EP2824407A1 - Verfahren zur Erzeugung zumindest eines Luftprodukts, Luftzerlegungsanlage, Verfahren und Vorrichtung zur Erzeugung elektrischer Energie - Google Patents
Verfahren zur Erzeugung zumindest eines Luftprodukts, Luftzerlegungsanlage, Verfahren und Vorrichtung zur Erzeugung elektrischer Energie Download PDFInfo
- Publication number
- EP2824407A1 EP2824407A1 EP13003511.6A EP13003511A EP2824407A1 EP 2824407 A1 EP2824407 A1 EP 2824407A1 EP 13003511 A EP13003511 A EP 13003511A EP 2824407 A1 EP2824407 A1 EP 2824407A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- pressure level
- heat exchanger
- compressed air
- main heat
- flow
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04763—Start-up or control of the process; Details of the apparatus used
- F25J3/04769—Operation, control and regulation of the process; Instrumentation within the process
- F25J3/04787—Heat exchange, e.g. main heat exchange line; Subcooler, external reboiler-condenser
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04006—Providing pressurised feed air or process streams within or from the air fractionation unit
- F25J3/04012—Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling
- F25J3/04024—Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling of purified feed air, so-called boosted air
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04006—Providing pressurised feed air or process streams within or from the air fractionation unit
- F25J3/04078—Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
- F25J3/0409—Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of oxygen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04151—Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
- F25J3/04187—Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
- F25J3/04193—Division of the main heat exchange line in consecutive sections having different functions
- F25J3/04206—Division of the main heat exchange line in consecutive sections having different functions including a so-called "auxiliary vaporiser" for vaporising and producing a gaseous product
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04151—Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
- F25J3/04187—Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
- F25J3/04218—Parallel arrangement of the main heat exchange line in cores having different functions, e.g. in low pressure and high pressure cores
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04248—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
- F25J3/04284—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
- F25J3/0429—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04248—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
- F25J3/04284—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
- F25J3/0429—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
- F25J3/04296—Claude expansion, i.e. expanded into the main or high pressure column
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04248—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
- F25J3/04284—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
- F25J3/0429—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
- F25J3/04303—Lachmann expansion, i.e. expanded into oxygen producing or low pressure column
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04248—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
- F25J3/04284—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
- F25J3/04309—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of nitrogen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04248—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
- F25J3/04375—Details relating to the work expansion, e.g. process parameter etc.
- F25J3/04393—Details relating to the work expansion, e.g. process parameter etc. using multiple or multistage gas work expansion
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04436—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using at least a triple pressure main column system
- F25J3/04448—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using at least a triple pressure main column system in a double column flowsheet with an intermediate pressure column
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04436—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using at least a triple pressure main column system
- F25J3/04454—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using at least a triple pressure main column system a main column system not otherwise provided, e.g. serially coupling of columns or more than three pressure levels
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04763—Start-up or control of the process; Details of the apparatus used
- F25J3/04769—Operation, control and regulation of the process; Instrumentation within the process
- F25J3/04812—Different modes, i.e. "runs" of operation
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04763—Start-up or control of the process; Details of the apparatus used
- F25J3/04866—Construction and layout of air fractionation equipments, e.g. valves, machines
- F25J3/04872—Vertical layout of cold equipments within in the cold box, e.g. columns, heat exchangers etc.
- F25J3/04878—Side by side arrangement of multiple vessels in a main column system, wherein the vessels are normally mounted one upon the other or forming different sections of the same column
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04763—Start-up or control of the process; Details of the apparatus used
- F25J3/04866—Construction and layout of air fractionation equipments, e.g. valves, machines
- F25J3/04872—Vertical layout of cold equipments within in the cold box, e.g. columns, heat exchangers etc.
- F25J3/04884—Arrangement of reboiler-condensers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2200/00—Processes or apparatus using separation by rectification
- F25J2200/10—Processes or apparatus using separation by rectification in a quadruple, or more, column or pressure system
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2200/00—Processes or apparatus using separation by rectification
- F25J2200/50—Processes or apparatus using separation by rectification using multiple (re-)boiler-condensers at different heights of the column
- F25J2200/54—Processes or apparatus using separation by rectification using multiple (re-)boiler-condensers at different heights of the column in the low pressure column of a double pressure main column system
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2235/00—Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams
- F25J2235/52—Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams the fluid being oxygen enriched compared to air ("crude oxygen")
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2245/00—Processes or apparatus involving steps for recycling of process streams
- F25J2245/40—Processes or apparatus involving steps for recycling of process streams the recycled stream being air
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2250/00—Details related to the use of reboiler-condensers
- F25J2250/02—Bath type boiler-condenser using thermo-siphon effect, e.g. with natural or forced circulation or pool boiling, i.e. core-in-kettle heat exchanger
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2250/00—Details related to the use of reboiler-condensers
- F25J2250/04—Down-flowing type boiler-condenser, i.e. with evaporation of a falling liquid film
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2250/00—Details related to the use of reboiler-condensers
- F25J2250/30—External or auxiliary boiler-condenser in general, e.g. without a specified fluid or one fluid is not a primary air component or an intermediate fluid
- F25J2250/40—One fluid being air
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2250/00—Details related to the use of reboiler-condensers
- F25J2250/30—External or auxiliary boiler-condenser in general, e.g. without a specified fluid or one fluid is not a primary air component or an intermediate fluid
- F25J2250/50—One fluid being oxygen
Definitions
- the invention relates to a method for producing at least one air product, an air separation plant and a method and a device for generating electrical energy according to the preambles of the independent claims.
- distillation column systems are used, which may be designed, for example, as two-column systems, in particular as classic Linde double-column systems, but also as three-column or multi-column systems.
- devices for obtaining further air components in particular the noble gases krypton, xenon and / or argon, may be provided.
- Methods and devices for generating electrical energy should be designed for large load ranges and fast load changes, in order to be able to intercept power fluctuations, such as may result from the availability or unavailability of other energy feeders. Also, air separation plants that supply oxygen or corresponding gas mixtures for this purpose should allow for a correspondingly flexible mode of operation.
- liquid air products eg liquid oxygen: LOX, liquid nitrogen: LIN, liquid argon: LAR or liquid air: LAIR
- LOX liquid oxygen
- LIN liquid nitrogen
- LAR liquid argon
- LAIR liquid air
- the possible degree of flexibilization depends on the liquefaction capacity of the air separation plant.
- air separation plants for supplying power generation processes and apparatus have low liquefaction capacity as they are designed for the production of large quantities of gaseous oxygen and nitrogen products taken from the air separation plant at ambient temperature.
- the refrigeration requirement of such plants is relatively small, so that they are not designed to provide a sufficient amount of cold for the exclusive provision of larger amounts of liquid air products.
- a separate liquefaction plant (LIN, LOX or LAIR condenser) will be installed in appropriate plants and switched on during the liquefaction phase. Furthermore, flexibilization can also be achieved by designing the refrigeration capacity (and thus the liquefaction capacity) of the process or installation to be higher than that required for the actually required quantities of gaseous oxygen and nitrogen products.
- the limits of flexibility are initially limited by the load ranges of the installed machines, eg booster compressors, turbines and heat exchangers. These can, for example, be extended to a certain extent by multiple execution (eg two parallel-connected turbines or parallel-connected booster compressors). However, one reaches the limits at the latest when the interpretation the heat exchanger used is no longer sufficient. Further flexibility is then no longer possible.
- the object of the present invention is therefore to increase the flexibility of corresponding processes or air separation plants, in particular those which supply processes and devices for generating electrical energy.
- An “air separation plant” is charged with possibly dried and purified air, which is provided by means of a “main air compressor” in the form of at least one compressed air flow.
- a “main air compressor” in the form of at least one compressed air flow.
- an air separation plant has a distillation column system for separating the air into its physical components, in particular into nitrogen and oxygen.
- the air is cooled to near its dew point and introduced into the distillation column system, as explained above.
- a pure "air liquefaction plant” does not include a distillation column system.
- the structure of an air liquefaction plant may be that of an air separation plant with the delivery of an air liquefaction product correspond.
- liquid air can be generated as a by-product in an air separation plant.
- a “liquid air product” is any product which can be prepared, at least by compressing, cooling and then releasing air in the form of a cryogenic liquid.
- these may be liquid oxygen (LOX), liquid nitrogen (LIN), liquid argon (LAR) or liquid air (LAIR).
- LOX liquid oxygen
- LIN liquid nitrogen
- LAR liquid argon
- LAIR liquid air
- the terms “liquid oxygen” and “liquid nitrogen” in each case also designate cryogenic liquids which have oxygen or nitrogen in an amount which is above that of atmospheric air. It does not necessarily have to be pure liquids with high contents of oxygen or nitrogen.
- Liquid nitrogen is thus understood to mean either pure or substantially pure nitrogen, as well as a mixture of liquefied air gases whose nitrogen content is higher than that of the atmospheric air. For example, it has a nitrogen content of at least 90, preferably at least 99 mole percent.
- cryogenic liquid or a corresponding fluid, liquid air product, stream, etc., is understood to mean a liquid medium whose boiling point is significantly below the respective ambient temperature and, for example, 200 K or less, in particular 220 K or less.
- cryogenic media are liquid air, liquid oxygen and liquid nitrogen in the above sense.
- a “heat exchanger” serves to transfer heat indirectly between at least two countercurrent streams, for example, a warm compressed air stream and one or more cold streams or a cryogenic liquid air product and one or more hot streams.
- a heat exchanger may be formed from a single or multiple heat exchanger sections connected in parallel and / or in series, for example from one or more plate heat exchanger blocks.
- a heat exchanger for example, the "main heat exchanger” used in an air separation plant, which is characterized in that the main part of the streams to be cooled or heated to be cooled or heated by him, has "passages" as separate fluid channels with heat exchange surfaces are formed.
- a “compressor” is a device designed to compress at least one gaseous stream from at least one inlet pressure at which it is fed to the compressor to at least one final pressure at which it is taken from the compressor system.
- a compressor forms a structural unit, which, however, can have a plurality of “compressor stages” in the form of known piston, screw and / or paddle wheel or turbine arrangements (ie axial or radial compressor stages). This also applies to a “main air compressor” of an air separation plant, which is characterized by the fact that all or predominantly the amount of air that is fed into the air separation plant is compressed by it. In particular, these compressor stages are driven by means of a common drive, for example via a common shaft. Several compressors, e.g. a main and a post-compressor of an air separation plant, may be coupled together.
- a “secondary compressor” is designed to further increase the pressure of an already pressurized stream.
- expansion turbine which can be coupled via a common shaft with further expansion turbines or energy converters such as oil brakes, generators or compressors, is set up for relaxing a gaseous or at least partially liquid stream.
- expansion turbines may be designed for use in the present invention as a turboexpander. If a compressor is driven with one or more expansion turbines and this, however, operated without externally, for example by means of an electric motor, supplied energy, the term “turbine-driven” compressor is used here. Arrangements of turbine-driven compressors and expansion turbines are also referred to as "booster turbines”.
- a "tank system” is understood to mean an arrangement having at least one cryogenic storage tank set up to store a liquid air product.
- a corresponding tank system has insulation means.
- pressure level and "temperature level” to characterize pressures and temperatures, thereby indicating that corresponding pressures and temperatures in a given plant are not in the form of exact pressure or temperature values have to be used to realize the inventive concept.
- pressures and temperatures typically range in certain ranges that are, for example, ⁇ 1%, 5%, 10%, 20% or even 50% about an average.
- Corresponding pressure levels and temperature levels can be in disjoint areas or in areas that overlap one another.
- pressure levels include unavoidable or expected pressure drops, for example, due to cooling effects.
- the pressure levels indicated here in bar are absolute pressures.
- Liquid air products or corresponding liquid streams can be converted by heating in a gaseous or in a supercritical state.
- a regular phase transition by evaporation occurs when heating occurs at subcritical pressure.
- no phase transition in the true sense occurs when heating above the critical temperature, but a transition from the liquid to the supercritical state. If the term "evaporation" is used in the context of this application, this also includes the conversion from the liquid to the supercritical state.
- the invention is based on a method for producing at least one air product using an air separation plant comprising a main air compressor, a main heat exchanger and a distillation column system. At least a first compressed air flow is provided at a first pressure level by means of the main air compressor, and a first partial flow of the first compressed air flow is supplied at the first pressure level to a first passage of the main heat exchanger.
- a method offers particular advantages, in which a second partial flow of the first compressed air flow in a first operating mode at the first pressure level and in a second operating mode at a second pressure level that is higher than the first pressure level, a second passage of Main heat exchanger is supplied, wherein the second partial flow of the first compressed air flow in the second operating mode, at least by means of a turbine-driven booster to the second pressure level is increased and relaxed downstream of the main heat exchanger in an expansion turbine, which is used to drive the turbine-driven booster.
- the "first operating mode" corresponds to a regular operation of a corresponding air separation plant, i. an operation in which predominantly or exclusively gaseous air products are made available, for example to an oxyfuel or an IGCC process.
- the first mode of operation may also include feeding and further separating air products previously stored in a tank system into the used distillation column system.
- the first operating mode is distinguished by the fact that during this no or at least no appreciable amounts of liquid air products are formed and stored in a corresponding tank system.
- a corresponding air separation plant is operated in such a first operating mode with regard to the highest possible or required production of gaseous air products.
- the total amount of air provided by the main air compressor is here typically fed to the distillation column system, i.d.R. no "excess" of air is compressed and used only or primarily to provide relaxation cooling.
- the "second mode of operation" corresponds to a predominant or exclusive liquefaction operation of a corresponding air separation plant which produces less or no gaseous products of air.
- the second mode of operation typically, in the second mode of operation, not all of the air provided by the main air compressor is fed into the distillation column system, but a part is depressurized and thereafter blown off in whole or in part, for example, to the atmosphere.
- the invention thus provides an air separation plant in which a liquefaction plant is functionally integrated.
- the main heat exchanger of the air separation plant is also used for liquefaction, which can significantly reduce costs compared to separate liquefaction plants.
- the main heat exchanger (especially in contrast to a separate liquefaction plant) always remains in the cold state, so that the connection of the "condenser" - or the components used for this purpose Air separation plant - can be done much faster and the above-mentioned cold running losses are reduced.
- the refrigeration for the liquefaction is supplied by the aforementioned expansion turbine, which is "driven” by the main air compressor, because it relaxes a compressed air flow supplied by this. In this way, it becomes possible to use an excessively available power of the main air compressor for liquefaction in periods where less gaseous air products are produced than actually possible, so to speak in a "under load operation" (in the second operating mode). An additional booster can then be made smaller or completely eliminated.
- the heat exchanger according to the invention is specifically designed and is switched accordingly: Normally, this comprises a single passage for the air of said first compressed air flow with an inlet and an outlet nozzle.
- two, three or more separate, i. separate passages provided with their own sockets.
- these passages are flowed through by "equal air", namely by the air of the first compressed air stream which is only divided into corresponding partial flows and which is supplied to it at the same pressure level.
- the passages are switched differently: A (first) partial flow of the first compressed air flow is passed through a (first) passage at the first pressure level, ie without further pressure-influencing measures, via at least one other (second) Passage is a pressure increased (second) partial flow out.
- the second partial flow is first of all pressure-increased to the second pressure level by means of the turbine-driven secondary compressor and expanded downstream of the main heat exchanger in an expansion turbine which is used to drive the turbine-driven secondary compressor.
- a third possibly also increased pressure partial flow of the first compressed air flow can be performed.
- Other passages and partial flows can be provided or provided.
- the inventive design and the operation of the main heat exchanger according to the invention this can be easily adapted to the different operating modes (normal operation or liquefaction).
- the method according to the invention can be used with any of these compressed air streams.
- the respectively affected compressed air flow is then the invention according to the invention divided into the partial streams "first" compressed air flow.
- the first compressed air stream may be both a compressed air stream provided at a pressure level for feeding into a high pressure column of a known distillation column system and a compressed air stream provided at a pressure level for feeding into a medium or low pressure column.
- the main heat exchanger can also be divided into a plurality of heat exchanger blocks for realizing the method according to the invention.
- the proposed measures according to the invention can be used in all known processes for the production of air products, regardless of how the distillation columns of Destillationsklalensystems are formed and / or interconnected, which type of turbines (so-called injection turbines, pressurized nitrogen turbines, medium pressure turbines, etc.) are used, such as the main heat exchanger is designed and how the respective upstream main compressor, precooling and adsorber systems are formed.
- the measures according to the invention are advantageous regardless of the particular liquid air product produced.
- a third partial flow of the first compressed air flow is in the first operating mode at the first pressure level and in a second operating mode either at the first pressure level or at the second pressure level or at a third pressure level higher than the first and higher or lower than the second pressure level is supplied to a third passage of the main heat exchanger.
- This can be a so-called Be act throttling, which can then be relieved cold and fed into the distillation column system, such as a medium or low pressure column.
- this can also be dispensed with.
- the first partial flow and the second partial flow of the first compressed air flow downstream of the main heat exchanger can be combined to form a collecting stream and / or fed into the distillation column system.
- this corresponds to the operation of a conventional air separation plant, but corresponding partial flows are conducted in different passages of the main heat exchanger.
- a third partial flow is provided, it is further advantageous, in the first operating mode, to combine the first partial flow, the second partial flow and the third partial flow of the first compressed air flow downstream of the main heat exchanger into a collecting stream and / or feed it into the distillation column system, so that the entire air the first compressed air flow (at the first pressure level) is available for easy feed into the distillation column system.
- Particularly advantageous is a method in which heated in the second mode of operation of the second partial stream of the first compressed air stream after relaxing in the expansion turbine to a first portion in the main heat exchanger and running from the air separation plant and optionally expanded to a second portion and fed into the distillation column system becomes.
- the corresponding proportions can be flexibly adjusted independently of a respective product quantity, so that the deliverable cooling capacity can be adapted to the requirements.
- a third partial flow of the first compressed air flow is formed, this, as mentioned, for example, as a throttle flow, fed downstream of the main heat exchanger in the distillation column system.
- At least one liquid air product is obtained by means of the distillation column system and transferred into at least one storage tank.
- the first operating mode may also provide (eg, temporarily) the at least one liquid Remove air product from the at least one storage tank and feed it into the distillation column system. All operating modes and variants are decoupled from each other and flexibly adaptable to the respective needs.
- the "first" compressed air stream may be any compressed air stream having a corresponding pressure level employed in the process.
- a second compressed air stream is further provided at a further pressure level, which is either higher or lower than the first pressure level, wherein at least a partial stream of the second compressed air stream is fed to a further passage of the main heat exchanger.
- the first pressure level can be, for example, at most 2 bar above a highest operating pressure at which the distillation column system is operated, that is, for example, correspond to a pressure of a high-pressure column used there. However, it may also be below a highest operating pressure at which the distillation column system is operated, for example, a pressure of a medium-pressure column. In both cases, the measures according to the invention can be used with the correspondingly explained advantages.
- Such an air separation plant comprises a main air compressor, a main heat exchanger and a distillation column system, the main air compressor is arranged to provide at least a first compressed air flow at a first pressure level and means are provided which are adapted to a first partial flow of the first compressed air flow at the first pressure level of a first Passage of the main heat exchanger.
- means are provided which are adapted to also supply a second partial flow of the first compressed air flow in a first operating mode at the first pressure level and in a second operating mode at a second pressure level which is higher than the first pressure level to a second passage of the main heat exchanger.
- At least one turbine-driven secondary compressor coupled to an expansion turbine arranged therefor a relaxation of the second partial flow of the first compressed air flow to be driven downstream of the main heat exchanger.
- this may be an oxifuel or IGCC process or a corresponding device.
- FIGS. 1 to 5 In some cases, identical systems are presented in different operating modes, which include, among others, the position of a large number of Differentiate valves in corresponding lines, so that liquid and gaseous streams are each guided by different system components. The valves are not illustrated for clarity. Shutdown lines are crossed (-x-).
- FIG. 1 shows a non-inventive air separation plant 110 in the form of a schematic system diagram.
- the air separation plant 110 comprises as central components a main air compressor 10, a main heat exchanger 20 and a distillation column system 30, which in the illustrated example is designed as a multi-column system with a high-pressure column 31, a medium-pressure column 32 and a low-pressure column 33.
- a distillation column system 30 which in the illustrated example is designed as a multi-column system with a high-pressure column 31, a medium-pressure column 32 and a low-pressure column 33.
- the measures proposed according to the invention can be used in any distillation column systems 30.
- the operating pressure of the high-pressure column 31 is, for example, 5.0 to 5.5 bar at the top
- the operating pressure of the low-pressure column 33 is, for example, 1.3 to 1.4 bar at the top
- the operating pressure of the medium-pressure column 32 is between the operating pressure of the high-pressure column 31 and the operating pressure of the low-pressure column 33.
- the main air compressor 10 is adapted to provide at least a first compressed air flow a and a second compressed air flow I.
- the pressure level of the first compressed air flow a is at the operating pressure of the high pressure column 31 (therefore also referred to as "high pressure air", HP AIR), the pressure level of the second compressed air flow I, however, at the operating pressure of the medium pressure column 32 (therefore also as “medium pressure air”, MP AIR, called).
- the provision of appropriate compressed air streams a and I is basically known and will not be explained in detail here.
- 10 atmospheric air can be sucked through a filter in a main air compressor and compressed in several stages to said pressures.
- the first compressed air flow a can be taken, for example, at the end of a multi-stage compression, the second compressed air flow I at an intermediate point.
- the air can be cooled after compression in a direct contact cooler in direct heat exchange with cooling water.
- the cooling water may be supplied from an evaporative cooler and / or from an external source.
- the compressed and cooled air can then be cleaned in a cleaning device.
- the cleaning device may comprise a pair of containers filled with a suitable adsorbent material.
- the first compressed air flow a is conducted at the said pressure level through a passage 25 of the main heat exchanger 20 and cooled there to a near dew point. Further, the designated a, cooled compressed air flow a is fed downstream of the main heat exchanger 20 to a proportion in the high-pressure column 31 and to another part in a bath evaporator or condenser 34, which is filled with an oxygen-rich liquid (see below) liquefied. From the liquefied portion, in turn, a portion is fed liquid into the medium-pressure column 32 and passed a further portion through a subcooler 35 and expanded into the low pressure column 33.
- an oxygen-rich liquid see below
- the second compressed air flow I is led to a portion through a passage 24 of the main heat exchanger 20 and cooled there to near dew point.
- another portion is passed through a heat exchanger element 44, which may also be integrated in the main heat exchanger 20, where it is used to evaporate an oxygen-rich liquid stream n (see below).
- the subsequently reunited fractions are fed into the medium-pressure column 32.
- each oxygen-enriched liquid streams are withdrawn, passed as a stream h through the subcooler 35, and expanded into the low pressure column 33.
- an oxygen-rich liquid stream i is withdrawn, increased pressure by means of a pump 36, transferred via a flash valve (without designation) in a falling film evaporator or condenser 37, partially evaporated there against a nitrogen-rich stream (see below), and in an oxygen column 38 with another falling film evaporator or condenser 39 transferred.
- Liquid and gaseous fractions obtained from the head of the oxygen column 38 are returned as stream k to the low-pressure column 33.
- a liquid, oxygen-rich stream is withdrawn and transferred to the bath condenser 34.
- a gaseous, oxygen-rich stream m is withdrawn, heated in the main heat exchanger 20 and used to provide a gaseous oxygen pressure product (referred to herein as GOX).
- a liquid, oxygen-rich stream is withdrawn, from which a partial flow n liquid pressure increases, evaporated in the heat exchanger element 44 and also used to provide the gaseous oxygen pressure product.
- a partial flow o is partially supercooled in the subcooler 35 and used to provide a liquid oxygen product (referred to herein as LOX).
- a nitrogen-rich gaseous stream p is withdrawn and liquefied in the falling-film evaporator or condenser 39.
- a partial flow is returned to the high-pressure column 31, a further partial flow (see link A) is passed through the subcooler 35 and then expanded into the low-pressure column 33.
- a nitrogen-rich gaseous stream r is withdrawn and liquefied in the falling-film evaporator or condenser 37.
- a partial flow is returned to the medium-pressure column 32, a further partial flow s passed through the subcooler 35 and then partially relaxed in the low pressure column 33 and partially provided in the form of a liquid nitrogen product (here referred to as LIN).
- Another partial flow t is heated in the main heat exchanger 20. Again, a portion can be removed from the main heat exchanger 20 at an intermediate temperature and expanded in a generator turbine 45 (so-called pressurized nitrogen turbine). The portion not relaxed in the generator turbine 45 is provided in the form of a gaseous nitrogen pressure product (here referred to as PGAN).
- PGAN gaseous nitrogen pressure product
- the air separation plant 110 often proves to be not sufficiently flexible, in particular for providing highly fluctuating quantities of liquid air products.
- FIG. 2 shows an air separation plant according to an embodiment of the invention in a first operating mode in the form of a schematic plant diagram.
- the air separation plant is designated 100 in total.
- the distillation column system of the air separation plant 100 is substantially similar to that of the air separation plant 110 and will not be discussed repeatedly.
- the FIG. 2 shows the air separation plant 100 in a first operating mode, the following FIG. 3 in a second mode of operation.
- a liquefaction operation is carried out in which the partial flow c is initially passed through a turbine-driven booster 41, so that the partial flow c, after cooling in an aftercooler 43, is supplied to the passage 22 of the main heat exchanger 20 at an elevated pressure level ,
- the partial flow c is taken from the main heat exchanger 20 at an intermediate temperature and expanded in the expansion turbine 42, which drives the additional compressor 41.
- the partial flow d is here compressed by means of a further after-compressor 46 (with aftercooler). After cooling in the passage 23 of the main heat exchanger 20, this is expanded into the medium-pressure column 32 ("throttle flow", see link C).
- liquid nitrogen: LIN and liquid oxygen: LOX liquid air products
- FIG. 4 shows an air separation plant according to an embodiment of the invention in the first operating mode in the form of a schematic plant diagram.
- FIG. 5 shown air separation plant differs from that in the Figures 2 and 3 illustrated plant essentially by the configuration of the main heat exchanger 20 and the distillation column system 30, which is only partially explained here.
- the high-pressure column 31 with the low-pressure column 33 is designed as a double column.
- Other illustrated columns of the distillation column system 30 used are not explained in detail.
- the compressed air flow a is divided here into further partial flows e and f.
- liquid nitrogen (LIN) and liquid oxygen (LOX) in the form of the streams v and w are fed into corresponding components of the distillation column system 30 (low-pressure column 33 or bath evaporator 35), a withdrawal, for example from Liquid oxygen (LOX) does not occur.
- This first mode of operation is essentially the same as that of FIG. 2 ie only small amounts of liquid air products are formed.
- air separation plant 100 is a corresponding feed of liquid nitrogen (LIN) and liquid oxygen (LOX) possible. Further withdrawn streams are designated R and DCAC.
- the in FIG. 5 shown second operating mode substantially corresponds to the in FIG. 3 illustrated second operating mode of the air separation plant 100th
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Emergency Medicine (AREA)
- Separation By Low-Temperature Treatments (AREA)
Abstract
Es wird ein Verfahren zur Erzeugung zumindest eines Luftprodukts, bei dem eine Luftzerlegungsanlage (100) verwendet wird, die einen Hauptluftverdichter (10), einen Hauptwärmetauscher (20) und ein Destillationssäulensystem (30) umfasst, wobei mittels des Hauptluftverdichters (10) zumindest ein erster Druckluftstrom (a) auf einem ersten Druckniveau bereitgestellt wird und ein erster Teilstrom (b) des ersten Druckluftstroms (a) auf dem ersten Druckniveau einer ersten Passage (21) des Hauptwärmetauschers (20) zugeführt wird, vorgeschlagen. Ferner wird ein zweiter Teilstrom (c) des ersten Druckluftstroms (a) in einem ersten Betriebsmodus auf dem ersten Druckniveau und in einem zweiten Betriebsmodus auf einem zweiten Druckniveau, das höher als das erste Druckniveau ist, einer zweiten Passage (22) des Hauptwärmetauschers (20) zugeführt, wobei der zweite Teilstrom (c) des ersten Druckluftstroms (a) in dem zweiten Betriebsmodus zumindest mittels eines turbinengetriebenen Nachverdichters (41) auf das zweite Druckniveau druckerhöht und stromab des Hauptwärmetauschers (20) in einer Entspannungsturbine (42) entspannt wird, die zum Antreiben des turbinengetriebenen Nachverdichters (41) verwendet wird. Eine entsprechende Luftzerlegungsanlage (100) und ein Verfahren und eine Vorrichtung zur Erzeugung elektrischer Energie sind ebenfalls Gegenstand der vorliegenden Erfindung.
Description
- Die Erfindung betrifft ein Verfahren zur Erzeugung zumindest eines Luftprodukts, eine Luftzerlegungsanlage sowie ein Verfahren und eine Vorrichtung zur Erzeugung elektrischer Energie gemäß den Oberbegriffen der unabhängigen Patentansprüche.
- Bei bekannten Verfahren zur Erzeugung elektrischer Energie, beispielsweise den bekannten Oxyfuel-Verfahren und sogenannten Kombi-Prozessen mit integrierter Vergasung (engl. Integrated Gasification Combined Cycle, IGCC), werden Sauerstoff oder sauerstoffangereicherte Gasgemische, beispielsweise zur Verbrennung oder zur partiellen Oxidation, benötigt. Zur Bereitstellung des Sauerstoffs oder entsprechender sauerstoffangereicherter Gasgemische können Verfahren und Vorrichtungen zur Tieftemperaturzerlegung von Luft eingesetzt werden, wie sie z.B. aus Hausen/Linde, Tieftemperaturtechnik, 2. Auflage 1985, Kapitel 4 (Seiten 281 bis 337) bekannt sind.
- In derartigen Verfahren und Vorrichtungen (hier kurz als "Luftzerlegungsanlagen" bezeichnet) werden Destillationssäulensysteme verwendet, die beispielsweise als Zweisäulensysteme, insbesondere als klassische Linde-Doppelsäulensysteme, aber auch als Drei- oder Mehrsäulensysteme ausgebildet sein können. Ferner können Vorrichtungen zur Gewinnung weiterer Luftkomponenten, insbesondere der Edelgase Krypton, Xenon und/oder Argon, vorgesehen sein.
- Verfahren und Vorrichtungen zur Erzeugung elektrischer Energie sollten für große Lastbereiche und schnelle Lastwechsel ausgelegt sein, um Stromschwankungen abfangen zu können, wie sie durch die Verfügbarkeit bzw. Nichtverfügbarkeit von anderen Energieeinspeisern entstehen können. Auch Luftzerlegungsanlagen, die Sauerstoff bzw. entsprechende Gasgemische hierfür liefern, sollten eine im entsprechenden Umfang flexible Betriebsweise ermöglichen.
- Auch herkömmliche Luftzerlegungsanlagen sind von der Stromnetzauslastung und entsprechend stark variierenden Stromtarifen betroffen.
- Es ist beispielsweise bekannt, in einer Luftzerlegungsanlage zu Billigstrom- bzw. Stromüberschusszeiten eine möglichst große Menge flüssiger Luftprodukte (z.B. Flüssigsauerstoff: LOX, Flüssigstickstoff: LIN, Flüssigargon: LAR oder Flüssigluft: LAIR) zu produzieren und in Speicherbehältern zu speichern. Diese flüssigen Luftprodukte können während Hochstrompreis- bzw. Spitzenstromzeiten in die Luftzerlegungsanlage zurückgespeist werden. Entsprechende Verfahren und Vorrichtungen sind beispielsweise in der
WO 2005/064252 A1 beschrieben. - Der mögliche Flexibilisierungsgrad ist dabei von der Verflüssigungskapazität der Luftzerlegungsanlage abhängig. Je größer die verfügbare Verflüssigungskapazität ist, desto mehr günstiger Strom kann in Form flüssiger Luftprodukte gespeichert werden. Insbesondere Luftzerlegungsanlagen zur Versorgung von Verfahren und Vorrichtungen zur Energieerzeugung verfügen jedoch über eine nur geringe Verflüssigungskapazität, da diese für die Produktion von großen Mengen an gasförmigen Sauerstoff- und Stickstoffprodukten ausgelegt sind, die der Luftzerlegungsanlage bei Umgebungstemperatur entnommen werden. Der Kältebedarf entsprechender Anlagen ist verhältnismäßig klein, so dass diese auch nicht dafür ausgelegt sind, eine ausreichende Kältemenge für die ausschließliche Bereitstellung größerer Mengen flüssiger Luftprodukte zu liefern.
- In entsprechenden Anlagen wird daher eine separate Verflüssigungsanlage (LIN-, LOX- oder LAIR- Verflüssiger) installiert und während der Verflüssigungsphase zugeschaltet. Eine Flexibilisierung kann ferner auch dadurch erzielt werden, dass das Kälteproduktionsvermögen (und damit entsprechend das Verflüssigungsvermögen) des Verfahrens bzw. der Anlage höher als für die tatsächlich erforderlichen Mengen an gasförmigen Sauerstoff- und Stickstoffprodukten ausgelegt wird.
- Die Flexibilitätsgrenzen sind dabei zunächst durch die Lastbereiche der verbauten Maschinen, z.B. von Boosterverdichtern, Turbinen und Wärmetauschern, begrenzt. Diese können beispielsweise durch mehrfache Ausführung (z.B. zwei parallel geschaltete Turbinen oder parallel geschaltete Boosterverdichter) in gewissem Umfang erweitert werden. Man stößt jedoch spätestens dann an Grenzen, wenn die Auslegung der verwendeten Wärmetauscher nicht mehr ausreicht. Eine weitere Flexibilisierung ist dann nicht mehr möglich.
- In diesem Fall ist, wie erwähnt, die Verwendung der separaten Verflüssigungsanlage erforderlich, deren Bereitstellung jedoch mit hohen Investitionskosten verbunden ist. Außerdem wird diese Anlage nur während der Verflüssigungsphase, die nur wenige Stunden pro Tag umfasst, in Betrieb genommen. In der Zwischenzeit erwärmen sich ihre Komponenten (Wärmetauscher und Turbinen) teilweise oder vollständig und müssen vor der Inbetriebnahme erneut kaltgefahren werden. Dies bedeutet einen zusätzlichen Energieverbrauch.
- Aufgabe vorliegender Erfindung ist daher die Erhöhung der Flexibilität entsprechender Verfahren bzw. Luftzerlegungsanlagen, insbesondere solcher, die Verfahren und Vorrichtungen zur Erzeugung elektrischer Energie versorgen.
- Diese Aufgabe wird durch ein Verfahren zur Erzeugung zumindest eines Luftprodukts, eine Luftzerlegungsanlage sowie ein Verfahren und eine Vorrichtung zur Erzeugung elektrischer Energie mit den Merkmalen der unabhängigen Patentansprüche gelöst. Bevorzugte Ausgestaltungen sind jeweils Gegenstand der abhängigen Patentansprüche sowie der nachfolgenden Beschreibung.
- Vor der Erläuterung der im Rahmen der vorliegenden Erfindung erzielbaren Vorteile werden einige in dieser Anmeldung verwendete Begriffe erläutert.
- Eine "Luftzerlegungsanlage" wird mit ggf. getrockneter und aufgereinigter Luft beschickt, die mittels eines "Hauptluftverdichters" in Form zumindest eines Druckluftstroms bereitgestellt wird. Eine Luftzerlegungsanlage weist, wie erwähnt, ein Destillationssäulensystem zur Zerlegung der Luft in ihre physikalischen Komponenten auf, insbesondere in Stickstoff und Sauerstoff. Hierzu wird die Luft in die Nähe ihres Taupunkts abgekühlt und in das Destillationssäulensystem eingeleitet, wie zuvor erläutert. Im Gegensatz dazu umfasst eine reine "Luftverflüssigungsanlage" kein Destillationssäulensystem. Im Übrigen kann der Aufbau einer Luftverflüssigungsanlage jenem einer Luftzerlegungsanlage mit der Abgabe eines Luftverflüssigungsprodukts entsprechen. Selbstverständlich kann auch in einer Luftzerlegungsanlage Flüssigluft als Nebenprodukt erzeugt werden.
- Ein "flüssiges Luftprodukt" ist jedes Produkt, das zumindest durch Verdichten, Abkühlen und anschließendes Entspannen von Luft in Form einer tiefkalten Flüssigkeit hergestellt werden kann. Insbesondere kann es sich hierbei, wie erwähnt, um Flüssigsauerstoff (LOX), Flüssigstickstoff (LIN), Flüssigargon (LAR) oder Flüssigluft (LAIR) handeln. Die Begriffe "flüssiger Sauerstoff' bzw. "flüssiger Stickstoff' bezeichnen dabei jeweils auch tiefkalte Flüssigkeiten, die Sauerstoff bzw. Stickstoff in einer Menge aufweisen, die oberhalb derer atmosphärischer Luft liegt. Es muss sich dabei also nicht notwendigerweise um reine Flüssigkeiten mit hohen Gehalten von Sauerstoff bzw. Stickstoff handeln. Unter flüssigem Stickstoff wird also sowohl reiner oder im Wesentlichen reiner Stickstoff verstanden, als auch ein Gemisch aus verflüssigten Luftgasen, dessen Stickstoffgehalt höher als derjenige der atmosphärischen Luft ist. Beispielsweise weist dieses einen Stickstoffgehalt von mindestens 90, vorzugsweise mindestens 99 Molprozent auf.
- Unter einer "tiefkalten" Flüssigkeit, bzw. einem entsprechenden Fluid, flüssigen Luftprodukt, Strom usw. wird ein flüssiges Medium verstanden, dessen Siedepunkt deutlich unterhalb der jeweiligen Umgebungstemperatur liegt und beispielsweise 200 K oder weniger, insbesondere 220 K oder weniger, beträgt. Beispiele für tiefkalte Medien sind flüssige Luft, flüssiger Sauerstoff und flüssiger Stickstoff im obigen Sinn.
- Ein "Wärmetauscher" dient zur indirekten Übertragung von Wärme zwischen zumindest zwei im Gegenstrom zueinander geführten Strömen, beispielsweise einem warmen Druckluftstrom und einem oder mehreren kalten Strömen oder einem tiefkalten flüssigen Luftprodukt und einem oder mehreren warmen Strömen. Ein Wärmetauscher kann aus einem einzelnen oder mehreren parallel und/oder seriell verbundenen Wärmetauscherabschnitten gebildet sein, z.B. aus einem oder mehreren Plattenwärmetauscherblöcken. Ein Wärmetauscher, beispielsweise auch der in einer Luftzerlegungsanlage eingesetzte "Hauptwärmetauscher", der sich dadurch auszeichnet, dass durch ihn der Hauptanteil der abzukühlenden bzw. zu erwärmenden Ströme abgekühlt bzw. erwärmt wird, weist "Passagen" auf, die als voneinander getrennte Fluidkanäle mit Wärmeaustauschflächen ausgebildet sind.
- Ein "Verdichter" ist eine Vorrichtung, die zum Verdichten wenigstens eines gasförmigen Stroms von wenigstens einem Eingangsdruck, bei dem dieser dem Verdichter zugeführt wird, auf wenigstens einen Enddruck, bei dem dieser dem Verdichtersystem entnommen wird, eingerichtet ist. Ein Verdichter bildet dabei eine bauliche Einheit, die jedoch mehrere "Verdichterstufen" in Form bekannter Kolben-, Schrauben- und/oder Schaufelrad- bzw. Turbinenanordnungen (also Axial- oder Radialverdichterstufen) aufweisen kann. Dies gilt auch für einen "Hauptluftverdichter" einer Luftzerlegungsanlage, der sich dadurch auszeichnet, dass durch ihn die gesamte oder der überwiegende Anteil der Luftmenge, die in die Luftzerlegungsanlage eingespeist wird, verdichtet wird. Insbesondere werden diese Verdichterstufen mittels eines gemeinsamen Antriebs, beispielsweise über eine gemeinsame Welle, angetrieben. Mehrere Verdichter, z.B. ein Haupt- und ein Nachverdichter einer Luftzerlegungsanlage, können miteinander gekoppelt sein. Ein "Nachverdichter" ist zur weiteren Druckerhöhung eines bereits druckbeaufschlagten Stroms ausgebildet.
- Eine "Entspannungsturbine", die über eine gemeinsame Welle mit weiteren Entspannungsturbinen oder Energiewandlern wie Ölbremsen, Generatoren oder Verdichtern gekoppelt sein kann, ist zur Entspannung eines gasförmigen oder zumindest teilweise flüssigen Stroms eingerichtet. Insbesondere können Entspannungsturbinen zum Einsatz in der vorliegenden Erfindung als Turboexpander ausgebildet sein. Wird ein Verdichter mit einer oder mehreren Entspannungsturbinen angetrieben und dieser jedoch ohne extern, beispielsweise mittels eines Elektromotors, zugeführte Energie betrieben, wird hier der Begriff "turbinengetriebener" Verdichter verwendet. Anordnungen aus turbinengetriebenen Verdichtern und Entspannungsturbinen werden auch als "Boosterturbinen" bezeichnet.
- Unter einem "Tanksystem" wird im Rahmen der vorliegenden Anmeldung eine Anordnung mit wenigstens einem zur Speicherung eines flüssigen Luftprodukts eingerichteten Tieftemperaturspeichertank verstanden. Ein entsprechendes Tanksystem weist Isolationsmittel auf.
- Die vorliegende Anmeldung verwendet zur Charakterisierung von Drücken und Temperaturen die Begriffe "Druckniveau" und "Temperaturniveau", wodurch zum Ausdruck gebracht werden soll, dass entsprechende Drücke und Temperaturen in einer entsprechenden Anlage nicht in Form exakter Druck- bzw. Temperaturwerte verwendet werden müssen, um das erfinderische Konzept zu verwirklichen. Jedoch bewegen sich derartige Drücke und Temperaturen typischerweise in bestimmten Bereichen, die beispielsweise ± 1%, 5%, 10%, 20% oder sogar 50% um einen Mittelwert liegen. Entsprechende Druckniveaus und Temperaturniveaus können dabei in disjunkten Bereichen liegen oder in Bereichen, die einander überlappen. Insbesondere schließen beispielsweise Druckniveaus unvermeidliche oder zu erwartende Druckverluste, beispielsweise aufgrund von Abkühlungseffekten, ein. Entsprechendes gilt für Temperaturniveaus. Bei den hier in bar angegebenen Druckniveaus handelt es sich um Absolutdrücke.
- Flüssige Luftprodukte bzw. entsprechende flüssige Ströme können durch Erwärmen in einen gasförmigen oder in einen überkritischen Zustand überführt werden. Ein regulärer Phasenübergang durch Verdampfen erfolgt, wenn die Erwärmung bei unterkritischem Druck erfolgt. Falls flüssige Luftprodukte jedoch bei einem Druck erwärmt werden, der oberhalb des kritischen Drucks liegt, erfolgt beim Erwärmen über die kritische Temperatur hinaus kein Phasenübergang im eigentlichen Sinn, sondern ein Übergang vom flüssigen in den überkritischen Zustand. Wird im Rahmen dieser Anmeldung der Begriff "Verdampfen" verwendet, schließt dies auch die Überführung vom flüssigen in den überkritischen Zustand ein.
- Die Erfindung geht von einem Verfahren zur Erzeugung zumindest eines Luftprodukts aus, bei dem eine Luftzerlegungsanlage verwendet wird, die einen Hauptluftverdichter, einen Hauptwärmetauscher und ein Destillationssäulensystem umfasst. Mittels des Hauptluftverdichters wird dabei zumindest ein erster Druckluftstrom auf einem ersten Druckniveau bereitgestellt und ein erster Teilstrom des ersten Druckluftstroms auf dem ersten Druckniveau einer ersten Passage des Hauptwärmetauschers zugeführt.
- Erfindungsgemäß wurde herausgefunden, dass ein Verfahren besondere Vorteile bietet, bei dem ferner ein zweiter Teilstrom des ersten Druckluftstroms in einem ersten Betriebsmodus auf dem ersten Druckniveau und in einem zweiten Betriebsmodus auf einem zweiten Druckniveau, das höher als das erste Druckniveau ist, einer zweiten Passage des Hauptwärmetauschers zugeführt wird, wobei der zweite Teilstrom des ersten Druckluftstroms in dem zweiten Betriebsmodus zumindest mittels eines turbinengetriebenen Nachverdichters auf das zweite Druckniveau druckerhöht und stromab des Hauptwärmetauschers in einer Entspannungsturbine entspannt wird, die zum Antreiben des turbinengetriebenen Nachverdichters verwendet wird.
- Der "erste Betriebsmodus" entspricht dabei einem regulären Betrieb einer entsprechenden Luftzerlegungsanlage, d.h. einem Betrieb, in dem überwiegend oder ausschließlich gasförmige Luftprodukte zur Verfügung gestellt werden, beispielsweise an ein Oxyfuel- oder ein IGCC-Verfahren. Der erste Betriebsmodus kann auch umfassen, zuvor in einem Tanksystem gespeicherte Luftprodukte in das verwendete Destillationssäulensystem einzuspeisen und weiter aufzutrennen. Der erste Betriebsmodus zeichnet sich dabei dadurch aus, dass während diesem keine oder zumindest keine nennenswerten Mengen an flüssigen Luftprodukten gebildet und in einem entsprechenden Tanksystem eingespeichert werden. Eine entsprechende Luftzerlegungsanlage wird in einem derartigen ersten Betriebsmodus im Hinblick auf eine möglichst hohe oder anforderungsgemäße Produktion an gasförmigen Luftprodukten betrieben. Die gesamte durch den Hauptluftverdichter bereitgestellte Luftmenge wird hier typischerweise in das Destillationssäulensystem eingespeist, es wird i.d.R. kein "Überschuss" an Luft verdichtet und lediglich oder vornehmlich zur Bereitstellung von Entspannungskälte verwendet.
- Im Gegensatz dazu entspricht der "zweite Betriebsmodus" einem überwiegenden oder ausschließlichen Verflüssigungsbetrieb einer entsprechenden Luftzerlegungsanlage, bei dem weniger oder keine gasförmigen Luftprodukte erzeugt werden. Typischerweise dabei wird in dem zweiten Betriebsmodus nicht die gesamte Luftmenge, die durch den Hauptluftverdichter bereitgestellt wird, in das Destillationssäulensystem eingespeist, sondern ein Teil wird kälteleistend entspannt und danach ganz oder teilweise, beispielsweise an die Umgebung, abgeblasen.
- Die Erfindung schafft damit eine Luftzerlegungsanlage, in die funktionell eine Verflüssigungsanlage integriert ist. Der Hauptwärmetauscher der Luftzerlegungsanlage wird dabei gleichzeitig auch für die Verflüssigung verwendet, wodurch sich insbesondere gegenüber separaten Verflüssigungsanlagen die Kosten signifikant reduzieren lassen. Außerdem bleibt der Hauptwärmetauscher (insbesondere im Gegensatz zu einer separaten Verflüssigungsanlage) stets im kalten Zustand, so dass das Zuschalten des "Verflüssigers" - bzw. der hierzu verwendeten Komponenten der Luftzerlegungsanlage - deutlich schneller erfolgen kann und die eingangs erwähnten Kaltfahrverluste reduziert werden.
- Die Kälte für die Verflüssigung wird von der erwähnten Entspannungsturbine geliefert, die durch den Hauptluftverdichter "angetrieben" wird, weil sie einen durch diesen gelieferten Druckluftstrom entspannt. Auf dieser Weise wird es möglich, in Zeiträumen, in denen weniger gasförmige Luftprodukte produziert werden als eigentlich möglich, also gewissermaßen in einem "Unterlastbetrieb" (im zweiten Betriebsmodus), eine im Überschuss verfügbare Leistung des Hauptluftverdichters für die Verflüssigung einzusetzen. Ein zusätzlicher Nachverdichter kann dann kleiner ausgeführt werden oder ganz entfallen.
- Um die Integration des Verflüssigers in die Luftzerlegungsanlage zu ermöglichen, ist der Wärmetauscher erfindungsgemäß spezifisch ausgebildet und wird entsprechend geschaltet: Normalerweise umfasst dieser eine einzige Passage für die Luft des erwähnten ersten Druckluftstroms mit einem Eintritts- und einem Austrittsstutzen. Bei dem erfindungsgemäß vorgeschlagenen Verfahren werden dagegen zwei, drei oder mehr separate, d.h. voneinander getrennte Passagen mit eigenen Stutzen vorgesehen.
- In Normalbetrieb (dem ersten Betriebsmodus) werden diese Passagen von "gleicher Luft" durchströmt, nämlich von der lediglich in entsprechende Teilströme aufgeteilten Luft des ersten Druckluftstroms, die diesen auf gleichem Druckniveau zugeführt werden. Im Verflüssigungsbetrieb, d.h. dem zweiten Betriebsmodus, werden die Passagen hingegen anders geschaltet: Ein (erster) Teilstrom des ersten Druckluftstroms wird auf dem ersten Druckniveau, d.h. ohne weitere druckbeeinflussende Maßnahmen, durch eine (erste) Passage geführt, über zumindest eine andere (zweite) Passage wird ein druckerhöhter (zweiter) Teilstrom geführt. Der zweite Teilstrom wird dabei, wie erwähnt, zunächst mittels des turbinengetriebenen Nachverdichters auf das zweite Druckniveau druckerhöht und stromab des Hauptwärmetauschers in einer Entspannungsturbine entspannt, die zum Antreiben des turbinengetriebenen Nachverdichters verwendet wird. Durch eine weitere (dritte) Passage kann ein dritter, ggf. ebenfalls druckerhöhter Teilstrom des ersten Druckluftstroms geführt werden. Weitere Passagen und Teilströme können vorgesehen bzw. bereitgestellt werden.
- Durch die erfindungsgemäße Ausbildung und den erfindungsgemäßen Betrieb des Hauptwärmetauschers kann dieser sehr einfach an die unterschiedlichen Betriebsmodi (Normalbetrieb bzw. Verflüssigung) angepasst werden.
- Die Integration des externen Verflüssigers in die Luftzerlegungsanlage hilft, Kosten zu reduzieren. Auch Kaltfahrverluste werden deutlich reduziert, da der Wärmetauscher immer kalt bleibt, was energetische Vorteile bietet.
- Werden durch einen Hauptluftverdichter unterschiedliche Druckluftströme geliefert, kann das erfindungsgemäße Verfahren bei beliebigen dieser Druckluftströme zum Einsatz kommen. Der jeweils betroffene Druckluftstrom ist dann der erfindungsgemäß in die Teilströme aufgeteilte "erste" Druckluftstrom.
- Der erste Druckluftstrom kann also sowohl ein Druckluftstrom sein, der auf einem Druckniveau zur Einspeisung in eine Hochdrucksäule eines bekannten Destillationssäulensystems bereitgestellt wird, als auch ein Druckluftstrom, der auf einem Druckniveau zur Einspeisung in eine Mittel- oder Niederdrucksäule bereitgestellt wird. Der Hauptwärmetauscher kann zur Realisierung des erfindungsgemäßen Verfahrens auch in mehrere Wärmetauscherblöcke aufgeteilt sein.
- Die erfindungsgemäß vorgeschlagenen Maßnahmen sind bei allen bekannten Verfahren zur Erzeugung von Luftprodukten einsetzbar, unabhängig davon, wie die Destillationssäulen des Destillationssäulensystems ausgebildet und/oder verschaltet sind, welche Art von Turbinen (sogenannte Einblaseturbinen, Druckstickstoffturbinen, Mitteldruckturbinen etc.) eingesetzt werden, wie der Hauptwärmetauscher gestaltet ist und wie die jeweils vorgeschalteten Hauptverdichter-,Vorkühlungs- und Adsorbersysteme ausgebildet sind. Die erfindungsgemäßen Maßnahmen sind unabhängig vom jeweils produzierten flüssigen Luftprodukt vorteilhaft.
- Es ist, wie bereits teilweise erwähnt, besonders vorteilhaft, wenn ein dritter Teilstrom des ersten Druckluftstroms in dem ersten Betriebsmodus auf dem ersten Druckniveau und in einem zweiten Betriebsmodus entweder auf dem ersten Druckniveau oder auf dem zweiten Druckniveau oder auf einem dritten Druckniveau, das höher als das erste und höher oder niedriger als das zweite Druckniveau ist, einer dritten Passage des Hauptwärmetauschers zugeführt wird. Hierbei kann es sich um einen sogenannten Drosselstrom handeln, der anschließend kälteleistend entspannt und in das Destillationssäulensystem, beispielsweise eine Mittel- oder Niederdrucksäule, eingespeist werden kann. Bei entsprechender Auslegung und Behandlung des ersten Teilstroms kann hierauf jedoch auch verzichtet werden.
- Vorteilhafterweise können in dem ersten Betriebsmodus der erste Teilstrom und der zweite Teilstrom des ersten Druckluftstroms stromab des Hauptwärmetauschers zu einem Sammelstrom vereinigt und/oder in das Destillationssäulensystem eingespeist werden. Dies entspricht damit im Ergebnis dem Betrieb einer herkömmlichen Luftzerlegungsanlage, wobei jedoch entsprechende Teilströme in unterschiedlichen Passagen des Hauptwärmetauschers geführt werden.
- Wird ein dritter Teilstrom bereitgestellt, ist es ferner vorteilhaft, in dem ersten Betriebsmodus den ersten Teilstrom, den zweiten Teilstrom und den dritten Teilstrom des ersten Druckluftstroms stromab des Hauptwärmetauschers zu einem Sammelstrom zu vereinigen und/oder in das Destillationssäulensystem einzuspeisen, so dass die gesamte Luft des ersten Druckluftstroms (auf dem ersten Druckniveau) zur einfachen Einspeisung in das Destillationssäulensystem zur Verfügung steht.
- Besonders vorteilhaft ist ein Verfahren, bei dem in dem zweiten Betriebsmodus der zweite Teilstrom des ersten Druckluftstroms nach dem Entspannen in der Entspannungsturbine zu einem ersten Anteil in dem Hauptwärmetauscher erwärmt und aus der Luftzerlegungsanlage ausgeführt und zu einem zweiten Anteil ggf. entspannt und in das Destillationssäulensystem eingespeist wird. Die entsprechenden Anteile lassen sich hierbei unabhängig von einer jeweiligen Produktmenge flexibel einstellen, so dass die lieferbare Kälteleistung an den Bedarf anpassbar ist.
- Wird ein dritter Teilstrom des ersten Druckluftstroms gebildet, wird dieser, wie erwähnt, beispielsweise als Drosselstrom, stromab des Hauptwärmetauschers in das Destillationssäulensystem eingespeist.
- Wie ebenfalls erwähnt, wird in einem entsprechenden Verfahren in dem zweiten Betriebsmodus mittels des Destillationssäulensystems zumindest ein flüssiges Luftprodukt gewonnen und in zumindest einen Speichertank überführt. Der erste Betriebsmodus kann auch (z.B. zeitweise) vorsehen, das zumindest eine flüssige Luftprodukt aus dem zumindest einen Speichertank zu entnehmen und in das Destillationssäulensystem einzuspeisen. Sämtliche Betriebsmodi und Varianten sind dabei voneinander entkoppelt und flexibel dem jeweiligen Bedarf anpassbar.
- Wie ebenfalls erwähnt, kann der "erste" Druckluftstrom ein beliebiger in dem Verfahren eingesetzter Druckluftstrom mit einem entsprechenden Druckniveau sein. Vorteilhafterweise wird damit ferner ein zweiter Druckluftstrom auf einem weiteren Druckniveau bereitgestellt, das entweder höher oder niedriger als das erste Druckniveau ist, wobei zumindest ein Teilstrom des zweiten Druckluftstroms einer weiteren Passage des Hauptwärmetauschers zugeführt wird.
- Das erste Druckniveau kann beispielsweise höchstens 2 bar oberhalb eines höchsten Betriebsdrucks liegen, bei dem das Destillationssäulensystem betrieben wird, also beispielsweise einem Druck einer dort verwendeten Hochdrucksäule entsprechen. Es kann jedoch auch unterhalb eines höchsten Betriebsdrucks liegen, bei dem das Destillationssäulensystem betrieben wird, beispielsweise einem Druck einer Mitteldrucksäule. In beiden Fällen können die erfindungsgemäßen Maßnahmen mit den entsprechend erläuterten Vorteilen zum Einsatz kommen.
- Zu den Merkmalen und Vorteilen der erfindungsgemäßen Luftzerlegungsanlage sei ebenfalls auf die erläuterten Vorteile verwiesen. Eine derartige Luftzerlegungsanlage umfasst einen Hauptluftverdichter, einen Hauptwärmetauscher und ein Destillationssäulensystem, wobei der Hauptluftverdichter zum Bereitstellten zumindest eines ersten Druckluftstroms auf einem ersten Druckniveau eingerichtet ist und Mittel vorgesehen sind, die dafür eingerichtet sind, einen ersten Teilstrom des ersten Druckluftstroms auf dem ersten Druckniveau einer ersten Passage des Hauptwärmetauschers zuzuführen. Erfindungsgemäß sind Mittel vorgesehen, die dafür eingerichtet sind, ferner einen zweiten Teilstrom des ersten Druckluftstroms in einem ersten Betriebsmodus auf dem ersten Druckniveau und in einem zweiten Betriebsmodus auf einem zweiten Druckniveau, das höher als das erste Druckniveau ist, einer zweiten Passage des Hauptwärmetauschers zuzuführen, wobei zum Erhöhen des zweiten Teilstroms des ersten Druckluftstroms in dem zweiten Betriebsmodus auf das zweite Druckniveau zumindest ein turbinengetriebener Nachverdichter vorgesehen ist, der mit einer Entspannungsturbine gekoppelt ist, die dafür eingerichtet ist, durch eine Entspannung des zweiten Teilstroms des ersten Druckluftstroms stromab des Hauptwärmetauschers angetrieben zu werden.
- Auch zu den Merkmalen und Vorteilen des erfindungsgemäßen Verfahrens und der erfindungsgemäßen Vorrichtung zur Erzeugung von elektrischer Energie sei auf die obigen Erläuterungen verwiesen. Insbesondere kann es sich hierbei um ein Oxifuel- oder IGCC-Verfahren bzw. eine entsprechende Vorrichtung handeln.
- Die Erfindung wird unter Bezugnahme auf die beigefügten Zeichnungen näher erläutert. In diesen zeigen
-
Figur 1 eine nicht erfindungsgemäße Luftzerlegungsanlage in Form eines schematischen Anlagendiagramms, -
Figur 2 eine Luftzerlegungsanlage gemäß einer Ausführungsform der Erfindung in einem ersten Betriebsmodus in Form eines schematischen Anlagendiagramms, -
Figur 3 die Luftzerlegungsanlage gemäßFigur 2 in einem zweiten Betriebsmodus in Form eines schematischen Anlagendiagramms. -
Figur 4 eine Luftzerlegungsanlage gemäß einer Ausführungsform der Erfindung in dem ersten Betriebsmodus in Form eines schematischen Anlagendiagramms. -
Figur 5 die Luftzerlegungsanlage gemäßFigur 4 in dem zweiten Betriebsmodus in Form eines schematischen Anlagendiagramms. - Vergleichbare Elemente tragen in den Figuren identische Bezugszeichen und werden der Übersichtlichkeit halber nicht wiederholt erläutert.
- In den
Figuren 1 bis 5 sind teilweise identische Anlagen in unterschiedlichen Betriebsmodi dargestellt, die sich unter anderem in der Stellung einer Vielzahl von Ventilen in entsprechenden Leitungen unterscheiden, so dass flüssige und gasförmige Ströme jeweils durch unterschiedliche Anlagenkomponenten geführt werden. Die Ventile sind dabei der Übersichtlichkeit halber nicht veranschaulicht. Abgesperrte Leitungen sind jedoch durchkreuzt (-x-) dargestellt. -
Figur 1 zeigt eine nicht erfindungsgemäße Luftzerlegungsanlage 110 in Form eines schematischen Anlagendiagramms. Die Luftzerlegungsanlage 110 umfasst als zentrale Komponenten einen stark schematisiert dargestellten Hauptluftverdichter 10, einen Hauptwärmetauscher 20 und ein Destillationssäulensystem 30, das im dargestellten Beispiel als Mehrsäulensystem mit einer Hochdrucksäule 31, einer Mitteldrucksäule 32 und einer Niederdrucksäule 33 ausgebildet ist. Wie bereits erwähnt, können die erfindungsgemäß vorgeschlagenen Maßnahmen jedoch bei beliebigen Destillationssäulensystemen 30 zum Einsatz kommen. - Der Betriebsdruck der Hochdrucksäule 31 beträgt beispielsweise 5,0 bis 5,5 bar am Kopf, der Betriebsdruck der Niederdrucksäule 33 beträgt beispielsweise 1,3 bis 1,4 bar am Kopf. Der Betriebsdruck der Mitteldrucksäule 32 liegt zwischen dem Betriebsdruck der Hochdrucksäule 31 und dem Betriebsdruck der Niederdrucksäule 33.
- Zur Versorgung des Destillationssäulensystems 30 bzw. der jeweiligen Säulen mit entsprechender Druckluft ist der Hauptluftverdichter 10 dazu eingerichtet, zumindest einen ersten Druckluftstrom a und einen zweiten Druckluftstrom I bereitzustellen. Das Druckniveau des ersten Druckluftstroms a liegt dabei bei dem Betriebsdruck der Hochdrucksäule 31 (daher auch als "Hochdruckluft", HP AIR, bezeichnet), das Druckniveau des zweiten Druckluftstroms I hingegen bei dem Betriebsdruck der Mitteldrucksäule 32 (daher auch als "Mitteldruckluft", MP AIR, bezeichnet).
- Die Bereitstellung entsprechender Druckluftströme a und I ist grundsätzlich bekannt und wird hier nicht im Detail erläutert. Beispielsweise kann in einem Hauptluftverdichter 10 atmosphärische Luft über ein Filter angesaugt und mehrstufig auf die genannten Drücke verdichtet werden. Der erste Druckluftstrom a kann beispielsweise am Ende einer mehrstufigen Verdichtung, der zweite Druckluftstrom I an einer Zwischenstelle entnommen werden. Die Luft kann nach der Verdichtung in einem Direktkontaktkühler in direktem Wärmeaustausch mit Kühlwasser gekühlt werden. Das Kühlwasser kann aus einem Verdunstungskühler und/oder von einer externen Quelle zugeführt werden. Die verdichtete und gekühlte Luft kann anschließend in einer Reinigungsvorrichtung gereinigt werden. Die Reinigungsvorrichtung kann ein Paar von Behältern aufweisen, die mit einem geeigneten Adsorptionsmaterial gefüllt sind.
- Im dargestellten Beispiel wird der erste Druckluftstrom a auf dem genannten Druckniveau durch eine Passage 25 des Hauptwärmetauschers 20 geführt und dort auf nahe Taupunkt abgekühlt. Der weiterhin mit a bezeichnete, abgekühlte Druckluftstrom a wird stromab des Hauptwärmetauschers 20 zu einem Anteil in die Hochdrucksäule 31 eingespeist und zu einem weiteren Teil in einem Badverdampfer bzw. -kondensator 34, der mit einer sauerstoffreichen Flüssigkeit gefüllt ist (siehe unten) verflüssigt. Von dem verflüssigten Anteil wird wiederum ein Anteil flüssig in die Mitteldrucksäule 32 eingespeist und ein weiterer Anteil durch einen Unterkühler 35 geführt und in die Niederdrucksäule 33 entspannt.
- Der zweite Druckluftstrom I wird zu einem Anteil durch eine Passage 24 des Hauptwärmetauschers 20 geführt und dort auf nahe Taupunkt abgekühlt. Ein weiterer Anteil wird hingegen durch ein Wärmetauscherelement 44 geführt, das auch in dem Hauptwärmetauscher 20 integriert sein kann, und dort zur Verdampfung eines sauerstoffreichen flüssigen Stroms n (siehe unten) verwendet. Die anschließend wieder vereinigten Anteile werden in die Mitteldrucksäule 32 eingespeist.
- Aus dem Sumpf der Hochdrucksäule 31 und der Mitteldrucksäule 32 werden jeweils sauerstoffangereicherte flüssige Ströme abgezogen, als Strom h durch den Unterkühler 35 geführt, und in die Niederdrucksäule 33 entspannt.
- Aus dem Sumpf der Niederdrucksäule 33 wird ein sauerstoffreicher flüssiger Strom i abgezogen, mittels einer Pumpe 36 druckerhöht, über ein Entspannungsventil (ohne Bezeichnung) in einen Fallfilmverdampfer bzw. -kondensator 37 überführt, dort gegen einen stickstoffreichen Strom (siehe unten) teilweise verdampft, und in eine Sauerstoffsäule 38 mit einem weiteren Fallfilmverdampfer bzw. -kondensator 39 überführt. Vom Kopf der Sauerstoffsäule 38 erhaltene flüssige und gasförmige Anteile werden als Strom k in die Niederdrucksäule 33 zurückgeführt.
- Aus dem Sumpf der Sauerstoffsäule 38 wird ein flüssiger, sauerstoffreicher Strom abgezogen und in den Badkondensator 34 überführt. Vom Kopf des Badkondensators 34 wird ein gasförmiger, sauerstoffreicher Strom m abgezogen, in dem Hauptwärmetauscher 20 erwärmt und zur Bereitstellung eines gasförmigen Sauerstoff-Druckprodukts (hier mit GOX bezeichnet) verwendet. Aus dem Sumpf des Badkondensators 34 wird ein flüssiger, sauerstoffreicher Strom abgezogen, von dem ein Teilstrom n flüssig druckerhöht, in dem Wärmetauscherelement 44 verdampft und ebenfalls zur Bereitstellung des gasförmigen Sauerstoff-Druckprodukts verwendet wird. Ein Teilstrom o wird hingegen teilweise in dem Unterkühler 35 unterkühlt und zur Bereitstellung eines flüssigen Sauerstoffprodukts (hier mit LOX bezeichnet) verwendet.
- Vom Kopf der Hochdrucksäule 31 wird ein stickstoffreicher gasförmiger Strom p abgezogen und in dem Fallfilmverdampfer bzw. -kondensator 39 verflüssigt. Ein Teilstrom wird in die Hochdrucksäule 31 zurückgeführt, ein weiterer Teilstrom (vgl. Verknüpfung A) wird durch den Unterkühler 35 geführt und anschließend in die Niederdrucksäule 33 entspannt.
- Vom Kopf der Mitteldrucksäule 32 wird ein stickstoffreicher gasförmiger Strom r abgezogen und in dem Fallfilmverdampfer bzw. -kondensator 37 verflüssigt. Ein Teilstrom wird in die Mitteldrucksäule 32 zurückgeführt, ein weiterer Teilstrom s durch den Unterkühler 35 geführt und anschließend teilweise in die Niederdrucksäule 33 entspannt und teilweise in Form eines flüssigen Stickstoffprodukts (hier mit LIN bezeichnet) bereitgestellt. Ein weiterer Teilstrom t wird im Hauptwärmetauscher 20 erwärmt. Wiederum ein Anteil kann dabei dem Hauptwärmetauscher 20 bei einer Zwischentemperatur entnommen und in einer Generatorturbine 45 (sogenannte Druckstickstoffturbine) entspannt werden. Der nicht in der Generatorturbine 45 entspannte Anteil wird in Form eines gasförmigen Stickstoff-Druckprodukts (hier mit PGAN bezeichnet) bereitgestellt. Vom Kopf der Niederdrucksäule 33 wird ein Restgasstrom u abgezogen.
- Aufgrund der nicht beliebigen Erweiterbarkeit der durch den Hauptwärmetauscher 20 bereitstellbaren Kälteleistung erweist sich die Luftzerlegungsanlage 110 häufig als nicht ausreichend flexibel, insbesondere zur Bereitstellung stark schwankender Mengen an flüssigen Luftprodukten.
-
Figur 2 zeigt eine Luftzerlegungsanlage gemäß einer Ausführungsform der Erfindung in einem ersten Betriebsmodus in Form eines schematischen Anlagendiagramms. Die Luftzerlegungsanlage ist insgesamt mit 100 bezeichnet. - Das Destillationssäulensystem der Luftzerlegungsanlage 100 gleicht im Wesentlichen jenem der Luftzerlegungsanlage 110 und wird nicht wiederholt erläutert. Die
Figur 2 zeigt die Luftzerlegungsanlage 100 in einem ersten Betriebsmodus, die nachfolgendeFigur 3 in einem zweiten Betriebsmodus. - Im Gegensatz zur einzigen Passage 25 des Hauptwärmetauschers 20, durch die in der Luftzerlegungsanlage 110 der gesamte Druckluftstrom a geführt wird, sind hier drei Passagen 21, 22, 23 vorgesehen, durch die jeweils Teilströme b, c und d geführt werden. In dem in
Figur 2 dargestellten ersten Betriebsmodus werden diese dabei keinen weiteren druckbeeinflussenden Maßnahmen unterworfen, sondern lediglich auf dem entsprechenden Druckniveau den entsprechenden Passagen zugeführt. Anschließend werden die Teilströme zu einem Sammelstrom g vereinigt, der im Wesentlichen dem abgekühlten Strom a derFigur 1 entspricht. - In dem in
Figur 2 dargestellten ersten Betriebsmodus werden keine nennenswerten Mengen flüssiger Luftprodukte der Luftzerlegungsanlage 100 entnommen, daher wird auch keine Kälteleistung bereitgestellt, die die in der Luftzerlegungsanlage 110 erzeugbare Kälteleistung übersteigen würde. - In dem in
Figur 3 dargestellten zweiten Betriebsmodus erfolgt hingegen ein Verflüssigungsbetrieb, in dem der Teilstrom c zunächst durch einen turbinenbetriebenen Nachverdichter (Booster) 41 geführt wird, so dass der Teilstrom c, nach Abkühlung in einem Nachkühler 43, auf einem erhöhten Druckniveau der Passage 22 des Hauptwärmetauschers 20 zugeführt wird. Der Teilstrom c wird dem Hauptwärmetauscher 20 bei einer Zwischentemperatur entnommen und in der Entspannungsturbine 42 entspannt, die den Nachverdichter 41 antreibt. Nach der Entspannung des Teilstroms c wird dieser teilweise in die Niederdrucksäule 33 entspannt ("eingeblasen", vgl. Verknüpfung D) und teilweise mit dem Reststrom u vereinigt und in dem Hauptwärmetauscher 20 erwärmt. - Der Teilstrom d wird hier mittels eines weiteren Nachverdichters 46 (mit Nachkühler) verdichtet. Nach der Abkühlung in der Passage 23 des Hauptwärmetauschers 20 wird dieser in die Mitteldrucksäule 32 entspannt ("Drosselstrom", vgl. Verknüpfung C).
- Die jeweils bei den einzelnen Entspannungsschritten freiwerdende Kälte steht für die Bildung größerer Mengen flüssiger Luftprodukte (hier Flüssigstickstoff: LIN und Flüssigsauerstoff: LOX) zur Verfügung.
-
Figur 4 zeigt eine Luftzerlegungsanlage gemäß einer Ausführungsform der Erfindung in dem ersten Betriebsmodus in Form eines schematischen Anlagendiagramms. Die inFigur 4 und der nachfolgendenFigur 5 dargestellte Luftzerlegungsanlage unterscheidet sich von der in denFiguren 2 und3 dargestellten Anlage im Wesentlichen durch die Konfiguration des Hauptwärmetauschers 20 und des Destillationssäulensystems 30, das hier nur teilweise erläutert ist. In dem Destillationssäulensystem 30 ist u.a. die Hochdrucksäule 31 mit der Niederdrucksäule 33 als Doppelsäule ausgebildet. Es sind jedoch auch andere Konfigurationen möglich. Weitere dargestellte Säulen des verwendeten Destillationssäulensystems 30 sind nicht im Detail erläutert. Der Druckluftstrom a wird hier in weitere Teilströme e und f aufgeteilt. - In dem in
Figur 4 dargestellten ersten Betriebsmodus können bei Bedarf zuvor gespeicherte flüssige Luftprodukte, hier Flüssigstickstoff (LIN) und Flüssigsauerstoff (LOX) in Form der Ströme v und w in entsprechende Komponenten des Destillationssäulensystems 30 (Niederdrucksäule 33 bzw. Badverdampfer 35) eingespeist werden, eine Entnahme, z.B. von Flüssigsauerstoff (LOX) erfolgt nicht. Dieser erste Betriebsmodus entspricht im Wesentlichen jener derFigur 2 , d.h. es werden nur geringe Mengen flüssiger Luftprodukte gebildet. Auch in der inFigur 2 dargestellten Luftzerlegungsanlage 100 ist eine entsprechende Einspeisung von Flüssigstickstoff (LIN) und Flüssigsauerstoff (LOX) möglich. Weitere entnommene Ströme sind mit R und DCAC bezeichnet. - Der in
Figur 5 dargestellte zweite Betriebsmodus entspricht im Wesentlichen dem inFigur 3 dargestellten zweiten Betriebsmodus der Luftzerlegungsanlage 100.
Claims (14)
- Verfahren zur Erzeugung zumindest eines Luftprodukts, bei dem eine Luftzerlegungsanlage (100) verwendet wird, die einen Hauptluftverdichter (10), einen Hauptwärmetauscher (20) und ein Destillationssäulensystem (30) umfasst, wobei mittels des Hauptluftverdichters (10) zumindest ein erster Druckluftstrom (a) auf einem ersten Druckniveau bereitgestellt wird und ein erster Teilstrom (b) des ersten Druckluftstroms (a) auf dem ersten Druckniveau einer ersten Passage (21) des Hauptwärmetauschers (20) zugeführt wird, dadurch gekennzeichnet, dass ferner ein zweiter Teilstrom (c) des ersten Druckluftstroms (a) in einem ersten Betriebsmodus auf dem ersten Druckniveau und in einem zweiten Betriebsmodus auf einem zweiten Druckniveau, das höher als das erste Druckniveau ist, einer zweiten Passage (22) des Hauptwärmetauschers (20) zugeführt wird, wobei der zweite Teilstrom (c) des ersten Druckluftstroms (a) in dem zweiten Betriebsmodus zumindest mittels eines turbinengetriebenen Nachverdichters (41) auf das zweite Druckniveau druckerhöht und stromab des Hauptwärmetauschers (20) in einer Entspannungsturbine (42) entspannt wird, die zum Antreiben des turbinengetriebenen Nachverdichters (41) verwendet wird.
- Verfahren nach Anspruch 1, bei dem ein dritter Teilstrom (d) des ersten Druckluftstroms (a) in dem ersten Betriebsmodus auf dem ersten Druckniveau und in einem zweiten Betriebsmodus entweder auf dem ersten Druckniveau oder auf dem zweiten Druckniveau oder auf einem dritten Druckniveau, das höher als das erste und höher oder niedriger als das zweite Druckniveau ist, einer dritten Passage (23) des Hauptwärmetauschers (20) zugeführt wird.
- Verfahren nach Anspruch 1 oder 2, bei dem in dem ersten Betriebsmodus der erste Teilstrom (b) und der zweite Teilstrom (c) des ersten Druckluftstroms (a) stromab des Hauptwärmetauschers (20) zu einem Sammelstrom (g) vereinigt und/oder in das Destillationssäulensystem (30) eingespeist werden.
- Verfahren nach Anspruch 2, bei dem in dem ersten Betriebsmodus der erste Teilstrom (b), der zweite Teilstrom (c) und der dritte Teilstrom (d) des ersten Druckluftstroms (a) stromab des Hauptwärmetauschers (20) zu einem Sammelstrom (g) vereinigt und/oder in das Destillationssäulensystem (30) eingespeist werden.
- Verfahren nach einem der vorstehenden Ansprüche, bei dem in dem zweiten Betriebsmodus der zweite Teilstrom (c) des ersten Druckluftstroms (a) nach dem Entspannen in der Entspannungsturbine (42) zu einem ersten Anteil in dem Hauptwärmetauscher (20) erwärmt und aus der Luftzerlegungsanlage (100) ausgeführt und zu einem zweiten Anteil ggf. entspannt und in das Destillationssäulensystem (30) eingespeist wird.
- Verfahren nach einem der Ansprüche 2 bis 5, bei dem in dem zweiten Betriebsmodus der dritte Teilstrom (d) des ersten Druckluftstroms (a) stromab des Hauptwärmetauschers (20) in das Destillationssäulensystem (30) eingespeist wird.
- Verfahren nach einem der vorstehenden Ansprüche, bei dem in dem zweiten Betriebsmodus mittels des Destillationssäulensystems (30) zumindest ein flüssiges Luftprodukt gewonnen und in zumindest einen Speichertank überführt wird.
- Verfahren nach Anspruch 7, bei dem der erste Betriebsmodus eine erste und eine zweite Betriebsvariante umfasst, wobei das zumindest eine flüssige Luftprodukt in der zweiten Betriebsvariante aus dem zumindest einen Speichertank entnommen und in das Destillationssäulensystem (30) eingespeist wird.
- Verfahren nach einem der vorstehenden Ansprüche, bei dem mittels des Hauptluftverdichters (10) ferner ein zweiter Druckluftstrom (I) auf einem weiteren Druckniveau bereitgestellt wird, das entweder höher oder niedriger als das erste Druckniveau ist, wobei zumindest ein Teilstrom des zweiten Druckluftstroms (I) einer weiteren Passage des Hauptwärmetauschers (20) zugeführt wird.
- Verfahren nach einem der vorstehenden Ansprüche, bei dem das erste Druckniveau höchstens 2 bar oberhalb eines höchsten Betriebsdrucks liegt, bei dem das Destillationssäulensystem (30) betrieben wird.
- Verfahren nach einem der Ansprüche 1 bis 9, bei dem das erste Druckniveau unterhalb eines höchsten Betriebsdrucks liegt, bei dem das Destillationssäulensystem (30) betrieben wird.
- Luftzerlegungsanlage (100), die einen Hauptluftverdichter (10), einen Hauptwärmetauscher (20) und ein Destillationssäulensystem (30) umfasst, wobei der Hauptluftverdichter (10) zum Bereitstellen zumindest eines ersten Druckluftstroms (a) auf einem ersten Druckniveau eingerichtet ist und Mittel vorgesehen sind, die dafür eingerichtet sind, einen ersten Teilstrom (b) des ersten Druckluftstroms (a) auf dem ersten Druckniveau einer ersten Passage (21) des Hauptwärmetauschers (20) zuzuführen, gekennzeichnet durch Mittel, die dafür eingerichtet sind, ferner einen zweiten Teilstrom (c) des ersten Druckluftstroms (a) in einem ersten Betriebsmodus auf dem ersten Druckniveau und in einem zweiten Betriebsmodus auf einem zweiten Druckniveau, das höher als das erste Druckniveau ist, einer zweiten Passage (22) des Hauptwärmetauschers (20) zuzuführen, wobei zum Erhöhen des zweiten Teilstroms (c) des ersten Druckluftstroms (a) in dem zweiten Betriebsmodus auf das zweite Druckniveau zumindest ein turbinengetriebener Nachverdichter (41) vorgesehen ist, der mit einer Entspannungsturbine (42) gekoppelt ist, die dafür eingerichtet ist, durch eine Entspannung des zweiten Teilstroms (c) des ersten Druckluftstroms stromab des Hauptwärmetauschers angetrieben zu werden.
- Verfahren zur Erzeugung elektrischer Energie, bei dem mittels eines Verfahrens nach einem der Ansprüche 1 bis 11 zumindest während des ersten Betriebsmodus wenigstens ein Luftprodukt bereitgestellt und zur Erzeugung und/oder Umsetzung wenigstens eines Brennstoffs eingesetzt wird.
- Anlage, die zur Durchführung eines Verfahrens nach Anspruch 13 eingerichtet ist, insbesondere zur Durchführung eines Oxifuel-Verfahrens und/oder eines Kombi-Prozesses mit integrierter Vergasung.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP13003511.6A EP2824407A1 (de) | 2013-07-11 | 2013-07-11 | Verfahren zur Erzeugung zumindest eines Luftprodukts, Luftzerlegungsanlage, Verfahren und Vorrichtung zur Erzeugung elektrischer Energie |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP13003511.6A EP2824407A1 (de) | 2013-07-11 | 2013-07-11 | Verfahren zur Erzeugung zumindest eines Luftprodukts, Luftzerlegungsanlage, Verfahren und Vorrichtung zur Erzeugung elektrischer Energie |
Publications (1)
Publication Number | Publication Date |
---|---|
EP2824407A1 true EP2824407A1 (de) | 2015-01-14 |
Family
ID=48792939
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP13003511.6A Withdrawn EP2824407A1 (de) | 2013-07-11 | 2013-07-11 | Verfahren zur Erzeugung zumindest eines Luftprodukts, Luftzerlegungsanlage, Verfahren und Vorrichtung zur Erzeugung elektrischer Energie |
Country Status (1)
Country | Link |
---|---|
EP (1) | EP2824407A1 (de) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3575717A2 (de) | 2018-05-31 | 2019-12-04 | Air Products And Chemicals, Inc. | Verfahren und vorrichtung zur lufttrennung mit einem geteilten hauptwärmetauscher |
CN112469952A (zh) * | 2018-08-22 | 2021-03-09 | 林德有限责任公司 | 空气分离设备、用于借助于空气分离设备低温分离空气的方法和用于创建空气分离设备的方法 |
CN115265091A (zh) * | 2021-04-29 | 2022-11-01 | 势加透博(北京)科技有限公司 | 空分装置耦合空气储能的系统及其控制方法 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0949471A1 (de) * | 1998-04-08 | 1999-10-13 | Linde Aktiengesellschaft | Luftzerlegungsanlage mit zwei verschiedenen Betriebsmodi |
US6357259B1 (en) * | 2000-09-29 | 2002-03-19 | The Boc Group, Inc. | Air separation method to produce gaseous product |
FR2831249A1 (fr) * | 2002-01-21 | 2003-04-25 | Air Liquide | Procede et installation de separation d'air par distillation cryogenique |
DE10339230A1 (de) * | 2003-08-26 | 2005-03-24 | Linde Ag | Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft |
WO2005064252A1 (en) | 2003-12-23 | 2005-07-14 | L'air Liquide - Societe Anonyme A Directoire Et Conseil De Surveillance Pour L'etude Et L'exploitation Des Procedes Georges Claude | Cryogenic air separation process and apparatus |
US20060010912A1 (en) * | 2004-07-14 | 2006-01-19 | Jean-Renaud Brugerolle | Low temperature air separation process for producing pressurized gaseous product |
WO2008070757A1 (en) * | 2006-12-06 | 2008-06-12 | Praxair Technology, Inc. | Separation method and apparatus |
-
2013
- 2013-07-11 EP EP13003511.6A patent/EP2824407A1/de not_active Withdrawn
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0949471A1 (de) * | 1998-04-08 | 1999-10-13 | Linde Aktiengesellschaft | Luftzerlegungsanlage mit zwei verschiedenen Betriebsmodi |
US6357259B1 (en) * | 2000-09-29 | 2002-03-19 | The Boc Group, Inc. | Air separation method to produce gaseous product |
FR2831249A1 (fr) * | 2002-01-21 | 2003-04-25 | Air Liquide | Procede et installation de separation d'air par distillation cryogenique |
DE10339230A1 (de) * | 2003-08-26 | 2005-03-24 | Linde Ag | Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft |
WO2005064252A1 (en) | 2003-12-23 | 2005-07-14 | L'air Liquide - Societe Anonyme A Directoire Et Conseil De Surveillance Pour L'etude Et L'exploitation Des Procedes Georges Claude | Cryogenic air separation process and apparatus |
US20060010912A1 (en) * | 2004-07-14 | 2006-01-19 | Jean-Renaud Brugerolle | Low temperature air separation process for producing pressurized gaseous product |
WO2008070757A1 (en) * | 2006-12-06 | 2008-06-12 | Praxair Technology, Inc. | Separation method and apparatus |
Non-Patent Citations (1)
Title |
---|
HAUSEN; LINDE: "Tieftemperaturtechnik", 1985, pages: 281 - 337 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3575717A2 (de) | 2018-05-31 | 2019-12-04 | Air Products And Chemicals, Inc. | Verfahren und vorrichtung zur lufttrennung mit einem geteilten hauptwärmetauscher |
CN112469952A (zh) * | 2018-08-22 | 2021-03-09 | 林德有限责任公司 | 空气分离设备、用于借助于空气分离设备低温分离空气的方法和用于创建空气分离设备的方法 |
CN112469952B (zh) * | 2018-08-22 | 2022-06-14 | 林德有限责任公司 | 空气分离设备、用于借助于空气分离设备低温分离空气的方法和用于创建空气分离设备的方法 |
CN115265091A (zh) * | 2021-04-29 | 2022-11-01 | 势加透博(北京)科技有限公司 | 空分装置耦合空气储能的系统及其控制方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1067345B1 (de) | Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft | |
WO2016015860A1 (de) | Verfahren zur tieftemperaturzerlegung von luft und luftzerlegungsanlage | |
EP2880267B1 (de) | Verfahren und vorrichtung zur erzeugung elektrischer energie | |
EP2789958A1 (de) | Verfahren zur Tieftemperaturzerlegung von Luft und Luftzerlegungsanlage | |
DE10115258A1 (de) | Maschinensystem und dessen Anwendung | |
EP3101374A2 (de) | Verfahren und anlage zur tieftemperaturzerlegung von luft | |
WO2016015850A1 (de) | Gewinnung eines luftprodukts in einer luftzerlegungsanlage mit kältespeichereinheit | |
WO2021204424A2 (de) | Verfahren zur tieftemperaturzerlegung von luft, luftzerlegungsanlage und verbund aus wenigstens zwei luftzerlegungsanlagen | |
WO2015003809A2 (de) | Verfahren und vorrichtung zur sauerstoffgewinnung durch tieftemperaturzerlegung von luft mit variablem energieverbrauch | |
EP2603754A2 (de) | Verfahren und vorrichtung zur gewinnung von drucksauerstoff und druckstickstoff durch tieftemperaturzerlegung von luft | |
EP2835507B1 (de) | Verfahren zur Erzeugung von elektrischer Energie und Energieerzeugungsanlage | |
WO2015003808A2 (de) | Verfahren zur erzeugung zumindest eines luftprodukts, luftzerlegungsanlage, verfahren und vorrichtung zur erzeugung elektrischer energie | |
EP3205963A1 (de) | Verfahren zur gewinnung eines luftprodukts und luftzerlegungs anlage | |
EP2979051B1 (de) | Verfahren und vorrichtung zur erzeugung von gasförmigem drucksauerstoff mit variablem energieverbrauch | |
WO2020164799A1 (de) | Verfahren und anlage zur bereitstellung eines oder mehrerer sauerstoffreicher, gasförmiger luftprodukte | |
EP2824407A1 (de) | Verfahren zur Erzeugung zumindest eines Luftprodukts, Luftzerlegungsanlage, Verfahren und Vorrichtung zur Erzeugung elektrischer Energie | |
EP2551619A1 (de) | Verfahren und Vorrichtung zur Gewinnung von Druckstickstoff und Drucksauerstoff durch Tieftemperaturzerlegung von Luft | |
WO2014154339A2 (de) | Verfahren zur luftzerlegung und luftzerlegungsanlage | |
EP3027988A2 (de) | Verfahren und vorrichtung zur erzeugung von druckstickstoff | |
EP2647934A1 (de) | Verfahren und Vorrichtung zur Erzeugung elektrischer Energie | |
EP2863156A1 (de) | Verfahren zur Gewinnung wenigstens eines Luftprodukts in einer Luftbehandlungsanlage und Luftbehandlungsanlage | |
EP2835506A1 (de) | Verfahren zur Erzeugung von elektrischer Energie und Energieerzeugungsanlage | |
WO2024217721A1 (de) | Verfahren zur tieftemperaturzerlegung von luft und luftzerlegungsanlage | |
EP4450910A1 (de) | Verfahren zur tieftemperaturzerlegung von luft und luftzerlegungsanlage | |
WO2022263013A1 (de) | Verfahren und anlage zur bereitstellung eines druckbeaufschlagten sauerstoffreichen, gasförmigen luftprodukts |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
17P | Request for examination filed |
Effective date: 20130711 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20150715 |