movement or other precision instrument, in Nb-Hf paramagnetic alloy with a thermal coefficient of the positive Young's module (CTE), able to compensate for thermal expansion of the balance spring and balance wheel, depending on the claim 1.
L'alliage à partir duquel le spiral objet de l'invention est réalisé présente plusieurs avantages.The alloy from which the hairspring object of the invention has several advantages.
Le Hf est en solution solide dans le Nb sur une très large gamme de concentration (jusqu'à 30% at.).Hf is in solid solution in Nb on a very wide concentration range (up to 30% at.).
La contribution du Hf au CTE positif est très forte, de sorte que de faibles proportions de Hf sont nécessaires. C'est ainsi qu'environ 2% at. de Hf suffisent à rendre le CTE positif. Il s'est avéré, après essais, qu'un alliage Nb-Hf 4% at. possède un CTE de 13 ppm/°C après recristallisation partielle, ce qui correspond tout à fait aux valeurs requises dans le cas d'un système balancier-spiral.The contribution of Hf to positive CTE is very strong, from so that small proportions of Hf are required. This is how about 2% at. of Hf are enough to make the CTE positive. It turned out, after testing, that an Nb-Hf alloy 4% at. has a CTE of 13 ppm / ° C after recrystallization partial, which corresponds perfectly to the values required in the case of a balance-spring system.
Avec cet alliage Nb-Hf 4% at., l'ajustement du CTE plus
facile à maítriser parce que:
Enfin, la faible concentration de Hf nécessaire pour avoir le CTE requis de 13 ppm/°C améliore la capacité de déformation du spiral et facilite les opérations de tréfilage.Finally, the low concentration of Hf necessary for having the required CTE of 13 ppm / ° C improves the deformation capacity hairspring and facilitates wire drawing operations.
Le spiral en alliage de Nb-Hf peut encore contenir un ou plusieurs éléments additionnels comme Ti, Ta, Zr, V, Mo, W, Cr en concentrations telles qu'aucune précipitation n'ait lieu durant l'opération de fixage de la forme du spiral. The Nb-Hf alloy hairspring may still contain a or several additional elements like Ti, Ta, Zr, V, Mo, W, Cr in concentrations such that no precipitation has place during the fixing operation of the hairspring shape.
L'effet de l'oxygène sur le spiral Nb-Hf s'est révélé faible, voire nul.The effect of oxygen on the Nb-Hf hairspring was revealed weak or even zero.
Claims (3)
1 / E dE / dT= CTE = coefficient thermique du module de Young du spiral de l'oscillateur
1 / E dE / dT = CTE = thermal coefficient of the Young's modulus of the oscillator hairspring
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE60132878T DE60132878T2 (en) | 2001-05-18 | 2001-05-18 | Self-compensating spring for a mechanical oscillator of the balance spring type |
EP01810497A EP1258786B1 (en) | 2001-05-18 | 2001-05-18 | Self-compensating spring for a mechanical oscillator of balance-spring type |
DE1258786T DE1258786T1 (en) | 2001-05-18 | 2001-05-18 | Self-compensating spring for a mechanical oscillator of the balance spring type |
US10/139,526 US6705601B2 (en) | 2001-05-18 | 2002-05-06 | Self-compensating spiral spring for a mechanical balance-spiral spring oscillator |
JP2002142837A JP4813742B2 (en) | 2001-05-18 | 2002-05-17 | Self-compensating spiral spring for mechanical balance spiral spring vibrator |
JP2009254944A JP2010044090A (en) | 2001-05-18 | 2009-11-06 | Self-compensating spiral spring for mechanical oscillator of balance-spring type |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP01810497A EP1258786B1 (en) | 2001-05-18 | 2001-05-18 | Self-compensating spring for a mechanical oscillator of balance-spring type |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1258786A1 true EP1258786A1 (en) | 2002-11-20 |
EP1258786B1 EP1258786B1 (en) | 2008-02-20 |
Family
ID=8183922
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP01810497A Expired - Lifetime EP1258786B1 (en) | 2001-05-18 | 2001-05-18 | Self-compensating spring for a mechanical oscillator of balance-spring type |
Country Status (4)
Country | Link |
---|---|
US (1) | US6705601B2 (en) |
EP (1) | EP1258786B1 (en) |
JP (2) | JP4813742B2 (en) |
DE (2) | DE60132878T2 (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014006229A1 (en) | 2012-07-06 | 2014-01-09 | Rolex Sa | Method for treating a surface of a timepiece component, and timepiece component obtained from such a method |
EP3159746A1 (en) | 2015-10-19 | 2017-04-26 | Rolex Sa | Heavily doped silicon hairspring for timepiece |
CN109116712A (en) * | 2017-06-26 | 2019-01-01 | 尼瓦洛克斯-法尔股份有限公司 | spiral clock spring |
EP3422115A1 (en) * | 2017-06-26 | 2019-01-02 | Nivarox-FAR S.A. | Timepiece hairspring |
EP3502785A1 (en) * | 2017-12-21 | 2019-06-26 | Nivarox-FAR S.A. | Hairspring for clock movement and method for manufacturing same |
US10338529B2 (en) | 2016-06-01 | 2019-07-02 | Rolex Sa | Fastening part for a hairspring |
US10409223B2 (en) | 2016-06-01 | 2019-09-10 | Rolex Sa | Fastening part of a hairspring |
EP3663867A1 (en) * | 2018-12-05 | 2020-06-10 | Cartier International AG | Niobium-molybdenum alloy compensating balance spring for a watch or clock movement |
EP3671359A1 (en) * | 2018-12-21 | 2020-06-24 | Nivarox-FAR S.A. | Timepiece spiral spring made of titanium |
EP3736639A1 (en) * | 2019-05-07 | 2020-11-11 | Nivarox-FAR S.A. | Method for manufacturing a hairspring for clock movement |
US11002872B2 (en) | 2015-12-14 | 2021-05-11 | Covidien Lp | Surgical adapter assemblies and wireless detection of surgical loading units |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE60132878T2 (en) * | 2001-05-18 | 2009-03-26 | Rolex Sa | Self-compensating spring for a mechanical oscillator of the balance spring type |
FR2842313B1 (en) * | 2002-07-12 | 2004-10-22 | Gideon Levingston | MECHANICAL OSCILLATOR (BALANCING SYSTEM AND SPIRAL SPRING) IN MATERIALS FOR REACHING A HIGHER LEVEL OF PRECISION, APPLIED TO A WATCHMAKING MOVEMENT OR OTHER PRECISION INSTRUMENT |
GB0324439D0 (en) * | 2003-10-20 | 2003-11-19 | Levingston Gideon R | Minimal thermal variation and temperature compensating non-magnetic balance wheels and methods of production of these and their associated balance springs |
JP5606675B2 (en) * | 2005-05-14 | 2014-10-15 | カーボンタイム・リミテッド | Balance spring and method for forming the same |
US8100579B2 (en) * | 2006-09-08 | 2012-01-24 | Gideon Levingston | Thermally compensating balance wheel |
US7487805B2 (en) * | 2007-01-31 | 2009-02-10 | Weavexx Corporation | Papermaker's forming fabric with cross-direction yarn stitching and ratio of top machined direction yarns to bottom machine direction yarns of less than 1 |
EP2196825A1 (en) | 2007-09-21 | 2010-06-16 | National Institute of Radiological Sciences | Beta ray detector and beta ray rebuilding method |
DE602008001778D1 (en) * | 2008-03-20 | 2010-08-26 | Nivarox Sa | Monoblock double spiral and its manufacturing process |
GB201001897D0 (en) * | 2010-02-05 | 2010-03-24 | Levingston Gideon | Non magnetic mateial additives and processes for controling the thermoelastic modulus and spring stiffness within springs for precision instruments |
EP2607969B1 (en) * | 2011-12-19 | 2014-09-17 | Nivarox-FAR S.A. | Clock movement with low magnetic sensitivity |
EP3796102B1 (en) | 2017-12-22 | 2022-04-20 | The Swatch Group Research and Development Ltd | Method for manufacturing a balance for a timepiece |
EP3534222A1 (en) * | 2018-03-01 | 2019-09-04 | Rolex Sa | Method for producing a thermally compensated oscillator |
EP3796101B1 (en) * | 2019-09-20 | 2025-02-19 | Nivarox-FAR S.A. | Hairspring for clock movement |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB892327A (en) * | 1958-12-22 | 1962-03-28 | Union Carbide Corp | Improvements in columbium alloys |
US3183085A (en) * | 1961-09-15 | 1965-05-11 | Westinghouse Electric Corp | Tantalum base alloys |
GB1166701A (en) * | 1966-06-08 | 1969-10-08 | Vacuumschmelze Gmbh | Improvements in or relating to Non-Ferromagnetic Alloys |
CH551032A (en) | 1966-04-22 | 1974-06-28 | Paramagnetic metal/semiconductor alloys - for oscillating and spring elements with particular elastic properties | |
CH557557A (en) | 1966-04-22 | 1974-12-31 | ||
US5881026A (en) * | 1997-06-20 | 1999-03-09 | Montres Rolex S.A. | Self-compensating balance spring for a mechanical oscillator of a balance-spring/balance assembly of a watch movement and process for manufacturing this balance-spring |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CH551302A (en) | 1973-03-01 | 1974-07-15 | Flury Arthur Ag | HEIGHT-ADJUSTABLE DEVICE FOR HANGING A Catenary On A ROPE. |
US6329066B1 (en) * | 2000-03-24 | 2001-12-11 | Montres Rolex S.A. | Self-compensating spiral for a spiral balance-wheel in watchwork and process for treating this spiral |
DE60132878T2 (en) * | 2001-05-18 | 2009-03-26 | Rolex Sa | Self-compensating spring for a mechanical oscillator of the balance spring type |
-
2001
- 2001-05-18 DE DE60132878T patent/DE60132878T2/en not_active Expired - Lifetime
- 2001-05-18 DE DE1258786T patent/DE1258786T1/en active Pending
- 2001-05-18 EP EP01810497A patent/EP1258786B1/en not_active Expired - Lifetime
-
2002
- 2002-05-06 US US10/139,526 patent/US6705601B2/en not_active Expired - Fee Related
- 2002-05-17 JP JP2002142837A patent/JP4813742B2/en not_active Expired - Fee Related
-
2009
- 2009-11-06 JP JP2009254944A patent/JP2010044090A/en not_active Withdrawn
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB892327A (en) * | 1958-12-22 | 1962-03-28 | Union Carbide Corp | Improvements in columbium alloys |
US3183085A (en) * | 1961-09-15 | 1965-05-11 | Westinghouse Electric Corp | Tantalum base alloys |
CH551032A (en) | 1966-04-22 | 1974-06-28 | Paramagnetic metal/semiconductor alloys - for oscillating and spring elements with particular elastic properties | |
CH557557A (en) | 1966-04-22 | 1974-12-31 | ||
GB1166701A (en) * | 1966-06-08 | 1969-10-08 | Vacuumschmelze Gmbh | Improvements in or relating to Non-Ferromagnetic Alloys |
DE1558816A1 (en) | 1966-06-08 | 1972-03-09 | Vacuumschmelze Gmbh | Process for the production of non-ferromagnetic alloys with adjustable temperature coefficient of the elastic modulus |
US5881026A (en) * | 1997-06-20 | 1999-03-09 | Montres Rolex S.A. | Self-compensating balance spring for a mechanical oscillator of a balance-spring/balance assembly of a watch movement and process for manufacturing this balance-spring |
Cited By (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10372083B2 (en) | 2012-07-06 | 2019-08-06 | Rolex Sa | Method for treating a surface of a timepiece component, and timepiece component obtained from such a method |
US11914328B2 (en) | 2012-07-06 | 2024-02-27 | Rolex Sa | Process for treating a surface of a timepiece component, and timepiece component obtained from such a process |
WO2014006229A1 (en) | 2012-07-06 | 2014-01-09 | Rolex Sa | Method for treating a surface of a timepiece component, and timepiece component obtained from such a method |
EP4439193A2 (en) | 2012-07-06 | 2024-10-02 | Rolex Sa | Method for treating a surface of a timepiece component and timepiece component obtained by such a method |
EP3159746A1 (en) | 2015-10-19 | 2017-04-26 | Rolex Sa | Heavily doped silicon hairspring for timepiece |
US10539926B2 (en) | 2015-10-19 | 2020-01-21 | Rolex Sa | Balance spring made of heavily doped silicon for a timepiece |
US11002872B2 (en) | 2015-12-14 | 2021-05-11 | Covidien Lp | Surgical adapter assemblies and wireless detection of surgical loading units |
US10409223B2 (en) | 2016-06-01 | 2019-09-10 | Rolex Sa | Fastening part of a hairspring |
US10338529B2 (en) | 2016-06-01 | 2019-07-02 | Rolex Sa | Fastening part for a hairspring |
US12045013B2 (en) | 2016-06-01 | 2024-07-23 | Rolex Sa | Fastening part for a hairspring |
EP3422115A1 (en) * | 2017-06-26 | 2019-01-02 | Nivarox-FAR S.A. | Timepiece hairspring |
CN109116712B (en) * | 2017-06-26 | 2020-08-25 | 尼瓦洛克斯-法尔股份有限公司 | Spiral clock spring |
US10795317B2 (en) | 2017-06-26 | 2020-10-06 | Nivarox-Far S.A. | Spiral timepiece spring |
EP3422116A1 (en) * | 2017-06-26 | 2019-01-02 | Nivarox-FAR S.A. | Timepiece hairspring |
CN109116712A (en) * | 2017-06-26 | 2019-01-01 | 尼瓦洛克斯-法尔股份有限公司 | spiral clock spring |
US11586146B2 (en) | 2017-12-21 | 2023-02-21 | Nivarox-Far S.A. | Spiral spring for clock or watch movement and method of manufacture thereof |
EP3502785A1 (en) * | 2017-12-21 | 2019-06-26 | Nivarox-FAR S.A. | Hairspring for clock movement and method for manufacturing same |
US11966198B2 (en) | 2017-12-21 | 2024-04-23 | Nivarox-Far S.A. | Spiral spring for clock or watch movement and method of manufacture thereof |
EP3663867A1 (en) * | 2018-12-05 | 2020-06-10 | Cartier International AG | Niobium-molybdenum alloy compensating balance spring for a watch or clock movement |
CN111349814A (en) * | 2018-12-21 | 2020-06-30 | 尼瓦罗克斯-法尔股份公司 | Titanium base spiral clock spring |
EP3671359A1 (en) * | 2018-12-21 | 2020-06-24 | Nivarox-FAR S.A. | Timepiece spiral spring made of titanium |
US11550263B2 (en) | 2019-05-07 | 2023-01-10 | Nivarox-Far S.A. | Method for manufacturing a balance spring for a horological movement |
EP3889691A1 (en) * | 2019-05-07 | 2021-10-06 | Nivarox-FAR S.A. | Horological hairspring made of a ni-hf alloy |
EP3736639A1 (en) * | 2019-05-07 | 2020-11-11 | Nivarox-FAR S.A. | Method for manufacturing a hairspring for clock movement |
Also Published As
Publication number | Publication date |
---|---|
US20020180130A1 (en) | 2002-12-05 |
DE1258786T1 (en) | 2003-08-14 |
JP2010044090A (en) | 2010-02-25 |
DE60132878D1 (en) | 2008-04-03 |
JP4813742B2 (en) | 2011-11-09 |
US6705601B2 (en) | 2004-03-16 |
DE60132878T2 (en) | 2009-03-26 |
JP2003004866A (en) | 2003-01-08 |
EP1258786B1 (en) | 2008-02-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1258786B1 (en) | Self-compensating spring for a mechanical oscillator of balance-spring type | |
EP0886195B1 (en) | Auto-compensating spring for mechanical oscillatory spiral spring of clockwork movement and method of manufacturing the same | |
EP1039352B1 (en) | Self-compensating spring for clockwork movement spring balance and method for treating the same | |
EP3422116B1 (en) | Timepiece hairspring | |
EP3502785B1 (en) | Hairspring for clock movement and method for manufacturing same | |
EP3601628B1 (en) | Beta metastable titanium alloy, watch spring based on the said alloy and its method of fabrication | |
EP1958031A2 (en) | Hairspring made from athermic glass for a timepiece movement and its method of manufacture | |
EP3502289A1 (en) | Hairspring for clock movement and method for manufacturing same | |
CZ293837B6 (en) | Process for manufacturing a magnetic component made of an iron-based soft magnetic alloy having a nanocrystalline structure | |
WO2015189278A2 (en) | Oscillator for a timepiece balance spring assembly | |
EP1519250A1 (en) | Thermally compensated balance-hairspring resonator | |
EP3502288A1 (en) | Method for manufacturing a hairspring for clock movement | |
EP3671359B1 (en) | Manufacturing method of a timepiece spiral spring made of titanium | |
CH714492B1 (en) | Spiral spring for clock movement | |
CN105103057B (en) | The mandrel of the removable clock and watch component pivoted | |
EP2447387B1 (en) | Barrel spring of a timepiece | |
CH711913A2 (en) | Process for manufacturing a clockwork spiral spring | |
US6329066B1 (en) | Self-compensating spiral for a spiral balance-wheel in watchwork and process for treating this spiral | |
EP3535425B1 (en) | Resonator for a clock piece | |
EP3422115B1 (en) | Timepiece spiral spring | |
EP3176651B1 (en) | Method for manufacturing a timepiece hairspring | |
CH714494A2 (en) | Spiral clock spring, in particular a mainspring or a spiral spring. | |
CH714491A2 (en) | Spiral spring for clockwork and its manufacturing process. | |
CN116755316A (en) | Hairsprings, watch movements and clocks | |
EP4212966A1 (en) | Method for limiting the deformation of a silicon timepiece |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: ROLEX SA |
|
GBC | Gb: translation of claims filed (gb section 78(7)/1977) | ||
17P | Request for examination filed |
Effective date: 20030123 |
|
AKX | Designation fees paid |
Designated state(s): CH DE FR GB LI |
|
DET | De: translation of patent claims | ||
17Q | First examination report despatched |
Effective date: 20061227 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): CH DE FR GB LI |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: MOINAS & SAVOYE SA Ref country code: CH Ref legal event code: EP |
|
REF | Corresponds to: |
Ref document number: 60132878 Country of ref document: DE Date of ref document: 20080403 Kind code of ref document: P |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20080421 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20081121 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20140520 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20140509 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20140602 Year of fee payment: 14 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 60132878 Country of ref document: DE |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20150518 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20160129 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150518 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20151201 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150601 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PFA Owner name: ROLEX SA, CH Free format text: FORMER OWNER: ROLEX SA, CH |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20200528 Year of fee payment: 20 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |