[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP0663563B1 - Verfahren zum Betreiben der Verbrennung in Feuerungsanlagen und eine Feuerungsanlage - Google Patents

Verfahren zum Betreiben der Verbrennung in Feuerungsanlagen und eine Feuerungsanlage Download PDF

Info

Publication number
EP0663563B1
EP0663563B1 EP94119330A EP94119330A EP0663563B1 EP 0663563 B1 EP0663563 B1 EP 0663563B1 EP 94119330 A EP94119330 A EP 94119330A EP 94119330 A EP94119330 A EP 94119330A EP 0663563 B1 EP0663563 B1 EP 0663563B1
Authority
EP
European Patent Office
Prior art keywords
combustion
boiler
heat exchange
heat
heat transfer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP94119330A
Other languages
English (en)
French (fr)
Other versions
EP0663563A1 (de
Inventor
Carsten Meier
Detlef Bohmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Elco Kloeckner Heiztechnik GmbH
Original Assignee
Elco Kloeckner Heiztechnik GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Elco Kloeckner Heiztechnik GmbH filed Critical Elco Kloeckner Heiztechnik GmbH
Publication of EP0663563A1 publication Critical patent/EP0663563A1/de
Application granted granted Critical
Publication of EP0663563B1 publication Critical patent/EP0663563B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/10Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically
    • F28D7/12Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically the surrounding tube being closed at one end, e.g. return type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C9/00Combustion apparatus characterised by arrangements for returning combustion products or flue gases to the combustion chamber
    • F23C9/08Combustion apparatus characterised by arrangements for returning combustion products or flue gases to the combustion chamber for reducing temperature in combustion chamber, e.g. for protecting walls of combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H1/00Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters
    • F24H1/22Water heaters other than continuous-flow or water-storage heaters, e.g. water heaters for central heating
    • F24H1/24Water heaters other than continuous-flow or water-storage heaters, e.g. water heaters for central heating with water mantle surrounding the combustion chamber or chambers
    • F24H1/26Water heaters other than continuous-flow or water-storage heaters, e.g. water heaters for central heating with water mantle surrounding the combustion chamber or chambers the water mantle forming an integral body
    • F24H1/263Water heaters other than continuous-flow or water-storage heaters, e.g. water heaters for central heating with water mantle surrounding the combustion chamber or chambers the water mantle forming an integral body with a dry-wall combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H1/00Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters
    • F24H1/22Water heaters other than continuous-flow or water-storage heaters, e.g. water heaters for central heating
    • F24H1/24Water heaters other than continuous-flow or water-storage heaters, e.g. water heaters for central heating with water mantle surrounding the combustion chamber or chambers
    • F24H1/26Water heaters other than continuous-flow or water-storage heaters, e.g. water heaters for central heating with water mantle surrounding the combustion chamber or chambers the water mantle forming an integral body
    • F24H1/28Water heaters other than continuous-flow or water-storage heaters, e.g. water heaters for central heating with water mantle surrounding the combustion chamber or chambers the water mantle forming an integral body including one or more furnace or fire tubes
    • F24H1/282Water heaters other than continuous-flow or water-storage heaters, e.g. water heaters for central heating with water mantle surrounding the combustion chamber or chambers the water mantle forming an integral body including one or more furnace or fire tubes with flue gas passages built-up by coaxial water mantles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C2900/00Special features of, or arrangements for combustion apparatus using fluid fuels or solid fuels suspended in air; Combustion processes therefor
    • F23C2900/09001Cooling flue gas before returning them to flame or combustion chamber

Definitions

  • the invention relates to a method for operating the combustion of fuels in combustion plants a boiler fired by a burner, in which the thermal energy of the fuel transferred to a heat transfer medium is, as well as on a device for performing a such a method according to the preambles of the claims 1 and 9.
  • the design of the boiler or the heat generator of great importance is the design of the boiler or the heat generator of great importance.
  • the construction the boiler is essentially influenced by the Geometry of the firebox and through the guidance of the Combustion gases. Boiler constructions are designed so that as much heat as possible, that arises during the chemical conversion of the fuel, completely transferred to the heat transfer medium without loss becomes. In addition to water, low or High pressure steam and organic liquids into consideration.
  • the known ones Divide boiler designs into two construction elements: the combustion chamber in which the combustion process takes place and the thermal energy essentially through radiation or transfer heat radiation to the combustion gases becomes; and downstream cooled heat exchange surfaces, via the combustion gases change their enthalpy by convection dispense the heat transfer medium.
  • the known furnace system includes one Boiler surrounded by a water-bearing housing is.
  • the boiler also includes a combustion flame and the combustion gas-absorbing interior, in which a tubular insert is introduced. The interior is closed on its downstream side, so that the combustion gases are redirected there and then into one Heat exchange space between the wall of the tubular insert and the water-bearing housing wall are removed. The problem of corrosion prevention will not, however addressed.
  • the invention aims to provide a firing system as well a method of operating the same ask for a large burner output range without Risk of corrosion formation is designed.
  • the combustion gases that are produced during combustion of the fuel in the boiler arise, at least in part between a hot heat radiating surface, i.e. one hot radiant area, which is essentially the thermal energy transferred to the combustion gases by heat radiation, and a convective cooled by the heat transfer medium Heat exchanger surface to which the combustion gases give off their enthalpy by convection from the boiler dissipated.
  • a hot heat radiating surface i.e. one hot radiant area
  • Heat exchanger surface to which the combustion gases give off their enthalpy by convection from the boiler dissipated.
  • the combustion gases flow through an intermediate space - furthermore as a heat exchange space designated - between the convective heat exchanger surface an infinitely large heat exchanger or heat bath and the hot radiation surface.
  • the combustion gases flowing through the heat exchange chamber on the one hand Thermal energy to the convective heat exchanger surface and at the same time take heat from the Radiation area.
  • those diverted in the firebox are deflected Combustion gases through a heat exchange space between a burner flame tube protruding into the combustion chamber and an inner heat transfer jacket surrounding the flame tube dissipated.
  • the flame burns in one its downstream end closed firebox, and the combustion gases are shaped accordingly of the firebox floor in the firebox redirected and about the above Heat exchange space between flame tube and internal heat transfer jacket dissipated.
  • the combustion gases are in a heat exchange space between the uncooled heat radiating wall of the combustion chamber and an outer one surrounding the combustion chamber wall Heat transfer jacket, in particular water jacket performed (claims 2 and 10). Extend the radiant heat Areas of the glowing combustion chamber wall during operation and the convective heat exchanger surfaces of the outer heat transfer jacket over the entire circumference and the axial height of the Combustion chamber, this is a particularly effective heat transfer from the combustion chamber wall to the combustion gases and further guaranteed to the heat transfer medium.
  • the combustion gases are preferably also conducted in a region between the outer and the inner heat transfer jacket, in particular water jacket (claims 3 and 11). If both heat transfer jackets extend over the entire axial length of the combustion chamber, this achieves effective cooling of the combustion gases, which release a large part of their thermal energy by convection to the heat transfer medium. If the inner heat transfer jacket on the inside of the combustion chamber wall extends around the flame as a flame cooling cylinder, part of the thermal energy of the combustion gases is also transferred directly from the hot flame zone to the heat transfer medium and, at the same time, a reduction of the NO x by cooling the combustion chamber Education reached.
  • Another preferred embodiment of the invention is that the combustion gases redirected in the combustion chamber first through the heat exchange space between the flame tube and flow inside the heat transfer jacket, then again deflected and through the purely convective heat exchanger room performed between the outer and inner heat transfer jacket and finally the heat exchange space between the combustion chamber wall and flow through the outer heat transfer jacket (Claims 4 and 12).
  • Such exhaust gas routing works both on the stabilization of the lower exhaust gas limit temperature at low burner output, as well the most effective possible heat transfer to the heat transfer medium at high burner outputs.
  • the redirected combustion gases first flow through radiation and Convection determined heat exchange space, then a pure one convective heat exchange room and finally another Radiation and convection heat exchange room.
  • part of the deflected combustion gases is returned to the flame root area via cutouts in the flame tube of the burner, in particular after the combustion gases have passed through the heat exchange space between the flame tube and the inner heat transfer jacket (claims 5 and 16).
  • the internal exhaust gas recirculation - especially when the combustion gases cool down beforehand - enables an effective reduction in flame temperatures, which further leads to a reduction in NO x formation.
  • the invention has proven to be particularly advantageous Furnace and the method for operating the furnace in connection with a modulating or controllable burner (claims 7, 17).
  • a modulating or controllable burner (claims 7, 17).
  • Such a burner contains a continuously controllable control valve and a appropriately controllable blower for regulating the supplied Amount of combustion air. This can reduce the burner output continuously changed over a larger control range become.
  • Flue gas routing in the boiler is both at high burner output guaranteed at all times, even with low burner output, that the exhaust gas temperature is the critical dew point not less.
  • the boiler construction according to the invention is therefore controllable for all performance areas Suitable burner.
  • the burner output is preferably automatically dependent the reduced heat output of the heat transfer medium changed so that between the individual load points - So minimum and maximum combustion heat output - the Burner can adjust automatically at every load point, so that the fuel and combustion air supply of the removed Thermal output of the heat transfer medium corresponds.
  • the burner output regulated such that the temperature of the heat transfer medium in the boiler, especially the boiler water in the boiler wall constant regardless of the load on the combustion system remains (claim 8).
  • the boiler according to the invention is particularly cost-effective made of simple steel and / or cast iron (claim 18). Due to the guidance of the combustion gases according to the invention can be beneficial on expensive corrosion resistant Boiler materials are dispensed with.
  • FIG. 1 shows a longitudinal section through a boiler 1, that of a burner 2, preferably a modulating one Burner being fired.
  • the burner 2 opens with his Flame tube 3 in a combustion chamber 5 of the boiler 1. Die Combustion air is sent to burner 2 in the direction of the arrow I fed.
  • the boiler 1 contains an outer one of a boiler circuit fed water jacket 6, which is essentially extends over the entire axial boiler length and the Fully surrounds combustion chamber wall 8 at a distance.
  • a boiler circuit fed water jacket 6 fulfills the function of a heat exchanger or warm bath and is on the inside with Fitted heat exchanger fins 10, the radially inward directed almost over the entire axial length of the water jacket 6 run.
  • the inner water jacket 12 is with convective heat exchanger fins facing the boiler axis 14 equipped.
  • the firebox 5 is closed at its rear end, so that the combustion gases are deflected in the combustion chamber 5 and in Direction upstream.
  • Another deflection area forms the inner wall of the boiler at the front end of the boiler 1, so that the inflowing from the combustion chamber 5 Combustion gases redirected again and in the downstream direction between the outer water jacket 6 and the inner one
  • the water jacket 12 and the combustion chamber wall 8 flow up to they finally the boiler 1 through the combustion gas outlet 13 leave.
  • the result is a combustion gas flow realized, the combustion gases in succession three Flow through annular heat exchange rooms: a first one Heat exchange space 15 between the flame tube 3 and the inner Water jacket 12 in which the combustion gases heat energy pick up from the "glowing" flame tube and at the same time Heat by convection via the heat exchanger fins 14 deliver the inner water jacket 12; a second one convective heat exchange space 16 between the inner 12 and the outer water jacket 6; and finally a third Heat exchange space 17 between the outer water jacket 6 and the uncooled heat radiating combustion chamber wall 8, in which also heat exchange through radiation and convection with the combustion gases.
  • Combustion system is preferably used, depending on the burner's load, the combustion gases cooled in heat exchange rooms 15 and 17 or - ideally - with a low burner output at a constant Value held.
  • the modulating firing saves depending the burner system load, frequent burner starts, which causes high starting emissions and the formation of corrosion when Start of the burner can be avoided.
  • FIG. 2 The sectional view in Fig. 2 along the line A-A 'of Boiler construction in Fig. 1 illustrates that the outer 6 and the inner water jacket 12 conducting each other in Connected and jointly supplied by the boiler circuit become. 2 shows the radially inward directed heat exchanger fins 10 or 14 of the water jackets 6 or 12.
  • FIG. 3 shows a furnace according to the invention with a boiler 1, in the combustion chamber a modulating Burner 2 protrudes.
  • the boiler 1 is via a storage circuit 18 connected to a hot water tank 20, which is fed by boiler 1 with hot water.
  • Parallel to Storage circuit 18, a boiler circuit 22 is arranged, which in turn is connected to a consumer circuit via a heat exchanger 24 26 is coupled.
  • T K 60 ° C

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

Die Erfindung befaßt sich mit einem Verfahren zum Betreiben der Verbrennung von Brennstoffen in Feuerungsanlagen mit einem von einem Brenner befeuerten Kessel, in dem die Wärmeenergie des Brennstoffes an einen Wärmeträger übertragen wird, sowie auf eine Vorrichtung zur Durchführung eines derartigen Verfahrens nach den Oberbegriffen der Ansprüche 1 und 9.
Für den Übergang der Wärmeenergie eines Brennstoffes an ein Wärmeträgermedium, und somit für den Wirkungsgrad einer Feuerungsanlage insgesamt, ist die Auslegung des Kessels bzw. des Wärmeerzeugers von großer Bedeutung. Die Konstruktion des Kessels wird im wesentlichen beeinflußt durch die Geometrie des Feuerraumes und durch die Führung der bei der Verbrennung entstehenden Verbrennungsgase. Kesselkonstruktionen werden derart ausgelegt, daß möglichst viel Wärme, die bei der chemischen Umsetzung des Brennstoffes entsteht, verlustfrei vollständig auf den Wärmeträger übertragen wird. Als Wärmeträger kommen neben Wasser auch Nieder- bzw. Hochdruckdampf sowie organische Flüssigkeiten in Betracht.
Je nach Art des Wärmeüberganges lassen sich die bekannten Kesselkonstruktionen in zwei Konstruktionselemente unterteilen: den Feuerraum, in dem der Verbrennungsprozeß abläuft und die Wärmeenergie im wesentlichen durch Strahlung bzw. Wärmestrahlung auf die Verbrennungsgase übertragen wird; und nachgeschaltete gekühlte Wärmetauschflächen, über die die Verbrennungsgase ihre Enthalpie durch Konvektion an das Wärmeträgermedium abgeben.
Nach dem Stand der Technik werden - insbesondere in einem mittleren Leistungsbereich - vorzugsweise sogenannte Dreizugkessel eingesetzt. Diese sind meist mit einem zylindrischen Feuerraum ausgerüstet, wobei die "heißen" Verbrennungsgase am Ende des Feuerraumes über eine Umlenkkammer in die Nachschaltwärmetauschflächen, bestehend aus Stahlrohren, geführt werden.
Eine weitere bekannte Kesselkonstruktion ist der Kessel mit Umkehrflamme im Feuerraum. Dabei brennt die Flamme in einem zylindrischen an der Rückseite geschlossenen Feuerraum und die Verbrennungsgase werden im zylindrischen Feuerraum wieder umgeleitet und an den Kesseleingang zurückgeführt. Über eine entsprechende Umlenkkammer am Kesseleingang werden sodann die Verbrennungsgase an der Vorderseite des Kessels nach dem Dreizugprinzip den konvektiven Nachschaltwärmetauschflächen zugeführt.
Bei den bekannten Kesselkonstruktionen ist insbesondere darauf zu achten, daß die Geometrie des Feuerraumes und die Abführung der Verbrennungsgase exakt auf die Flammengeometrie und somit auf die Leistung des Brenners abgestimmt sind. Neben der Vermeidung von Konvektions- und Strahlungsverlusten gilt dies insbesondere für die Vermeidung der Auskühlung der Verbrennungsgase innerhalb des Kessels, - beispielsweise bei Überdimensionierung des Feuerraumes. Falls die Verbrennungsgase auf dem Weg aus dem Feuerraum auf eine Temperatur unterhalb des Wasser- oder Säuretaupunktes abkühlen, erfolgt eine Kondensation der Abgase, die auf Dauer eine Korrosionsbildung im Kessel und in den Abgasrohren verursacht. Die Kesselkorrosion ist hauptsächlich auf die korrodierende Wirkung der Schwefelsäure zurückzuführen. Aber auch ein Kondensatausfall, zum Beispiel Ascheteile des Brennöles, Ruße etc., führt mit der Zeit zu einem Angriff auf die Kesselwerkstoffe und schließlich zu deren Zerstörung.
Beispiele für bekannte Kesselkonstruktionen zeigen die folgenden Druckschriften:
Aus der DE-A-3 612 910 ist eine Feuerungsanlage sowie ein Verfahren zum Betreiben derselben nach der eingangs genannten Art bekannt. Die bekannte Feuerungsanlage umfaßt einen Heizkessel, der von einem wasserführenden Gehäuse umgeben ist. Der Heizkessel umfaßt weiter einen die Verbrennungsflamme und die Verbrennungsgase aufnehmenden Innenraum, in welchen ein rohrförmiger Einsatz eingeführt ist. Der Innenraum ist an seiner stromabwärtigen Seite verschlossen, so daß die Verbrennungsgase dort umgelenkt und sodann in einen Wärmetauschraum zwischen der Wandung des rohrförmigen Einsatzes und der wasserführenden Gehäusewand abgeführt werden. Das Problem der Korrosionsvermeidung wird jedoch nicht angesprochen.
Ferner werden bei der aus der GB-A-2 224 346 bekannten Feuerungsanlage die bei der Verbrennung entstehenden Verbrennungsgase nach dem Austritt aus dem Feuerraum des Kessels an nachgeschalteten wassergekühlten Wärmetauscherflächen vorbeigeführt - bis sie schließlich durch den "Auspuff" aus der Feuerungsanlage austreten. Hierbei findet eine reine konvektive Energieübertragung von den Verbrennungsgasen an das Wärmetauschermedium, meist Wasser, statt; es sind jedoch keinerlei Wärmetauschräume zur Vermeidung von Korrosionsbildung vorgesehen.
Um die Korrosionsbildung, insbesondere die Kesselkorrosion weitgehend zu vermeiden, sind bei den bekannten Kesselkonstruktionen für unterschiedliche Leistungsbereiche der Brenner auch verschiedene Kesselgrößen notwendig, um durch Anpassung der Feuerraumgeometrie an die Brennerleistung ein Absinken der Abgastemperaturen im Kessel zu vermeiden.
Die Erfindung zielt darauf ab, eine Feuerungsanlage sowie ein Verfahren zum Betreiben derselben zur Verfügung zu stellen, die für einen großen Brenner-Leistungsbereich ohne Gefahr der Korrosionsbildung ausgelegt ist.
Dieses Ziel erreicht die Erfindung durch die Gegenstände der Ansprüche 1 und 9. Weitere bevorzugte Ausführungen der Erfindung ergeben sich aus den abhängigen Ansprüchen.
Danach werden die Verbrennungsgase, die bei der Verbrennung des Brennstoffes im Kessel entstehen, wenigstens teilweise zwischen einer heißen wärmestrahlenden Fläche, d.h. einer heißen Strahlungsfläche, die die Wärmeenergie im wesentlichen durch Wärmestrahlung an die Verbrennungsgase überträgt, und einer vom Wärmeträgermedium gekühlten konvektiven Wärmetauscherfläche, an welche die Verbrennungsgase ihre Enthalpie durch Konvektion abgeben, aus dem Kessel abgeführt. Auf diese Weise durchströmen die Verbrennungsgase einen Zwischenraum - im weiteren als Wärmetauschraum bezeichnet - zwischen der konvektiven Wärmetauscherfläche eines unendlich großen Wärmetauschers bzw. Wärmebades und der heißen Strahlungsfläche. Im Ergebnis geben damit die durch den Wärmetauschraum strömenden Verbrennungsgase einerseits Wärmeenergie an die konvektive Wärmetauscherfläche ab und nehmen andererseits gleichzeitig Wärme von der Strahlungsfläche auf. Dabei werden die im Feuerraum umgelenkten Verbrennungsgase durch einen Wärmetauschraum zwischen einem in den Feuerraum ragenden Flammenrohr des Brenners und einem inneren, das Flammenrohr umgebenden Wärmeträgermantel abgeführt. Dabei brennt die Flamme in einem an seinem stromabwärtigen Ende geschlossenen Feuerraum, und die Verbrennungsgase werden durch eine entsprechende Formgebung des Feuerraumbodens im Feuerraum wieder umgeleitet und über den o.g. Wärmetauschraum zwischen Flammenrohr und innerem Wärmeträgermantel abgeführt. Durch die Umkehrführung der Verbrennungsgase über die Flamme wird zunächst ein vollständiger einwandfreier Ausbrand des Brennstoffes gewährleistet. Sodann gelangen die Verbrennungsgase in den o.g. Wärmetauschraum, der insbesondere bei geringen Brennerleistungen ein Abkühlen der Verbrennungsgase unter kritische Taupunkttemperaturen verhindert.
Bei großer Brennerleistung ist die Wärmeabgabe der Verbrennungsgase an die Wärmetauscherfläche - und somit an den Wärmeträger - größer als die Wärmeaufnahme von der Strahlungsfläche, so daß schließlich eine Abkühlung der Verbrennungsgase erfolgt. Bei kleiner Brennerleistung stehen Wärmeabgabe und Wärmeaufnahme der Verbrennungsgase im wesentlichen im Gleichgewicht, so daß die Verbrennungsgastemperatur in diesem Leistungsbereich konstant gehalten wird. Der Wert der unteren Grenztemperatur der Verbrennungsgase hängt dabei von der Temperatur und Geometrie der Wärmekontaktflächen ab. Je nach konstruktiver Auslegung, insbesondere der Wärmestrahlungsflächen, kann die Grenztemperatur auf einen bestimmten Wert - jedenfalls oberhalb der kritischen Taupunkttemperaturen - eingestellt werden, so daß die Gefahr von Korrosionen und anderen Kondensatausfällen ausgeschlossen ist. Aufgrund der erfindungsgemäßen Abgasführung im Kessel sind derartige Feuerungsanlagen für einen großen Leistungsbereich des Brenners - vorzugsweise von ca. 30% bis 100% - geeignet.
Bei einem bevorzugten Ausführungsbeispiel der Erfindung werden die Verbrennungsgase in einem Wärmetauschraum zwischen der ungekühlten wärmestrahlenden Wandung des Feuerraumes und einem die Feuerraumwandung umgebenden äußeren Wärmeträgermantel, insbesondere Wassermantel geführt (Ansprüche 2 und 10). Erstrecken sich die wärmestrahlenden Flächen der im Betrieb glühenden Feuerraumwandung und die konvektiven Wärmetauscherflächen des äußeren Wärmeträgermantels über den gesamten Umfang und die axiale Höhe des Feuerraumes, so ist ein besonders effektiver Wärmeübergang von der Feuerraumwandung an die Verbrennungsgase und weiter an den Wärmeträger gewährleistet.
Bevorzugt werden die Verbrennungsgase auch in einem Bereich zwischen dem äußeren und dem inneren Wärmeträgermantel, insbesondere Wassermantel geführt (Ansprüche 3 und 11). Erstrecken sich beide Wärmeträgermäntel über die gesamte axiale Länge des Feuerraumes, so erreicht man eine effektive Kühlung der Verbrennungsgase, die einen Großteil ihrer Wärmeenergie durch Konvektion an den Wärmeträger abgeben. Erstreckt sich ferner der innere Wärmeträgermantel an der Innenseite der Feuerraumwandung als Flammen-Kühlzylinder rund um die Flamme, so wird zusätzlich ein Teil der Wärmeenergie der Verbrennungsgase direkt aus der heißen Flammenzone an den Wärmeträger übertragen und gleichzeitig durch die Kühlung des Feuerraumes eine Reduzierung der NOx-Bildung erreicht.
Ein weiteres bevorzugtes Ausführungsbeispiel der Erfindung besteht darin, daß die im Feuerraum umgelenkten Verbrennungsgase zunächst durch den Wärmetauschraum zwischen Flammenrohr und innerem Wärmeträgermantel strömen, dann wiederum umgelenkt und durch den rein konvektiven Wärmetauscherraum zwischen äußerem und inneren Wärmeträgermantel geführt werden und schließlich den Wärmetauschraum zwischen Feuerraumwandung und äußerem Wärmeträgermantel durchströmen (Ansprüche 4 und 12). Eine derartige Abgasführung wirkt sich sowohl auf die Stabilisierung der unteren Abgasgrenztemperatur bei niedriger Brennerleistung, als auch auf einen möglichst effektiven Wärmeübergang an den Wärmeträger bei hohen Brennerleistungen aus. Die umgelenkten Verbrennungsgase durchströmen zunächst einen durch Strahlung und Konvektion bestimmten Wärmetauschraum, sodann einen reinen konvektiven Wärmetauschraum und schließlich wiederum einen Strahlungs- und Konvektions-Wärmetauschraum.
Um die effektive Wärmekontaktfläche zu vergrößern, sind äußere und innere Wärmeträgermäntel mit Wärmetauschrippen ausgestattet (Anspruch 13). Aus demselben Grund ist auch die Außenseite der Feuerraumwandung mit entsprechendem Wärmetauschrippen versehen (Anspruch 14). Hierdurch wird erreicht, daß die Verbrennungsgase einen möglichst hohen Teil der bei der Verbrennung entstehenden Menge im Feuerraum an die Wärmetauschflächen übertragen und gleichermaßen möglichst viel Wärme von den wärmestrahlenden Flächen, insbesondere der Feuerraum- und Flammenrohrwandung, aufnehmen können.
Um einen guten Wärmeaustausch auch bei niedrigen Abgastemperaturen zu gewährleisten, sind in den o.g. Wärmetauschräumen Turbulenzen fördernde Vorrichtungen, insbesondere Sicken, Ringe, Scheiben und verdrallte Blechstreifen, angeordnet (Anspruch 15). Auch dies führt zu einer Vergrößerung der Wärmekontaktfläche und somit zu einem verbesserten Wärmeübergang.
Nach einem weiteren bevorzugten Ausführungsbeispiel wird ein Teil der umgelenkten Verbrennungsgase über Aussparungen im Flammenrohr des Brenners in den Flammenwurzelbereich rückgeführt, - insbesondere nach dem Durchgang der Verbrennungsgase durch den Wärmetauschraum zwischen Flammenrohr und innerem Wärmeträgermantel (Ansprüche 5 und 16). Durch die interne Abgasrückführung - insbesondere bei vorausgehender Abkühlung der Verbrennungsgase - wird eine wirkungsvolle Reduzierung der Flammentemperaturen ermöglicht, was weiterhin zu einer Reduzierung der NOx-Bildung führt.
Besonders vorteilhaft erweist sich die erfindungsgemäße Feuerungsanlage und das Verfahren zum Betreiben der Feuerungsanlage in Verbindung mit einem modulierenden bzw. regelbaren Brenner (Ansprüche 7, 17). Ein derartiger Brenner enthält ein stufenlos steuerbares Regelventil und ein entsprechend steuerbares Gebläse für die Regelung der zugeführten Verbrennungsluftmenge. Hierdurch kann die Brennerleistung über einen größeren Regelbereich stufenlos verändert werden. In Verbindung mit der verbindungsgemäßen Abgas führung im Kessel ist sowohl bei hoher Brennerleistung als auch bei geringer Brennerleistung jederzeit gewährleistet, daß die Abgastemperatur die kritischen Taupunktwerte nicht unterschreitet. Die erfindungsgemäße Kesselkonstruktion ist daher für alle Leistungsbereiche eines regelbaren Brenners geeignet.
Vorzugsweise wird die Brennerleistung automatisch in Abhängigkeit der abgenommenen Wärmeleistung des Wärmeträgers verändert, so daß sich zwischen den einzelnen Lastpunkten - also minimaler und maximaler Feuerungswärmeleistung - der Brenner automatisch in jedem Lastpunkt einstellen kann, so daß die Brennstoff- und Verbrennungsluftzuführung der abgenommenen Wärmeleistung des Wärmeträgers entspricht. Auf der Grundlage der erfindungsgemäßen Abgas führung wird mit Hilfe eines derartigen modulierenden Brenners die Brennerleistung derart geregelt, daß die Temperatur des Wärmeträgermediums im Kessel, insbesondere des Kesselwassers in der Kesselwandung unabhängig von der Belastung der Feuerungsanlage konstant bleibt (Anspruch 8).
Hierdurch wird auch besonders vorteilhaft die Temperatur der Wärmetauschmäntel bzw. der konvektiven Wärmetauschflächen im Kessel, an denen die Verbrennungsgase vorbeiströmen, auf einem konstanten Wert gehalten. Dies hat zur Folge, daß auch die Temperatur der aus dem Kessel austretenden Verbrennungsgase auf einem definierten Wert gehalten wird, um der Kondensation der Abgase entgegen zu wirken.
Besonders kostengünstig wird der erfindungsgemäße Kessel aus einfachem Stahl und/oder Grauguß gefertigt (Anspruch 18). Aufgrund der erfindungsgemäßen Führung der Verbrennungsgase kann vorteilhaft auf teuere korrosionsbeständige Kesselmaterialien verzichtet werden.
Weitere Vorteile und Ausgestaltungen der Erfindung ergeben sich auch aus der nachfolgenden Beschreibung bevorzugter Ausführungsbeispiele. Darin wird auf die beigefügte schematische Zeichnung Bezug genommen. In der Zeichnung zeigen:
Fig. 1
ein Ausführungsbeispiel der erfindungsgemäßen Kesselkonstruktion im Längsschnitt;
Fig. 2
einen Querschnitt entlang der Linie A-A' in Fig. 1; und
Fig. 3
ein Beispiel für die erfindungsgemäße Feuerungsanlage mit Kessel-, Speicher- und Versorgungskreislauf.
Fig. 1 zeigt einen Längsschnitt durch einen Heizkessel 1, der von einem Brenner 2, vorzugsweise einem modulierenden Brenner, befeuert wird. Der Brenner 2 mündet mit seinem Flammenrohr 3 in einen Feuerraum 5 des Heizkessels 1. Die Verbrennungsluft wird dem Brenner 2 in Richtung des Pfeiles I zugeführt.
Im Flammenrohr 3 sind stromab einer - in Fig. 1 nicht dargestellten Stauscheibe des Brenners 2 - waagrechte Schlitze 4 über den Umfang des Flammenrohres 3 gleichmäßig verteilt zur internen Rückführung der Verbrennungsgase in den Wurzelbereich der Flamme ausgebildet.
Der Heizkessel 1 enthält einen äußeren von einem Kesselkreislauf gespeisten Wassermantel 6, der sich im wesentlichen über die gesamte axiale Kessel länge erstreckt und die Feuerraumwandung 8 in einem Abstand vollständig umgibt. Der äußere Wassermantel 6 erfüllt die Funktion eines Wärmetauschers bzw. Wärmebades und ist an der Innenseite mit Wärmetauscherrippen 10 bestückt, die radial nach innen gerichtet nahezu über die gesamte axiale Länge Wassermantels 6 verlaufen. Ferner ist ein innerer Wassermantel 12 zwischem dem äußeren Wassermantel 6 und dem Flammenrohr 3 derart angeordnet, daß er das Flammenrohr 3 in einem Abstand vollständig umgibt. Auch der innere Wassermantel 12 ist mit zur Kesselachse gerichteten konvektiven Wärmetauscherrippen 14 ausgestattet.
Der Feuerraum 5 ist an seinem hinteren Ende verschlossen, so daß die Verbrennungsgase im Feuerraum 5 umgelenkt und in Richtung stromaufwärts abgeführt werden. Einen weiteren Umlenkbereich bildet die Kesselinnenwandung am vorderen Ende des Kessels 1, so daß die aus dem Feuerraum 5 anströmenden Verbrennungsgase erneut umgelenkt und in Richtung stromabwärts zwischen dem äußeren Wassermantel 6 und dem inneren Wassermantel 12 sowie der Feuerraumwandung 8 strömen bis sie schließlich den Kessel 1 durch den Verbrennungsgasauslaß 13 verlassen.
Im Ergebnis wird hierdurch eine Verbrennungsgasführung realisiert, wobei die Verbrennungsgase nacheinander drei ringförmige Wärmetauschräume durchströmen: Einen ersten Wärmetauschraum 15 zwischen dem Flammenrohr 3 und dem inneren Wassermantel 12, in dem die Verbrennungsgase Wärmeenergie vom "glühenden" Flammenrohr aufnehmen und gleichzeitig Wärme durch Konvektion über die Wärmetauscherrippen 14 an den inneren Wassermantel 12 abgeben; einen zweiten rein konvektiven Wärmetauschraum 16 zwischen dem inneren 12 und dem äußeren Wassermantel 6; und schließlich einen dritten Wärmetauschraum 17 zwischen dem äußeren Wassermantel 6 und der ungekühlten wärmestrahlenden Feuerraumwandung 8, in dem ebenfalls ein Wärmeaustausch durch Strahlung und Konvektion mit den Verbrennungsgasen stattfindet.
Durch die erfindungsgemäße Ausbildung des äußeren 6 und inneren Wassermantels 12 rund um die wärmestrahlenden Flächen der Feuerraumwandung 8 bzw. des Flammenrohres 3 ist bei großer Brennerleistung die Wärmeabgabe des Verbrennungsgasstromes an die Wassermäntel größer als die Wärmeaufnahme von den wärmestrahlenden Flächen, so daß eine Abkühlung der Verbrennungsgase erfolgt. Bei kleiner Brennerleistung stehen dagegen Wärmeabgabe und Wärmeaufnahme der Verbrennungsgase im Gleichgewicht, so daß die Verbrennungsgastemperatur in diesem Leistungsbereich im wesentlichen konstant bleibt. Sie wird insbesondere durch die Wärmeaufnahme vom Flammenrohr 3 bzw. von der Feuerraumwandung 8 über den kritischen Taupunkttemperaturen gehalten. Aufgrund der ausgeprägten Wärmekontaktflächen in den Wärmetauschräumen 15 und 17 liegt die Grenztemperatur der Verbrennungsgase auch bei geringster Brennerleistung deutlich über einem kritischen Wert von ca. T = 110°C. Somit besteht keine Gefahr der Korrosion.
Bei einer modulierenden Feuerung, wie sie bei der erfindungsgemäßen Feuerungsanlage vorzugsweise eingesetzt wird, werden je nach Lastzustand des Brenners die Verbrennungsgase in den Wärmetauschräumen 15 und 17 gekühlt oder - idealerweise - bei kleiner Brennerleistung auf einem konstanten Wert gehalten.
Ferner erspart die modulierende Feuerung in Abhängigkeit der Belastung der Feuerungsanlage häufige Brennerstarts, wodurch hohe Startemissionen und die Korrosionsbildung beim Start des Brenners vermieden werden.
Die Schnittdarstellung in Fig. 2 entlang der Linie A-A' der Kesselkonstruktion in Fig, 1 veranschaulicht, daß der äußere 6 und der innere Wassermantel 12 miteinander leitend in Verbindung stehen und gemeinsam vom Kesselkreislauf versorgt werden. Ferner zeigt Fig. 2 die radial nach innen gerichtete Wärmetauscherrippen 10 bzw. 14 der Wassermäntel 6 bzw. 12.
Schließlich zeigt Fig. 3 eine erfindungsgemäße Feuerungsanlage mit einem Kessel 1, in dessen Feuerraum ein modulierender Brenner 2 ragt. Der Kessel 1 ist über einen Speicherkreislauf 18 mit einem Warmwasserspeicher 20 verbunden, der vom Kessel 1 mit Warmwasser gespeist wird. Parallel zum Speicherkreislauf 18 ist ein Kesselkreislauf 22 angeordnet, der seinerseits über einen Wärmetauscher 24 an einen Verbraucherkreislauf 26 gekoppelt ist.
Über einen in Fig. 3 gestrichelt dargestellten Regelkreis mit einem Thermostaten T wird die Brennerleistung des modulierenden Brenners 2 in Abhängigkeit der abgenommenen Wärmeleistung am Versorgugngskreis 26 derart gesteuert, daß die Temperatur des (Kessel)wassers im Kesselkreislauf auf einem konstanten Wert, z.B. auf TK = 60° C, bleibt. In Verbindung mit der erfindungsgemäßen Abgas führung im Kessel 1 wird hierdurch einerseits auch die Temperatur der aus dem Kessel 1 austretenden Verbrennungsgase unabhängig von der Belastung am Versorgungskreis 26 auf einen bestimmten Wert festgelegt.
Wird ferner die Vorlauftemperatur im Verbraucherkreislauf auf einem konstanten Wert, z.B. auf TV = 30 °C gehalten, so kann - je nach Belastung durch die Verbraucher 28 - Warmwasser mit TK = 60° aus dem Kesselkreislauf über eine Mischvorrichtung 30 in definierten Mengen in den Verbraucherkreis 26 nachgemischt werden.

Claims (18)

  1. Verfahren zum Betreiben der Verbrennung in Feuerungsanlagen mit einem von einem Brenner (2) befeuerten Kessel (1), wobei
    die Verbrennungsgase zwischen einer heißen wärmestrahlenden Fläche und einer gekühlten, insbesondere wassergekühlten, Wärmetauscherfläche (12) aus dem Kessel (1) herausgeführt werden,
    dadurch gekennzeichnet, daß
    die im Feuerraum (5) umgelenkten Verbrennungsgase dabei durch einen Wärmetauschraum (15) zwischen einem in den Feuerraum (5) ragenden Flammenrohr (3) und einem inneren Wärmeträgermantel (12) geführt werden.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Verbrennungsgase in einem Wärmetauschraum (17) zwischen einem äußeren Wärmeträgermantel (6), insbesondere Wassermantel, und einer Wandung (8) eines Feuerraumes (5) des Kessels (1) geführt werden.
  3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Verbrennungsgase in einem Wärmetauschraum (16) zwischen dem äußeren (6) und inneren Wärmeträgermantel (12) geführt werden.
  4. Verfahren nach Anspruch 1, 2 und 3, dadurch gekennzeichnet, daß die im Feuerraum (5) umgelenkten Verbrennungsgase zunächst durch den Wärmetauschraum (15) stromaufwärts strömen, dann umgelenkt und nacheinander durch die Wärmetauschräume (12) und (17) stromabwärts geführt werden.
  5. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß ein Teil der Verbrennungsgase über Öffnungen (4) des Flammenrohres (3) in die Flammenwurzel der Brennerflamme rückgeführt werden.
  6. Verfahren nach Anspruch 6, dadurch gekennzeichnet, daß die Verbrennungsgase vor der Rückführung in den Flammenwurzelbereich durch den Wärmetauschraum (15) geführt werden.
  7. Verfahren nach einem der vorstehenden Ansprüche, gekennzeichnet durch die Verwendung eines regelbaren bzw. modulierenden Brenners (2).
  8. Verfahren nach Anspruch 8, dadurch gekennzeichnet, daß die Temperatur des Wärmeträgers im Kesselkreislauf (22) konstant gehalten wird.
  9. Feuerungsanlage, insbesondere zur Durchführung eines Verfahrens nach einem der vorstehenden Ansprüche, mit:
    einem Kessel (1), der von einem Brenner (2) befeuert wird, dessen Flammenrohr (3) in einen Feuerraum (5) des Kessels (1) mündet;
    einem inneren Wärmeträgermantel (12), insbesondere ein Wassermantel, der das heiße wärmestrahlende Flammrohr im Kessel (1) in einem Abstand umgibt;
    einem Abschluß am Ausgang des Feuerraums (5) zur Umlenkung der Verbrennungsgase;
    wobei
    der innere Wärmeträgermantel (12) das Flammenrohr (3) in einem Abstand derart umgibt, daß die umgelenkten Verbrennungsgase zwischen dem inneren Wärmeträgermantel (12) und dem Flammrohr (3) abführbar sind (Wärmetauschraum (15)).
  10. Feuerungsanlage nach Anspruch 9, dadurch gekennzeichnet, daß ein weiterer äußerer Wärmeträgermantel (6) die Wandung (8) des Feuerraumes (5) in einem Abstand umgibt (Wärmetauschraum (17)).
  11. Feuerungsanlage nach Anspruch 9 oder 10, dadurch gekennzeichnet, daß der äußere Wärmeträgermantel (6) den inneren Wärmeträgermantel (12) in einem Abstand umgibt (Wärmetauschraum 16).
  12. Feuerungsanlage nach Anspruch 9, 10 und 11, dadurch gekennzeichnet, daß ein Umlenkbereich an der Kesselinnenwandung vorgesehen ist, so daß die Verbrennungsgase nach dem Durchgang durch den Wärmetauschbereich (15) an der Kesselinnenwandung umgelenkt und nacheinander durch die Wärmetauschräume (16) und (17) strömen.
  13. Feuerungsanlage nach einem der Ansprüche 9 bis 12, dadurch gekennzeichnet, daß der innere (6) und/oder äußere Wärmeträgermantel (12) mit Wärmetauschrippen (10; 14) bestückt sind/ist.
  14. Feuerungsanlage nach einem der Ansprüche 9 bis 13, dadurch gekennzeichnet, daß an der Außenseite der Feuerraumwandung (8) Wärmetauschrippen vorgesehen sind.
  15. Feuerungsanlage nach einem der Ansprüche 9 bis 14, dadurch gekennzeichnet, daß turbulenzerhöhende Vorrichtungen, insbesondere Sicken, Ringe, Scheiben und verdrallte Blechstreifen im Wärmetauschraum (15; 16; 17) angeordnet sind.
  16. Feuerungsanlage nach einem der Ansprüche 11 bis 15, gekennzeichnet durch eine oder mehrere Öffnungen (4) im Flammenrohr (3) zur internen Abgasrückführung in den Flammenwurzelbereich, insbesondere nach dem Durchgang der Verbrennungsgase durch den Wärmetauschraum (15).
  17. Feuerungsanlage nach einem der Ansprüche 9 bis 16, gekennzeichnet durch einen modulierenden bzw. regelbaren Brenner (2).
  18. Feuerungsanlage nach einem der Ansprüche 9 bis 17, dadurch gekennzeichnet, daß der Kessel (1) aus Stahl und/oder Grauguß gefertigt ist.
EP94119330A 1994-01-12 1994-12-07 Verfahren zum Betreiben der Verbrennung in Feuerungsanlagen und eine Feuerungsanlage Expired - Lifetime EP0663563B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4400686A DE4400686C1 (de) 1994-01-12 1994-01-12 Verbrennungsgasführung
DE4400686 1994-01-12

Publications (2)

Publication Number Publication Date
EP0663563A1 EP0663563A1 (de) 1995-07-19
EP0663563B1 true EP0663563B1 (de) 1999-03-10

Family

ID=6507772

Family Applications (1)

Application Number Title Priority Date Filing Date
EP94119330A Expired - Lifetime EP0663563B1 (de) 1994-01-12 1994-12-07 Verfahren zum Betreiben der Verbrennung in Feuerungsanlagen und eine Feuerungsanlage

Country Status (3)

Country Link
EP (1) EP0663563B1 (de)
AT (1) ATE177524T1 (de)
DE (2) DE4400686C1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104697173A (zh) * 2015-02-11 2015-06-10 上海欧特电器有限公司 用于容积式燃气热水器的单烟管内胆结构

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MX9602124A (es) * 1996-06-03 1997-04-30 Francisco Alvarado Barrientos Mejoras en sistema de recuperacion de calor aplicadas a un calentador de agua.
DE19854910B4 (de) * 1998-11-27 2004-09-02 Max Weishaupt Gmbh Heizkessel
NL1014789C2 (nl) * 2000-03-30 2001-03-16 Vito Technieken B V Thermix -Low-NOx, thermisch NOx reducerend toestel met sterk energiebesparende werking bij vuurgangvlampijp ketels en vuurhaarden.
DE102005039426B4 (de) * 2005-08-18 2018-06-14 Udo Hellwig Hochleistungsenergiewandler
SE532301C2 (sv) * 2008-04-23 2009-12-08 Metso Power Ab En ångpanna försedd med kyld anordning
CN112283936B (zh) * 2020-09-16 2022-07-29 北京北机机电工业有限责任公司 一种高效换热装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH577665A5 (de) * 1973-07-11 1976-07-15 Fascione Pietro
FR2585111B1 (fr) * 1985-07-18 1987-10-30 Bonnaud Marcel Foyer primaire additionnel rayonnant, introduit dans le foyer d'origine des chaudieres, pour ameliorer la combustion et diminuer, dans les rejets atmospheriques, la proportion d'elements polluants
DE3612910A1 (de) * 1986-04-17 1987-10-29 Viessmann Hans Heizkessel
DE3820671A1 (de) * 1988-06-18 1989-12-21 Viessmann Werke Kg Heizungskessel fuer die verbrennung fluessiger oder gasfoermiger brennstoffe
CH677965A5 (de) * 1988-09-02 1991-07-15 Strebelwerk Ag

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104697173A (zh) * 2015-02-11 2015-06-10 上海欧特电器有限公司 用于容积式燃气热水器的单烟管内胆结构

Also Published As

Publication number Publication date
DE4400686C1 (de) 1995-06-22
EP0663563A1 (de) 1995-07-19
ATE177524T1 (de) 1999-03-15
DE59407921D1 (de) 1999-04-15

Similar Documents

Publication Publication Date Title
DE2808213C2 (de) Rekuperativkoksofen sowie Verfahren zum Betreiben desselben
DE3876648T2 (de) Mit gas beheizte heizanlage mit fluessigkeitsmantel.
EP0663563B1 (de) Verfahren zum Betreiben der Verbrennung in Feuerungsanlagen und eine Feuerungsanlage
DE8413119U1 (de) Rauchgasverbrennungsofen fuer eine brennbare abgase produzierende verarbeitungsanlage
DE7907706U1 (de) Rauchgasdurchstroemter waermetauscher
DE2536657A1 (de) Waermeaustauscher
DE2820832B2 (de) Wasserrohrkessel für eine Sammelheizungsanlage
DE2810889A1 (de) Ekrnomiser fuer rauchrohrkessel fuer hochdruckdampf und heisswasser
WO1997027426A2 (de) Durchlaufdampferzeuger
AT401016B (de) Katalytischer wärmeerzeuger
EP0275401B1 (de) Heizkessel und Verfahren zum Betreiben des Heizkessels
AT402668B (de) Gussgliederkessel gussgliederkessel
DE68906533T2 (de) Heizungsvorrichtung mit wärmeaustauschvorrichtung.
DE29602990U1 (de) Wasserheizer
EP0031571B1 (de) Heizungskessel
AT281360B (de) Warmwasser- und Heißwasserkessel
DE4208611C2 (de) Atmosphärischer Gasbrenner mit einem schachtförmigen, einen Luftstrom führenden Gehäuse
DE19819411C2 (de) Brennwertheizkessel
DE9105410U1 (de) Zentralheizungskessel
EP0079980B1 (de) Warmwasser-, Heisswasser- oder Dampfkessel mit Gas- oder Ölfeuerung
EP0833113B1 (de) Heizkessel
DE3348037C2 (de)
DE3245082A1 (de) Heizkessel fuer zentralheizungsanlagen
AT397856B (de) Heizungsanlage für heizung und brauchwassererwärmung
DE1301428B (de) Zwangdurchlaufdampferzeuger mit Hauptfeuerung und Kleinlastfeuerung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB GR IE IT LI LU MC NL SE

17P Request for examination filed

Effective date: 19960118

17Q First examination report despatched

Effective date: 19970605

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB GR IE IT LI LU MC NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19990310

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19990310

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

Effective date: 19990310

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990310

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990310

REF Corresponds to:

Ref document number: 177524

Country of ref document: AT

Date of ref document: 19990315

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: R. A. EGLI & CO. PATENTANWAELTE

REF Corresponds to:

Ref document number: 59407921

Country of ref document: DE

Date of ref document: 19990415

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

ET Fr: translation filed
NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 19990310

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19991019

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19991207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19991231

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
BERE Be: lapsed

Owner name: ELCO KLOCKNER HEIZTECHNIK G.M.B.H.

Effective date: 19991231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000630

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20021107

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20021111

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20021118

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20021119

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040701

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040831

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST