[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP0865459A1 - Verfahren zur kontinuierlichen herstellung von homopolymerisaten des ethylenimins - Google Patents

Verfahren zur kontinuierlichen herstellung von homopolymerisaten des ethylenimins

Info

Publication number
EP0865459A1
EP0865459A1 EP96942273A EP96942273A EP0865459A1 EP 0865459 A1 EP0865459 A1 EP 0865459A1 EP 96942273 A EP96942273 A EP 96942273A EP 96942273 A EP96942273 A EP 96942273A EP 0865459 A1 EP0865459 A1 EP 0865459A1
Authority
EP
European Patent Office
Prior art keywords
polymerization
ratio
tubular reactor
zone
ethyleneimine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP96942273A
Other languages
English (en)
French (fr)
Inventor
Ulrich Steuerle
Wolfgang Reuther
Wolfgang Harder
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Publication of EP0865459A1 publication Critical patent/EP0865459A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/02Polyamines
    • C08G73/0206Polyalkylene(poly)amines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/02Polyamines
    • C08G73/0206Polyalkylene(poly)amines
    • C08G73/0213Preparatory process

Definitions

  • the invention relates to a process for the continuous production of homopolymers of ethyleneimine by polymerizing ethyleneimine in a solvent in the presence of catalysts at temperatures of at least 80 ° C.
  • Polyethyleneimine is produced by polymerizing ethyleneimine in the presence of acids, Lewis acids or haloalkanes, cf. for example, US-A-2, 182,306 and US-A-3,203,910.
  • the polymerization can be carried out, for example, in a baten process in which water and 1,2-dichloroethane are initially introduced as a catalyst, heated to a temperature of 70 to 100 ° C. and ethyleneimine is added continuously while stirring the reaction mixture. The polymerization takes place in the temperature range from 70 to 100 ° C.
  • linear polyethyleneimine which has no branches, apart from the two end groups, has only secondary nitrogen atoms.
  • Polyethyleneimines with increased linearity can be advantageous for technical applications. If, for example, ethyleneimine is polymerized at low temperatures in aqueous solution, for example in the temperature range from 0 to 5 ° C., a mixture of linear and branched polyethyleneimine is obtained with very long reaction times, cf. PA Gembitski et al. , Vysokomol. Soedin. , Volume A20, 1505 (1978).
  • ethyleneimine is polymerized in a stirred kettle in an aqueous solution at a temperature of 50 ° C.
  • a proportion of secondary nitrogen atoms in the polyethyleneimine of about 50% can be obtained. Because of the long reaction times, such low temperatures are not suitable for a technical process in the polymerization.
  • polyethyleneimines are obtained with a content of secondary nitrogen atoms of 35 to 40%. If the polymerization is carried out under pressure at 130 ° C. in a stirred tank, the content of secondary nitrogen atoms in the polyethyleneimine is about 36%.
  • the present invention has for its object a process for the production of polyethyleneimines with increased Linea ⁇ rity to make available.
  • the process should technically ak ⁇ ceptable space-time yields have.
  • the object is inventively achieved by a process for the continuous preparation of homopolymers of ethylene ⁇ imine by polymerizing ethyleneimine in a solvent in the presence of catalysts at temperatures of at least 80 ° C, if one carries out the polymerization in the homogeneous liquid phase in a tubular reactor, wherein the carries the ratio of length to In ⁇ nenmpmesser at least 5 and especially at least 40 be ⁇ .
  • the process according to the invention gives polyethyleneimines which have a proportion of secondary nitrogen atoms of more than 40 to 60% and a ratio M w / M n of 1.5 to 3.
  • the polyethyleneimines according to the invention preferably have a proportion of secondary nitrogen atoms of 45 to 55% and a ratio M w / M n of 2.0 to 2.3.
  • ethyleneimine is polymerized in a solvent in the presence of catalysts.
  • the solvents specified in the prior art can be used as solvents, e.g. Water, alcohols with 1 to 20 carbon atoms, dimethylformamide, dimethyl sulfoxide, sulfolane or
  • the preferred solvent used in technology is water.
  • the concentration of ethylene imine in the solution is, for example, 1 to 50, preferably 5 to 40% by weight.
  • Suitable catalysts are all substances described in the prior art for the polymerization of ethyleneimine, for example acids such as hydrochloric acid, sulfuric acid, phosphoric acid, organic acids such as formic acid, acetic acid, propionic acid, alkylsulfonic acids, sulfuric acid semiesters of alcohols, acid-reacting compounds such as ammonium chloride, others ammonium salts, such as reaction products of ethylenediamine, and sulfuric acid, for example in a molar ratio of 2: 1 or reaction products of Ethylen ⁇ diamine, and carbonic acid, for example in a molar ratio 1: 1 or ⁇ sodium hydrogen sulfate, as well as Lewis acids such as boron trifluoride.
  • acids such as hydrochloric acid, sulfuric acid, phosphoric acid, organic acids such as formic acid, acetic acid, propionic acid, alkylsulfonic acids, sulfuric acid semiesters of alcohols, acid-reacting compounds such as ammonium
  • Suitable catalysts include alkylating agents such as alkyl halides such as methyl chloride, ethyl chloride, propyl chloride, butyl chloride, methylene chloride, chloroform, carbon tetrachloride, 1,2-dichloroethane, tetrachlorethylene and tetrachloroethane.
  • alkylating agents such as alkyl halides such as methyl chloride, ethyl chloride, propyl chloride, butyl chloride, methylene chloride, chloroform, carbon tetrachloride, 1,2-dichloroethane, tetrachlorethylene and tetrachloroethane.
  • the catalysts already work in small quantities.
  • the polymerization is carried out, for example, in the temperature range from 80 to 180, preferably at temperatures from 90 to 160 ° C
  • the polymerization takes place continuously in a tubular reactor in a homogeneous liquid phase.
  • a liquid continuous phase, resulting in the tubular reactor, which is carried ⁇ Mi's of the reaction components and the solvent prior to A ⁇ enters the reactor at the reactor inlet or prepared.
  • water, ethyleneimine and the catalyst can be metered into a mixer from 3 different metering devices and from there continuously pumped into the tubular reactor.
  • it can also be an aqueous ethyleneimine, preferably having a temperature in the range from 0 to 5 ° C, with the amount of offset REQUIRED ⁇ chen a catalyst, and then continuously pumped into the reactor.
  • the reaction solution can also be metered into the tubular reactor via a static mixer.
  • the polymerization takes place in a homogeneous liquid phase, ie a gas phase reaction should be excluded. As long as the polymerization temperature is below the boiling point of the ethylene imine, the formation of a gas phase is excluded.
  • Another way during Polymeri ⁇ the development of a gas phase organization to avoid, is to increase the pressure in the tube reactor.
  • the polymerization is therefore preferably carried out under elevated pressure, for example under a pressure of at least 1.5 bar.
  • the pressure in the tubular reactor is preferably at least 0.5, in particular at least 1 bar above the boiling pressure of the reaction mixture.
  • the pressure can, for example, reach up to the high pressure range, ie up to, for example, 2000 bar, but the apparatus must then be designed accordingly. Polymerizing under such high pressures has practically no advantages over the low pressure range.
  • the pressure can be, for example, 3 to 200, preferably 4 to 60 bar.
  • the polymerization is preferably carried out in a tubular reactor which has at least 2 independently heatable zones.
  • the polymerization reaction is initiated in the first polymerization zone. This produces dimeric ethyleneimine and higher oligomers in a rapid exothermic reaction. Because of the strongly exothermic reaction, the reaction mixture is generally cooled in the first zone of the reactor in order to remove the heat of polymerization.
  • the first polymerization zone is formed from 1/10 to 2/3 the length of the reaction tube, which is then followed by the second reaction zone.
  • the temperature in the first reaction zone is, for example, 80 to 130 ° C.
  • the polymerization is preferably carried out in the first zone of the tubular reactor at 90 to 130 ° C. and in the second zone at a temperature which is at least 10 ° C. higher.
  • the polymerization temperature in the second reaction zone is preferably 140 to 160 ° C.
  • the tubular reactor can also consist of 3, 4, 5 or further segments which can be heated or cooled independently of one another.
  • the reactor can be heated, for example, electrically, with steam or by means of molten salt.
  • an aqueous solution of polyethyleneimine is continuously discharged, the amounts of monomer solution fed to the reactor corresponding to the amounts of reaction mixture discharged.
  • the discharge can take place not only continuously, but also - just like feeding the tube reactor - in portions, e.g. at intervals of 2, 10 or 30 seconds.
  • Such operation of the reactor also represents a continuous operation.
  • polyethyleneimines are obtained with a secondary nitrogen atom content of more than 40%.
  • the molar mass of the polyethyleneimines is, for example, 129 to 2xl0 6 and is preferably in the range from 430 to IxlO 6 .
  • the polyethyleneimines according to the invention have a ratio M w / M n of 1.5 to 3, preferably 2.0 to 2.3. They have a narrower molecular weight distribution than polyethyleneimines, which are produced by polymerizing ethyleneimine in a stirred tank at 50 ° C.
  • the relative molecular weight distribution of the polyethyleneimines was determined by the M w / M n ratio from the aqueous gel permeation chromatography (GPC) of polyethyleneimines based on a Pullulan standard from PL-Gel.
  • polyethyleneimines so produced can be used for all previously known applications of polyethyleneimines, e.g. in the manufacture of paper, process chemicals, oilfield chemicals, complexing agents, adhesion promoters, flocculants, galvanochemicals and fuel additives.
  • the 13 C-NMR measurements for determining the degree of branching of the polyethyleneimines were carried out according to the information from T. St. Pierre and M. Geckle, ACS Polym. Prepr., Vol. 22, 128 (1981) and GM Kukovkin et al., Europ. Polym. J., 9, 559 (1973).
  • the poly ⁇ ethyleneimines were prior to measurement in the ratio 1: 2 0 thinned ver ⁇ D 1.
  • the relaxation waiting time for maintaining quantitative measurement conditions between the 90 ° measurement pulses was kept at 10 see.
  • the prototype was nenbreitbandentkoppler only during the acquisition time is switched ⁇ (inverse-gated).
  • the polymerization was carried out in a tubular reactor made of pressure glass, which had a length of 14 m and an inner diameter of 3 mm.
  • the tube reactor consisted of two zones that could be heated independently of one another, the first zone being 2/3 and the second zone 1/3 of the tube length.
  • a reaction solution cooled to 5 ° C.
  • the reactor outlet was regulated to 5 bar.
  • the temperature of the reaction mixture was 110 ° C. in the first reaction zone and in the second zone 140 ° C.
  • the residence time of the reaction mixture was 16 minutes.
  • a sample was taken and analyzed. With the help of 13 C-NMR spectroscopy, a ratio of primary to secondary to tertiary nitrogen atoms of 1: 1.78: 0.85 was determined. The proportion of secondary nitrogen atoms in the polymer was 49%.
  • the ratio M w / M n was 2.2.
  • Example 1 was repeated with the exception that a temperature of 130 ° C. was set in the first reaction zone and a temperature of 140 ° C. in the second reaction zone.
  • a polyethyleneimine was obtained in which the ratio of primary to secondary to tertiary nitrogen atoms was 1: 1.69: 0.81. The proportion of secondary nitrogen atoms was 48%.
  • the ratio of M w / M n was 2.0.
  • Example 1 was repeated with the exceptions that a temperature of 90 ° C. was set in the first reaction zone and a temperature of 120 ° C. in the second reaction zone, and the metering rate of the 25% strength ethyleneimine solution was 172 g / h and that of the catalyst solution to 15.5 g / h.
  • the residence time of the reaction mixture in the reactor was therefore 32 minutes.
  • a polyethyleneimine was obtained with a ratio of primary to secondary to tertiary nitrogen atoms of 1: 1.77: 0.85. The proportion of secondary nitrogen atoms was 48%.
  • the ratio of M w / M n was 2.2.
  • Example 1 was repeated with the exception that the

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

Verfahren zur kontinuierlichen Herstellung von Homopolymerisaten des Ethylenimins durch Polymerisieren von Ethylenimin in einem Lösemittel in Gegenwart von Katalysatoren bei Temperaturen von mindestens 80 °C in homogener flüssiger Phase in einem Rohrreaktor, bei dem das Verhältnis von Länge zu Innendurchmesser mindestens 5 beträgt. Man erhält Polyethylenimine mit einem Anteil sekundärer Stickstoffatome von mehr als 40 bis 60 % und einer Molekulargewichtsverteilung Mw/Mn von 1,5 bis 3.

Description

Verfahren zur kontinuierlichen Herstellung von Homopolymerisaten des Ethylenimins
Beschreibung
Die Erfindung betrifft ein Verfahren zur kontinuierlichen Her¬ stellung von Homopolymerisaten des Ethylenimins durch Polymeri- sieren von Ethylenimin in einem Lösemittel in Gegenwart von Katalysatoren bei Temperaturen von mindestens 80°C.
Polyethylenimin wird durch Polymerisieren von Ethylenimin in Gegenwart von Säuren, Lewis-Säuren oder Halogenalkanen herge¬ stellt, vgl. beispielsweise US-A-2, 182,306 und US-A-3,203,910. Die Polymerisation kann beispielsweise in einem Baten-Prozeß durchgeführt werden, bei dem man Wasser und 1, 2-Dichlorethan alε Katalysator vorlegt, auf eine Temperatur von 70 bis 100°C erhitzt und Ethylenimin unter Rühren des Reaktionsgemisches kontinuier¬ lich zufügt. Die Polymerisation erfolgt dabei in dem Temperatur- bereich von 70 bis 100°C.
In den Übersichtsartikeln Izv. Akad. Nauk. SSSR, Seriya Khimi- cheskaya, No. 8, 1636-1642 (1971) und Kirk-Othmer Encyclopedia of Chemical Technology, 4. Auflage, Band 14, 2-40 (1995) wird zusam- menfassend über Herstellverfahren von Polyethylenimin berichtet. Bei der Polymerisation von Ethylenimin in wäßriger Lösung entste¬ hen Polyethylenimine, die primäre, sekundäre und tertiäre Stick- stoffatome enthalten. Eine exakte Bestimmung des Verzweigungsgra¬ des von Polyethyleniminen mit Hilfe der Titration mit Säuren ist nicht aussagekräftig, weil dabei nur etwa 2/3 des Gesamtstick¬ stoffs des Polyethylenimins erfaßt wird. Der Gehalt an primären, sekundären und tertiären Stickstoffatomen in Polyethyleniminen wird daher zuverlässiger mit Hilfe quantitativer 13C-NMR-Spektro¬ skopie ermittelt, vgl. T. St. Pierre und M. Geckle, J. Macromol. Sei. -Chem., A22, 877-887 (1985) und ACS Polym. Prepr. Band 22, 128 (1981) . Nach diesen Untersuchungen hat handelsübliches Poly¬ ethylenimin, PEi-18 der Fa. Dow Chemical Company, einen Gehalt von 38 % an primären, 36 % an sekundären und 26 % an tertiären Stickstoffatomen. Der Anteil an sekundären Stickstoffatomen kann als Maß für die relative Änderung der Linearität von Polyethylen¬ imin herangezogen werden, das unter verschiedenen Reaktions- bedingungen hergestellt worden ist. So besitzt beispielsweise li¬ neares Polyethylenimin, das keine Verzweigungen aufweist, abgese¬ hen von den beiden Endgruppen, nur sekundäre Stickstoffatome. Für technische Anwendungen können Polyethylenimine mit erhöhter Linearität vorteilhaft sein. Polymerisiert man beispielsweise Ethylenimin bei tiefen Temperaturen in wäßriger Lösung, z.B. in dem Temperaturbereich von 0 bis 5°C, so erhält man bei sehr langen Reaktionszeiten eine Mischung aus linearem und verzweigtem Poly¬ ethylenimin, vgl. P.A. Gembitski et al. , Vysokomol . Soedin. , Band A20, 1505 (1978) . Polymerisiert man beispielsweise Ethylen¬ imin in einem Rührkessel in wäßriger Lösung bei einer Temperatur von 50°C, so kann man einen Anteil an sekundären Stickstoffatomen im Polyethylenimin von etwa 50 % erhalten. Wegen der langen Reak¬ tionszeiten kommen derart niedrige Temperaturen bei der Polymeri¬ sation nicht für einen technischen Prozeß in Betracht. Unter technisch üblichen Bedingungen, z.B. beim Polymerisieren wäßriger Ethyleniminlösungen bei 90 bis 100°C in einem Rührkessel erhält man Polyethylenimine mit einem Gehalt an sekundären Stickstoff - atomen von 35 bis 40 %. Führt man die Polymerisation unter Druck bei 130°C in einem Rührkessel durch, so beträgt der Gehalt an se¬ kundären Stickstoffatomen im Polyethylenimin etwa 36 %.
Der vorliegenden Erfindung liegt die Aufgabe zugrunde, ein Ver¬ fahren zur Herstellung von Polyethyleniminen mit erhöhter Linea¬ rität zur Verfügung zu stellen. Das Verfahren soll technisch ak¬ zeptable Raum-Zeit-Ausbeuten aufweisen.
Die Aufgabe wird erfindungsgemäß gelöst mit einem Verfahren zur kontinuierlichen Herstellung von Homopolymerisaten des Ethylen¬ imins durch Polymerisieren von Ethylenimin in einem Lösemittel in Gegenwart von Katalysatoren bei Temperaturen von mindestens 80°C, wenn man die Polymerisation in homogener flüssiger Phase in einem Rohrreaktor durchführt, bei dem das Verhältnis von Länge zu In¬ nendurchmesser mindestens 5 und insbesondere mindestens 40 be¬ trägt.
Nach dem erfindungsgemäßen Verfahren erhält man Polyethylenimine, die einen Anteil an sekundären Stickstoffatomen von mehr als 40 bis 60 % aufweisen und ein Verhältnis Mw/Mn von 1,5 bis 3 haben. Die erfindungsgemäßen Polyethylenimine weisen vorzugsweise einen Anteil an sekundären Stickstoffatomen von 45 bis 55 % und ein Verhältnis Mw/Mn von 2,0 bis 2,3 auf.
Wie aus dem Stand der Technik bekannt, wird Ethylenimin in einem Lösemittel in Gegenwart von Katalysatoren polymerisiert. Als Lösemittel können die im Stand der Technik angegebenen Lösemittel verwendet werden, z.B. Wasser, Alkohole mit 1 bis 20 Kohlenstoff- atomen, Dimethylformamid, Dimethylsulfoxid, Sulfolan oder
Mischungen der genannten Lösemittel. Das in der Technik bevorzugt eingesetzte Lösemittel ist Wasser. Die Konzentration von Ethylen- imin in der Lösung beträgt beispielsweise 1 bis 50, vorzugsweise 5 bis 40 Gew. -%.
Als Katalysatoren kommen alle im Stand der Technik für die Polymerisation von Ethylenimin beschriebenen Stoffe in Betracht, z.B. Säuren wie Salzsäure, Schwefelsäure, Phosphorsäure, organische Säuren, wie Ameisensäure, Essigsäure, Propionsäure, Alkylsulfonsäuren, Schwefelsäurehalbester von Alkoholen, sauer reagierende Verbindungen wie Ammoniumchlorid, andere Ammonium- salze wie Umsetzungsprodukte aus Ethylendiamin und Schwefelsäure, z.B. im Molverhaltnis 2:1 oder Umsetzungsprodukte aus Ethylen¬ diamin und Kohlensäure, z.B. im Molverhältnis 1:1 oder Natrium¬ hydrogensulfat sowie Lewis-Säuren wie Bortrifluorid. Weitere ge¬ eignete Katalysatoren sind Alkylierungsmittel wie Alkylhalogenide wie Methylchlorid, Ethylchlorid, Propylchlorid, Butylchlorid, Methylenchlorid, Chloroform, Tetrachlorkohlenstoff, 1,2-Dichlor- ethan, Tetrachlorethylen und Tetrachlorethan. Die Katalysatoren wirken bereits in geringen Mengen. Man kann beispielsweise mit einem Verhältnis von Ethylenimin zu Katalysator von 1000:1 bis 3:1 polymerisieren. Die Polymerisation wird beispielsweise in dem Temperaturbereich von 80 biε 180, vorzugsweise bei Temperaturen von 90 bis 160°C durchgeführt.
Gemäß Erfindung erfolgt die Polymerisation kontinuierlich in einem Rohrreaktor in homogener flüssiger Phase. Man führt dem Rohrreaktor kontinuierlich eine flüssige Phase zu, die durch Mi¬ schen der Reaktionskomponenten und des Lösemittels vor dem Ein¬ tritt in den Reaktor oder am Reaktoreingang hergestellt wird. So kann man beispielsweise Wasser, Ethylenimin und den Katalysator aus 3 verschiedenen Dosiervorrichtungen in einen Mischer dosieren und von da aus kontinuierlich in den Rohrreaktor pumpen. Man kann jedoch auch eine wäßrige Ethyleniminlösung, die vorzugsweise eine Temperatur in dem Bereich von 0 bis 5°C hat, mit der erforderli¬ chen Menge eines Katalysators versetzen und danach kontinuierlich in den Reaktor pumpen. Die Reaktionslösung kann jedoch auch über einen statischen Mischer in den Rohrreaktor dosiert werden. Die Polymerisation erfolgt in homogener flüssiger Phase, d.h. eine Gasphasenreaktion soll dabei ausgeschlossen werden. Solange die Polymerisationstemperatur unterhalb der Temperatur des Siede- punkts des Ethylenimins liegt, wird die Bildung einer Gasphase ausgeschlossen. Eine andere Möglichkeit, um während der Polymeri¬ sation die Entstehung einer Gasphase zu vermeiden, besteht darin, den Druck in dem Rohrreaktor zu erhöhen. Die Polymerisation wird daher bevorzugt unter erhöhtem Druck durchgeführt, z.B. unter einem Druck von mindestens 1,5 bar. Der Druck im Rohrreaktor liegt vorzugsweise um mindestens 0,5, insbesondere um mindestens 1 bar oberhalb des Siededrucks der Reaktionsmischung. Beim Poly- merisieren einer wäßrigen Lösung von Ethylenimin bei einer Temperatur von 130°C wird beispielsweise ein Druck von mindestens 4 bis 7 bar eingestellt. Der Druck kann beispielsweise bis in den Hochdruckbereich reichen, d.h. bis zu beispielsweise 2000 bar, jedoch müssen dann die Apparaturen entsprechend ausgelegt sein. Das Polymerisieren unter so hohen Drücken bringt gegenüber dem Niederdruckbereich praktisch keine Vorteile. Der Druck kann beispielsweise 3 bis 200, vorzugsweise 4 bis 60 bar betragen.
Die Polymerisation wird vorzugsweise in einem Rohrreaktor durch¬ geführt, der mindestens 2 unabhängig voneinander beheizbare Zonen aufweist. Die Polymerisationsreaktion wird dabei in der ersten Polymerisationszone initiiert. Hierbei entstehen in einer schnel¬ len exothermen Reaktion dimeres Ethylenimin und höhere Oligomere. Wegen der stark exothermen Reaktion wird das Reaktionsgemisch in der ersten Zone des Reaktors in aller Regel gekühlt, um die Poly¬ merisationswärme abzuführen. Bei einem Reaktor, der aus 2 Zonen besteht, die auf eine unterschiedliche Temperatur reguliert wer¬ den können, wird beispielsweise die erste Polymerisationszone von 1/10 bis 2/3 der Länge des Reaktionsrohres gebildet, woran sich dann die zweite Reaktionszone anschließt. Bei einer kontinuier¬ lichen Polymerisation in einem solchen Reaktor beträgt beispiels¬ weise die Temperatur in der ersten Reaktionszone 80 bis 130°C und in der daran anschließenden zweiten Zone bis zu 180°C. Vorzugs- weise führt man die Polymerisation in der ersten Zone des Rohr- reaktors bei 90 biε 130°C und in der zweiten Zone bei einer minde¬ stens 10°C höheren Temperatur durch. Die Polymerisationstemperatur beträgt in der zweiten Reaktionszone vorzugsweise 140 bis 160°C. Der Rohrreaktor kann auch aus 3, 4, 5 oder weiteren unabhängig voneinander beheizbaren oder kühlbaren Segmenten bestehen. Der Reaktor kann beispielsweise elektrisch, mit Dampf oder mittels Salzschmelzen beheizt werden. Am Ende des Reaktors wird eine wäßrige Lösung von Polyethylenimin kontinuierlich ausgeschleust, wobei die Mengen an dem Reaktor zugeführter Monomerlösung den Mengen an ausgeschleustem Reaktionsgemisch entsprechen. Das Aus¬ schleusen kann nicht nur kontinuierlich sondern auch - ebenso wie das Beschicken des Rohrreaktors - portionsweise erfolgen, z.B. in Abständen von 2, 10 oder 30 Sekunden. Ein derartiger Betrieb des Reaktors stellt ebenfalls eine kontinuierliche Arbeitsweise dar.
Bei dem erfindungsgemäßen Verfahren erhält man Polyethylenimine mit einem Anteil sekundärer Stickstoffatome von mehr als 40 %. Die Molmasse der Polyethylenimine beträgt beispielsweise 129 bis 2xl06 und liegt vorzugsweise in dem Bereich von 430 bis IxlO6. Die erfindungsgemäßen Polyethylenimine haben ein Verhältnis Mw/Mn von 1,5 bis 3, vorzugsweise 2,0 bis 2,3. Sie weisen eine engere Molekulargewichtsverteilung auf als Polyethylenimine, die durch Polymerisieren von Ethylenimin in einem Rührkessel bei 50°C herge- stellt werden. Die relative Molekulargewichtsverteilung der Poly¬ ethylenimine wurde durch das Mw/Mn-Verhältnis aus der wäßrigen Gelpermeationschromatographie (GPC) von Polyethyleniminen bezogen auf einen Pullulan-Standard der Fa. PL-Gel ermittelt.
Die so hergestellten Polyethylenimine können für sämtliche bisher bekannten Anwendungen von Polyethyleniminen eingesetzt werden, z.B. bei der Herstellung von Papier Prozeßchemikalien, Ölfeldche- mikalien, Komplexbildnern, Haftvermittlern, Flockungsmitteln, Galvanochemikalien und Kraftstoffadditiven.
Beispiele
Die 13C-NMR-Messungen zur Bestimmung des Verzweigungsgrades der Polyethylenimine wurde gemäß den Angaben von T. St. Pierre und M. Geckle, ACS Polym. Prepr., Band 22, 128 (1981) und G.M. Kukovkin et al., Europ. Polym. J. , 9, 559 (1973) durchgeführt. Die Poly¬ ethylenimine wurden vor der Messung im Verhältnis 1:1 mit D20 ver¬ dünnt. Bei den 13C-NMR-Messungen an Polyethyleniminen wurde die Relaxationswartezeit zur Einhaltung quantitativer Meßbedingungen zwischen den 90° Meßimpulsen bei 10 see gehalten. Um Intensitats- Verfälschungen durch NOE-Effekte zu vermeiden, wurde der Proto- nenbreitbandentkoppler nur während der Akquisitionszeit einge¬ schaltet (invers-gated) .
Beispiel 1
Die Polymerisation wurde in einem Rohrreaktor aus Druckglas durchgeführt, der eine Länge von 14 m und einen Innendurchmesser von 3 mm hatte. Der Rohrreaktor bestand aus zwei unabhängig von- einander beheizbaren Zonen, von denen die erste Zone 2/3 und die zweite Zone 1/3 der Rohrlänge betrug. In einer Mischkammer stellte man eine auf 5°C gekühlte Reaktionslösung her, indem man eine 25 %ige wäßrige Ethyleniminlösung mit einer Dosier- geschwindigkeit von 344 g/h (2 mol/h Ethylenimin) und eine Katalysatorlösung aus 12 g (0,2 mol) Ethylendiamin und 9,8 g (0,1 mol) Schwefelsäure in 288,2 g Wasser mit einer Dosier¬ geschwindigkeit von 31 g/h einbrachte. In dem Maße, wie die Reak¬ tionspartner in die Mischzone dosiert wurden, wurden sie aus der Mischzone in den Reaktor dosiert. Am Ende des Reaktors wurde die gleiche Menge an Reaktionslösung ausgetragen. Der Druck am
Reaktorausgang wurde auf 5 bar geregelt. Die Temperatur des Reak¬ tionsgemisches betrug in der ersten Reaktionszone 110°C und in der zweiten Zone 140°C. Die Verweilzeit des Reaktionsgemisches betrug 16 min. Nach einem Durchlauf von 3 Reaktorfüllungen zur Ein¬ stellung stationärer Bedingungen wurde eine Probe genommen und analysiert. Mit Hilfe der 13C-NMR-Spektroskopie wurde ein Verhältnis von primären zu sekundären zu tertiären Stickstoff- atomen von 1:1,78:0,85 ermittelt. Der Anteil an sekundären Stick¬ stoffatomen im Polymerisat betrug 49 %. Das Verhältnis Mw/Mn be¬ trug 2,2.
Beispiel 2
Beispiel 1 wurde mit den Ausnahme wiederholt, daß man in der er¬ sten Reaktionszone eine Temperatur von 130°C und in der zweiten Reaktionszone eine Temperatur von 140°C einstellte. Man erhielt ein Polyethylenimin, bei dem das Verhältnis von primären zu se¬ kundären zu tertiären Stickstoffatomen 1:1,69:0,81 betrug. Der Anteil an sekundären Stickstoffatomen lag bei 48 %. Das Verhältnis von Mw/Mn betrug 2,0.
Beispiel 3
Beispiel 1 wurde mit den Ausnahmen wiederholt, daß man in der er¬ sten Reaktionszone eine Temperatur von 90°C und in der zweiten Reaktionszone eine Temperatur von 120°C einstellte und die Dosier- geschwindigkeit der 25 %igen Ethyleniminlösung auf 172 g/h und die der Katalysatorlösung auf 15,5 g/h einstellte. Die Verweil - zeit des Reaktionsgemisches im Reaktor betrug dadurch 32 Minuten. Man erhielt ein Polyethylenimin mit einem Verhältnis von primären zu sekundären zu tertiären Stickstoffatomen von 1:1,77:0,85. Der Anteil an sekundären Stickstoffatomen betrug 48 %. Das Verhältnis von Mw/Mn betrug 2,2.
Beispiel 4
Beispiel 1 wurde mit den Ausnahmen wiederholt, daß man die
Temperatur in der ersten Heizzone auf 130°C, in der zweiten Heiz- zone auf 160°C einregulierte und die 25 %ige wäßrige Ethylenimin¬ lösung mit einer Geschwindigkeit von 172 g/h (1 mol/h Ethylen¬ imin) und eine Katalysatorlösung von 1,2 g (0,02 mol) Ethylen- diamin und 0,88 g (0,02 mol) Kohlendioxid in 307,9 g Wasser mit einer Dosiergeschwindigkeit von 15,5 g/h zudosierte. Die Verweil- zeit des Reaktionsgemisches im Rohrreaktor betrug 32 Minuten. Man erhielt ein Polyethylenimin, bei dem das Verhältnis von primären zu sekundären zu tertiären Stickstoffatomen 1:1,66:0,83 betrug. Der Anteil an sekundären Stickstoffatomen lag bei 48 %. Das Verhältnis von Mw/Mn betrug 2,3. Vergleichsbeispiel 1
In einem 500 ml fassenden Polymerisationsgefäß aus Glas wurden 1,2 g (0,02 mol) Ethylendiamin, 1,0 g (0,01 mol) Schwefelsäure und 29 g Wasser vorgelegt. Die Mischung wurde anschließend er¬ wärmt. Bei einer Temperatur von 50°C gab man unter Einhaltung der Reaktionstemperatur 86 g (2 mol) Ethylenimin in 57 g Wasser in¬ nerhalb von 40 Minuten zu und rührte das Reaktionsgemisch bei 50°C bis zur vollständigen Umsetzung des Ethylenimins. Die Reaktions- zeit betrug 138 Stunden. Das Polyethylenimin hatte ein Verhältnis von primären zu sekundären zu tertiären Stickstoffatomen 1:1,74:0,52. Der Anteil an sekundären Stickstoffatomen betrug 50 %. Das Verhältnis Mw/Mn betrug 3,8.
Vergleichsbeispiel 2
In einem 500 ml fassenden Polymerisationsgefäß aus Glas, das mit einem Rührer versehen war, wurden 1,2 g (0,02 mol) Ethylendiamin, 1,0 g (0,01 mol) Schwefelsäure und 29 g Wasser vorgelegt. Die Katalysatorlösung wurde auf eine Temperatur von 90°C erhitzt. Unter Einhaltung einer Reaktionstemperatur von 90°C gab man 86 g (2 mol) Ethylenimin in 57 g Wasser unter Rühren zur Vorlage und rührte anschließend das Gemisch bis zur vollständigen Umsetzung 8 h bei einer Temperatur von 90°C. Man erhielt ein Polyethylenimin bei dem das Verhältnis von primären zu sekundären zu tertiären Stickstoffatomen 1:1,05:0,75 betrug. Der Anteil an sekundären Stickstoffatomen im Polymerisat lag bei 38 %.
Vergleichsbeispiel 3
In einem Glasautoklaven, der mit einem Rührer ausgestattet ist und ein Fassungsvermögen von 100 ml hatte, legte man 0,35 g (0,0035 mol) Schwefelsäure und 0,42 g (0,007 mol) Ethylendiamin im 10 ml Wasser vor. Die Lösung wurde auf 130°C erwärmt. Man do- sierte 50,2 g einer 60 %igen Ethyleniminlösung zu, wobei man die Reaktionstemperatur auf 130°C einregulierte. Danach wurde das Re¬ aktionsgemisch noch 2 Stunden bei 130°C gerührt. Man erhielt ein Polyethylenimin, bei dem das Verhältnis von primären: sekundä¬ ren: tertiären Stickstoffatomen 1:1,01:0,8 betrug. Der Anteil an sekundären Stickstoffatomen lag bei 36 %.

Claims

Patentansprüche
1. Verfahren zur kontinuierlichen Herstellung von Homopoly- merisaten des Ethylenimins durch Polymerisieren von Ethylen¬ imin in einem Lösemittel in Gegenwart von Katalysatoren bei Temperaturen von mindestens 80°C, dadurch gekennzeichnet, daß man die Polymerisation in homogener flüssiger Phase in einem Rohrreaktor durchführt, bei dem das Verhältnis von Länge zu Innendurchmesser mindestenε 5 beträgt.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß man die Polymerisation in einem Rohrreaktor durchführt, bei dem das Verhältnis von Länge zu Innendurchmesser mindestens 20 beträgt.
3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß man die Polymerisation in einem Rohrreaktor durchführt, bei dem das Verhältnis von Länge zu Innendurchmesser mindestens 40 beträgt.
4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekenn¬ zeichnet, daß man die Polymerisation unter einem Druck von mindestens 1,5 bar durchführt.
5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekenn¬ zeichnet, daß man die Polymerisation in einem Rohrreaktor durchführt, der mindestens 2 unabhängig voneinander beheiz¬ bare Zonen aufweist.
6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, daß man die Polymerisation in der ersten Zone des Rohrreaktors, in die die Reaktionspartner kontinuierlich dosiert werden, bei Temperaturen von 80 bis 130°C und in einer daran anschließen- den zweiten Zone bei Temperaturen bis zu 180°C durchführt.
7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, daß man die Polymerisation in der ersten Zone des Rohrreaktors bei 90 bis 130°C und in der zweiten Zone bei einer mindestenε 10°C höheren Temperatur durchführt.
8. Polyethylenimine, dadurch gekennzeichnet, daß sie nach einem der Ansprüche 1 bis 7 erhältlich sind, einen Anteil an sekun¬ dären Stickstoffatomen von mehr als 40 bis 60 % aufweisen und ein Verhältnis Mw/Mn von 1,5 bis 3 haben.
9. Polyethylenimine nach Anspruch 8, dadurch gekennzeichnet, daß sie einen Aneil an sekundären Stickstoffatomen von 45 bis 55 % und ein Verhältnis Mw/Mn von 2,0 bis 2,3 haben.
EP96942273A 1995-12-08 1996-11-28 Verfahren zur kontinuierlichen herstellung von homopolymerisaten des ethylenimins Withdrawn EP0865459A1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19545874A DE19545874A1 (de) 1995-12-08 1995-12-08 Verfahren zur kontinuierlichen Herstellung von Homopolymerisaten des Ethylenimins
DE19545874 1995-12-08
PCT/EP1996/005256 WO1997021760A1 (de) 1995-12-08 1996-11-28 Verfahren zur kontinuierlichen herstellung von homopolymerisaten des ethylenimins

Publications (1)

Publication Number Publication Date
EP0865459A1 true EP0865459A1 (de) 1998-09-23

Family

ID=7779587

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96942273A Withdrawn EP0865459A1 (de) 1995-12-08 1996-11-28 Verfahren zur kontinuierlichen herstellung von homopolymerisaten des ethylenimins

Country Status (5)

Country Link
US (1) US5977293A (de)
EP (1) EP0865459A1 (de)
JP (1) JP2000501757A (de)
DE (1) DE19545874A1 (de)
WO (1) WO1997021760A1 (de)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6451961B2 (en) 2000-02-03 2002-09-17 Nippon Shokubai Co Ltd Ethylenimine polymer, aqueous solution of ethylenimine polymer, production process for the same and purifying process therefor
JP4493152B2 (ja) * 2000-04-10 2010-06-30 株式会社日本触媒 エチレンイミン重合体水溶液の製造方法
EP1369448A1 (de) * 2002-06-07 2003-12-10 Bayer Ag Verfahren zur Herstellung von polymeren Kondensaten und ihre Verwendung
EP1538261A1 (de) * 2003-12-05 2005-06-08 Ciba Spezialitätenchemie Pfersee GmbH Verfahren zur flammhemmenden Ausrüstung von Faserprodukten
EP1707665A1 (de) * 2005-03-30 2006-10-04 Huntsman Textile Effects (Germany) GmbH Verfahren zur flammhemmenden Ausrüstung von Fasermaterialien
DE102005015196A1 (de) * 2005-04-02 2006-10-05 Ciba Spezialitätenchemie Pfersee GmbH Verfahren zur flammhemmenden Ausrüstung von Faserprodukten
US7431845B2 (en) * 2005-06-23 2008-10-07 Nalco Company Method of clarifying oily waste water
DE102007032111B4 (de) 2007-07-09 2017-07-20 Henkel Ag & Co. Kgaa Neue Proteasen und Wasch- und Reinigungsmittel enthaltend diese Proteasen
DE102007036756A1 (de) 2007-08-03 2009-02-05 Henkel Ag & Co. Kgaa Neue Proteasen und Wasch- und Reinigungsmittel, enthaltend diese neuen Proteasen
DE102008059446A1 (de) 2008-11-27 2010-06-02 Henkel Ag & Co. Kgaa Neue Proteasen und Mittel enthaltend diese Proteasen
DE102009027045A1 (de) 2009-06-19 2010-12-30 Henkel Ag & Co. Kgaa Neue Proteasen und Mittel enthaltend diese Proteasen
DE102009027540A1 (de) 2009-07-08 2010-05-06 Henkel Ag & Co. Kgaa Neue Proteasen und Mittel enthaltend diese Proteasen
JP5911477B2 (ja) * 2010-05-31 2016-04-27 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se アルコールの均一系接触アミノ化によるポリアルキレンポリアミン
US8697834B2 (en) 2010-05-31 2014-04-15 Basf Se Polyalkylenepolyamines by homogeneously catalyzed alcohol amination
DE102010030609A1 (de) 2010-06-28 2011-12-29 Henkel Ag & Co. Kgaa Neue Proteasen und diese enthaltende Mittel
JP5815351B2 (ja) * 2011-09-27 2015-11-17 株式会社日本触媒 エチレンイミン重合体およびその製造方法
US8877977B2 (en) 2011-11-25 2014-11-04 Basf Se Synthesis of polyalkylenepolyamines having a low color index by homogeneously catalyzed alcohol amination in the presence of hydrogen
CN103987757A (zh) * 2011-11-25 2014-08-13 巴斯夫欧洲公司 通过在氢气存在下均相催化醇胺化合成低比色指数的聚亚烷基多胺
CN103958568B (zh) * 2011-11-25 2016-05-18 巴斯夫欧洲公司 通过均相催化醇胺化制备亲油性聚亚烷基多胺
EP2743288A1 (de) * 2012-12-12 2014-06-18 Basf Se Verfahren zur Herstellung chloridfreier Polyethylenimine
MX2015016276A (es) * 2013-05-29 2016-03-11 Basf Se Proceso continuo para la prepacion de polioxazolinas.
EP3208294B1 (de) 2014-10-17 2024-01-03 Nippon Shokubai Co., Ltd. Ethyleneiminpolymer und verfahren zur herstellung davon
DE102016202703A1 (de) 2016-02-22 2017-08-24 Sirona Dental Systems Gmbh Ofen für Dentalbauteile und wärmefeste Unterlage
JP2017171933A (ja) * 2017-05-12 2017-09-28 株式会社日本触媒 エチレンイミン重合体、およびその製造方法
KR102279437B1 (ko) 2017-08-24 2021-07-21 가부시키가이샤 닛폰 쇼쿠바이 에틸렌이민 중합체 용액 및 그의 제조 방법
JP7405667B2 (ja) * 2020-03-27 2023-12-26 株式会社日本触媒 ポリエチレンイミン及びポリエチレンイミンの製造方法
JP7405666B2 (ja) * 2020-03-27 2023-12-26 株式会社日本触媒 ポリエチレンイミン及びポリエチレンイミンの製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2182306A (en) * 1935-05-10 1939-12-05 Ig Farbenindustrie Ag Polymerization of ethylene imines
US3203910A (en) * 1962-04-13 1965-08-31 Dow Chemical Co Polymerization of alkylenimines
US4032480A (en) * 1975-07-11 1977-06-28 David Solomonovich Zhuk Method of producing linear polyethylenimine

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9721760A1 *

Also Published As

Publication number Publication date
WO1997021760A1 (de) 1997-06-19
JP2000501757A (ja) 2000-02-15
DE19545874A1 (de) 1997-06-12
US5977293A (en) 1999-11-02

Similar Documents

Publication Publication Date Title
WO1997021760A1 (de) Verfahren zur kontinuierlichen herstellung von homopolymerisaten des ethylenimins
DE69119863T2 (de) Schnelles Wachstum des Molekulargewichts eines Polybenzazololigomers in Lösung
DE60104369T3 (de) Schmelzverarbeitbare polyetheretherketon polymere
DE3587606T2 (de) Sternvernetzte Polyamide und davon hergestellte Polyamine.
EP0638599B1 (de) Verfahren zur Herstellung von Polyacetalen
DE69525369T2 (de) Kontinuierliches polymerisationverfahren von polyamiden
DE2439200C2 (de) Verfahren zur Herstellung von Epihalogenhydrinpolymerisaten mit endständigen Hydroxylgruppen
DE3887714T2 (de) Herstellung von Polycarbonat.
DE2263125C2 (de) Verfahren zur kontinuierlichen Herstellung von Harnstoff-Formaldehyd-Kondensaten
DE2305144A1 (de) Verfahren zur kontinuierlichen herstellung von polycarbonaten
DE2932737A1 (de) Polycarbonat-polyaetherblockcopolymere
EP0087147A2 (de) Quaternäre Vernetzungsprodukte von Xylylendichloriden mit Triäthanolaminkondensaten und deren Verwendung
DE69507285T2 (de) Polyaniline und deren herstellung
DE69125090T2 (de) Mehrstufige Polymerisation von Polybenzazolpolymeren
DE10111776C5 (de) Verfahren zur Herstellung einer wässrigen Ethyleniminpolymerlösung
DE1904540A1 (de) Verfahren zum Polymerisieren von Oxazolinen
DE2724166C2 (de) Verfahren zur Herstellung eines Polymers durch Additionspolymerisation in Gegenwart eines Starters
DE3617754A1 (de) Verfahren zur herstellung eines oxymethylencopolymeren
DE69819905T2 (de) Verfahren zur herstellung von copolymeren aus formaldehyd und cyclischen ethern in gegenwart von organischen nitroverbindungen
DE2009580B2 (de) Verfahren zur Polymerisation von Tetrahydrofuran
DE69412857T2 (de) Durch starke, nichtionische Base katalysierte Ringöffnungspolymerisation von Lactamen
DE2530042B2 (de) Verfahren zur Herstellung von linearem Polyäthylenimin
DE2238094A1 (de) Polymere perfluorierte copolyaether mit hohem molekulargewicht und verfahren zu deren herstellung aus tetrafluoraethylen
DE3872885T2 (de) Reduktion von carboxylendgruppen in polyester mit lactimaethern.
DE2012528C3 (de)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19980518

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE DE FR GB IT NL

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 20010525

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Withdrawal date: 20011020