[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP1189001B1 - Procédé et dispositif de production d'azote de haute pureté par la séparation cryogénique d'air - Google Patents

Procédé et dispositif de production d'azote de haute pureté par la séparation cryogénique d'air Download PDF

Info

Publication number
EP1189001B1
EP1189001B1 EP00124031A EP00124031A EP1189001B1 EP 1189001 B1 EP1189001 B1 EP 1189001B1 EP 00124031 A EP00124031 A EP 00124031A EP 00124031 A EP00124031 A EP 00124031A EP 1189001 B1 EP1189001 B1 EP 1189001B1
Authority
EP
European Patent Office
Prior art keywords
nitrogen
column
cycle
purity nitrogen
purity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP00124031A
Other languages
German (de)
English (en)
Other versions
EP1189001A1 (fr
Inventor
Ralph Dipl.-Ing. Spöri
Stefan Dipl.-Ing. Lochner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Linde GmbH
Original Assignee
Linde GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Linde GmbH filed Critical Linde GmbH
Publication of EP1189001A1 publication Critical patent/EP1189001A1/fr
Application granted granted Critical
Publication of EP1189001B1 publication Critical patent/EP1189001B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04187Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
    • F25J3/04218Parallel arrangement of the main heat exchange line in cores having different functions, e.g. in low pressure and high pressure cores
    • F25J3/04224Cores associated with a liquefaction or refrigeration cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04333Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/04351Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams of nitrogen
    • F25J3/04357Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams of nitrogen and comprising a gas work expansion loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04375Details relating to the work expansion, e.g. process parameter etc.
    • F25J3/04387Details relating to the work expansion, e.g. process parameter etc. using liquid or hydraulic turbine expansion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04375Details relating to the work expansion, e.g. process parameter etc.
    • F25J3/04393Details relating to the work expansion, e.g. process parameter etc. using multiple or multistage gas work expansion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04436Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using at least a triple pressure main column system
    • F25J3/04454Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using at least a triple pressure main column system a main column system not otherwise provided, e.g. serially coupling of columns or more than three pressure levels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/32Processes or apparatus using separation by rectification using a side column fed by a stream from the high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/34Processes or apparatus using separation by rectification using a side column fed by a stream from the low pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/42Nitrogen or special cases, e.g. multiple or low purity N2
    • F25J2215/44Ultra high purity nitrogen, i.e. generally less than 1 ppb impurities
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2220/00Processes or apparatus involving steps for the removal of impurities
    • F25J2220/42Separating low boiling, i.e. more volatile components from nitrogen, e.g. He, H2, Ne
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2220/00Processes or apparatus involving steps for the removal of impurities
    • F25J2220/44Separating high boiling, i.e. less volatile components from nitrogen, e.g. CO, Ar, O2, hydrocarbons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2235/00Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams
    • F25J2235/42Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams the fluid being nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2240/00Processes or apparatus involving steps for expanding of process streams
    • F25J2240/02Expansion of a process fluid in a work-extracting turbine (i.e. isentropic expansion), e.g. of the feed stream
    • F25J2240/12Expansion of a process fluid in a work-extracting turbine (i.e. isentropic expansion), e.g. of the feed stream the fluid being nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/42Processes or apparatus involving steps for recycling of process streams the recycled stream being nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/04Down-flowing type boiler-condenser, i.e. with evaporation of a falling liquid film

Definitions

  • the invention relates to a method for producing high-purity nitrogen by Cryogenic air separation according to the preamble of claim 1.
  • the invention also relates to a device according to the preamble of Claim 13.
  • Such a method and such a device are known from US-A-5596886. It points next to one Rectification system for nitrogen-oxygen separation on a high-purity nitrogen column, in the nitrogen fraction used in the rectification system for nitrogen-oxygen separation was obtained, the highly pure product is produced by the CO content is reduced by rectification.
  • the rectification system for nitrogen-oxygen separation can be a one, two or Be designed multi-column system.
  • a classic Linde double-column process is preferred for use.
  • the basics of cryogenic decomposition of air in general and the construction of double-column systems in particular are from the monograph "Low Temperature Technology” by Hausen / Linde (2nd edition, 1985) or from an article by Latimer in Chemical Engineering Progress (Vol. 63, No.2, 1967, page 35).
  • the rectification system for nitrogen-oxygen separation can in the method according to the invention further devices for Extraction of other air components, in particular of highly pure oxygen or of noble gases such as argon.
  • a process for the rectification of high purity nitrogen with reduced CO content is known from European patent EP 299364 B1.
  • the CO removal and possibly the argon removal takes place in the upper one Area of the high pressure part of the double column for nitrogen-oxygen separation instead.
  • the disadvantage of this method is that only a small part of the total Nitrogen product can be obtained in highly pure form; the majority must be Nitrogen of ordinary purity, especially without reducing the CO content (and possibly the argon content).
  • the invention has for its object a method and a device specify where a particularly high proportion of the nitrogen product in highly pure Form can be obtained, especially with a reduced CO concentration.
  • the inventive method practically any turnover in the High purity nitrogen column can be achieved by following the nitrogen cycle accordingly is designed or driven.
  • This enables flexible adaptation the process to specific customer needs. For example, it is possible that to produce entire usable nitrogen product in highly pure form without Nitrogen of ordinary purity is a by-product. This is particularly the case with the - frequently occurring - introduction of the products of the process into liquid tanks inexpensive because instead of the two nitrogen tanks required for the prior art different purities now a tank for the high purity nitrogen can suffice.
  • the generated one Amount of high purity nitrogen can be varied during operation.
  • At least a first partial stream of the liquefied cycle nitrogen is preferred in the rectification system for nitrogen-oxygen separation, especially in the first rectification column, returned: this allows the generated in the circuit Cold for the extraction of liquid products directly from the rectification system Nitrogen-oxygen separation can be used. Here, for example, it becomes more fluid Generic nitrogen and / or liquid oxygen.
  • the integration between the circulatory system and the high-purity nitrogen column can continue be reinforced by the gaseous insert for the high-purity nitrogen column is at least partially removed from the nitrogen cycle.
  • a the second part of the compressed cycle nitrogen expanded and into one High-purity nitrogen column initiated.
  • the relaxation of the second part of the compressed cycle nitrogen is preferably carried out while performing work.
  • a particularly low concentration is more volatile Impurities such as hydrogen, neon and / or helium in the high purity nitrogen product he wishes.
  • the cycle nitrogen is at least a theoretical or practical floor below the head of the first rectification column is removed and / or the high purity nitrogen at least a theoretical or practical floor below the head of the High purity nitrogen column is removed.
  • the Operating pressure at the top of the high-purity nitrogen column is, for example, the same Pressure at the head of the first rectification column.
  • the second partial stream of the liquefied cycle nitrogen can be directly from the Circuit to the evaporation chamber of the top condenser of the high-purity nitrogen column be performed. However, it is preferably first placed in the high-purity nitrogen column initiated, withdrawn from the lower area of the high-purity nitrogen column and then the evaporation in the top condenser of the high-purity nitrogen column fed.
  • the first partial stream of the liquefied cycle nitrogen can also flow into the High purity nitrogen column can be initiated - for example, together with the second partial flow. He will then also be from the bottom of the High-purity nitrogen column pulled off and then into the rectification system Nitrogen-oxygen separation returned.
  • the liquefied cycle nitrogen (first part of the compressed cycle nitrogen) must be upstream of its division into the first and second substreams or its introduction into the first rectification column can be relaxed.
  • This expansion step can be carried out using a throttle valve.
  • the corresponding partial flow of the cycle nitrogen for example in a supercritical state in a turbine and is without it Phase transition relaxes to a subcritical pressure, making it complete liquid or essentially completely liquid (gas content, for example, up to about 5%) emerges from the turbine.
  • the turbine can also be charged already liquid circulating nitrogen possible under subcritical pressure.
  • the first and the second partial stream of the first part of the Cycle nitrogen relaxed together to perform work, then together in the high-purity nitrogen column initiated; downstream of the high purity nitrogen column the division into the first and second partial stream then takes place.
  • a two-turbine circuit is preferably used, in which a third part of the compressed cycle nitrogen relieved work and at least partially is returned to the circuit compressor, the inlet temperature of the work-relieving relaxation of the third part of the compressed cycle nitrogen higher than the inlet temperature of the work relaxation of the second part of the compressed cycle nitrogen.
  • the fraction in the high-purity nitrogen column is worked up further, flows through the cold turbine.
  • the third sub-stream is preferably after the work-related relaxation at the entry of the Recycle compressor returned, for example, together with the cycle nitrogen from the first rectification column.
  • outlet pressure of the work-related relaxation of the third part of the compressed cycle nitrogen lower than the outlet pressure of the work-relieving relaxation of the second part of the compressed cycle nitrogen is.
  • this mode of operation enables particularly efficient operation of the two turbines in which gaseous nitrogen is expanded; on the other hand becomes the higher pressure of the second part to operate the high-purity nitrogen column exploited.
  • the invention also relates to a device for producing high-purity nitrogen by low-temperature air separation according to claim 10.
  • a high-pressure column 4 Compressed to a pressure of 6.5 bar and by water vapor and carbon dioxide cleaned air 1 is cooled in a main heat exchanger 2 to about dew point and fed via a line 3 to a high-pressure column 4, which in the example is the represents "first rectification column".
  • the high pressure column 4 is part of the rectification system for nitrogen-oxygen separation, which is also a low-pressure column 5 includes.
  • the two columns 4 and 5 are here under a pressure of 6.2 bar or 1.3 bar (each at the head) operated. You are above one Main condenser 6 in heat-exchanging connection. There is 7 nitrogen High pressure column 4 against evaporating sump liquid of the low pressure column 5 condensed; the condensate 8 thus formed is the high pressure column 4 as a return given up.
  • Liquid nitrogen is discharged from the high-pressure column 4 via line 18, specifically two bottoms 76 below the head. (These plywood floors are used to hold back more volatile impurities that are present as a non-condensable gas Drain not shown on the main condenser can be deducted.)
  • the liquid nitrogen 18 is subcooled in a subcooling countercurrent 10, by means of a throttle valve 19 relaxed to just above low pressure column pressure and in a separator 20 initiated. Flash gas 21 from the separator is the Head nitrogen 14 mixed. Liquid is removed from the separator 20 via line 22 fed to the low pressure column as a return. If desired, you can also here A liquid product (LIN) is drawn off via line 23.
  • LIN liquid product
  • the oxygen-enriched bottom liquid 9 is in the supercooling counterflow 10 supercooled and introduced into the low-pressure column 5 via a throttle valve 11.
  • liquid oxygen 12 is drawn off and if necessary after subcooling in the subcooling countercurrent 10 via line 13 deducted as a liquid product (LOX).
  • LOX liquid product
  • it can be gaseous Oxygen can be removed from the lower region of the low-pressure column 5.
  • Purity taken from that in the example 150 ppm of less volatile Contains components, especially argon and CO.
  • the high pressure column 4 is connected to a nitrogen cycle.
  • the removal takes place in the Example at the same intermediate point at which the liquid nitrogen 18 for the Low pressure column is removed, namely below the blocking floors 76.
  • On the Barrier floors 76 can also be dispensed with; in this case the Circulating nitrogen from the first rectification column at the top.
  • At least a part 25 of the gaseous cycle nitrogen is in the main heat exchanger 2 to about Ambient temperature warmed and via the lines 26, 27, 28, 29 the entrance a circuit compressor 30 supplied, where it is compressed to about 30 bar.
  • a first circuit heat exchanger 34a which together with a second, partially connected circuit heat exchanger 34b, a circuit heat exchanger system forms.
  • the cooled first part 35 of the compressed cycle nitrogen enters supercritical state in a liquid turbine 36 and is there to perform work 6.5 bar relaxed.
  • the liquid turbine 36 is equipped with a mechanical braking device 37 connected, for example with a generator or an oil brake.
  • the relaxed first part 38 of the cycle nitrogen is now in the liquid State and is fed into a high purity nitrogen column 39, one or several soils above their swamps (or just above the swamp of the High purity nitrogen column). It is immediately removed again via line 40.
  • a first one Partial stream 42 is fed back into the high-pressure column 4, whereby the Nitrogen cycle closes. If necessary, a pump 41 to promote the liquefied first part 40 of the cycle nitrogen are used.
  • a second part of the cycle nitrogen compressed in the cycle compressor 30 is via lines 43 and 48 together with the first part through the booster 44 and 46 and is then in two branch flows (through lines 33 - 50a or 49 - 50b) in the circuit heat exchanger system 34a, 34b to about Cooled down to 170 K.
  • the second part of the cycle nitrogen via the lines 50a and 50b to a cold turbine 51 and there to work at about 6.5 bar relaxed.
  • the relaxed second part 52 of the cycle nitrogen serves as gaseous use for the high-purity nitrogen column 39 and is immediately above fed into the swamp. It forms the ascending in the high-purity nitrogen column 39 Steam.
  • the countercurrent within the high-purity nitrogen column 39 makes it heavier volatile components such as CO and / or argon from the gaseous Washed out nitrogen.
  • the top gas 53 of the high-purity nitrogen column 39 is in a top condenser 54 is practically completely condensed (except for one shown discharge for more volatile components).
  • the condensate 55 flows as Return back to the high-purity nitrogen column 39.
  • the top condenser 54 is through cooled a partial flow 67 of the liquefied first part 40 of the cycle nitrogen.
  • the steam 68 formed in the process is heated in the first circuit heat exchanger 34 and via lines 69, 28 and 29 to the inlet of the circuit compressor 30 recycled.
  • the two circuit heat exchangers 34a, 34b can also be used as one shared block (not shown).
  • Highly pure nitrogen is withdrawn in liquid form via line 56. To withhold more volatile components serve two to three blocking floors 57 above the Product withdrawal.
  • the liquid, highly pure nitrogen 56 continues to flow via line 57 to the supercooling counterflow 10.
  • the supercooled high-purity nitrogen 58 is in a throttle valve 59 relaxed to 1.4 bar and introduced into a separator 60. Flash gas 61 from the separator 60 becomes the top nitrogen 14 of the low pressure column 5 added.
  • the liquid from the separator 60 is high via line 62 pure nitrogen product (HLIN) deducted.
  • the nitrogen cycle is also from the top nitrogen 14 of the low pressure column 5th fed, which after heating in the supercooling counterflow 10 and in Main heat exchanger 2 is fed via line 63 to a feed gas compressor 64. After compression to about the inlet pressure of the circuit compressor 30 and Aftercooling 65 it flows via lines 66 and 29 to the circuit compressor.
  • a third part 70 of the cycle nitrogen compressed in the cycle compressor 30 becomes in two branches 71a-72a and 71b - 72b in the cycle heat exchanger system 34a, 34b cooled to about 260 K. At this temperature it passes over Line 72 into a warm turbine 73 and is working there to about 6 bar relaxed. The relaxed third part of the cycle nitrogen is via the lines 74a and 74b again to the circuit heat exchanger system 34a, 34b and flows back to the circuit compressor 30 after it has warmed up.
  • the mechanical energy generated in the two gaseous turbines 51, 73 is generated, is used to drive the post-compressor 44, 46.
  • These are preferably Turbines and post-compressors are directly mechanically coupled.
  • the Turbines 51, 73 are braked by generators; in this case the whole Recycle nitrogen is only compressed in the recycle compressor 30 (not ) Shown.
  • Equalizing currents 76, 77 serve to optimize the heat transfer in the three Heat exchanger blocks 34a, 34b.
  • the method according to the invention can be compared to the exemplary embodiment in can be varied in many ways.
  • this liquid can also be at least partially directly in the Evaporation space of the top condenser 54 of the high-purity nitrogen column or in the High pressure column 4 are initiated. In the latter case, the refrigerant for the Top condenser 54 can be removed from the high pressure column 4.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Claims (13)

  1. Procédé de production d'azote de haute pureté par une décomposition de l'air à basse température dans un système de rectification destiné à la séparation de l'azote et de l'oxygène, qui présente au moins une première colonne de rectification (4), où, dans le procédé,
    a. l'azote du circuit (24) est prélevé sous forme gazeuse de la partie supérieure de la première colonne de rectification (4) et
    b. est comprimé dans un compresseur (30) du circuit,
    c. une première partie (35) de l'azote comprimé du circuit est liquéfiée,
    d. une fraction de l'azote (52) du système de rectification destiné à la séparation azote-oxygène est introduite (52) dans une colonne (39) d'azote de haute pureté qui présente un condenseur de tête (54) et
    e. de l'azote de haute pureté (56) est prélevé de la partie supérieure de la colonne (39) d'azote de haute pureté, caractérisé en ce que
    f. la demande en froid du condensateur de tête (54) de la colonne (39) d'azote de haute pureté est couverte au moins partiellement par l'azote liquéfié du circuit (38).
  2. Procédé selon la revendication 1, caractérisé en ce qu'au moins un premier flux partiel (42) de l'azote liquéfié du circuit (38, 40) est recyclé dans le système de rectification destiné à la séparation azote-oxygène, en particulier dans la première colonne de rectification (4).
  3. Procédé selon la revendication 1 ou 2, caractérisé en ce qu'une deuxième partie de l'azote comprimé du circuit est détendue (51) et introduite (52) dans la colonne (39) d'azote de haute pureté.
  4. Procédé selon la revendication 3, caractérisé en ce que la détente (51) de la deuxième partie de l'azote comprimé du circuit peut être réalisée avec production de travail.
  5. Procédé selon l'une quelconque des revendications 1 à 4, dans lequel
    l'azote du circuit (24) est prélevé au moins un plateau théorique ou pratique (76) au-dessous de la tête de la première colonne de rectification et/ou
    l'azote de haute pureté (56) est prélevé au moins un plateau théorique ou pratique (78) au-dessous de la tête de la colonne (39) d'azote de haute pureté.
  6. Procédé selon l'une quelconque des revendications 1 à 5, dans lequel un deuxième flux partiel (67) de l'azote liquéfie du circuit (38, 40) est évaporé dans un condenseur de tête (54) de la colonne (39) d'azote de haute pureté contre le gaz de tête (53) qui condense de la colonne (39) d'azote de haute pureté.
  7. Procédé selon la revendication 6, dans lequel l'azote du circuit (68) évaporé dans le condenseur de tête (54) de la colonne (39) d'azote de haute pureté est recyclé dans le compresseur (30) du circuit.
  8. Procédé selon l'une quelconque des revendications 6 ou 7, dans lequel le deuxième flux partiel de l'azote liquéfié du circuit est introduit (38) dans la colonne (39) d'azote de haute pureté, est soutiré de la partie inférieure de la colonne (40) d'azote de haute pureté et est ensuite introduit (67) au niveau de l'évaporation dans le condenseur de tête (54) de la colonne d'azote de haute pureté.
  9. Procédé selon l'une quelconque des revendications 2 à 8, dans lequel le premier flux partiel de l'azote liquéfié du circuit est introduit (38) dans la colonne (39) d'azote de haute pureté, est soutiré (40) de la partie inférieure de la colonne d'azote de haute pureté et est ensuite recyclé (42) dans le système de rectification destiné à la séparation azote-oxygène.
  10. Procédé selon l'une quelconque des revendications 3, 4, 5 - pour autant qu'elle se réfère à la revendication 3 ou 4 - ou 6 à 9, dans lequel la première partie (35) de l'azote du circuit est détendue (36) en produisant du travail en amont de sa répartition en premier et deuxième flux partiel.
  11. Procédé selon l'une quelconque des revendications 4, 5 - pour autant qu'elle se réfère à la revendication 4 - ou 6 à 10, dans lequel une troisième partie de l'azote comprimé du circuit (72a, 72b) est détendue (73) en produisant du travail et est recyclée au moins partiellement dans le compresseur du circuit (30), la température à l'entrée de la détente (73) produisant du travail de la troisième partie de l'azote comprimé du circuit étant supérieure à la température d'entrée de la détente (51) produisant du travail de la deuxième partie de l'azote comprimé du circuit.
  12. Procédé selon la revendication 11, dans lequel la pression de sortie de la détente (72) produisant du travail de la troisième partie de l'azote comprimé du circuit est inférieure à la pression de sortie de la détente (51) produisant du travail de la deuxième partie de l'azote comprimé du circuit.
  13. Dispositif pour la production d'azote de haute pureté par une décomposition de l'air à basse température avec un système de rectification destiné à la séparation azote-oxygène qui présente au moins une colonne de rectification (4)
    avec une conduite de circulation (24, 25, 26, 27, 28, 29) pour alimenter un compresseur du circuit (30) en azote du circuit sous forme gazeuse provenant de la partie supérieure de la première colonne de rectification (4),
    avec des moyens (34a, 36) pour liquéfier une première partie (35) de l'azote comprimé du circuit,
    avec des moyens (52) pour introduire une fraction de l'azote dans une colonne (39) d'azote de haute pureté, la colonne d'azote de haute pureté présentant un condenseur de tête (54) et
    avec une conduite de produit pour le prélèvement d'azote de hautement pureté (56) de la partie supérieure de la colonne (39) d'azote de haute pureté, caractérisé par
    des moyens pour l'introduction directe ou indirecte d'au moins un flux partiel de l'azote liquéfié du circuit dans la chambre d'évaporation du condenseur de tête (54) de la colonne d'azote de haute pureté.
EP00124031A 2000-09-13 2000-11-04 Procédé et dispositif de production d'azote de haute pureté par la séparation cryogénique d'air Expired - Lifetime EP1189001B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10045128A DE10045128A1 (de) 2000-09-13 2000-09-13 Verfahren und Vorrichtung zur Erzeugung hoch reinen Stickstoffs durch Tieftemperatur-Luftzerlegung
DE10045128 2000-09-13

Publications (2)

Publication Number Publication Date
EP1189001A1 EP1189001A1 (fr) 2002-03-20
EP1189001B1 true EP1189001B1 (fr) 2004-09-29

Family

ID=7655964

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00124031A Expired - Lifetime EP1189001B1 (fr) 2000-09-13 2000-11-04 Procédé et dispositif de production d'azote de haute pureté par la séparation cryogénique d'air

Country Status (7)

Country Link
US (1) US6499313B2 (fr)
EP (1) EP1189001B1 (fr)
AT (1) ATE278167T1 (fr)
BR (1) BR0103987A (fr)
DE (2) DE10045128A1 (fr)
ES (1) ES2230020T3 (fr)
TW (1) TW524963B (fr)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004006536A (ja) * 2002-05-31 2004-01-08 Ishikawajima Harima Heavy Ind Co Ltd 薄膜製造方法及び装置
JP5307055B2 (ja) * 2010-03-04 2013-10-02 大陽日酸株式会社 窒素及び酸素の製造方法並びに窒素及び酸素の製造装置。
RU2522132C2 (ru) * 2012-07-10 2014-07-10 Ооо "Зиф" Способ разделения воздуха
US20150168057A1 (en) * 2013-12-17 2015-06-18 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Process for producing liquid nitrogen
CN106247757B (zh) * 2016-08-26 2019-09-24 陈正洪 一种气体转化方法及系统
JP6900230B2 (ja) * 2017-04-19 2021-07-07 レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード 純度の異なる窒素を製造するための窒素製造システムおよびその窒素製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4578095A (en) * 1984-08-20 1986-03-25 Erickson Donald C Low energy high purity oxygen plus argon
US5402647A (en) * 1994-03-25 1995-04-04 Praxair Technology, Inc. Cryogenic rectification system for producing elevated pressure nitrogen
DE19609489A1 (de) * 1996-03-11 1997-09-18 Linde Ag Verfahren und Vorrichtung zur Verflüssigung eines tiefsiedenden Gases
US5596886A (en) * 1996-04-05 1997-01-28 Praxair Technology, Inc. Cryogenic rectification system for producing gaseous oxygen and high purity nitrogen
GB9724787D0 (en) * 1997-11-24 1998-01-21 Boc Group Plc Production of nitrogen

Also Published As

Publication number Publication date
ES2230020T3 (es) 2005-05-01
ATE278167T1 (de) 2004-10-15
EP1189001A1 (fr) 2002-03-20
US6499313B2 (en) 2002-12-31
TW524963B (en) 2003-03-21
DE50008010D1 (de) 2004-11-04
BR0103987A (pt) 2002-04-23
DE10045128A1 (de) 2002-03-21
US20020066289A1 (en) 2002-06-06

Similar Documents

Publication Publication Date Title
EP1067345B1 (fr) Procédé et dispositif pour la séparation cryogénique des constituants de l'air
EP1134525B1 (fr) Procédé de production d'azote liquide et gazeux avec une quantité variable de liquide
DE102007014643A1 (de) Verfahren und Vorrichtung zur Erzeugung von gasförmigem Druckprodukt durch Tieftemperaturzerlegung von Luft
DE19803437A1 (de) Verfahren und Vorrichtung zur Gewinnung eines Druckprodukts durch Tieftemperaturzerlegung von Luft
DE10139727A1 (de) Verfahren und Vorrichtung zur Gewinnung eines Druckprodukts durch Tieftemperaturzerlegung von Luft
EP0948730B1 (fr) Procede et dispositif de production d'azote comprime
EP1357342A1 (fr) Système de séparation d'air cryogénique à trois colonnes avec production d'argon
DE10113791A1 (de) Argongewinnung mit einem Drei-Säulen-System zur Luftzerlegung und einer Rohargonsäule
EP2236964A1 (fr) Procédé et dispositif de séparation de l'air à basse température
EP2603754B1 (fr) Procédé et dispositif permettant d'obtenir de l'oxygène sous pression et de l'azote sous pression par fractionnement cryogénique de l'air
EP3290843A2 (fr) Procédé et dispositif destiné à fabriquer de l'azote pressurisé et liquide par décomposition à basse température de l'air
DE10238282A1 (de) Verfahren zur Tieftemperatur-Zerlegung von Luft
DE10103968A1 (de) Drei-Säulen-System zur Tieftemperaturzerlegung von Luft
DE19537913A1 (de) Dreifachsäulenverfahren zur Tieftemperaturzerlegung von Luft
EP1189001B1 (fr) Procédé et dispositif de production d'azote de haute pureté par la séparation cryogénique d'air
EP2551619A1 (fr) Procédé et dispositif destinés à l'obtention d'oxygène pressurisé et d'azote pressurisé par la décomposition à basse température de l'air
DE19933558C5 (de) Dreisäulenverfahren und -vorrichtung zur Tieftemperaturzerlegung von Luft
EP1199532B1 (fr) Système de séparation d'air cryogénique à trois colonnes
DE10153919A1 (de) Verfahren und Vorrichtung zur Gewinnung hoch reinen Sauerstoffs aus weniger reinem Sauerstoff
EP4127583B1 (fr) Procédé et installation de séparation d'air à basse température
DE10045121A1 (de) Verfahren und Vorrichtung zur Gewinnung eines gasförmigen Produkts durch Tieftemperaturzerlegung von Luft
EP4450910A1 (fr) Procédé de séparation d'air à basse température et installation de séparation d'air
WO2024217721A1 (fr) Procédé de fractionnement cryogénique d'air et installation de fractionnement d'air
WO2021204418A1 (fr) Procédé de production d'un produit d'azote gazeux et liquide au moyen d'une séparation à basse température de l'air, et système de séparation d'air
DE102010056570A1 (de) Verfahren und Vorrichtung zur Gewinnung von Drucksauerstoff und Druckstickstoff durch Tieftemperaturzerlegung von Luft

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20020821

AKX Designation fees paid

Free format text: AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040929

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040929

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040929

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040929

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041104

REF Corresponds to:

Ref document number: 50008010

Country of ref document: DE

Date of ref document: 20041104

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041130

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20041229

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20041229

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20041229

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20050116

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2230020

Country of ref document: ES

Kind code of ref document: T3

BERE Be: lapsed

Owner name: LINDE A.G.

Effective date: 20041130

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

ET Fr: translation filed
26N No opposition filed

Effective date: 20050630

BERE Be: lapsed

Owner name: *LINDE A.G.

Effective date: 20041130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050228

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20071101

Year of fee payment: 8

Ref country code: ES

Payment date: 20071219

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20071029

Year of fee payment: 8

Ref country code: AT

Payment date: 20071113

Year of fee payment: 8

Ref country code: IT

Payment date: 20071126

Year of fee payment: 8

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: LINDE AKTIENGESELLSCHAFT

Free format text: LINDE AKTIENGESELLSCHAFT#ABRAHAM-LINCOLN-STRASSE 21#65189 WIESBADEN (DE) -TRANSFER TO- LINDE AKTIENGESELLSCHAFT#LEOPOLDSTRASSE 252#80807 MUENCHEN (DE)

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20071108

Year of fee payment: 8

Ref country code: GB

Payment date: 20071031

Year of fee payment: 8

REG Reference to a national code

Ref country code: FR

Ref legal event code: CA

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20081104

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081104

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081104

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IE

Payment date: 20071113

Year of fee payment: 8

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20090731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081130

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081104

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090603

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081104

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20081105

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081105

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081130