[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP1015527A1 - Verfahren zum thermischen behandeln von flüchtige, brennbare bestandteile enthaltendem material - Google Patents

Verfahren zum thermischen behandeln von flüchtige, brennbare bestandteile enthaltendem material

Info

Publication number
EP1015527A1
EP1015527A1 EP98945153A EP98945153A EP1015527A1 EP 1015527 A1 EP1015527 A1 EP 1015527A1 EP 98945153 A EP98945153 A EP 98945153A EP 98945153 A EP98945153 A EP 98945153A EP 1015527 A1 EP1015527 A1 EP 1015527A1
Authority
EP
European Patent Office
Prior art keywords
reactor
pyrolysis reactor
solids
hot
trickle zone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP98945153A
Other languages
English (en)
French (fr)
Other versions
EP1015527B1 (de
Inventor
Hans-Jürgen WEISS
Udo Zentner
Jörg SCHMALFELD
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MG Technologies AG
Original Assignee
Metallgesellschaft AG
MG Technologies AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Metallgesellschaft AG, MG Technologies AG filed Critical Metallgesellschaft AG
Publication of EP1015527A1 publication Critical patent/EP1015527A1/de
Application granted granted Critical
Publication of EP1015527B1 publication Critical patent/EP1015527B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B49/00Destructive distillation of solid carbonaceous materials by direct heating with heat-carrying agents including the partial combustion of the solid material to be treated
    • C10B49/16Destructive distillation of solid carbonaceous materials by direct heating with heat-carrying agents including the partial combustion of the solid material to be treated with moving solid heat-carriers in divided form
    • C10B49/20Destructive distillation of solid carbonaceous materials by direct heating with heat-carrying agents including the partial combustion of the solid material to be treated with moving solid heat-carriers in divided form in dispersed form
    • C10B49/22Destructive distillation of solid carbonaceous materials by direct heating with heat-carrying agents including the partial combustion of the solid material to be treated with moving solid heat-carriers in divided form in dispersed form according to the "fluidised bed" technique
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B49/00Destructive distillation of solid carbonaceous materials by direct heating with heat-carrying agents including the partial combustion of the solid material to be treated
    • C10B49/16Destructive distillation of solid carbonaceous materials by direct heating with heat-carrying agents including the partial combustion of the solid material to be treated with moving solid heat-carriers in divided form
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B53/00Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form

Definitions

  • the invention relates to a method for the thermal treatment of volatile, combustible feed material with a water content of up to 20 wt .-%, wherein the feed material is mixed with hot granular solids coming from a collection bunker in a pyrolysis reactor , withdrawing gases and vapors from the reactor and generating a solid mixture in the reactor which is removed from the reactor, at least a portion of which is heated outside the reactor and returned to the pyrolysis reactor via the collection bunker.
  • a method of this type is known from US Pat. No. 3,703,442, which is used for the thermal depolymerization of bituminous materials and in particular oil shale.
  • the oil shale is mixed with granular hot solids of around 630 ° C, resulting in a mixing temperature of around 530 ° C.
  • the invention has for its object to obtain a gas with the highest possible heating value from the feed material, which is completely or largely tar-free and thus has only a low content of condensable organic constituents. According to the invention, this is achieved in the process mentioned at the outset by passing the hot granular solids at temperatures in the range from 700 to 1100 ° C.
  • Moving bed or fluidized bed with temperatures in the range of 650 to 1000 ° C has that the hot granular solids and the feed material at least partially together down through the trickle zone to the moving bed or fluidized bed and that gases and vapors from the moving bed or fluidized bed upwards countercurrent to the hot solids through the trickle zone before being withdrawn from the top of the reactor.
  • the hot granular solids are also referred to below as heat transfer solids.
  • G amount of gas generated (Nm 3 / h) /
  • M amount of feed material (kg / h)
  • a lower calorific value of the gas produced (MJ / Nm 3 )
  • b lower calorific value of the feed material (MJ / kg).
  • Thermally dried sewage sludge, biomass, waste plastics or other materials containing various organic residues with a high proportion of volatile constituents can be used as the material to be fed into the pyrolysis reactor.
  • the feed material is passed simultaneously through one or more feed points into the trickle zone of the pyrolysis reactor. If there are several feed points, the feed material is pre-distributed. Usually, the moist material will be passed through 1 to 6 feed points into the reactor.
  • the feed points can open in the upper, middle or lower area of the trickle zone.
  • the pyrolysis reactor and in particular also its trickle zone are expediently free of rotating mixing devices in order to rule out wear problems as far as possible.
  • fixed roof-like fixtures can be used to divide and redirect the trickling streams of solids several times so that they can be mixed quickly.
  • a height of 1 to 10 m is recommended for the trickle zone, the height being determined in individual cases depending on the material used and the temperatures, in particular in the trickle zone.
  • the speed of the cracking reactions increases with increasing temperature, so that shorter residence times can be used at high temperatures.
  • the collection bunker may also be advisable to use the collection bunker to further increase the temperature of the heat transfer solids before they are fed into the pyrolysis reactor.
  • a gas containing 0 2 e.g. air
  • combustion can be provided there, which increases the temperatures in the desired manner.
  • Fig. 1 is a flow diagram of the method
  • Fig. 2 shows a variant of the pyrolysis reactor in longitudinal section.
  • the line (2) branches before entering the reactor (1) to several feed points (2a) and (2b).
  • the trickle zone (la) In the upper area of the reactor (1) is the trickle zone (la), below which the solid mixture (4) forms a moving bed or fluidized bed. If you have a reactor gas, e.g. B. nitrogen or steam, through the dashed line (5) supplies, you can
  • the solid mixture (4) forms a bed, which slowly moves downwards as a moving bed, because solids are continuously drawn off through the line (6).
  • the trickle zone already in the trickle zone (la), the hot solids brought in through line (3) at temperatures of 700 to 1100 ° C. are at least partially mixed with the feed material.
  • the trickle zone has stationary deflection devices in the form of several roof-like internals (8) on. A rotating mixing device is not used.
  • the hot heat transfer solids moving down through the trickle zone (la) come into intensive contact with the feed material, which also moves downwards, which is heated and subjected to degassing.
  • gases and vapors flow upwards through the trickle zone (la), which are formed during the heating.
  • the gases and vapors are passed through line (9) to a cyclone separator (10), where the entrained solids are largely separated.
  • the solids can at least partially be returned to the reactor (1) through line (11), and part can be removed from the process through line (12).
  • the gases and vapors leaving the cyclone separator (10) through line (15) are fed to a gas cleaning system (16) known per se, cooling also taking place. Purified gases and vapors are drawn for further use, e.g. B. as fuel gas in line (17).
  • the hot solid mixture drawn off from the reactor (1) in line (6) can be partially removed from the process through line (7).
  • the remaining solids are fed to the bottom of a pneumatic conveyor line (20), to which hot air is fed through line (21).
  • the hot air conveys the solids upwards, at the same time burning combustible substances, which leads to the heating of the solids.
  • the mixture of solids and gases reaches a collection bunker (22), gases are drawn off through line (23), passed through a cyclone separator (24) and fed to a waste gas cleaning system (not shown) in line (25). Secluded Solids can be removed in line (26) or fed back through line (26a) into the collection bunker (22).
  • the hot granular solids that collect in the lower area of the bunker (22) have temperatures of 700 to 1100 ° C. If these temperatures are not already reached in the pneumatic conveyor section (20), a gas containing 0 2 (e.g. air) can be supplied to the bunker (22) through the line (28) and the temperatures in the bunker increased by post-combustion .
  • the gas supply through line (28) can also be used to remove dust-fine solids by sifting these dusts through line (23) to separator (24) and through line (26) from the circuit away.
  • Fig. 2 shows a modified embodiment of the pyrolysis reactor (1) with countercurrent flow of the hot heat transfer solids and the gases and vapors formed above the mouths of the lines (2a) and (2b) through which the feed material is fed.
  • the heat transfer solids come from line (3); the other reference numerals have the meaning already explained together with FIG. 1.
  • a pyrolysis reactor (1) as shown in Fig. 2, 5 t of dried sewage sludge with a residual moisture content of 7 wt .-% are fed through line (2) per hour.
  • the sewage sludge consists of 63% by weight of volatile components, it has a lower calorific value of 17.0 MJ / kg.
  • the reactor (1) is carried out at 80 t / h hot heat transfer solids at 900 ° C the line (3). This produces 2920 Nm 3 / h, 850 ° C hot pyrolysis gas with a lower calorific value of 23.3 MJ / Nm 3 which is discharged through line (9), dedusted in the cyclone (10) and then fed to gas cleaning (16).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Dispersion Chemistry (AREA)
  • Gasification And Melting Of Waste (AREA)
  • Processing Of Solid Wastes (AREA)
  • Fluidized-Bed Combustion And Resonant Combustion (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)

Abstract

Das flüchtige, brennbare Bestandteile enthaltende Einsatzmaterial, das einen Wassergehalt bis zu 20 Gew.-% aufweisen kann, wird in einem Pyrolysereaktor mit heissen, körnigen Feststoffen gemischt. Die heissen Feststoffe kommen mit Temperaturen im Bereich von 700 bis 1100 DEG C aus einem Sammelbunker und werden in den oberen Bereich des Pyrolysereaktors geleitet. Der Reaktor weist im oberen Bereich eine Rieselzone und unter der Rieselzone ein Wanderbett oder Wirbelbett mit Temperaturen im Bereich von 650 bis 1000 DEG C auf. Die heissen, körnigen Feststoffe und das Einsatzmaterial werden zumindest teilweise gemeinsam abwärts durch die Rieselzone zum Wanderbett oder Wirbelbett geleitet. Gase und Dämpfe werden aufwärts im Gegenstrom zu den heissen Feststoffen durch die Rieselzone geführt und aus dem oberen Bereich des Reaktors abgezogen. Aus dem unteren Bereich des Reaktors wird ein Feststoffgemisch abgeführt, mindestens ein Teil davon wird ausserhalb des Reaktors erhitzt und über den Sammelbunker in den Pyrolysereaktor zurückgeführt.

Description

Verfahren zum thermischen Behandeln von flüchtige, brennbare Bestandteile enthaltendem Material
Beschreibung
Die Erfindung betrifft ein Verfahren zum thermischen Behandeln von flüchtige, brennbare Bestandteile enthaltendem Einsatz-Material mit einem Wassergehalt von bis zu 20 Gew.-%, wobei man das Einsatz-Material mit heißen körnigen Feststoffen, die aus einem Sammelbunker kommen, in einem Pyrolysereaktor mischt, aus dem Reaktor Gase und Dämpfe abzieht und im Reaktor ein Feststoffgemisch erzeugt, welches man aus dem Reaktor abführt, wobei man mindestens einen Teil davon außerhalb des Reaktors erhitzt und über den Sammelbunker in den Pyrolysereaktor zurückführt .
Aus dem US-Patent 3 703 442 ist ein Verfahren dieser Art bekannt, welches der thermischen Depolymerisation bituminöser Materialien und insbesondere Ölschiefer dient. Der Ölschiefer wird hierbei mit körnigen heißen Feststoffen von etwa 630°C gemischt, wobei sich eine Mischungstemperatur von etwa 530°C einstellt. Man arbeitet bei relativ niedrigen Temperaturen, um Crackprozesse in der Gasphase zu vermeiden.
Der Erfindung liegt die Aufgabe zugrunde, aus dem Einsatz-Material ein Gas mit möglichst hohem Heizwert zu gewinnen, das ganz oder weitgehend teerfrei ist und somit nur einen geringen Gehalt an kondensierbaren organischen Bestandteilen aufweist. Erfindungsgemäß wird dies beim eingangs genannten Verfahren dadurch erreicht, daß man die heißen körnigen Feststoffe mit Temperaturen im Bereich von 700 bis 1100°C aus dem Sammelbunker in den oberen Bereich des Pyrolysereaktors leitet, daß der Reaktor im oberen Bereich eine Rieselzone und unter der Rieselzone ein Wanderbett oder Wirbelbett mit Temperaturen im Bereich von 650 bis 1000°C aufweist, daß man die heißen körnigen Feststoffe und das Einsatz-Material zumindest teilweise gemeinsam abwärts durch die Rieselzone zum Wanderbett oder Wirbelbett leitet und daß man Gase und Dämpfe aus dem Wanderbett oder Wirbelbett aufwärts im Gegenstrom zu den heißen Feststoffen durch die Rieselzone führt, bevor man sie aus dem oberen Bereich des Reaktors abzieht. Die heißen körnigen Feststoffe werden nachfolgend auch als Wärmeträger-Feststoffe bezeichnet .
Beim Verfahren der Erfindung gibt man dem Pyrolysereaktor hoch erhitzte Feststoffe zu, und man sorgt auch im Wanderbett oder Wirbelbett für relativ hohe Temperaturen. Dadurch werden in den Gasen und Dämpfen im Reaktor und insbesondere auch im Bereich der Rieselzone erwünschte Crackreaktionen hervorgerufen. Die aus dem Reaktor abgezogenen Gase und Dämpfe sind dadurch an Komponenten mit niederem Molgewicht angereichert, wodurch insbesondere der Anteil an Wasserstoff, Methan und kurzkettigen Olefinen hoch ist. Auf diese Weise ist es ohne weiteres möglich, ein Gas mit einem unteren Heizwert von 20 bis 25 MJ/Nm3 zu erzeugen. Gleichzeitig kann man einen Kaltgas-Wirkungsgrad von 75 bis 85 % erreichen, weil die Temperaturen im Pyrolysereaktor sehr hoch liegen. Der Kaltgas-Wirkungsgrad W errechnet sich aus
W = (G • a) : (M • b)
dabei bedeuten
G = Menge des erzeugten Gases (Nm3/h) /
M = Menge des Einsatz-Materials (kg/h) , a = unterer Heizwert des erzeugten Gases (MJ/Nm3) , b = unterer Heizwert des Einsatz-Materials (MJ/kg) .
Als Material, das man dem Pyrolysereaktor aufgibt, kommen thermisch getrockneter Klärschlamm, Biomassen, Abfallkunststoffe oder andere organische Rückstände enthaltende Materialien verschiedenster Art mit hohem Anteil an flüchtigen Bestandteilen infrage .
Vorteilhafterweise wird das Einsatz-Material gleichzeitig durch eine oder mehrere Aufgabestellen in die Rieselzone des Pyrolysereaktors geleitet. Bei mehreren Aufgabestellen erreicht man eine Vorverteilung des eingespeisten Materials. Üblicherweise wird man das feuchte Material durch 1 bis 6 Aufgabestellen in den Reaktor leiten. Die Aufgabestellen können im oberen, mittleren oder unteren Bereich der Rieselzone münden. Zweckmäßigerweise ist der Pyrolysereaktor und insbesondere auch seine Rieselzone frei von rotierenden Mischeinrichtungen, um Verschleißprobleme möglichst auszuschließen. In der Rieselzone kann man durch ortsfeste dachartige Einbauten für ein Aufteilen und mehrfaches Umlenken der rieselnden Feststoffströme sorgen und so deren rasche Durchmischung herbeiführen.
Für die Rieselzone empfiehlt sich eine Höhe von 1 bis 10 m, wobei man die Höhe im Einzelfall abhängig vom Einsatz-Material und den Temperaturen insbesondere in der Rieselzone festlegt. Auf diese Weise ergeben sich für die aus dem Wirbelbett oder Wanderbett aufsteigenden Gase und Dämpfe in der Rieselzone Verweilzeiten im Bereich von 0,5 bis 20 Sekunden und zumeist 1 bis 10 Sekunden. Mit steigender Temperatur nimmt die Geschwindigkeit der Crackreaktionen zu, so daß bei hohen Temperaturen mit kürzeren Verweilzeiten gearbeitet werden kann.
Es kann empfehlenswert sein, das Einsatz-Material von außen in den mittleren oder unteren Bereich der Rieselzone einzuspeisen, während man aber die heißen körnigen Feststoffe in den oberen Bereich der Rieselzone aufgibt. Dadurch kommen die aufsteigenden Gase und Dämpfe im oberen Bereich der Rieselzone nur mit den heißen Feststoffen in Kontakt. Bei vorgegebener Cracktemperatur kann so die nötige Verweilzeit der Gase und Dämpfe in der Rieselzone verringert werden oder aber kann die Temperatur der eingespeisten Feststoffe abgesenkt werden.
Es kann ferner empfehlenswert sein, den Sammelbunker dafür zu nutzen, um die Temperatur der Wärmeträger-Feststoffe weiter zu erhöhen, bevor sie in den Pyrolysereaktor geleitet werden. Insbesondere durch Einleiten eines 02-haltigen Gases (z. B. Luft) in den Sammelbunker kann dort für eine Verbrennung gesorgt werden, welche die Temperaturen in erwünschter Weise erhöht.
Ausgestaltungsmöglichkeiten des Verfahrens werden mit Hilfe der Zeichnung erläutert . Es zeigt :
Fig. 1 ein Fließschema des Verfahrens und
Fig. 2 eine Variante des Pyrolysereaktors im Längsschnitt.
Gemäß Fig. 1 führt man dem Pyrolysereaktor (1) durch die Leitung
(2) das zu behandelnde Einsatz -Material und durch die Leitung
(3) heiße körnige Feststoffe als Wärmeträger zu. Die Leitung (2) verzweigt sich vor Eintritt in den Reaktor (1) auf mehrere Aufgabestellen (2a) und (2b) . Im oberen Bereich des Reaktors (1) befindet sich die Rieselzone (la) , darunter bildet das Feststoffgemisch (4) ein Wanderbett oder Wirbelbett. Wenn man dem Reaktor (1) in den unteren Bereich ein Sichtungsgas, z. B. Stickstoff oder Wasserdampf, durch die gestrichelt eingezeichnete Leitung (5) zuführt, kann man die
Feststoffschüttung soweit auflockern, daß zumindest teilweise ein Wirbelbett gebildet wird. Ohne ein solches Sichtungsgas bildet das Feststoffgemisch (4) eine Schüttung, die sich als Wanderbett langsam nach unten bewegt, weil ständig Feststoffe durch die Leitung (6) abgezogen werden.
Bereits in der Rieselzone (la) werden die mit Temperaturen von 700 bis 1100°C durch die Leitung (3) herangeführten heißen Feststoffe zumindest teilweise mit dem Einsatz-Material durchmischt. Zu diesem Zweck weist die Rieselzone ortsfeste Umlenkeinrichtungen in Form mehrerer dachartiger Einbauten (8) auf. Auf eine rotierende Mischvorrichtung wird hierbei verzichtet .
Die sich durch die Rieselzone (la) abwärts bewegenden heißen Wärmeträger-Feststoffe kommen intensiv in Kontakt mit dem sich ebenfalls abwärts bewegenden Einsatz-Material, das dabei erhitzt und einer Entgasung unterzogen wird. Gleichzeitig strömen Gase und Dämpfe aufwärts durch die Rieselzone (la) , die während der Erhitzung gebildet werden. Die Gase und Dämpfe werden durch die Leitung (9) zu einem Zyklonabscheider (10) geführt, wo man mitgeführte Feststoffe weitgehend abtrennt. Die Feststoffe können durch die Leitung (11) zumindest teilweise in den Reaktor (1) zurückgeführt werden, einen Teil kann man durch die Leitung (12) aus dem Verfahren entfernen. Die den Zyklonabscheider (10) durch die Leitung (15) verlassenden Gase und Dämpfe werden einer an sich bekannten Gasreinigung (16) aufgegeben, wobei auch eine Kühlung stattfindet. Gereinigte Gase und Dämpfe ziehen zur weiteren Verwendung, z. B. als Brenngas, in der Leitung (17) ab.
Das in der Leitung (6) aus dem Reaktor (1) abgezogene heiße Feststoffgemisch kann teilweise durch die Leitung (7) aus dem Verfahren entfernt werden. Die übrigen Feststoffe werden zum Fuß einer pneumatischen Förderstrecke (20) geführt, der man durch die Leitung (21) Heißluft zuführt. Die Heißluft fördert die Feststoffe nach oben, wobei gleichzeitig brennbare Substanzen verbrannt werden, was zur Erhitzung der Feststoffe führt. Das Gemisch aus Feststoffen und Gasen gelangt in einen Sammelbunker (22), Gase werden durch die Leitung (23) abgezogen, durch einen Zyklonabscheider (24) geführt und in der Leitung (25) einer nicht dargestellten Abgasreinigung zugeführt. Abgeschiedene Feststoffe können in der Leitung (26) entfernt oder durch die Leitung (26a) zurück in den Sammelbunker (22) geführt werden.
Die sich im unteren Bereich des Bunkers (22) sammelnden heißen körnigen Feststoffe weisen Temperaturen von 700 bis 1100°C auf. Wenn diese Temperaturen nicht bereits in der pneumatischen Förderstrecke (20) erreicht werden, kann man durch die Leitung (28) dem Bunker (22) ein 02-haltiges Gas (z. B. Luft) zuführen und die Temperaturen im Bunker durch Nachverbrennung erhöhen. Die Gaszufuhr durch die Leitung (28) kann ferner auch dazu genutzt werden, um durch Sichten staubfeine Feststoffe zu entfernen, wobei man diese Stäube durch die Leitung (23) zum Abscheider (24) führt und sie durch die Leitung (26) aus dem Kreislauf entfernt.
Fig. 2 zeigt eine modifizierte Ausführungsform des Pyrolysereaktors (1) mit Gegenstromführung der heißen Wärmeträger-Feststoffe und der gebildeten Gase und Dämpfe oberhalb der Einmündungen der Leitungen (2a) und (2b) , durch die das Einsatz-Material zugeführt wird. Die Wärmeträger-Feststoffe kommen aus der Leitung (3) ; die übrigen Bezugsziffern haben die bereits zusammen mit der Fig. 1 erläuterte Bedeutung.
Beispiel :
Einem Pyrolysereaktor (1) , wie er in Fig. 2 dargestellt ist, werden pro Stunde 5 t getrockneter Klärschlamm mit einer Restfeuchte von 7 Gew.-% durch Leitung (2) zugeführt. Der Klärschlamm besteht zu 63 Gew.-% aus flüchtigen Bestandteilen, er hat einen unteren Heizwert von 17,0 MJ/kg. Dem Reaktor (1) führt man 80 t/h heiße Wärmeträger-Feststoffe mit 900 °C durch die Leitung (3) zu. Hierdurch entstehen 2920 Nm3/h, 850 °C heißes Pyrolysegas mit einem unteren Heizwert von 23,3 MJ/Nm3 welches durch Leitung (9) abgeführt, im Zyklon (10) entstaubt und dann der Gasreinigung (16) zugeführt wird. Aus dem Pyrolysereaktor zieht man 81 t/h auf 750°C gekühlte Feststoffe durch Leitung (6) ab. Nach Ausschleusung des überschüssigen Rückstandes (1 t/h) durch Leitung (7) wird der Wärmeträger-Feststoff in die pneumatische Förderstrecke (20) dosiert und dort mit vorgeheizter Verbrennungsluft durch Leitung (21) in den Sammelbunker (22) gefördert, wobei durch Abbrand von Restkoks aus dem Wärmeträger-Feststoff dieser auf 900°C rückerhitzt wird. Er wird dann bei dieser Temperatur im Sammelbunker (22) und Zyklon (24) von den Abgasen getrennt und dosiert dem Reaktor (1) wieder zugeführt.

Claims

Patentansprüche
1. Verfahren zum thermischen Behandeln von flüchtige, brennbare Bestandteile enthaltendem Einsatz-Material mit einem Wassergehalt von bis zu 20 Gew.-%, wobei man das Einsatz-Material mit heißen körnigen Feststoffen, die aus einem Sammelbunker kommen, in einem Pyrolysereaktor mischt, aus dem Reaktor Gase und Dämpfe abzieht und im Reaktor ein Feststoffgemisch erzeugt, welches man aus dem Reaktor abführt, wobei man mindestens einen Teil davon außerhalb des Reaktors erhitzt und über den Sammelbunker in den Pyrolysereaktor zurückführt, dadurch gekennzeichnet, daß man die heißen körnigen Feststoffe mit Temperaturen im Bereich von 700 bis 1100°C aus dem Sammelbunker in den oberen Bereich des Pyrolysereaktors leitet, daß der Reaktor im oberen Bereich eine Rieselzone und unter der Rieselzone ein Wanderbett oder Wirbelbett mit Temperaturen im Bereich von 650 bis 1000°C aufweist, daß man die heißen körnigen Feststoffe und das Einsatz-Material zumindest teilweise gemeinsam abwärts durch die Rieselzone zum Wanderbett oder Wirbelbett leitet und daß man Gase und Dämpfe aus dem Wanderbett oder Wirbelbett aufwärts im Gegenstrom zu den heißen Feststoffen durch die Rieselzone führt, bevor man sie aus dem oberen Bereich des Reaktors abzieht.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß als Einsatz-Material Klärschlamm, Biomasse, Abfallkunststoffe oder andere organische Rückstände enthaltende Materialien in den Pyrolysereaktor geleitet werden.
3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß das Einsatz-Material gleichzeitig durch mehrere Aufgabestellen in die Rieselzone des Pyrolysereaktors geleitet wird.
4. Verfahren nach Anspruch 1 oder einem der folgenden, dadurch gekennzeichnet, daß die Rieselzone eine Höhe von 1 bis 10 m aufweist .
5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß das Einsatz-Material zumindest teilweise in den unteren Bereich der Rieselzone eingeleitet wird.
6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß die heißen Feststoffe im Sammelbunker durch Verbrennung nacherhitzt werden.
7. Verfahren nach Anspruch 1 oder einem der folgenden, dadurch gekennzeichnet, daß in den unteren Bereich des Pyrolysereaktors ein Sichtungs- oder Strippgas eingeleitet wird.
8. Verfahren nach Anspruch 1 oder einem der folgenden, dadurch gekennzeichnet, daß der Pyrolysereaktor frei von rotierenden Mischeinrichtungen ist.
9. Verfahren nach Anspruch 1 oder einem der folgenden, dadurch gekennzeichnet, daß die Verweilzeit der Gase und Dämpfe im Pyrolysereaktor 0,5 bis 20 Sekunden beträgt.
EP98945153A 1997-09-01 1998-08-06 Verfahren zum thermischen behandeln von flüchtige, brennbare bestandteile enthaltendem material Expired - Lifetime EP1015527B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19738106A DE19738106C2 (de) 1997-09-01 1997-09-01 Verfahren zum thermischen Behandeln von flüchtige, brennbare Bestandteile enthaltendem Material
DE19738106 1997-09-01
PCT/EP1998/004889 WO1999011736A1 (de) 1997-09-01 1998-08-06 Verfahren zum thermischen behandeln von flüchtige, brennbare bestandteile enthaltendem material

Publications (2)

Publication Number Publication Date
EP1015527A1 true EP1015527A1 (de) 2000-07-05
EP1015527B1 EP1015527B1 (de) 2001-10-24

Family

ID=7840821

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98945153A Expired - Lifetime EP1015527B1 (de) 1997-09-01 1998-08-06 Verfahren zum thermischen behandeln von flüchtige, brennbare bestandteile enthaltendem material

Country Status (5)

Country Link
EP (1) EP1015527B1 (de)
AU (1) AU9257398A (de)
DE (2) DE19738106C2 (de)
ES (1) ES2165192T3 (de)
WO (1) WO1999011736A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012004709A1 (en) 2010-07-06 2012-01-12 Koninklijke Philips Electronics N.V. Generation of high dynamic range images from low dynamic range images
US8764861B2 (en) 2007-07-13 2014-07-01 Outotec Oyj Process and plant for refining oil-containing solids

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19961437C2 (de) * 1999-12-20 2002-04-18 Kopf Ag Verfahren und Anlage zur Gewinnung von brennbarem Gas aus Klärschlamm
DE10157163A1 (de) * 2001-11-22 2003-06-18 Gfe Gmbh & Co Kg Ges Fuer Ents Verfahren und Vorrichtung zur Entsorgung von hochenergetische Stoffe enthaltenden Materialien, insbesondere von Granaten
DE10204815B4 (de) * 2002-02-06 2005-09-15 Eisenmann Maschinenbau Gmbh & Co. Kg Vorrichtung zur Entsorgung gefährlicher oder hochenergetischer Materialien
DE10253678A1 (de) * 2002-11-18 2004-05-27 Otto Dipl.-Ing. Heinemann Verfahren und Vorrichtung zur Gewinnung von Kohlenwasserstoffen
NL2000772C2 (nl) * 2007-07-22 2009-01-23 Btg Bioliquids B V Pyrolyse-reactor.
DE102008008942B4 (de) 2008-02-13 2015-02-12 Outotec Oyj Verfahren und Anlage zur Raffination organische Anteile enthaltender Rohstoffe
DE102008008943B4 (de) 2008-02-13 2016-10-27 Outotec Oyj Verfahren und Anlage zur Raffination organische Anteile enthaltender Rohstoffe
CN104230135B (zh) * 2014-09-26 2016-11-16 中国石油天然气股份有限公司 含油污泥热解装置
CN108619890B (zh) * 2018-04-24 2019-03-08 东莞市泰昌纸业有限公司 废纸造纸废气的处理方法
CN112899000B (zh) * 2019-11-19 2022-06-03 上海工程技术大学 一种生物质废弃物挥发分催化油页岩干馏耦合系统及方法
CN111676040B (zh) * 2020-05-29 2024-07-30 华电电力科学研究院有限公司 一种粉煤环流热解反应器

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1909263C3 (de) * 1969-02-25 1974-04-25 Metallgesellschaft Ag, 6000 Frankfurt Verfahren und Vorrichtung zum Schwelen von feinkörnigen bituminösen Stoffen, die einen staubförmigen Schwelrückstand bilden
DE2537732C3 (de) * 1975-08-25 1981-12-10 Gosudarstvennyj naučno-issledovatel'skij energetičeskij institut imeni G.M. Kržižanovskogo, Moskva Verfahren zur thermischen Verarbeitung von festen bituminösen Stoffen
US4199432A (en) * 1978-03-22 1980-04-22 Chevron Research Company Staged turbulent bed retorting process
DE2946102A1 (de) * 1979-11-15 1981-05-27 Metallgesellschaft Ag, 6000 Frankfurt Verfahren und vorrichtung zum schwelen von feinkoernigem schwelgut mit heissem, feinkoernigem waermetraegermaterial
DE3835941A1 (de) * 1988-06-09 1990-04-26 Artur Richard Greul Verfahren der kunststoffpyrolyse im sandkoker

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9911736A1 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8764861B2 (en) 2007-07-13 2014-07-01 Outotec Oyj Process and plant for refining oil-containing solids
WO2012004709A1 (en) 2010-07-06 2012-01-12 Koninklijke Philips Electronics N.V. Generation of high dynamic range images from low dynamic range images

Also Published As

Publication number Publication date
DE59801891D1 (de) 2001-11-29
DE19738106C2 (de) 2001-01-04
EP1015527B1 (de) 2001-10-24
AU9257398A (en) 1999-03-22
DE19738106A1 (de) 1999-03-04
ES2165192T3 (es) 2002-03-01
WO1999011736A1 (de) 1999-03-11

Similar Documents

Publication Publication Date Title
DE19945771C1 (de) Verfahren zur Vergasung von organischen Stoffen und Stoffgemischen
EP0563777B1 (de) Verfahren zur Herstellung von Synthesegas durch thermische Behandlung von metallische und organische Bestandteile enthaltenden Reststoffen
DE112012003312B4 (de) Modulierbares Universalverfahren zur Herstellung von Syntheseprodukten
EP1299502B1 (de) Verfahren und vorrichtung zur pyrolyse und vergasung von stoffgemischen, die organische bestandteile enthalten
WO1981000112A1 (en) Process and plant for the gazification of solid fuels
EP1015527B1 (de) Verfahren zum thermischen behandeln von flüchtige, brennbare bestandteile enthaltendem material
DE3344847C2 (de) Schnell-Pyrolyse von Braunkohlen und Anordnung zur Durchführung dieses Verfahrens
WO2001002513A1 (de) Verfahren und vorrichtung zur pyrolyse und vergasung von organischen stoffen oder stoffgemischen
DE2910614A1 (de) Verfahren zum retortenschwelen von frischen festen kohlenwasserstoffhaltigen teilchen
DE2725994A1 (de) Verfahren zur herstellung von kohlenwasserstoffen aus kohle
DE102007062414A1 (de) Autothermes Verfahren zur kontinuierlichen Vergasung von kohlenstoffreichen Substanzen
EP1053291A1 (de) Verfahren zur vergasung von organischen stoffen und stoffgemischen
DE10348142B3 (de) Verfahren und Anlage zur Erzeugung von Synthesegas aus Reststoffen
DE3743752A1 (de) Verfahren zum aufarbeiten von abfallmaterial
EP1201731A1 (de) Verfahren zum Vergasen von kohlenstoffhaltigen Feststoffen in der Wirbelschicht sowie dafür geeigneter Vergaser
DE2943309A1 (de) Verfahren und vorrichtung zur durchfuehrung des verfahrens-integrierte, vorzugsweise ballastkohle-muellvergasung
DE2805244A1 (de) Verfahren und vorrichtung zum kuehlen von staubfoermigen oder feinkoernigen feststoffen
DE102017102789A1 (de) Herstellung von Synthesegas aus kohlenstoffreichen Substanzen mittels eines Gleichstrom-Gegenstrom-Verfahrens
DE3305994C2 (de)
EP1399527B1 (de) Verfahren und vorrichtung zur pyrolyse und vergasung von stoffgemischen, die organische bestandteile enthalten
DE2937065C2 (de) Verfahren zum Behandeln von Schwelrückstand aus der trockenen Destillation von Ölschiefer oder dgl.
EP1134272A2 (de) Verfahren und Vorrichtung zum Vergasen von brennbarem Material
DE3345563A1 (de) Verfahren zur gewinnung von unter normalbedingungen fluessigen kohlenwasserstoffen aus einem kohlenstoffhaltigen einsatzgut
CA1251133A (en) Method of recovering oil and gas from oil sand, oil chalk, and oil shale
DE1160823B (de) Verfahren zum kontinuierlichen Entgasen, wie Schwelen und/oder Verkoken, von feinkoernigen, nicht backenden, wasserhaltigen Brennstoffen mittels heisser Gasstroeme

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20000403

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES FR GB

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: MG TECHNOLOGIES AG

17Q First examination report despatched

Effective date: 20010405

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB

REF Corresponds to:

Ref document number: 59801891

Country of ref document: DE

Date of ref document: 20011129

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20020115

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2165192

Country of ref document: ES

Kind code of ref document: T3

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20130829

Year of fee payment: 16

Ref country code: DE

Payment date: 20130821

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20130821

Year of fee payment: 16

Ref country code: FR

Payment date: 20130823

Year of fee payment: 16

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59801891

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20140806

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59801891

Country of ref document: DE

Effective date: 20150303

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20150430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150303

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140806

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140901

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20150925

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140807