EP1094282A1 - Wärmespeicheranlage auf insbesondere Mineralbasis - Google Patents
Wärmespeicheranlage auf insbesondere Mineralbasis Download PDFInfo
- Publication number
- EP1094282A1 EP1094282A1 EP99121215A EP99121215A EP1094282A1 EP 1094282 A1 EP1094282 A1 EP 1094282A1 EP 99121215 A EP99121215 A EP 99121215A EP 99121215 A EP99121215 A EP 99121215A EP 1094282 A1 EP1094282 A1 EP 1094282A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- heat
- heat storage
- housing
- storage system
- filling
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24H—FLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
- F24H7/00—Storage heaters, i.e. heaters in which the energy is stored as heat in masses for subsequent release
- F24H7/02—Storage heaters, i.e. heaters in which the energy is stored as heat in masses for subsequent release the released heat being conveyed to a transfer fluid
- F24H7/0208—Storage heaters, i.e. heaters in which the energy is stored as heat in masses for subsequent release the released heat being conveyed to a transfer fluid using electrical energy supply
Definitions
- the invention relates to a heat storage system in particular Mineral base, with a storage case and one Housing filling preferably made of a mineral as a heat storage medium, and with a heat source.
- Such a heat storage system is by the German Published in 196 23 964.
- the aforementioned cassette instructs deepened grooves on the inside, into which said Electric cable inserted and using a ceramic adhesive mortar is let in.
- the invention is based on the technical problem such heat storage system based in particular on mineral so as to form a flexible adjustment of the storage case to different circumstances with simple Construction and cost-effective production guaranteed is.
- the invention proposes Generic heat storage system that the case filling as a bed of free-flowing heat storage material, e.g. B. mineral balls or mineral grains predetermined diameter, is formed.
- free-flowing heat storage material e.g. B. mineral balls or mineral grains predetermined diameter
- Heat storage material is taken into account, including which is not spherical or granular. So can basically also stone or chunk-like heat storage materials are used while there is still a filling is present.
- the heat storage material can be predominantly magnesium oxide, magnesium silicates, metal ores or conventional ceramics. In principle, the use of other heat storage media with high heat storage capacity is of course also conceivable.
- This heat storage capacity S (measured in kJ / (m 3 x K) is known to be proportional to the density ⁇ of the heat storage medium in question.
- magnesium oxide has proven to be advantageous.
- calcium oxide or aluminum oxide, iron oxide or even silicon dioxide (sand) can also be used.
- S c . ⁇ kJ / (m3.
- the heat storage material in the Usually as a compactable mass (mineral or Steel) balls (composed of the above Substances) with a grain size in the range from 0 to 300 mm, in particular 0 to 20 mm, preferably 0 to 3 mm. Because such (mineral or ceramic) balls can be easily filled into the storage case and taking into account very different designs this storage case. Hence one succeeds flexible adaptation of the described heat storage system changing installation conditions. Otherwise, the manufacture simplified in that consciously on ceramic cassettes or the like rigid structures are dispensed with as the case filling becomes. In addition, there are cost advantages within the scope of the invention, because the processing of the (ceramic) case filling can be omitted, which is usually extremely complex and is time-consuming to manufacture.
- the invention provides that Storage housing preferably one of at least one isolation flap has a closed opening. Will this Isolation flap opened, that of the case filling absorbed heat released through the opening to the environment are, usually by heat radiation and / or by convection. To optimize this effect, are the isolation flap and the memory housing on the inside lined with a heat insulation layer so that Heat loss (with closed insulation flap) avoided become. This thermal insulation layer can around an inside ceramic coating act.
- the heat storage and thus the heat emission can be adapted to different circumstances more preferably provided that the heat source is a Has control and / or regulation.
- this Control and / or regulation can be that of the case filling supplied amount of heat vary, namely control and / or regulate. For the most part, this happens depending of external parameters. This may be the ambient temperature (e.g. the outside temperature at a heat storage system installed in a building) Heat demand (depending on the desired indoor temperature in the building), the operating costs for the heat source, the installation conditions (Installation of the heat storage system, for example in a wall or in front), the installation site (free-standing or installed in a corner of the wall) etc. In any case, the control and / or regulation described carries these parameters.
- the heat source is at least one in the case filling recessed pipe.
- This can be one have current-carrying electrode on the inside or by means of a hot medium, e.g. B. hot water or gas, be heated.
- the aforementioned electrode is due to the Current flow heated and gives the resulting via the tube Heat to the case filling.
- a current-carrying To embed the electrode directly in the housing filling which of course is then electrically non-conductive have to be.
- this tube from a heat transfer medium or is flowed through a fluid.
- a heat transfer medium which is, for example, solar thermal was heated by a solar panel.
- Water or a gas flowing through the heat transfer medium which is also solar thermal, electrical or through Combustion has the required temperature.
- a heat source fluids flowing through the housing ie Liquids or gases, e.g. B. combustion gases. Yes even flowing through the case filling Liquids, e.g. B. hot water are conceivable.
- a heat source in the form of a tube embedded in the housing filling can be combined with or without an internal electrode.
- the support frame can be one continuous steel structure or even several storeys act of a building. Because in such a case is conceivable that the heat storage system consistently from floor runs to the floor and the respective building interior heated.
- a heat storage system is in particular Mineral base shown in its basic Structure of a heat storage housing 1 and a housing filling 2 from preferably a mineral or a ceramic as Has heat storage medium.
- a heat source 3 realized, which is in the embodiment 1 to 3 to an electric pipe heater 3 and in the illustration according to FIG. 4 by a gas or Oil burner 3 acts.
- the housing is filled 2 as a bed of free-flowing heat storage material educated.
- this heat storage material According to the embodiment, it is mineral balls from predominantly magnesium oxide (MgO) Diameter.
- This heat storage material is compressible and has mineral or ceramic balls with a grain size in Range between 0 and 3 mm. This allows the Embed heat source 3 in the storage case 1 without any problems. This also applies in the event that as a heat storage material Balls or grains with a grain size up to 10 mm or even more. So are in Within the scope of the invention even grain sizes up to 300 mm are conceivable.
- the storage housing 1 can be a (metallic) hollow body, Plastic, artificial figure or even designer figure executed his.
- a storage case 1 too a kind of tissue skin or another elastic and malleable Jacket material conceivable. This is possible because just the case filling 2 as a fill from the free-flowing Heat storage material is formed, consequently different shapes of the storage case 1 - yes even plastic and elastic deformations of this Storage case 1 - can be adjusted.
- the heat source 3 can advantageously be in the storage housing 1 if it concerns a simple current-carrying electrode. Then, however the case filling 2 or fill electrically not be conducted.
- the Heat source 3 which depends on the electrical conductivity of the housing filling 2 is independent, it is the Heat source 3 around an electric pipe heater 3 with a pipe 4 with inside electrode 5. This is in the enlarged Sectional view in Fig. 2 can be seen.
- a heat this electrode 5 leads due to current flow to the fact that the heat produced thereby via the pipe 4th is delivered to the housing filling 2.
- the tube filling 6 also from a bed of magnesium oxide balls or - grains.
- FIG. 1 With the associated Sectional view makes it clear that the storage case 1 has two isolation flaps 7 or an outer shell has, which is composed of the two isolation flaps 7 is.
- These two isolation flaps 7 are in a common hinge 8 mounted on the storage housing 1. They form the entire storage housing 1 and take the case filling 2 in the sense of a closing shell between themselves.
- To heat loss with closed insulation flaps 7 should be set as low as possible the isolation flaps 7 and / or the storage housing 1 lined on the inside with a heat insulation layer 9.
- This heat insulation layer 9 is in the illustrated embodiment, preferably by one glued on ceramic or teflon mat.
- the isolation flaps 7 can be shell-like open and release the entire case filling 2, so that heat stored therein unimpeded and on all sides can escape evenly.
- the heat source 3 - according to the embodiment, the electric pipe heater 3 according to Fig. 2 - is with a control device 10 equipped.
- This control device 10 represents the amount of heat supplied to the housing filling 2 on. This happens in the usual way depending of several parameters. This can be the ambient temperature act with the help of a transducer 11 determined outside of a building, for example becomes.
- the heat requirement can be recorded based on a measurement of the inside temperature an associated sensor 12. Depending on how the room temperature the control device determines 10 from the difference between the desired temperature and actual indoor temperature the heat requirement.
- the operating costs for the heat source 3 is a parameter to be considered. This applies in particular in the event that (cheaper) night electricity for heating the heat source 3 according to FIG. 2 is to be used.
- the installation conditions or the installation site the illustrated heat storage system in one to take into account the room to be heated. So is the heat requirement and thus the amount of energy to be used less, depending unhindered the case filling 2 the stored in it Radiate heat energy and / or by convection to the Can emit ambient air.
- the control device 10 carries such Requirements invoice. This also includes measuring the Temperature of the case filling with the help of another Temperature sensor 13. From all the aforementioned input values the control device regulates 10 control values for the heat source 3 from a corresponding Control line 14 with the calculated power during one predetermined time is applied, and until the housing filling 2 by means of the temperature sensor 13 measured temperature has reached.
- the entire heat storage system shown run as a handset, for example with the help an embedded electrode heated as a heat source 3 and after reaching a desired temperature from the Power source is disconnected, so that a transport and a locally flexible heat emission can be represented.
- This temperature of the housing filling 2 is such that depending on the internal temperature in the room and the expected cooling of the room (depending on the desired room temperature is reached or held. Of course, must depending on these input values the heat source 3 with the help of the control line 14, if necessary periodically be charged.
- the housing filling 2 interspersed in the manner of a wire mesh, which between the top and bottom of the storage case 1 provided spacers 15 is wound.
- the case is filled 2 flexible to the electric pipe heater 3 as well as the external design of the storage housing 1 can be adjusted.
- the pouring of free-flowing heat storage material to compress, so the heat storage capacity is increased, the invention further provides that the memory housing as shown in Fig. 2nd one with the help of a threaded spindle 16 in the longitudinal direction has displaceable closure plate 17.
- the heat source 3 is a gas or oil burner 3, which is, for example, a hot gas, preferably air, generated.
- a hot gas preferably air
- This hot gas flows through the storage housing 1 and thus the housing filling 2 and gives the required Heat to the case filling 2.
- Hence must flow through the bed or housing filling 2 as a whole his. This assumes that the grain size of the used Heat storage material is dimensioned accordingly and / or a targeted filling or compaction has taken place.
- a slide on the top or a swivel flap 20 provides 4 for the desired one Flow rate of the hot medium the storage case 1.
- the design 4 with one according to FIGS. 1 and / or 2 is combined. This is useful for example for the Case that the described heat storage system with a Central heating is interconnected, the hot exhaust gases for heating the housing filling 2 in normal heating or. Ensure winter operation. In the transition period, e.g. B. in Spring or autumn when the central heating is not (yet) running, electrical heating of the case filling 2 respectively.
- the composition of the housing filling 2 mainly contains magnesium oxide (80 to 99.5% by weight), and can also be configured, for example, as follows: MgO approx. 80 to 99.5% by weight; CaO approx. 1.5% by weight; Al 2 O 3 approx. 0.4% by weight; Fe 2 O 3 approx. 0.12% by weight; SiO 2 approx. 3.10% by weight; K 2 O approx. 0.1% by weight and Na 2 O approx. 0.11% by weight.
- a heat accumulator or a Heat storage system provided, which itself can be loaded quickly and in particular heating in the Transitional period allowed.
- This is possible with flexible adaptation to very different configurations of the storage housing 1, the installation conditions and taking into account practically all possible heat sources 3.
- Several memory housings 1 can also be easy to combine into a heat storage battery and by means of a common support structure - after the Embodiment of the steel rod 19 - combine. Due to the loose fill made of free-flowing heat storage material to show the case filling 2 there are no thermal expansion problems, as with State of the art according to DE-OS 196 23 964 is not excluded can be. Add to that the entire facility is practically maintenance-free because, for example, at a recourse to an electric pipe heater 3 there Tube 4 is made of stainless steel and thus the occurring Withstands temperatures and media conditions with ease.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Building Environments (AREA)
Abstract
Description
Rohdichte ρ kg/m3 | spezifische Wärmekapazität c kJ/(kg . K) | Wärmespeicherfähigkeit S = c . ρ kJ/(m3 . K) | |
Gasbeton | 600 | 1,0 | 600 |
Sand, Kies | 1800 | 1,0 | 1800 |
Normalbeton | 2400 | 1,0 | 2400 |
Glas | 2500 | 1,0 | 2500 |
Natursteine | 2800 | 1,0 | 2800 |
Stahl | 7900 | 0,4 | 3160 |
- Fig. 1
- eine erste Ausgestaltung der erfindungsgemäßen Wärmespeicheranlage mit Elektroheizung als Wärmequelle,
- Fig. 2
- eine abgewandelte Ausführungsform der Fig. 1,
- Fig. 3
- einen teilweisen Schnitt durch Fig. 2,
- Fig. 4
- eine abgewandelte Ausgestaltung und
- Fig. 5
- den Einbau der zuvor beschriebenen Wärmespeicheranlage in ein mehrgeschossiges Gebäude.
MgO | ca. | 80 bis 99,5 Gew.-%; |
CaO | ca. | 1,5 Gew.-%; |
Al2O3 | ca. | 0,4 Gew.-%; |
Fe2O3 | ca. | 0,12 Gew.-%; |
SiO2 | ca. | 3,10 Gew.-%; |
K2O | ca. | 0,1 Gew.-% und |
Na2O | ca. | 0,11 Gew.-%. |
Claims (12)
- Wärmespeicheranlage auf insbesondere Mineralbasis, mit einem Speichergehäuse (1) und einer Gehäusefüllung (2) aus vorzugsweise einem Mineral als Wärmespeichermedium, und mit einer Wärmequelle (3), dadurch gekennzeichnet, daß die Gehäusefüllung (2) als Schüttung aus einem rieselfähigen Wärmespeichermaterial, z. B. Mineralkugeln bzw. Mineralkörner vorgegebenen Durchmessers S, ausgebildet ist.
- Wärmespeicheranlage nach Anspruch 1, dadurch gekennzeichnet, daß als Wärmespeichermaterial überwiegend keramisches Material, insbesondere Magnesiumoxid (MgO), Magnesiumsilikat, Chromerz, Eisenerz oder andere Metalloxide zum Einsatz kommt.
- Wärmespeicheranlage nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß das Wärmespeichermaterial als verdichtungsfähige Masse aus Mineralkugeln bzw. Mineralkörnern mit einer Korngröße im Bereich von 0 bis 300 mm, vorzugsweise 0 bis 3 mm, ausgebildet ist.
- Wärmespeicheranlage nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß das Speichergehäuse (1) eine von zumindest einer Isolationsklappe (7) verschlossene Öffnung aufweist, wobei die Isolationsklappe (7) und/oder das Speichergehäuse (1) innenseitig mit einer Wärmeisolationsschicht (9) zur Vermeidung von Wärmeverlusten ausgekleidet sind.
- Wärmespeicheranlage nach Anspruch 4, dadurch gekennzeichnet, daß zwei in einem gemeinsamen Scharnier (8) gelagerte Isolationsklappen (7) vorgesehen sind, welche im ganzen das Speichergehäuse (1) formen und im Sinne einer Schließmuschel die Gehäusefüllung (2) zwischen sich aufnehmen.
- Wärmespeicheranlage nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß ein stromdurchflossener Draht als Wärmequelle (3) direkt in die Gehäusefüllung (2) eingebettet ist, wobei die Gehäusefüllung (2) vorzugsweise elektrisch nicht leitend ausgeführt ist.
- Wärmespeicheranlage nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß die Wärmequelle (3) eine Steuer-/Regeleinrichtung (10) aufweist, welche die der Gehäusefüllung (2) zugeführte Wärmemenge in Abhängigkeit von Parametern wie der Umgebungstemperatur, dem Wärmebedarf, den Betriebskosten für die Wärmequelle (3), den Einbaubedingungen, dem Aufstellort etc. steuert und/oder regelt.
- Wärmespeicheranlage nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß als Wärmequelle (3) in die Gehäusefüllung (2) zumindest ein Rohr (4) mit innenseitiger Elektrode (5) und/oder durchströmendem Wärmeträgermedium, z. B. Wasser oder Gas, eingelassen ist.
- Wärmespeicheranlage nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß als Wärmequelle (3) die Gehäusefüllung (2) durchströmende Fluide, z. B. Verbrennungsgase, dienen.
- Wärmespeicheranlage nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß als Wärmequelle (3) eine Kombination der Maßnahmen nach den Ansprüchen 6, 8 und/oder 9 zum Einsatz kommt.
- Wärmespeicheranlage nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, daß mehrere Speichergehäuse (1) zu einer Wärmespeicherbatterie zusammengefaßt und mittels eines gemeinsamen Trägergerüstes (19) miteinander vereinigt sind.
- Wärmespeicheranlage nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, daß das Speichergehäuse (1) als Hohlkörper aus einem flexiblen oder starren Material, beispielsweise Gewebe oder dergleichen flexibler Mantel ausgebildet ist.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP99121215A EP1094282A1 (de) | 1999-10-23 | 1999-10-23 | Wärmespeicheranlage auf insbesondere Mineralbasis |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP99121215A EP1094282A1 (de) | 1999-10-23 | 1999-10-23 | Wärmespeicheranlage auf insbesondere Mineralbasis |
Publications (1)
Publication Number | Publication Date |
---|---|
EP1094282A1 true EP1094282A1 (de) | 2001-04-25 |
Family
ID=8239271
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP99121215A Withdrawn EP1094282A1 (de) | 1999-10-23 | 1999-10-23 | Wärmespeicheranlage auf insbesondere Mineralbasis |
Country Status (1)
Country | Link |
---|---|
EP (1) | EP1094282A1 (de) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102017212684A1 (de) * | 2017-07-24 | 2019-01-24 | Siemens Wind Power GmbH & Co. KG | Anordnung zur Wärmespeicherung |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1158687A (en) * | 1966-08-17 | 1969-07-16 | Bauknecht Gmbh G | A Storage Heater |
DE2111296A1 (de) * | 1971-03-10 | 1972-09-14 | Horst Wilms | Bauelement fuer den Aufbau eines Elektro-Blockspeichers nach dem Baukastenprinzip |
DE2123493A1 (de) * | 1971-05-12 | 1972-11-23 | Ceru-Elektrowärmegesellschaft Czepek & Co, 6055 Hausen | Elektrisches Heizelement mit vergrößerter Wärmespeicherung |
DE19623964A1 (de) | 1996-06-15 | 1997-12-18 | Hubert Schmidt | Keramische Wärmespeicher-Kassette auf Elektrobasis als kompaktes Bauteil mit eigenständiger Funktion durch fest eingebaute parallel geschaltete Elektrokabel |
DE19749793A1 (de) * | 1997-11-11 | 1999-05-12 | Behr Gmbh & Co | Speicher thermischer Energie |
-
1999
- 1999-10-23 EP EP99121215A patent/EP1094282A1/de not_active Withdrawn
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1158687A (en) * | 1966-08-17 | 1969-07-16 | Bauknecht Gmbh G | A Storage Heater |
DE2111296A1 (de) * | 1971-03-10 | 1972-09-14 | Horst Wilms | Bauelement fuer den Aufbau eines Elektro-Blockspeichers nach dem Baukastenprinzip |
DE2123493A1 (de) * | 1971-05-12 | 1972-11-23 | Ceru-Elektrowärmegesellschaft Czepek & Co, 6055 Hausen | Elektrisches Heizelement mit vergrößerter Wärmespeicherung |
DE19623964A1 (de) | 1996-06-15 | 1997-12-18 | Hubert Schmidt | Keramische Wärmespeicher-Kassette auf Elektrobasis als kompaktes Bauteil mit eigenständiger Funktion durch fest eingebaute parallel geschaltete Elektrokabel |
DE19749793A1 (de) * | 1997-11-11 | 1999-05-12 | Behr Gmbh & Co | Speicher thermischer Energie |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102017212684A1 (de) * | 2017-07-24 | 2019-01-24 | Siemens Wind Power GmbH & Co. KG | Anordnung zur Wärmespeicherung |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE69025955T2 (de) | Hochtemperatur-diffusionsofen | |
EP2836782A1 (de) | Wärmespeicher für kraftwerksleistungen | |
DE102012111707A1 (de) | Latentwärmespeicher und Verfahren zu seiner Herstellung | |
DE3038142A1 (de) | Thermische isolierung | |
DE102011107315A1 (de) | Hybrid-Energiespeicherelement und Vorrichtung zum Speichern von Energie | |
AT392692B (de) | Feuerfester, mit hohlraeumen versehener auskleidungsstein fuer industrieoefen | |
DE10134145A1 (de) | Feuerhemmendes Batteriegehäuse | |
EP1094282A1 (de) | Wärmespeicheranlage auf insbesondere Mineralbasis | |
DE202012006244U1 (de) | Wärmemangementsystem | |
DE4108744C1 (en) | Gas heating jacketed regenerator with heat storage medium - has central chamber surrounded by layer of pebbles or granular material | |
DE3407815A1 (de) | Unterbrennerofen | |
DE102019116525A1 (de) | Thermischer Pufferspeicher, Verfahren zu seiner Herstellung sowie Verfahren zu seinem Betrieb | |
DE2702657C3 (de) | Wärmedämmende Masse und ihre Verwendung | |
DE2238612B2 (de) | Speicherheizaggregat für gasförmiges Wärmeentnahmemedium | |
DE9401979U1 (de) | Heizkörper für Wohnräume o.dgl. | |
DE1007300B (de) | Unteres Ofenverschlussteil fuer OEfen, insbesondere Reaktionsoefen | |
DE10223606A1 (de) | Systeme zum Aufnehmen und Führen von Glasschmelzen | |
EP1327828B1 (de) | Wandheizung oder Fussbodenheizung mit Heizleitungen zwischen Schamottesteinen | |
AT238409B (de) | Heizofen | |
DE29623837U1 (de) | Elektrischer Saunaofen | |
DE19507400C2 (de) | Wärmedämmaterial und Verfahren zu seiner Herstellung | |
DE102008007819B4 (de) | Montagefähiger Wärmespeicherofen | |
DE3146017A1 (de) | "thermische isolierung" | |
AT3384U1 (de) | Energiedecken aus stahlbeton-fertigteilelementen | |
DE839204C (de) | Winderhitzer nach dem Regenerativsystem |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20000406 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
17Q | First examination report despatched |
Effective date: 20010330 |
|
AKX | Designation fees paid | ||
REG | Reference to a national code |
Ref country code: DE Ref legal event code: 8566 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20011023 |