EP3422115A1 - Timepiece hairspring - Google Patents
Timepiece hairspring Download PDFInfo
- Publication number
- EP3422115A1 EP3422115A1 EP17177906.9A EP17177906A EP3422115A1 EP 3422115 A1 EP3422115 A1 EP 3422115A1 EP 17177906 A EP17177906 A EP 17177906A EP 3422115 A1 EP3422115 A1 EP 3422115A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- spiral spring
- total
- equal
- titanium
- spring according
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims abstract description 47
- 239000010936 titanium Substances 0.000 claims abstract description 44
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 41
- 238000010438 heat treatment Methods 0.000 claims abstract description 36
- 238000004519 manufacturing process Methods 0.000 claims abstract description 31
- 239000010955 niobium Substances 0.000 claims abstract description 30
- 229910052758 niobium Inorganic materials 0.000 claims abstract description 29
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 claims abstract description 27
- 229910052802 copper Inorganic materials 0.000 claims abstract description 16
- 238000003490 calendering Methods 0.000 claims abstract description 11
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 11
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 8
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 8
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 8
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 8
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 8
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 8
- 229910045601 alloy Inorganic materials 0.000 claims description 34
- 239000000956 alloy Substances 0.000 claims description 34
- 238000001556 precipitation Methods 0.000 claims description 31
- 239000000463 material Substances 0.000 claims description 17
- 239000010949 copper Substances 0.000 claims description 15
- 238000011282 treatment Methods 0.000 claims description 15
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 14
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 9
- 238000010791 quenching Methods 0.000 claims description 9
- 238000005096 rolling process Methods 0.000 claims description 8
- 238000000034 method Methods 0.000 claims description 6
- 239000002344 surface layer Substances 0.000 claims description 5
- 238000001816 cooling Methods 0.000 claims description 4
- 238000005530 etching Methods 0.000 claims description 4
- 239000010410 layer Substances 0.000 claims description 4
- 238000002360 preparation method Methods 0.000 claims description 3
- 238000004804 winding Methods 0.000 claims description 3
- 229910000570 Cupronickel Inorganic materials 0.000 claims description 2
- 229910018104 Ni-P Inorganic materials 0.000 claims description 2
- 229910018536 Ni—P Inorganic materials 0.000 claims description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 2
- 238000009825 accumulation Methods 0.000 claims description 2
- QDWJUBJKEHXSMT-UHFFFAOYSA-N boranylidynenickel Chemical compound [Ni]#B QDWJUBJKEHXSMT-UHFFFAOYSA-N 0.000 claims description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 2
- 229910052737 gold Inorganic materials 0.000 claims description 2
- 239000010931 gold Substances 0.000 claims description 2
- OFNHPGDEEMZPFG-UHFFFAOYSA-N phosphanylidynenickel Chemical compound [P].[Ni] OFNHPGDEEMZPFG-UHFFFAOYSA-N 0.000 claims description 2
- 229910052709 silver Inorganic materials 0.000 claims description 2
- 239000004332 silver Substances 0.000 claims description 2
- 238000005491 wire drawing Methods 0.000 claims description 2
- 229910001069 Ti alloy Inorganic materials 0.000 abstract description 3
- 229910001257 Nb alloy Inorganic materials 0.000 abstract 1
- 229910002056 binary alloy Inorganic materials 0.000 abstract 1
- 230000001186 cumulative effect Effects 0.000 abstract 1
- 229910001275 Niobium-titanium Inorganic materials 0.000 description 4
- RJSRQTFBFAJJIL-UHFFFAOYSA-N niobium titanium Chemical compound [Ti].[Nb] RJSRQTFBFAJJIL-UHFFFAOYSA-N 0.000 description 4
- 239000000203 mixture Substances 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000004146 energy storage Methods 0.000 description 2
- 230000002349 favourable effect Effects 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 238000007493 shaping process Methods 0.000 description 2
- 239000002887 superconductor Substances 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910000942 Elinvar Inorganic materials 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- RZJQYRCNDBMIAG-UHFFFAOYSA-N [Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Zn].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn] Chemical class [Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Cu].[Zn].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Ag].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn].[Sn] RZJQYRCNDBMIAG-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 238000012550 audit Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 235000021183 entrée Nutrition 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 230000002045 lasting effect Effects 0.000 description 1
- 238000002595 magnetic resonance imaging Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 229910000734 martensite Inorganic materials 0.000 description 1
- MOFOBJHOKRNACT-UHFFFAOYSA-N nickel silver Chemical compound [Ni].[Ag] MOFOBJHOKRNACT-UHFFFAOYSA-N 0.000 description 1
- 239000010956 nickel silver Substances 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 150000002825 nitriles Chemical class 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/06—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/02—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for springs
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C14/00—Alloys based on titanium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C27/00—Alloys based on rhenium or a refractory metal not mentioned in groups C22C14/00 or C22C16/00
- C22C27/02—Alloys based on vanadium, niobium, or tantalum
-
- G—PHYSICS
- G04—HOROLOGY
- G04B—MECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
- G04B1/00—Driving mechanisms
- G04B1/10—Driving mechanisms with mainspring
- G04B1/14—Mainsprings; Bridles therefor
- G04B1/145—Composition and manufacture of the springs
-
- G—PHYSICS
- G04—HOROLOGY
- G04B—MECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
- G04B17/00—Mechanisms for stabilising frequency
- G04B17/04—Oscillators acting by spring tension
- G04B17/06—Oscillators with hairsprings, e.g. balance
- G04B17/066—Manufacture of the spiral spring
-
- G—PHYSICS
- G04—HOROLOGY
- G04D—APPARATUS OR TOOLS SPECIALLY DESIGNED FOR MAKING OR MAINTAINING CLOCKS OR WATCHES
- G04D3/00—Watchmakers' or watch-repairers' machines or tools for working materials
- G04D3/0002—Watchmakers' or watch-repairers' machines or tools for working materials for mechanical working other than with a lathe
- G04D3/0005—Watchmakers' or watch-repairers' machines or tools for working materials for mechanical working other than with a lathe for parts of driving means
- G04D3/0007—Watchmakers' or watch-repairers' machines or tools for working materials for mechanical working other than with a lathe for parts of driving means for springs
-
- G—PHYSICS
- G04—HOROLOGY
- G04D—APPARATUS OR TOOLS SPECIALLY DESIGNED FOR MAKING OR MAINTAINING CLOCKS OR WATCHES
- G04D3/00—Watchmakers' or watch-repairers' machines or tools for working materials
- G04D3/0002—Watchmakers' or watch-repairers' machines or tools for working materials for mechanical working other than with a lathe
- G04D3/0035—Watchmakers' or watch-repairers' machines or tools for working materials for mechanical working other than with a lathe for components of the regulating mechanism
- G04D3/0041—Watchmakers' or watch-repairers' machines or tools for working materials for mechanical working other than with a lathe for components of the regulating mechanism for coil-springs
-
- G—PHYSICS
- G04—HOROLOGY
- G04B—MECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
- G04B17/00—Mechanisms for stabilising frequency
- G04B17/20—Compensation of mechanisms for stabilising frequency
- G04B17/22—Compensation of mechanisms for stabilising frequency for the effect of variations of temperature
- G04B17/227—Compensation of mechanisms for stabilising frequency for the effect of variations of temperature composition and manufacture of the material used
Definitions
- the invention relates to a spiral watch spring, in particular a barrel spring or a spiral spring, with a bi-phased structure.
- the invention also relates to a method of manufacturing a spiral watch spring.
- the invention relates to the field of the manufacture of clock springs, in particular energy storage springs, such as barrel springs or springs-motor spirals or ringing, or oscillator springs, such as spirals.
- energy storage springs such as barrel springs or springs-motor spirals or ringing
- oscillator springs such as spirals.
- the invention proposes to define a new type of spiral watch spring, based on the selection of a particular material, and to develop the appropriate manufacturing process.
- the invention relates to a spiral watch spring with a bi-phased structure according to claim 1.
- the invention also relates to a method of manufacturing such a spiral watch spring according to claim 9.
- the invention relates to a spiral watch spring bi-phased structure.
- the material of this spiral spring is a binary type alloy comprising niobium and titanium
- this alloy has a mass proportion of titanium greater than or equal to 45.0% of the total and less than or equal to 48.0% of the total.
- this spiral spring has a bi-phased microstructure comprising centered cubic niobium beta and compact hexagonal alpha titanium.
- the mass proportion of titanium is greater than or equal to 46.5% of the total.
- the mass proportion of titanium is less than or equal to 47.5% of the total.
- the balance at 100% of the total mass is made by titanium, and the mass proportion of niobium is greater than or equal to 51.7% of the total and less than or equal to 55.0% of the total.
- the mass proportion of titanium is greater than or equal to 46.0% of the total and less than or equal to 50.0% of the total.
- the mass proportion of titanium is greater than or equal to 53.5% of the total and less than or equal to 56.5% of the total, and the mass proportion of niobium is greater than or equal to 43.5% of the total and less than or equal to 46.5% of the total.
- the total proportions by weight of titanium and niobium is between 99.7% and 100% of the total.
- the proportion by mass of oxygen is less than or equal to 0.10% of the total, or even less than or equal to 0.085% of the total.
- the mass proportion of tantalum is less than or equal to 0.10% of the total.
- the mass proportion of carbon is less than or equal to 0.04% of the total, in particular less than or equal to 0.020% of the total, or even less than or equal to 0.0175% of the total.
- the mass proportion of iron is less than or equal to 0.03% of the total, in particular less than or equal to 0.025% of the total, or even less than or equal to 0.020% of the total.
- the proportion by weight of nitrogen is less than or equal to 0.02% of the total, in particular less than or equal to 0.015% of the total, or even less than or equal to 0.0075% of the total.
- the mass proportion of hydrogen is less than or equal to 0.01% of the total, in particular less than or equal to 0.0035% of the total, or even less than or equal to 0.0005% of the total.
- the mass proportion of nickel is less than or equal to 0.01% of the total.
- the mass proportion of silicon is less than or equal to 0.01% of the total.
- the proportion by mass of nickel is less than or equal to 0.01% of the total, in particular less than or equal to 0.16% of the total.
- the mass proportion of ductile or copper material is less than or equal to 0.01% of the total, in particular less than or equal to 0.005% of the total.
- the proportion by weight of aluminum is less than or equal to 0.01% of the total.
- This spiral spring has a yield strength greater than or equal to 1000 MPa.
- the spiral spring has a yield point greater than or equal to 1500 MPa.
- the spiral spring has a yield point greater than or equal to 2000 MPa.
- this spiral spring has a modulus of elasticity greater than 60 GPa and less than or equal to 80 GPa.
- the alloy thus determined allows, according to the treatment applied during the preparation, the production of spiral springs which are spiral springs with an elastic limit greater than or equal to 1000 MPa, or barrel springs, especially when the elastic limit greater than or equal to 1500 MPa.
- the application to a spiral spring requires properties capable of guaranteeing the maintenance of chronometric performance despite the variation in the operating temperatures of a watch incorporating such a spiral spring.
- the thermoelastic coefficient, also called CTE of the alloy then has a great importance.
- the hardened beta phase alloy has a strongly positive CTE, and the precipitation of the alpha phase which has a strongly negative CTE makes it possible to reduce the two-phase alloy to a CTE close to zero, which is particularly favorable.
- a CTE +/- 10 ppm / ° C must be reached.
- M and T are respectively the step and the temperature.
- E is the Young's modulus of the spiral spring, and in this formula, E, ⁇ and ⁇ are expressed in ° C -1 .
- CT is the thermal coefficient of the oscillator, (1 / E, dE / dT) is the CTE of the spiral alloy, ⁇ is the coefficient of expansion of the balance and ⁇ that of the spiral.
- this alloy of coupled deformation-heat treatment precipitation sequences comprising the application of alternating deformations (21) to heat treatments (22), until obtaining a bi-phased microstructure comprising niobium beta and alpha titanium, with an elastic limit greater than or equal to 2000 MPa.
- the treatment cycle then comprises a beta quench (15) at a given diameter, so that the entire structure of the alloy is beta, then a succession of these coupled deformation-heat treatment precipitation sequences.
- each deformation is carried out with a given deformation rate of between 1 and 5, this deformation rate satisfying the conventional formula 2ln (d0 / d), where d0 is the diameter of the last beta quench, and where d is the diameter of the hardened wire.
- the overall accumulation of the deformations over the whole of this succession of phases brings a total deformation rate of between 1 and 14.
- Each coupled deformation-heat treatment precipitation sequence comprises, in each case, a heat treatment of precipitation of the phase. alpha Ti (300-700 ° C, 1h-30h).
- This variant of the method comprising a beta quench is particularly suitable for the manufacture of barrel springs. More particularly, this beta quench is a solution treatment, with a duration of between 5 minutes and 2 hours at a temperature between 700 ° C and 1000 ° C, under vacuum, followed by cooling under gas.
- this beta quench is a solution treatment, with 1 hour at 800 ° C under vacuum, followed by cooling under gas.
- each coupled deformation-precipitation heat treatment sequence comprises a precipitation treatment of a duration of a precipitation treatment lasting between 1 hour and 80 hours at a temperature of between 350 ° C and 700 ° C. More particularly, the time is between 1 hour and 10 hours at a temperature between 380 ° C and 650 ° C. More particularly, the time is from 1 hour to 12 hours, at a temperature of 380 ° C.
- the process comprises between one and five coupled deformation-heat treatment precipitation sequences.
- the first coupled deformation-precipitation heat treatment sequence comprises a first deformation with at least 30% section reduction.
- each coupled deformation-heat treatment precipitation sequence other than the first, has a deformation between two thermal precipitation treatments with at least 25% section reduction.
- a surface layer of ductile material taken from copper, nickel, cupro-nickel, cupro -magnanese, gold, silver, nickel-phosphorus Ni-P and nickel-boron Ni-B, or the like, to facilitate the forming of wire by drawing and drawing and rolling.
- the wire is stripped of its layer of ductile material , in particular by etching, in a step 50.
- mainspring it is indeed possible to perform the manufacture by ringing and heat treatment, where the ring setting replaces the calendering.
- the mainspring is still generally heat-treated after ringing or after calendering.
- the last phase of deformation is carried out in the form of a flat rolling, and the last heat treatment is carried out on the calendered spring or set in a ring or strapped. More particularly, after drawing, the wire is rolled flat, before the manufacture of the spring itself by calendering or strapping or setting ring.
- the surface layer of ductile material is deposited so as to constitute a spiral spring whose pitch is not a multiple of the thickness of the blade.
- the surface layer of ductile material is deposited so as to form a spring whose pitch is variable.
- ductile or copper material is thus added at a given moment to facilitate the drawing of the wire by drawing and drawing, so that there remains a thickness of 10 to 500 microns on the wire at the final diameter of 0.3 to 1 millimeters.
- the wire is stripped of its layer of ductile material or copper especially by etching, and is rolled flat before the manufacture of the actual spring.
- the supply of ductile material or copper can be galvanic, or mechanical, it is then a jacket or a ductile material or copper tube which is fitted on a bar of niobium-titanium alloy to a large diameter, then which is thinned during the deformation steps of the composite bar.
- the removal of the layer is in particular feasible by etching, with a solution based on cyanides or based on acids, for example nitric acid.
- the invention thus makes it possible, in particular, to produce a spiral barrel spring made of an alloy of niobium-titanium type, typically 47% by weight of titanium (46-50%).
- a very fine lamellar bi-phased microstructure in particular nanometric, comprising or composed of niobium beta and alpha titanium.
- This alloy combines a very high elastic limit, greater than at least 1000 MPa, or greater than 1500 MPa, or even 2000 MPa on wire, and a very low modulus of elasticity, of the order of 60 Gpa to 80 GPa.
- This combination of properties is well suited for a mainspring or sprung spring.
- This niobium-titanium type alloy is easily coated with ductile or copper material, which greatly facilitates its deformation by drawing.
- Such an alloy is known and used for the manufacture of superconductors, such as magnetic resonance imaging apparatus, or particle accelerators), but is not used in watchmaking. Its fine and bi-phased microstructure is sought in the case of superconductors for physical reasons and has the collateral effect of improving the mechanical properties of the alloy.
- An alloy of NbTi47 type is particularly suitable for producing a mainspring, and also for the production of spiral springs.
- a binary type alloy comprising niobium and titanium, of the type selected above for the implementation of the invention, is also it can be used as a spiral wire, it has an effect similar to that of the "Elinvar", with a thermo-elastic coefficient practically zero in the range of temperatures of usual use of watches, and suitable for the manufacture of spirals self-compensating, especially for niobium-titanium alloys with a mass proportion of titanium of 40%, 50%, or 65%.
- Shaping the yarn of a spiral spring involves avoiding high titanium alloys, and the need for achieving spiral thermal compensation involves avoiding low titanium alloys.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Metallurgy (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Springs (AREA)
Abstract
Ressort spiralé d'horlogerie à structure bi-phasée, en alliage de niobium et titane, et procédé de fabrication de ce ressort, avec: - élaboration d'un alliage binaire comportant du niobium et du titane, avec : - niobium : balance à 100% ; - titane entre 45.0% et 48.0% en masse du total, - des traces de composants parmi O, H, C, Fe, Ta, N, Ni, Si, Cu, Al, entre 0 et 1600 ppm du total en masse en individuel, avec cumul inférieur à 0.3% en masse; - application de déformations alternées à des traitements thermiques pour l'obtention d'une microstructure bi-phasée comportant du niobium bêta et du titane alpha, de limite élastique supérieure à 1000 MPa, de module d'élasticité inférieur à 80 GPa ; - tréfilage pour obtenir du fil calandrable; - calandrage ou mise en bague pour former un ressort de barillet, en clé de sol avant son premier armage, ou estrapadage former un ressort-spiral.Spiral wound watch spring with bi-phased structure, made of niobium and titanium alloy, and method of manufacturing this spring, with: - development of a binary alloy comprising niobium and titanium, with: - niobium: 100% balance; - titanium between 45.0% and 48.0% by mass of the total, - traces of components among O, H, C, Fe, Ta, N, Ni, Si, Cu, Al, between 0 and 1600 ppm of the total mass in individual, with cumulative less than 0.3% by mass; - Application of alternating deformations to heat treatments to obtain a bi-phased microstructure comprising niobium beta and alpha titanium, with an elastic limit greater than 1000 MPa, modulus of elasticity less than 80 GPa; - drawing to obtain calenderable wire; - Calendering or ringing to form a mainspring, in ground key before its first arming, or strapping form a spiral spring.
Description
L'invention concerne un ressort spiralé d'horlogerie, notamment un ressort de barillet ou un ressort-spiral, à structure bi-phasée.The invention relates to a spiral watch spring, in particular a barrel spring or a spiral spring, with a bi-phased structure.
L'invention concerne encore un procédé de fabrication d'un ressort spiralé d'horlogerie.The invention also relates to a method of manufacturing a spiral watch spring.
L'invention concerne le domaine de la fabrication des ressorts d'horlogerie, en particulier des ressorts de stockage d'énergie, tels que ressorts de barillet ou ressorts-spiraux moteur ou de sonnerie, ou des ressorts d'oscillateur, tels que spiraux.The invention relates to the field of the manufacture of clock springs, in particular energy storage springs, such as barrel springs or springs-motor spirals or ringing, or oscillator springs, such as spirals.
La fabrication de ressorts de stockage d'énergie pour l'horlogerie doit faire face à des contraintes souvent à première vue incompatibles :
- nécessité d'obtention d'une limite élastique très élevée,
- nécessité d'obtention d'un module d'élasticité bas,
- facilité d'élaboration, notamment de tréfilage,
- excellente tenue en fatigue,
- tenue dans le temps,
- faibles sections,
- agencement des extrémités : crochet de bonde et bride glissante, avec des fragilités locales et une difficulté d'élaboration.
- need to obtain a very high elastic limit,
- need to obtain a low modulus of elasticity,
- ease of preparation, including wire drawing,
- excellent fatigue performance,
- held in time,
- weak sections,
- arrangement of ends: bung hook and sliding flange, with local weaknesses and difficulty of elaboration.
La réalisation de ressorts-spiraux est quant à elle centrée sur le souci de la compensation thermique, de façon à garantir des performances chronométriques régulières. Il faut pour cela obtenir un coefficient thermoélastique proche de zéro.The production of spiral springs is centered on the concern of thermal compensation, so as to ensure regular chronometric performance. This requires a thermoelastic coefficient close to zero.
Toute amélioration sur au moins l'un des points, et en particulier sur la tenue mécanique de l'alliage utilisé, représente donc une avancée significative.Any improvement on at least one of the points, and in particular on the mechanical strength of the alloy used, represents a significant advance.
L'invention se propose de définir un nouveau type de ressort spiralé d'horlogerie, basé sur la sélection d'un matériau particulier, et de mettre au point le procédé de fabrication adéquat.The invention proposes to define a new type of spiral watch spring, based on the selection of a particular material, and to develop the appropriate manufacturing process.
A cet effet, l'invention concerne un ressort spiralé d'horlogerie à structure bi-phasée, selon la revendication 1.For this purpose, the invention relates to a spiral watch spring with a bi-phased structure according to claim 1.
L'invention concerne encore un procédé de fabrication d'un tel ressort spiralé d'horlogerie, selon la revendication 9.The invention also relates to a method of manufacturing such a spiral watch spring according to claim 9.
D'autres caractéristiques et avantages de l'invention apparaîtront à la lecture de la description détaillée qui va suivre, en référence aux dessins annexés, où :
- la
figure 1 représente, de façon schématisée et en vue en plan avant son premier armage, un ressort de barillet qui est un ressort spiralé selon l'invention ; - la
figure 2 représente, de façon schématisée, un ressort-spiral qui est un ressort spiralé selon l'invention ; - la
figure 3 représente la séquence des opérations principales du procédé selon l'invention.
- the
figure 1 shows schematically and in plan view before its first winding, a barrel spring which is a spiral spring according to the invention; - the
figure 2 schematically represents a spiral spring which is a spiral spring according to the invention; - the
figure 3 represents the sequence of the main operations of the method according to the invention.
L'invention concerne un ressort spiralé d'horlogerie à structure bi-phasée.The invention relates to a spiral watch spring bi-phased structure.
Selon l'invention, le matériau de ce ressort spiralé est un alliage de type binaire comportant du niobium et du titaneAccording to the invention, the material of this spiral spring is a binary type alloy comprising niobium and titanium
Dans une variante avantageuse de réalisation, cet alliage comporte :
- niobium : balance à 100% ;
- une proportion en masse de titane supérieure ou égale à 40.0% du total et inférieure ou égale à 60.0% du total,
- des traces d'autres composants parmi O, H, C, Fe, Ta, N, Ni, Si, Cu, Al, chacun desdits composants de traces étant compris entre 0 et 1600 ppm du total en masse, et la somme de ces traces étant inférieure ou égale à 0.3% en masse.
- niobium: 100% balance;
- a proportion by weight of titanium greater than or equal to 40.0% of the total and less than or equal to 60.0% of the total,
- traces of other components among O, H, C, Fe, Ta, N, Ni, Si, Cu, Al, each of said trace components being between 0 and 1600 ppm of the total by mass, and the sum of these traces being less than or equal to 0.3% by mass.
Plus particulièrement, cet alliage comporte une proportion en masse de titane supérieure ou égale à 45.0% du total et inférieure ou égale à 48.0% du total.More particularly, this alloy has a mass proportion of titanium greater than or equal to 45.0% of the total and less than or equal to 48.0% of the total.
De façon avantageuse, ce ressort spiralé a une microstructure bi-phasée comportant du niobium bêta cubique centré et du titane alpha hexagonal compact.Advantageously, this spiral spring has a bi-phased microstructure comprising centered cubic niobium beta and compact hexagonal alpha titanium.
Pour obtenir une telle structure, et convenant à l'élaboration d'un ressort, il est nécessaire de précipiter une partie de la phase alpha par traitement thermique.To obtain such a structure, and suitable for the development of a spring, it is necessary to precipitate part of the alpha phase by heat treatment.
Plus le taux de titane est élevé, plus la proportion maximale de phase alpha qui peut être précipitée par traitement thermique est élevée, ce qui incite à rechercher une forte proportion de titane. Mais a contrario, plus le taux de titane est élevé, plus il est difficile d'obtenir uniquement une précipitation de la phase alpha aux intersections des joints de grains. L'apparition de précipités de type Widmastätten alpha-Ti intragranulaire ou la phase ω intragranulaire rend la déformation du matériau difficile, voire impossible, ce qui ne convient alors pas à la réalisation d'un ressort spiralé, et il convient alors de ne pas incorporer trop de titane dans l'alliage. La mise au point de l'invention a permis de déterminer un compromis, avec un optimum entre ces deux caractéristiques voisin de 47 % de titane en masse.The higher the titanium content, the higher the maximum proportion of alpha phase that can be precipitated by heat treatment, which encourages the search for a high proportion of titanium. But on the other hand, the higher the titanium content, the more difficult it is to obtain only a precipitation of the alpha phase at the intersections of the grain boundaries. The appearance of precipitates of the type Widmastätten intragranular alpha-Ti or intragranular phase rend makes the deformation of the material difficult or impossible, which is then not suitable for producing a spiral spring, and it should not be too much titanium incorporated in the alloy . The development of the invention has made it possible to determine a compromise, with an optimum between these two characteristics close to 47% by weight of titanium.
Aussi, plus particulièrement, la proportion en masse de titane est supérieure ou égale à 46.5% du total.Also, more particularly, the mass proportion of titanium is greater than or equal to 46.5% of the total.
Plus particulièrement, la proportion en masse de titane est inférieure ou égale à 47.5% du total.More particularly, the mass proportion of titanium is less than or equal to 47.5% of the total.
Dans une alternative, la balance à 100% du total en masse est faite par le titane, et la proportion en masse de niobium est supérieure ou égale à 51.7% du total et inférieure ou égale à 55.0% du total.In an alternative, the balance at 100% of the total mass is made by titanium, and the mass proportion of niobium is greater than or equal to 51.7% of the total and less than or equal to 55.0% of the total.
Dans une autre variante de composition, la proportion en masse de titane est supérieure ou égale à 46.0% du total et inférieure ou égale à 50.0% du total.In another composition variant, the mass proportion of titanium is greater than or equal to 46.0% of the total and less than or equal to 50.0% of the total.
Dans une autre variante encore de composition, la proportion en masse de titane est supérieure ou égale à 53.5% du total et inférieure ou égale à 56.5% du total, et la proportion en masse de niobium est supérieure ou égale à 43.5% du total et inférieure ou égale à 46.5% du total.In yet another variant of composition, the mass proportion of titanium is greater than or equal to 53.5% of the total and less than or equal to 56.5% of the total, and the mass proportion of niobium is greater than or equal to 43.5% of the total and less than or equal to 46.5% of the total.
Plus particulièrement, dans chaque variante, le total des proportions en masse du titane et du niobium est compris entre 99.7% et 100% du total.More particularly, in each variant, the total proportions by weight of titanium and niobium is between 99.7% and 100% of the total.
Plus particulièrement, la proportion en masse d'oxygène est inférieure ou égale à 0.10% du total, voire encore inférieure ou égale à 0.085% du total.More particularly, the proportion by mass of oxygen is less than or equal to 0.10% of the total, or even less than or equal to 0.085% of the total.
Plus particulièrement, la proportion en masse de tantale est inférieure ou égale à 0.10% du total.More particularly, the mass proportion of tantalum is less than or equal to 0.10% of the total.
Plus particulièrement, la proportion en masse de carbone est inférieure ou égale à 0.04% du total, notamment inférieure ou égale à 0.020% du total, voire encore inférieure ou égale à 0.0175% du total.More particularly, the mass proportion of carbon is less than or equal to 0.04% of the total, in particular less than or equal to 0.020% of the total, or even less than or equal to 0.0175% of the total.
Plus particulièrement, la proportion en masse de fer est inférieure ou égale à 0.03% du total, notamment inférieure ou égale à 0.025% du total, voire encore inférieure ou égale à 0.020% du total.More particularly, the mass proportion of iron is less than or equal to 0.03% of the total, in particular less than or equal to 0.025% of the total, or even less than or equal to 0.020% of the total.
Plus particulièrement, la proportion en masse d'azote est inférieure ou égale à 0.02% du total, notamment inférieure ou égale à 0.015% du total, voire encore inférieure ou égale à 0.0075% du total.More particularly, the proportion by weight of nitrogen is less than or equal to 0.02% of the total, in particular less than or equal to 0.015% of the total, or even less than or equal to 0.0075% of the total.
Plus particulièrement, la proportion en masse d'hydrogène est inférieure ou égale à 0.01% du total, notamment inférieure ou égale à 0.0035% du total, voire encore inférieure ou égale à 0.0005% du total.More particularly, the mass proportion of hydrogen is less than or equal to 0.01% of the total, in particular less than or equal to 0.0035% of the total, or even less than or equal to 0.0005% of the total.
Plus particulièrement, la proportion en masse de nickel est inférieure ou égale à 0.01% du total.More particularly, the mass proportion of nickel is less than or equal to 0.01% of the total.
Plus particulièrement, la proportion en masse de silicium est inférieure ou égale à 0.01% du total.More particularly, the mass proportion of silicon is less than or equal to 0.01% of the total.
Plus particulièrement, la proportion en masse de nickel est inférieure ou égale à 0.01% du total, notamment inférieure ou égale à 0.16% du total.More particularly, the proportion by mass of nickel is less than or equal to 0.01% of the total, in particular less than or equal to 0.16% of the total.
Plus particulièrement, la proportion en masse de matériau ductile ou cuivre est inférieure ou égale à 0.01% du total, notamment inférieure ou égale à 0.005% du total.More particularly, the mass proportion of ductile or copper material is less than or equal to 0.01% of the total, in particular less than or equal to 0.005% of the total.
Plus particulièrement, la proportion en masse d'aluminium est inférieure ou égale à 0.01% du total.More particularly, the proportion by weight of aluminum is less than or equal to 0.01% of the total.
Ce ressort spiralé a une limite élastique supérieure ou égale à 1000 MPa.This spiral spring has a yield strength greater than or equal to 1000 MPa.
Plus particulièrement, le ressort spiralé a une limite élastique supérieure ou égale à 1500 MPa.More particularly, the spiral spring has a yield point greater than or equal to 1500 MPa.
Plus particulièrement encore, le ressort spiralé a une limite élastique supérieure ou égale à 2000 MPa.More particularly, the spiral spring has a yield point greater than or equal to 2000 MPa.
De façon avantageuse, ce ressort spiralé a un module d'élasticité supérieur à 60 GPa et inférieur ou égal à 80 GPa.Advantageously, this spiral spring has a modulus of elasticity greater than 60 GPa and less than or equal to 80 GPa.
L'alliage ainsi déterminé permet, selon le traitement appliqué en cours d'élaboration, la confection de ressorts spiralés qui sont des ressorts-spiraux avec une limite élastique supérieure ou égale à 1000 MPa, ou des ressorts de barillet, notamment lorsque la limite élastique supérieure ou égale à 1500 MPa.The alloy thus determined allows, according to the treatment applied during the preparation, the production of spiral springs which are spiral springs with an elastic limit greater than or equal to 1000 MPa, or barrel springs, especially when the elastic limit greater than or equal to 1500 MPa.
L'application à un ressort-spiral nécessite des propriétés aptes à garantir le maintien des performances chronométriques malgré la variation des températures d'utilisation d'une montre incorporant un tel ressort-spiral. Le coefficient thermoélastique, dit aussi CTE de l'alliage, a alors une grande importance. L'alliage en phase bêta écroui présente un CTE fortement positif, et la précipitation de la phase alpha qui possède un CTE fortement négatif, permet de ramener l'alliage biphasé à un CTE proche de zéro, ce qui est particulièrement favorable. Pour former un oscillateur chronométrique avec un balancier en CuBe ou en maillechort, un CTE de +/- 10 ppm/°C doit être atteint. La formule qui lie le CTE de l'alliage et les coefficients de dilatation du spiral est du balancier est la suivante :
CT est le coefficient thermique de l'oscillateur, (1/E. dE/dT) est le CTE de l'alliage spiral, β est le coefficient de dilatation du balancier et α celui du spiral.The application to a spiral spring requires properties capable of guaranteeing the maintenance of chronometric performance despite the variation in the operating temperatures of a watch incorporating such a spiral spring. The thermoelastic coefficient, also called CTE of the alloy, then has a great importance. The hardened beta phase alloy has a strongly positive CTE, and the precipitation of the alpha phase which has a strongly negative CTE makes it possible to reduce the two-phase alloy to a CTE close to zero, which is particularly favorable. To form a chronometric oscillator with a CuBe or nickel silver balance, a CTE +/- 10 ppm / ° C must be reached. The formula that binds the CTE of the alloy and the coefficients of expansion of the spiral is the pendulum is the following one:
CT is the thermal coefficient of the oscillator, (1 / E, dE / dT) is the CTE of the spiral alloy, β is the coefficient of expansion of the balance and α that of the spiral.
L'invention concerne encore un procédé de fabrication d'un ressort spiralé d'horlogerie, caractérisé en ce qu'on met en oeuvre successivement les étapes suivantes :
- (10) élaboration d'une ébauche dans un alliage comportant du niobium et du titane, qui est un alliage de type binaire comportant du niobium et du titane, et qui comporte :
- niobium : balance à 100% ;
- une proportion en masse de titane supérieure ou égale à 45.0% du total et inférieure ou égale à 48.0% du total,
- des traces d'autres composants parmi O, H, C, Fe, Ta, N, Ni, Si, Cu, Al, chacun desdits composants de traces étant compris entre 0 et 1600 ppm du total en masse, et la somme desdites traces étant inférieure ou égale à 0.3% en masse;
- (20) application audit alliage de séquences couplées de déformation-traitement thermique de précipitation, comportant l'application de déformations alternées à des traitements thermiques, jusqu'à l'obtention d'une microstructure bi-phasée comportant du niobium bêta et du titane alpha, avec une limite élastique supérieure ou égale à 1000 MPa, et un module d'élasticité supérieur à 60 GPa et inférieur ou égal à 80 GPa ;
- (30) tréfilage jusqu'à l'obtention d'un fil de section ronde, et laminage à profil rectangulaire compatible avec la section d'entrée d'une calandre ou d'une broche d'estrapadage ou avec une mise en bague dans le cas d'un ressort de barillet;
- (40) calandrage en clé de sol des spires pour former un ressort de barillet avant son premier armage, ou estrapadage pour former un ressort-spiral, ou mise en bague et traitement thermique pour un ressort de barillet.
- (10) forming a blank in an alloy comprising niobium and titanium, which is a binary type alloy comprising niobium and titanium, and which comprises:
- niobium: 100% balance;
- a proportion by weight of titanium greater than or equal to 45.0% of the total and less than or equal to 48.0% of the total,
- traces of other components among O, H, C, Fe, Ta, N, Ni, Si, Cu, Al, each of said trace components being between 0 and 1600 ppm of the total by mass, and the sum of said traces being less than or equal to 0.3% by mass;
- (20) application to said alloy of coupled deformation-heat treatment precipitation sequences, involving the application of alternating deformations to heat treatments, until a bi-phased microstructure comprising niobium beta and alpha titanium is obtained with an elastic limit greater than or equal to 1000 MPa, and a modulus of elasticity greater than 60 GPa and less than or equal to 80 GPa;
- (30) drawing to obtain a round section wire, and rectangular profile rolling compatible with the inlet section of a calendering calender or pin or with a ring setting in the case of a mainspring;
- (40) Coiling ground key calendering to form a barrel spring prior to first winding, or strapping to form a coil spring, or ring setting and heat treatment for a barrel spring.
De façon particulière, on effectue l'application à cet alliage de séquences couplées 20 de déformation-traitement thermique de précipitation, comportant l'application de déformations (21) alternées à des traitements thermiques (22), jusqu'à l'obtention d'une microstructure bi-phasée comportant du niobium bêta et du titane alpha, avec une limite élastique supérieure ou égale à 2000 MPa. Plus particulièrement, le cycle de traitement comporte alors préalablement une trempe bêta (15) à un diamètre donné, de façon à ce que toute la structure de l'alliage soit bêta, puis une succession de ces séquences couplées de déformation-traitement thermique de précipitation.In particular, application is made to this alloy of coupled deformation-heat treatment precipitation sequences, comprising the application of alternating deformations (21) to heat treatments (22), until obtaining a bi-phased microstructure comprising niobium beta and alpha titanium, with an elastic limit greater than or equal to 2000 MPa. More particularly, the treatment cycle then comprises a beta quench (15) at a given diameter, so that the entire structure of the alloy is beta, then a succession of these coupled deformation-heat treatment precipitation sequences. .
Dans ces séquences couplées de déformation-traitement thermique de précipitation, chaque déformation est effectuée avec un taux de déformation donné compris entre 1 et 5, ce taux de déformation répondant à la formule classique 2ln(d0/d), où d0 est le diamètre de la dernière trempe bêta, et où d est le diamètre du fil écroui. Le cumul global des déformations sur l'ensemble de cette succession de phases amène un taux total de déformation compris entre 1 et 14. Chaque séquence couplée de déformation-traitement thermique de précipitation comporte, à chaque fois, un traitement thermique de précipitation de la phase alpha Ti (300-700 °C, 1h-30h).In these coupled deformation-heat treatment precipitation sequences, each deformation is carried out with a given deformation rate of between 1 and 5, this deformation rate satisfying the conventional formula 2ln (d0 / d), where d0 is the diameter of the last beta quench, and where d is the diameter of the hardened wire. The overall accumulation of the deformations over the whole of this succession of phases brings a total deformation rate of between 1 and 14. Each coupled deformation-heat treatment precipitation sequence comprises, in each case, a heat treatment of precipitation of the phase. alpha Ti (300-700 ° C, 1h-30h).
Cette variante de procédé comportant une trempe bêta est particulièrement adaptée à la fabrication de ressorts de barillet. Plus particulièrement, cette trempe bêta est un traitement de mise en solution, avec une durée comprise entre 5 minutes et 2 heures à une température comprise entre 700°C et 1000°C, sous vide, suivie d'un refroidissement sous gaz.This variant of the method comprising a beta quench is particularly suitable for the manufacture of barrel springs. More particularly, this beta quench is a solution treatment, with a duration of between 5 minutes and 2 hours at a temperature between 700 ° C and 1000 ° C, under vacuum, followed by cooling under gas.
Plus particulièrement encore, cette trempe bêta est un traitement de mise en solution, avec 1 heure à 800°C sous vide, suivie d'un refroidissement sous gaz.More particularly, this beta quench is a solution treatment, with 1 hour at 800 ° C under vacuum, followed by cooling under gas.
Pour revenir aux séquences couplées de déformation-traitement thermique de précipitation, plus particulièrement chaque séquence couplée de déformation-traitement thermique de précipitation comporte un traitement de précipitation d'une durée un traitement de précipitation d'une durée comprise entre 1 heure et 80 heures à une température comprise entre 350°C et 700°C. Plus particulièrement, la durée est comprise entre 1 heure et 10 heures à une température comprise entre 380°C et 650°C. Plus particulièrement encore, la durée est de 1 heure à 12 heures, à une température de 380°C.To return to coupled deformation-heat treatment precipitation sequences, more particularly each coupled deformation-precipitation heat treatment sequence comprises a precipitation treatment of a duration of a precipitation treatment lasting between 1 hour and 80 hours at a temperature of between 350 ° C and 700 ° C. More particularly, the time is between 1 hour and 10 hours at a temperature between 380 ° C and 650 ° C. More particularly, the time is from 1 hour to 12 hours, at a temperature of 380 ° C.
Plus particulièrement, le procédé comporte entre une et cinq séquences couplées de déformation-traitement thermique de précipitation.More particularly, the process comprises between one and five coupled deformation-heat treatment precipitation sequences.
Plus particulièrement, la première séquence couplée de déformation-traitement thermique de précipitation comporte une première déformation avec au moins 30 % de réduction de section.More particularly, the first coupled deformation-precipitation heat treatment sequence comprises a first deformation with at least 30% section reduction.
Plus particulièrement, chaque séquence couplée de déformation-traitement thermique de précipitation, autre que la première, comporte une déformation entre deux traitements thermiques de précipitation avec au moins 25 % de réduction de section.More particularly, each coupled deformation-heat treatment precipitation sequence, other than the first, has a deformation between two thermal precipitation treatments with at least 25% section reduction.
Plus particulièrement, après cette élaboration de ladite ébauche en alliage, et avant le tréfilage, dans une étape supplémentaire 25, on ajoute à l'ébauche une couche superficielle de matériau ductile pris parmi le cuivre, le nickel, le cupro-nickel, le cupro-magnanèse, l'or, l'argent, le nickel-phosphore Ni-P et le nickel-bore Ni-B, ou similaire, pour faciliter la mise en forme de fil par étirage et tréfilage et laminage. Et, après le tréfilage, ou après le laminage, ou après une opération ultérieure de calandrage ou estrapadage, ou encore de mise en bague et traitement thermique dans le cas d'un ressort de barillet, on débarrasse le fil de sa couche du matériau ductile, notamment par attaque chimique, dans une étape 50.More particularly, after this development of said alloy blank, and before drawing, in a further step 25, is added to the blank a surface layer of ductile material taken from copper, nickel, cupro-nickel, cupro -magnanese, gold, silver, nickel-phosphorus Ni-P and nickel-boron Ni-B, or the like, to facilitate the forming of wire by drawing and drawing and rolling. And, after drawing, or after rolling, or after a subsequent calendering or strapping operation, or ring setting and heat treatment in the case of a mainspring, the wire is stripped of its layer of ductile material , in particular by etching, in a step 50.
Pour le ressort de barillet, il est en effet possible d'effectuer la fabrication par mise en bague et traitement thermique, où la mise en bague remplace le calandrage. Le ressort de barillet est encore généralement traité thermiquement après mise en bague ou après calandrage.For the mainspring, it is indeed possible to perform the manufacture by ringing and heat treatment, where the ring setting replaces the calendering. The mainspring is still generally heat-treated after ringing or after calendering.
Un ressort spiral est, quant à lui, généralement, encore traité thermiquement après estrapadage.As for a spiral spring, it is generally still heat-treated after strapping.
Plus particulièrement, on effectue la dernière phase de déformation sous la forme d'un laminage à plat, et on pratique le dernier traitement thermique sur le ressort calandré ou mis en bague ou estrapadé. Plus particulièrement, après le tréfilage, on lamine le fil à plat, avant la fabrication du ressort proprement dit par calandrage ou estrapadage ou mise en bague.More particularly, the last phase of deformation is carried out in the form of a flat rolling, and the last heat treatment is carried out on the calendered spring or set in a ring or strapped. More particularly, after drawing, the wire is rolled flat, before the manufacture of the spring itself by calendering or strapping or setting ring.
Dans une variante, on dépose la couche superficielle de matériau ductile de façon à constituer un ressort spiral dont le pas n'est pas un multiple de l'épaisseur de la lame. Dans une autre variante, on dépose la couche superficielle de matériau ductile de façon à constituer un ressort dont le pas est variable.In a variant, the surface layer of ductile material is deposited so as to constitute a spiral spring whose pitch is not a multiple of the thickness of the blade. In another variant, the surface layer of ductile material is deposited so as to form a spring whose pitch is variable.
Dans une application horlogère particulière, du matériau ductile ou cuivre est ainsi ajouté à un moment donné pour faciliter la mise en forme du fil par étirage et tréfilage, de telle manière à ce qu'il en reste une épaisseur de 10 à 500 micromètres sur le fil au diamètre final de 0.3 à 1 millimètres. Le fil est débarrassé de sa couche de matériau ductile ou cuivre notamment par attaque chimique, puis est laminé à plat avant la fabrication du ressort proprement dit.In a particular watchmaking application, ductile or copper material is thus added at a given moment to facilitate the drawing of the wire by drawing and drawing, so that there remains a thickness of 10 to 500 microns on the wire at the final diameter of 0.3 to 1 millimeters. The wire is stripped of its layer of ductile material or copper especially by etching, and is rolled flat before the manufacture of the actual spring.
L'apport de matériau ductile ou cuivre peut être galvanique, ou bien mécanique, c'est alors une chemise ou un tube de matériau ductile ou cuivre qui est ajusté sur une barre d'alliage niobium-titane à un gros diamètre, puis qui est amincie au cours des étapes de déformation du barreau composite.The supply of ductile material or copper can be galvanic, or mechanical, it is then a jacket or a ductile material or copper tube which is fitted on a bar of niobium-titanium alloy to a large diameter, then which is thinned during the deformation steps of the composite bar.
L'enlèvement de la couche est notamment réalisable par attaque chimique, avec une solution à base de cyanures ou à base d'acides, par exemple d'acide nitrique.The removal of the layer is in particular feasible by etching, with a solution based on cyanides or based on acids, for example nitric acid.
L'invention permet, ainsi, notamment la réalisation d'un ressort spiralé de barillet en alliage de type niobium-titane, typiquement à 47 % en masse de titane (46-50%). Par une combinaison adéquate d'étapes de déformation et de traitement thermique, il est possible d'obtenir une microstructure bi-phasée lamellaire très fine, en particulier nanométrique, comportant ou composée de niobium bêta et de titane alpha. Cet alliage combine une limite élastique très élevée, supérieure au moins à 1000 MPa, ou supérieure à 1500 MPa, voire à 2000 MPa sur du fil, et un module d'élasticité très bas, de l'ordre de 60 Gpa à 80 GPa. Cette combinaison de propriétés convient bien pour un ressort de barillet ou ressort-spiral. Cet alliage de type niobium-titane se laisse facilement recouvrir de matériau ductile ou cuivre, ce qui facilite grandement sa déformation par tréfilage.The invention thus makes it possible, in particular, to produce a spiral barrel spring made of an alloy of niobium-titanium type, typically 47% by weight of titanium (46-50%). By an appropriate combination of deformation and heat treatment steps, it is possible to obtain a very fine lamellar bi-phased microstructure, in particular nanometric, comprising or composed of niobium beta and alpha titanium. This alloy combines a very high elastic limit, greater than at least 1000 MPa, or greater than 1500 MPa, or even 2000 MPa on wire, and a very low modulus of elasticity, of the order of 60 Gpa to 80 GPa. This combination of properties is well suited for a mainspring or sprung spring. This niobium-titanium type alloy is easily coated with ductile or copper material, which greatly facilitates its deformation by drawing.
Un tel alliage est connu et utilisé pour la fabrication de supraconducteurs, tels qu'appareils d'imagerie par résonance magnétique, ou accélérateurs de particules), mais n'est pas utilisé en horlogerie. Sa microstructure fine et bi-phasée est recherchée dans le cas des supraconducteurs pour des raisons physiques et a comme effet collatéral bienvenu une amélioration des propriétés mécaniques de l'alliage.Such an alloy is known and used for the manufacture of superconductors, such as magnetic resonance imaging apparatus, or particle accelerators), but is not used in watchmaking. Its fine and bi-phased microstructure is sought in the case of superconductors for physical reasons and has the collateral effect of improving the mechanical properties of the alloy.
Un alliage de type NbTi47 convient particulièrement bien pour la réalisation d'un ressort de barillet, et aussi pour la réalisation de ressorts-spiraux.An alloy of NbTi47 type is particularly suitable for producing a mainspring, and also for the production of spiral springs.
Un alliage de type binaire comportant du niobium et du titane, du type sélectionné ci-dessus pour la mise en oeuvre de l'invention, est également susceptible d'être utilisé comme fil spiral, il présente un effet similaire à celui de l' « Elinvar », avec un coefficient thermo-élastique pratiquement nul dans la plage de températures d'utilisation usuelle de montres, et apte à la fabrication de spiraux auto-compensateurs, en particulier pour des alliages niobium-titane avec une proportion en masse de titane de 40%, 50%, ou 65%.A binary type alloy comprising niobium and titanium, of the type selected above for the implementation of the invention, is also it can be used as a spiral wire, it has an effect similar to that of the "Elinvar", with a thermo-elastic coefficient practically zero in the range of temperatures of usual use of watches, and suitable for the manufacture of spirals self-compensating, especially for niobium-titanium alloys with a mass proportion of titanium of 40%, 50%, or 65%.
La sélection de composition selon l'invention s'est imposée aussi par ailleurs pour l'application supraconducteur, et est favorable en raison de la teneur en titane, qui évite les inconvénients :
- des alliages trop chargés en titane, où apparaît une phase martensitique, et où l'on se heurte à des difficultés de mise en forme ;
- des alliages trop faibles en titane, qui se traduisent par moins de phase alpha lors du ou des traitements thermiques de précipitation.
- alloys too heavy in titanium, where appears a martensitic phase, and where one encounters difficulties of shaping;
- alloys too low in titanium, which result in less alpha phase during the heat treatment or precipitation.
La mise en forme du lacet d'un ressort-spiral implique d'éviter les alliages à fort titane, et la nécessité de l'atteinte de la compensation thermique spiral implique d'éviter les alliages à bas titane.Shaping the yarn of a spiral spring involves avoiding high titanium alloys, and the need for achieving spiral thermal compensation involves avoiding low titanium alloys.
Claims (22)
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP17177906.9A EP3422115B1 (en) | 2017-06-26 | 2017-06-26 | Timepiece spiral spring |
CH00861/17A CH713935A2 (en) | 2017-06-26 | 2017-07-03 | Spiral clock spring. |
EP18176374.9A EP3422116B1 (en) | 2017-06-26 | 2018-06-06 | Timepiece hairspring |
CH00743/18A CH713924B1 (en) | 2017-06-26 | 2018-06-11 | Clockwork spiral spring. |
JP2018114347A JP6560792B2 (en) | 2017-06-26 | 2018-06-15 | Spiral spring for timer |
US16/012,274 US10795317B2 (en) | 2017-06-26 | 2018-06-19 | Spiral timepiece spring |
RU2018122930A RU2763453C2 (en) | 2017-06-26 | 2018-06-25 | Spiral spring for clock |
CN201810668822.5A CN109116712B (en) | 2017-06-26 | 2018-06-26 | Spiral clock spring |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP17177906.9A EP3422115B1 (en) | 2017-06-26 | 2017-06-26 | Timepiece spiral spring |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3422115A1 true EP3422115A1 (en) | 2019-01-02 |
EP3422115B1 EP3422115B1 (en) | 2021-08-04 |
Family
ID=59227564
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP17177906.9A Active EP3422115B1 (en) | 2017-06-26 | 2017-06-26 | Timepiece spiral spring |
Country Status (2)
Country | Link |
---|---|
EP (1) | EP3422115B1 (en) |
CH (1) | CH713935A2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3502785B1 (en) | 2017-12-21 | 2020-08-12 | Nivarox-FAR S.A. | Hairspring for clock movement and method for manufacturing same |
EP3422116B1 (en) | 2017-06-26 | 2020-11-04 | Nivarox-FAR S.A. | Timepiece hairspring |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1558816A1 (en) * | 1966-06-08 | 1972-03-09 | Vacuumschmelze Gmbh | Process for the production of non-ferromagnetic alloys with adjustable temperature coefficient of the elastic modulus |
EP1114876A1 (en) * | 1999-06-11 | 2001-07-11 | Kabushiki Kaisha Toyota Chuo Kenkyusho | Titanium alloy and method for producing the same |
EP1258786A1 (en) * | 2001-05-18 | 2002-11-20 | Montres Rolex Sa | Self-compensating spring for a mechanical oscillator of balance-spring type |
US20070133355A1 (en) | 2003-11-07 | 2007-06-14 | Seik Epson Corporation | Timepiece and spring thereof |
WO2015189278A2 (en) | 2014-06-11 | 2015-12-17 | Cartier Création Studio Sa | Oscillator for a timepiece balance spring assembly |
EP2993531A1 (en) | 2014-09-08 | 2016-03-09 | Precision Engineering AG | Method for shaping a spring |
WO2018172164A1 (en) | 2017-03-24 | 2018-09-27 | Universite De Lorraine | METASTABLE β TITANIUM ALLOY, TIMEPIECE SPRING MADE FROM SUCH AN ALLOY AND METHOD FOR PRODUCTION THEREOF |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CH536362A (en) | 1966-04-22 | 1973-04-30 | Straumann Inst Ag | Paramagnetic metal/semiconductor alloys - for oscillating and spring elements with particular elastic properties |
JPH04279212A (en) | 1991-03-07 | 1992-10-05 | Shinko Kosen Kogyo Kk | Manufacture of fine wire of titanium or its alloys |
WO1996041382A2 (en) | 1995-06-07 | 1996-12-19 | Teledyne Industries, Inc. | Niobium 47 weight % titanium by iron addition and method for making superconducting multifilamentary wire |
EP0886195B1 (en) | 1997-06-20 | 2002-02-13 | Montres Rolex Sa | Auto-compensating spring for mechanical oscillatory spiral spring of clockwork movement and method of manufacturing the same |
CH711913A2 (en) | 2015-12-02 | 2017-06-15 | Nivarox Far Sa | Process for manufacturing a clockwork spiral spring |
EP3422116B1 (en) | 2017-06-26 | 2020-11-04 | Nivarox-FAR S.A. | Timepiece hairspring |
EP3502785B1 (en) | 2017-12-21 | 2020-08-12 | Nivarox-FAR S.A. | Hairspring for clock movement and method for manufacturing same |
-
2017
- 2017-06-26 EP EP17177906.9A patent/EP3422115B1/en active Active
- 2017-07-03 CH CH00861/17A patent/CH713935A2/en unknown
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1558816A1 (en) * | 1966-06-08 | 1972-03-09 | Vacuumschmelze Gmbh | Process for the production of non-ferromagnetic alloys with adjustable temperature coefficient of the elastic modulus |
EP1114876A1 (en) * | 1999-06-11 | 2001-07-11 | Kabushiki Kaisha Toyota Chuo Kenkyusho | Titanium alloy and method for producing the same |
EP1258786A1 (en) * | 2001-05-18 | 2002-11-20 | Montres Rolex Sa | Self-compensating spring for a mechanical oscillator of balance-spring type |
US20070133355A1 (en) | 2003-11-07 | 2007-06-14 | Seik Epson Corporation | Timepiece and spring thereof |
WO2015189278A2 (en) | 2014-06-11 | 2015-12-17 | Cartier Création Studio Sa | Oscillator for a timepiece balance spring assembly |
EP2993531A1 (en) | 2014-09-08 | 2016-03-09 | Precision Engineering AG | Method for shaping a spring |
WO2018172164A1 (en) | 2017-03-24 | 2018-09-27 | Universite De Lorraine | METASTABLE β TITANIUM ALLOY, TIMEPIECE SPRING MADE FROM SUCH AN ALLOY AND METHOD FOR PRODUCTION THEREOF |
Non-Patent Citations (4)
Title |
---|
ANONYMOUS: "IIIa. Nb-Ti Phase Diagram Phase Diagram", INTERNET ARCHIVE WAYBACK MACHINE, 18 December 2015 (2015-12-18), pages 1 - 13, XP055631656, Retrieved from the Internet <URL:https://web.archive.org/web/20151218115535if_/http://boulderschool.yale.edu/sites/default/files/files/larbalestier3.pdf> |
ANONYMOUS: "Precision Engineering and H.Moser & Cie. Present their Paramagnetic Hairspring", PRECISION ENGINEERING AG PRESS RELEASE, 22 November 2016 (2016-11-22), pages 1 - 3, XP055631693, Retrieved from the Internet <URL:http://media.h-moser.com/files/5015/0220/2389/peag_2016_press_release_venturer_small_seconds_xl_paramagnetic_20161122_english.pdf> |
PETER J LEE, LARBALESTIER DAVID C: "Niobium-Titanium Superconducting Wires: Nanostructures by Extrusion and Wire Drawing", WIRE JOURNAL INTERNATIONAL, February 2003 (2003-02-01), pages 1 - 8, XP055631678, Retrieved from the Internet <URL:https://pdfs.semanticscholar.org/3b77/9b7295b2f5f6376fa1df8d741fe5cf49b894.pdf?_ga=2.11913649.408455947.1571043110-1369269946.1561712474> |
PETER J. LEE, BRUCE STRAUSS: "11.2 Nb-Ti - from beginnings to perfection.", INTERNET ARCHIVE WAYBACK MACHINE, 2 April 2016 (2016-04-02), pages 1 - 23, XP055631667, Retrieved from the Internet <URL:https://web.archive.org/web/20160402092620if_/http://fs.magnet.fsu.edu/~lee/superconductor-history_files/Centennial_Supplemental/11_2_Nb-Ti_from_beginnings_to_perfection-fullreferences.pdf> |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3422116B1 (en) | 2017-06-26 | 2020-11-04 | Nivarox-FAR S.A. | Timepiece hairspring |
EP3502785B1 (en) | 2017-12-21 | 2020-08-12 | Nivarox-FAR S.A. | Hairspring for clock movement and method for manufacturing same |
Also Published As
Publication number | Publication date |
---|---|
EP3422115B1 (en) | 2021-08-04 |
CH713935A2 (en) | 2018-12-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3422116A1 (en) | Timepiece hairspring | |
EP3502289B1 (en) | Manufacturing method of a hairspring for a timepiece movement | |
EP3502785B1 (en) | Hairspring for clock movement and method for manufacturing same | |
EP3502288B1 (en) | Method for manufacturing a hairspring for clock movement | |
EP3601628B1 (en) | Beta metastable titanium alloy, watch spring based on the said alloy and its method of fabrication | |
EP3671359B1 (en) | Manufacturing method of a timepiece spiral spring made of titanium | |
EP3422115A1 (en) | Timepiece hairspring | |
CH714494A2 (en) | Spiral clock spring, in particular a mainspring or a spiral spring. | |
CH714492A2 (en) | Spiral spring for clockwork and its manufacturing process. | |
EP3889691B1 (en) | Horological hairspring made of a nb-hf alloy | |
EP4060425B1 (en) | Hairspring for timepiece movement | |
CH714493A2 (en) | Method of manufacturing a spiral spring for a watch movement | |
JP2023171660A (en) | Spiral spring for horological movement | |
EP3796101A1 (en) | Hairspring for clock movement | |
CH715683A2 (en) | Titanium-based clockwork spiral spring. | |
CH716155A2 (en) | Method of manufacturing a spiral spring for a clockwork movement. | |
EP3736638B1 (en) | Method for manufacturing a hairspring for clock movement | |
CH718454A2 (en) | Spiral spring for a clock movement and process for manufacturing this spiral spring. | |
CH714491A2 (en) | Spiral spring for clockwork and its manufacturing process. | |
CH716156B1 (en) | Process for manufacturing a spiral spring for a clock movement. | |
CH718455A2 (en) | Spiral spring for a clock movement and process for manufacturing this spiral spring. | |
CH716622A2 (en) | Spiral spring for watch movement made of niobium and titanium alloy and process for its manufacture. | |
EP4123393A1 (en) | Hairspring for clock movement | |
CH718850A2 (en) | Spiral spring for clockwork. | |
EP3828642A1 (en) | Hairspring for clock movement and method for manufacturing same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20190702 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
TPAC | Observations filed by third parties |
Free format text: ORIGINAL CODE: EPIDOSNTIPA |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20191122 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R079 Ref document number: 602017043234 Country of ref document: DE Free format text: PREVIOUS MAIN CLASS: G04B0017060000 Ipc: G04B0017220000 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: C21D 1/18 20060101ALI20210204BHEP Ipc: C21D 9/02 20060101ALI20210204BHEP Ipc: C22C 27/02 20060101ALI20210204BHEP Ipc: G04B 17/22 20060101AFI20210204BHEP Ipc: G04B 17/06 20060101ALI20210204BHEP Ipc: G04B 1/14 20060101ALI20210204BHEP |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20210311 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1417596 Country of ref document: AT Kind code of ref document: T Effective date: 20210815 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602017043234 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: FRENCH |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20210804 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1417596 Country of ref document: AT Kind code of ref document: T Effective date: 20210804 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210804 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210804 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210804 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210804 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210804 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211104 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211206 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210804 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210804 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211104 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210804 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210804 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211105 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210804 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210804 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R026 Ref document number: 602017043234 Country of ref document: DE |
|
PLBI | Opposition filed |
Free format text: ORIGINAL CODE: 0009260 |
|
PLAX | Notice of opposition and request to file observation + time limit sent |
Free format text: ORIGINAL CODE: EPIDOSNOBS2 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210804 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210804 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210804 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210804 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210804 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210804 |
|
26 | Opposition filed |
Opponent name: E-PATENT S.A. Effective date: 20220429 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210804 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210804 |
|
PLBB | Reply of patent proprietor to notice(s) of opposition received |
Free format text: ORIGINAL CODE: EPIDOSNOBS3 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210804 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20220630 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220626 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220626 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220630 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230611 |
|
PLCK | Communication despatched that opposition was rejected |
Free format text: ORIGINAL CODE: EPIDOSNREJ1 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R100 Ref document number: 602017043234 Country of ref document: DE |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20230702 Year of fee payment: 7 |
|
PLBN | Opposition rejected |
Free format text: ORIGINAL CODE: 0009273 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: OPPOSITION REJECTED |
|
27O | Opposition rejected |
Effective date: 20231022 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20170626 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210804 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210804 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210804 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20240521 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240521 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240521 Year of fee payment: 8 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210804 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20240701 Year of fee payment: 8 |