[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP0275401B1 - Heizkessel und Verfahren zum Betreiben des Heizkessels - Google Patents

Heizkessel und Verfahren zum Betreiben des Heizkessels Download PDF

Info

Publication number
EP0275401B1
EP0275401B1 EP87117187A EP87117187A EP0275401B1 EP 0275401 B1 EP0275401 B1 EP 0275401B1 EP 87117187 A EP87117187 A EP 87117187A EP 87117187 A EP87117187 A EP 87117187A EP 0275401 B1 EP0275401 B1 EP 0275401B1
Authority
EP
European Patent Office
Prior art keywords
combustion chamber
wall
boiler
burner
flue gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP87117187A
Other languages
English (en)
French (fr)
Other versions
EP0275401A2 (de
EP0275401A3 (en
Inventor
Rolf Bommer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=6319106&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0275401(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Individual filed Critical Individual
Priority to AT87117187T priority Critical patent/ATE72319T1/de
Publication of EP0275401A2 publication Critical patent/EP0275401A2/de
Publication of EP0275401A3 publication Critical patent/EP0275401A3/de
Application granted granted Critical
Publication of EP0275401B1 publication Critical patent/EP0275401B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/20Arrangement or mounting of control or safety devices
    • F24H9/2007Arrangement or mounting of control or safety devices for water heaters
    • F24H9/2035Arrangement or mounting of control or safety devices for water heaters using fluid fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H1/00Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters
    • F24H1/22Water heaters other than continuous-flow or water-storage heaters, e.g. water heaters for central heating
    • F24H1/24Water heaters other than continuous-flow or water-storage heaters, e.g. water heaters for central heating with water mantle surrounding the combustion chamber or chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H1/00Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters
    • F24H1/22Water heaters other than continuous-flow or water-storage heaters, e.g. water heaters for central heating
    • F24H1/44Water heaters other than continuous-flow or water-storage heaters, e.g. water heaters for central heating with combinations of two or more of the types covered by groups F24H1/24 - F24H1/40 , e.g. boilers having a combination of features covered by F24H1/24 - F24H1/40
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/30Control of fluid heaters characterised by control outputs; characterised by the components to be controlled
    • F24H15/355Control of heat-generating means in heaters
    • F24H15/36Control of heat-generating means in heaters of burners

Definitions

  • the invention relates to a method for operating a boiler according to the preamble of patent claim 1 and a boiler according to the preamble of patent claim 6.
  • a boiler is known in which a forced draft burner burns with a horizontally directed flame in a combustion chamber, which is arranged horizontally and on its lower side, which is essentially parallel to the axis of the flame of the forced draft burner, over its entire length and Width opens against a flue gas collecting space penetrated by heat exchangers.
  • the wall of the firebox is cooled by a water jacket through which the domestic water to be heated and the water from the heating system flow.
  • the water jacket cooling the wall of the combustion chamber absorbs the main part of the heat generated by the burner, while the heat exchangers arranged in the subsequent flue gas collecting chamber only act as a post-heating surface, which cool the flue gases to the temperature of around 160 to 180 ° C, with which the flue gases enter the fireplace.
  • the large volume of the water jacket surrounding the wall of the combustion chamber causes this wall to be strongly cooled, and the forced draft burner must therefore be operated with a constant burner output which is matched to the cooling of the combustion chamber wall.
  • a reduction in the burner output e.g. to adapt to a lower heating requirement in the transition period, would lead to subcooling of the flame, which would result in a high pollutant content in the flue gases and even condensation on the combustion chamber wall.
  • the capacity of the forced draft burner cannot be reduced to adapt to a reduced heating requirement.
  • the burner is operated intermittently at its full output. This intermittent operation in turn results in frequent burner starts, in each of which the entire volume of the water jacket cooling the combustion chamber wall must be warmed up. In this heating phase, there is always undercooling of the burner flame, which results in a high pollutant content and poor efficiency.
  • combustion aids are preferably installed in small boilers with a low output of up to approx. 40 kW.
  • the combustion chamber wall which is enclosed and cooled by the water jacket, is a cylindrical casting wall, into which a stainless steel tube is coaxially inserted, into which the burner flame burns.
  • the stainless steel tube is held at a distance from the cast wall by inwardly directed ribs.
  • the hot combustion chamber formed by the stainless steel tube is therefore practically not cooled. Due to the low heat capacity and the lack of cooling, this combustion chamber quickly becomes high when the burner is started Temperature on, so that a residue-free combustion of the fuels is ensured not only during continuous operation, but also very quickly when the burner is started. Only when the combustion gases flow between the combustion chamber and the casting wall of the combustion chamber are heat removed from them.
  • the high temperature in the hot combustion chamber and the long residence time of the combustion gases in the hot combustion chamber cause a strong conversion of the nitrogen in the air into NO x , so that the exhaust gases have a high proportion of harmful nitrogen oxides.
  • the combustion chamber wall coaxially surrounding the hot combustion chamber cannot adequately extract the heat from the hot flue gases.
  • downstream heating surfaces are still necessary in order to achieve sufficient efficiency.
  • the combustion chamber wall which is generally made of cast iron with the surrounding water jacket, has a high heat capacity, so that the boiler has a high inertia.
  • the heat capacity is particularly influenced by the fact that the combustion chamber has to be of large volume in order to accommodate the hot combustion chamber used and to form a sufficient heat exchanger surface.
  • a boiler which has a horizontally arranged hot combustion chamber in which the flame of a fan burner burns.
  • the combustion chamber wall surrounding the hot combustion chamber is enclosed by a jacket through which the combustion air is passed for preheating.
  • the entire length and breadth of the firebox is open and merges into a flue gas plenum with heat exchangers.
  • the heat is extracted from the flue gases essentially only by these heat exchangers arranged in the flue gas collecting space.
  • the uncooled hot combustion chamber inside the combustion chamber very quickly reaches a very high temperature, so that there is a strong conversion of the atmospheric nitrogen into NO x and the exhaust gases have a high proportion of harmful nitrogen oxides.
  • the invention has for its object to provide a boiler which has at residue free as possible combustion of fossil fuels the lowest possible NO x moiety of the exhaust gases, preferably also in an adjustment of the burner output in a changing heat demand.
  • the main idea of the invention is to extract the heat from the combustion gases not on the combustion chamber wall, but practically exclusively on the heat exchangers of the flue gas collecting space, and the wall of the combustion chamber will be cooled only very little, this cooling being dimensioned so that the temperature rises the inside of the wall of the combustion chamber does not rise above about 600 ° C even in continuous operation with full burner output.
  • This gentle cooling of the combustion chamber wall causes the combustion gases at the edge of the burner flame to be cooled very quickly to a temperature at which practically no appreciable formation of NO x occurs.
  • the cooling of the combustion chamber wall does not serve the purpose of heating the heating or service water, the cooling is kept so low that undercooling of the combustion gases on the combustion chamber wall does not occur even when the burner output is reduced.
  • the burner output can therefore be reduced to approximately 1/10 of the maximum output without the cooling of the wall of the combustion chamber leading to a cooling of the combustion gases below the temperature of approximately 180 ° C., at which the combustion of the fuels no longer takes place completely.
  • the burner output can therefore be varied within a very large range, preferably from 1 to 10, without the burner output being in the range of low an incomplete combustion and condensation occurs on the wall of the combustion chamber and without the NO x content of the exhaust gases increasing in the area of high burner output.
  • the hot combustion gases only come into contact with the heat exchangers through which the combustion heat is removed when they have already left the combustion chamber and have entered the flue gas collecting chamber. The cooling of the combustion gases at the heat exchangers can therefore not cause the flame to cool down.
  • the combustion chamber can have a particularly small volume. It only has to be so large that it essentially encloses the flame of the burner.
  • the small volume of the combustion chamber also shortens the residence time of the combustion gases near the flame and thus further reduces the NO x generation.
  • the combustion chamber encloses the flame of the burner on three long sides and on the end face opposite the burner, while it is open on the fourth long side against the flue gas collecting space. This flame surrounds the flame through the recirculation of the hot combustion gases against the direction of the flame in the manner of the reverse flame in boilers with a hot combustion chamber.
  • the lateral opening of the combustion chamber towards the flue gas collection chamber additionally causes the combustion gases to circulate about an axis parallel to the flame, so that two cylinders of the combustion gases circulating helically against the flame direction form in the combustion chamber on both sides of the flame.
  • the combustion gases are guided along the preferably barrel-shaped longitudinal wall of the combustion chamber and gently cooled in the process, so that their temperature does not rise above the temperature at which NO x formation begins to increase. Due to the roller-shaped circulation, the gases cooled on the combustion chamber wall are partially returned to the core of the flame, so that a complete residue-free combustion of the fossil fuels is guaranteed.
  • a part of the circulating gases continuously flows to the heat exchangers in the flue gas collecting space.
  • the flue gas collecting space is preferably arranged below the combustion chamber.
  • the flow of the flue gases increasingly cooled at the heat exchanger is favored and, in particular, an advantageous condensate discharge at the bottom of the flue gas collecting space is possible if the boiler is designed as a so-called condensing boiler, in which the flue gases on the outlet side of the heat exchanger are cooled to below the dew point that the water vapor contained in the exhaust gases is condensed and separated with the remaining pollutant (in particular sulfur oxides, ash, fuel oil residues).
  • the heat exchangers which preferably pass through the flue gas collecting space as pipe registers, can be designed with a relatively low heat capacity, so that the boiler reacts with low inertia and low energy losses.
  • the wall of the combustion chamber is thin-walled with a low heat capacity and is corrosion-resistant at least on the inside.
  • the low heat capacity causes a minimal inertia of the combustion chamber wall, so that it reaches the desired optimal temperature between about 300 and 500 ° C within seconds when the burner is ignited.
  • the supercooling of the flame and the associated pollutant emissions are therefore minimal even when the burner is started.
  • the burner output can also be varied without adversely affecting the efficiency and the pollutant content of the exhaust gases, the burner output can be reduced with less heat, so that the number of burner starts can be reduced considerably.
  • the corrosion-resistant, gently cooled firebox wall with low heat capacity required according to the invention can be implemented in different ways.
  • the wall of the firebox can consist of two layers.
  • the inner wall layer is thin-walled and consists of a corrosion-resistant material, preferably of a steel sheet with a thickness of about 0.5 to 2.5 mm or of a thin-walled ceramic material.
  • the outer wall layer is preferably loosely arranged on the inner wall layer and held on the inner wall layer with a pretension under uniform contact pressure.
  • the outer wall layer preferably consists of a copper or aluminum sheet with a wall thickness of approximately 0.5 to 1.5 mm, on which water-carrying coils are soldered or welded for cooling or are formed as embossed water channels.
  • the outer one releasably stretched over the inner wall layer Wall position has the advantage that the outer wall position can be replaced in order to adapt its cooling capacity to the burner.
  • the cooling capacity can be controlled by the contact pressure of the outer wall layer against the inner wall layer, for. B. is varied by hydraulic regulation of the bias. With increasing contact pressure, the contact area between the inner and outer wall layer and thus the heat transfer for cooling increases.
  • the good heat-conducting material of the outer wall layer ensures uniform cooling of the entire wall of the combustion chamber despite the small number of coils arranged at a mutual distance.
  • the wall of the firebox can also be made of cast material, e.g. B. cast iron exist, the cooling water leading water channels are cast, which are arranged in small numbers at a mutual distance.
  • cast material e.g. B. cast iron exist
  • the cooling water leading water channels are cast, which are arranged in small numbers at a mutual distance.
  • the burner output is varied over a wide range during operation to adapt to a different heat requirement, it is advantageous to also adapt the cooling of the combustion chamber wall in order to keep its temperature as optimal as possible from about 400 to 500 ° C.
  • the liquid throughput can be controlled through the water channels carrying the cooling water.
  • Water is preferably used to cool the combustion chamber wall, which is already preheated in the heat exchangers, preferably in the heat exchanger furthest from the burner is. This results from the fact that the combustion chamber wall is not intended for heating water, but should only be cooled gently so that the wall temperature does not rise too much.
  • the heat exchangers arranged under the combustion chamber are preferably designed such that they only guide the combustion gases from top to bottom and have no horizontal trains for the combustion gases. In addition to the favorable flow conditions for the combustion gases, this has the advantage that any combustion residues, such as soot and the like, cannot deposit on the heat exchangers, but fall down through the heat exchangers, so that they are collected and disposed of together with the condensate will. The effectiveness of the heat exchanger is therefore not affected by deposits.
  • a spray device for a cleaning liquid preferably water
  • the cleaning liquid rinses both the wall of the Combustion chamber as well as the heat exchanger and flows down through the heat exchanger, where it is collected and disposed of.
  • the entire boiler can be cleaned in this way if necessary or automatically at predetermined time intervals in an extremely simple manner, without manual cleaning work or even a partial disassembly of the boiler is necessary.
  • the wall of the flue gas collecting space can be produced in one piece with the wall of the combustion chamber, and in the case of a double-layer wall of the combustion chamber with the inner wall layer. Since the combustion chamber is functionally completely separate from the heat exchanger and the flue gas collection chamber, it is also possible to design the heat exchanger and the flue gas collection chamber as separate components which are detachably connected to the combustion chamber in a gas-tight and water-tight manner. As a result, a heat exchanger adapted to the respective requirements can be used in a particularly simple manner in connection with a combustion chamber, which can be produced in series for a wide range of applications. It is also possible to replace the firebox without any other changes to the boiler if this is appropriate to adapt to a future improvement in the burner design. Finally, this has the advantage that the firebox can also be used in connection with heat exchangers and flue gas plenums from other manufacturers.
  • the combustion chamber can have a volume of preferably approx. 6 to 12 dm3.
  • the length to width ratio is preferably between 1.5 and 1.0, while the ratio length to height of the firebox is preferably in the range between 2.0 and 1.0.
  • the boiler consists of a barrel-shaped, curved combustion chamber 1, which is closed on its two axial end faces. In the middle of an end wall there is an opening 9 in which a compressed air oil or gas blower burner (according to DIN 4788, parts 2 to 5) can be used.
  • the flame 10 of the burner burns horizontally in the axial direction into the combustion chamber 1.
  • the combustion chamber 1 is open over its entire axial length and merges into a flue gas collecting chamber 11, which has the same length and width as the combustion chamber 1.
  • the open passage area between the combustion chamber and the flue gas collection space 11 is approximately 1/3 to 1/4 of the entire circumferential surface of the casing of the fire space 1.
  • the flue gas collection space 11 is penetrated horizontally by a heat exchanger 12, which has the shape of a pipe register. Below the heat exchanger 12 there is an outlet 13 through which the flue gas collecting space 11 can be connected to a chimney.
  • the length of the combustion chamber 11 is approximately 1.5 to 1.0 times its width and approximately 2.0 to 1.0 times its height.
  • the total volume of combustion chamber 1 is approximately 6 to 12 dm3.
  • the combustion chamber 1 and the flue gas collecting chamber 11 are enclosed in a gas-tight manner by a common wall 4 which consists of a 0.5 to 2.5 mm thick steel sheet.
  • a common wall 4 which consists of a 0.5 to 2.5 mm thick steel sheet.
  • an outer wall layer 5 is arranged on the outside of the wall 4, which lies in loose contact with the end faces and the peripheral surface areas of the wall 4.
  • the outer wall layer 5 is fixed to the wall 4 by means of screws or pins 14 in the region of the lower edge of the combustion chamber 1.
  • the outer wall layer 5 consists of a copper or aluminum sheet with a thickness of 0.5 to 1.5 mm. It is guided from the attachment points by the screws or pins 14 in two parts upwards over the combustion chamber 1 and z. B.
  • springs 8 seated on the bolts 15 tension the outer wall layer 5 over the wall 4 and cause a contact pressure of the outer wall layer 5 against the wall 4, which leads to a regionally heat-conducting contact between the wall 4 and the outer wall layer 5.
  • An increase in the pressure of the springs 8 causes a larger contact and thus a better heat transfer between the wall 4 and the outer wall layer 5, while a weaker pressure of the springs 8 leads to less contact and poorer heat transfer.
  • springs 8 preferably hydraulically controllable tensioning means can also be provided, which tension the outer wall layer 5 with an adjustable contact pressure and thus with an adjustable heat transfer over the wall 4.
  • meandering coils 7 are arranged, which are evenly distributed run at a mutual distance on the end and outer surfaces of the outer wall layer 5.
  • the mutual distance between the individual turns of the coils 7 is measured according to the required cooling capacity.
  • the coils 7 can be soldered and welded onto the outer wall layer 5, as shown in FIG. 4, and have a round or oval cross section, as shown in FIG. 4 by the cross sections 7 and 7 '.
  • the outer wall layer can also be a double-skin sheet with embossed channels as coils 7 ⁇ , as is indicated in FIG. 5.
  • a coolant is passed through the coils 7, for which purpose a fraction of the water preheated in the heat exchanger 12 is preferably used, which is branched off in a controllable flow rate via a control valve 6.
  • the hot combustion gases of the flame 10 flow back in an axial recirculation flow 2 against the direction of the flame 10.
  • This recirculation can be further promoted by a bulge 16, indicated in FIG. 1, in the end wall of the combustion chamber 1 opposite the burner.
  • the combustion gases flowing back axially additionally receive a movement component in the radial direction, which primarily leads the combustion gases flowing upwards from the flame 10 along the cooled combustion chamber wall 4 downwards.
  • a part of the combustion gases guided downward in this way with the radial circulation flow 3 flows through the heat exchanger 12 into the flue gas collecting space 11, while the other part is fed back into the flame 10 by the roller-shaped circulation 3.
  • the axial recirculation with the cylindrical rotation on both sides of the flame 10 along the cooled wall 4 results on the one hand in sufficient return of the combustion gases into the flame 10 to ensure complete combustion, and on the other hand a certain cooling of the combustion gases returned to the flame Too high a flame temperature prevents and thus counteracts the NO x formation.
  • the portion of the hot combustion gases flowing continuously downward into the flue gas collecting space, in conjunction with the small volume of the combustion chamber 1, causes the combustion gases in the combustion chamber 1 to dwell briefly, which likewise counteracts the formation of NO x in the exhaust gases.
  • FIG. 6 shows a second embodiment of the boiler.
  • the combustion chamber 1 with its wall 4 is a separate component, which is detachably connected to the heat exchanger 12 by means of screw bolts 14, which also serve to fasten the outer wall layer 5.
  • the heat exchanger 12 is in turn detachably connected to the subsequent flue gas collecting space 11 by screw bolts 14.
  • the connection between the combustion chamber 1 and the heat exchanger 12 and between the heat exchanger 12 and the flue gas collecting chamber 11 is gas-tight and liquid-tight.
  • a condensate drain 17 is provided in the floor of the flue gas collecting space 11.
  • Figure 7 shows a third embodiment in which the wall 4 of the combustion chamber 1 made of a thin-walled cast material, for. B. consists of a cast metal or a ceramic material.
  • the coils 7 are formed by channels cast onto the wall 4.
  • the heat exchanger 12, the flue gas collection chamber 11 and the connection of the combustion chamber 1 with the heat exchanger 12 and the heat exchanger 12 with the flue gas collection chamber 11 correspond to the exemplary embodiment in FIG. 6.
  • the cold return water of a heating system is fed to the heat exchanger 12 via a return line R1, in which it is fed heated and fed back into the heating system via the flow line V1.
  • a line R2 is branched off from the return line R1, via which a small partial flow of the cold return water is introduced into the coils 7 for cooling the combustion chamber wall 4.
  • a flow line V2 feeds the cooling water after flowing through the coil 7 into the flow line V1 and thus into the heating system.
  • a control valve 18 inserted in line V2 controls the flow rate of the cooling water through the coils 7 in accordance with the temperature of the return water in line R2 determined by means of a sensor 19. By controlling the flow rate by means of the control valve 18, it is ensured that the temperature inside the wall 4 does not rise above 600 ° C. and, when the burner is reduced in power, does not decrease to such an extent that the combustion gases in the combustion chamber 1 are subcooled.
  • FIG. 8 shows a further embodiment in which the wall 4 of the combustion chamber is constructed in the same way as in the embodiment in FIG. 7.
  • two heat exchangers 12 are arranged one behind the other in the direction of flow of the flue gases.
  • the return water of the heating system is fed to the upper heat exchanger 12 near the burner via the return line R1 and, after heating in the heat exchanger 12, is returned to the heating system via the flow line V1.
  • the lower heat exchanger 12 remote from the burner serves to further cool the flue gases which have already cooled on the upper heat exchanger until they condense, so that the boiler can be operated as a condensing boiler.
  • FIG. 9 shows a fifth embodiment of the boiler.
  • a spray device 22 is arranged at the top in the combustion chamber.
  • This spray device 22 consists of a heat-resistant pipeline extending in the longitudinal direction of the combustion chamber 1 with outlet openings for a cleaning liquid, preferably water, distributed over the circumference and the length.
  • a cleaning liquid preferably water
  • the sprayed-in water also flows from top to bottom through the heat exchanger 12 and also rinses off any combustion residues deposited thereon. All the flushing water from the wall 4 of the combustion chamber 1 and from the heat exchanger 12 with the flushed combustion residues is in the bottom of the flue gas collecting chamber 11 collected and derived via the condensate drain 17.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion Of Fluid Fuel (AREA)
  • Resistance Heating (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
  • Control Of Resistance Heating (AREA)

Description

  • Die Erfindung betrifft ein Verfahren zum Betreiben eines Heizkessels gemäß dem Oberbegriff des Patentanspruchs 1 und einen Heizkessel gemäß dem Oberbegriff des Patentanspruchs 6.
  • Aus der DE-OS 35 37 704 ist ein Heizkessel bekannt, bei welchem ein Gebläsebrenner mit horizontal gerichteter Flamme in einem Feuerraum brennt, der horizontal angeordnet ist und sich an seiner zur Achse der Flamme des Gebläsebrenners im wesentlichen parallelen unteren Seite über seine gesamte Länge und Breite gegen einen von Wärmetauschern durchsetzten Rauchgassammelraum öffnet. Die Wand des Feuerraums ist durch einen Wassermantel gekühlt, durch welchen das zu erwärmende Brauchwasser und das Wasser des Heizungssystems strömen. Der die Wand des Feuerraums kühlende Wassermantel nimmt den Hauptteil der von dem Brenner erzeugten Wärme auf, während die im anschließenden Rauchgassammelraum angeordneten Wärmetauscher nur noch als Nachheizfläche wirken, die die Rauchgase auf die Temperatur von etwa 160 bis 180°C abkühlen, mit welcher die Rauchgase in den Kamin eintreten.
  • Das große Volumen des die Wand des Feuerraums umschließenden Wassermantels bewirkt eine starke Kühlung dieser Wand, der Gebläsebrenner muß daher mit einer konstanten Brennerleistung betrieben werden, die auf die Kühlung der Feuerraumwand abgestimmt ist. Eine Reduzierung der Brennerleistung, Z. B. zur Anpassung an einen geringeren Heizbedarf in der Übergangszeit, würde zu einer Unterkühlung der Flamme führen, was einen hohen Schadstoffgehalt der Rauchgase und sogar Kondensation an der Feuerraumwand zur Folge hat. Zur Anpassung an einen verringerten Heizbedarf kann dementsprechend die Leistung des Gebläsebrenners nicht reduziert werden. Der Brenner wird vielmehr mit seiner vollen Leistung intermittierend betrieben. Dieser intermittierende Betrieb hat wiederum häufige Brennerstarts zur Folge, bei welchen jeweils das gesamte Volumen des die Feuerraumwand kühlenden Wassermantels aufgewärmt werden muß. In dieser Anheizphase tritt dabei stets eine Unterkühlung der Brennerflamme mit der Folge eines hohen Schadstoffgehaltes und eines schlechten Wirkungsgrades auf.
  • Um die Nachteile der Unterkühlung der Flamme zu verhindern, werden bei kleinen Heizkesseln geringer Leistung bis ca. 40 kW vorzugsweise sogenannte Verbrennungshilfen eingebaut. Die von dem Wassermantel umschlossene und gekühlte Feuerraumwand ist eine zylindrische Gußwand, in welche koaxial ein Edelstahlrohr eingesetzt ist, in welches die Brennerflamme hineinbrennt. Das Edelstahlrohr wird von nach innen gerichteten Rippen der Gußwand im Abstand von dieser gehalten. Die durch das Edelstahlrohr gebildete heiße Brennkammer wird daher praktisch nicht gekühlt. Aufgrund der geringen Wärmekapazität und der fehlenden Kühlung nimmt diese Brennkammer beim Brennerstart sehr schnell eine hohe Temperatur an, so daß eine rückstandslose Verbrennung der Brennstoffe nicht nur während des Dauerbetriebs, sondern auch sehr schnell mach dem Brennerstart gewährleistet ist. Erst wenn die Verbrennungsgase zwischen der Brennkammer und der Gußwand des Feuerraums hindurchströmen, wird ihnen Wärme entzogen.
  • Bei diesem Heizkessel bewirkt die hohe Temperatur in der heißen Brennkammer und die lange Verweildauer der Verbrennungsgase in der heißen Brennkammer eine starke Umwandlung des Stickstoffs der Luft in NOx, so daß die Abgase einen hohen Anteil an schädlichen Stickoxiden aufweisen. Die die heiße Brennkammer koaxial umgebende Feuerraumwand kann trotz ihrer Rippen den heißen Rauchgasen die Wärme nicht ausreichend entziehen. Daher sind in der Regel noch nachgeschaltete Heizflächen notwendig, um einen ausreichenden Wirkungsgrad zu erreichen. Diese machen den Heizkessel konstruktiv aufwendig. Die im allgemeinen aus Gußeisen bestehende Feuerraumwand mit dem umschließenden Wassermantel weist eine hohe Wärmekapazität auf, so daß der Heizkessel eine große Trägheit besitzt. Die Wärmekapazität wird insbesondere auch dadurch beeinflußt, daß der Feuerraum großvolumig ausgeführt sein muß, um die eingesetzte heiße Brennkammer aufzunehmen und eine ausreichende Wärmetauscherfläche zu bilden.
  • Aus JP-A-57-144842 ist ein Heizkessel bekannt, der eine horizontal angeordnete heiße Brennkammer aufweist, in welchen die Flamme eines Gebläsebrenners brennt. Die die heiße Brennkammer umschließende Feuerraumwand wird von einem Mantel umschlossen, durch welchen die Verbrennungsluft zur Vorwärmung hindurchgeleitet wird. Der Feuerraum ist nach unten über seine gesamte Länge und Breite offen und geht in einen von Wärmetauschern durchsetzten Rauchgassammelraum über. Den Rauchgasen wird die Wärme im wesentlichen nur durch diese im Rauchgassammelraum angeordneten Wärmetauscher entzogen. Auch bei diesem Heizkessel nimmt die ungekühlte heiße Brennkammer im Innern des Feuerraums sehr schnell eine sehr hohe Temperatur an, so daß eine starke Umwandlung des Luftstickstoffs in NOx erfolgt und die Abgase einen hohen Anteil an schädlichen Stickoxiden aufweisen.
  • Aus der DE-PS 32 05 121 ist es schließlich bekannt, die Wand des Feuerraums eines Heizkessels aus einer Blechdoppellage zu bilden, wobei sich die innere und die äußere Wandlage nur bereichsweise berühren, um den Wärmedurchgang von der inneren zur äußeren Wandlage zu verringern. Die innere Wandlage nimmt dadurch eine relativ hohe Temperatur an, während die äußere Wandlage durch den koaxial umschließenden Wassermantel des Heizkessels gekühlt wird.
  • Die Verringerung des Wärmeübergangs von der inneren Wandlage zur äußeren Wandlage ist bei diesem Heizkessel problematisch, da bei einem zu geringen Wärmeübergang eine wirtschaftliche Erwärmung des die äußere Wandlage kühlenden Wassermantels nicht möglich ist, während bei zu starkem Wärmeübergang eine Unterkühlung der inneren Wandlage und damit der Flamme mit den oben beschriebenen Nachteilen auftritt. Da die Feuerraumwand zur Wärmeübertragung auf das Heizungswasser dient, kann auch dieser Heizkessel nur mit im wesentlichen konstanter Brennerleistung betrieben werden. Eine Absenkung der Brennerleistung zur Anpassung an einen verringerten Wärmebedarf ist insbesondere im Dauerbetrieb nicht möglich, da eine Unterkühlung der Flamme an der gekühlten Feuerraumwand auftritt.
  • Der Erfindung liegt die Aufgabe zugrunde, einen Heizkessel zu schaffen, der bei möglichst rückstandsloser Verbrennung der fossilen Brennstoffe einen möglichst geringen NOx-Anteil der Abgase aufweist, vorzugsweise auch bei einer Anpassung der Brennerleistung an einen sich ändernden Wärmebedarf.
  • Diese Aufgabe wird bei einem Verfahren zum Betreiben eines Heizkessels gemäß der in Anspruch 1 genanten Gattung erfindungsgemäß gelöst durch die Merkmale des kennzeichnenden Teils des Patentanspruchs 1 und bei einem Heizkessel der in den Patentansprüchen 6 und 12 genannten Gattung erfindungsgemäß gelöst durch die Merkmale des kennzeichnenden Teils dieser Patentansprüche.
  • Vorteilhafte Ausführungsformen der Erfindung sind in den jeweils rückbezogenen Unteransprüchen angegeben.
  • Der wesentliche Gedanke der Erfindung besteht darin, den Verbrennungsgasen die Wärme nicht an der Feuerraumwand, sondern praktisch ausschließlich an den Wärmetauschern des Rauchgassammelraums zu entziehen und die Wand des Feuerraums wird nur ganz wenig zu kühlen, wobei diese Kühlung so bemessen ist, daß die Temperatur an der Innenseite der Wand des Feuerraums auch im Dauerbetrieb bei voller Brennerleistung nicht über etwa 600°C ansteigt. Diese sanfte Kühlung der Feuerraumwand bewirkt, daß die Verbrennungsgase am Rand der Brennerflamme sehr schnell auf eine Temperatur abgekühlt werden, bei welcher praktisch keine nennenswerte NOx-Bildung auftritt. Da die Kühlung der Feuerraumwand jedoch nicht dem Zwecke der Erwärmung des Heizungs- oder Brauchwassers dient, wird die Kühlung so gering gehalten, daß auch bei einem Absenken der Brennerleistung eine Unterkühlung der Verbrennungsgase an der Feuerraumwand nicht auftritt. Die Brennerleistung kann daher auf etwa 1/10 der maximalen Leistung abgesenkt werden, ohne daß die Kühlung der Wand des Feuerraums zu einer Abkühlung der Verbrennungsgase unter die Temperatur von etwa 180°C führt, bei welcher die Verbrennung der Brennstoffe nicht mehr vollständig erfolgt. Bei dem erfindungsgemäßen Heizkessel kann die Brennerleistung daher in einem sehr großen Bereich von vorzugsweise 1 zu 10 variiert werden, ohne daß im Bereich niedriger Brennerleistung eine unvollständige Verbrennung und Kondensation an der Wand des Feuerraums auftritt und ohne daß im Bereich hoher Brennerleistung der NOx-Gehalt der Abgase ansteigt. Mit den Wärmetauschern, durch welche die Verbrennungswärme abgeführt wird, kommen die heißen Verbrennungsgase erst dann in Berührung, wenn sie den Feuerraum bereits verlassen haben und in den Rauchgassammelraum eingetreten sind. Die Abkühlung der Verbrennungsgase an den Wärmetauschern kann also keine Abkühlung der Flamme verursachen.
  • Da der Feuerraum nicht dazu dient, den Verbrennungsgasen eine größere Wärmemenge zur Wassererwärmung zu entziehen, kann der Feuerraum ein besonders kleines Volumen aufweisen. Es muß nur so groß ausgebildet sein, daß er im wesentlichen gerade die Flamme des Brenners umschließt. Das kleine Volumen des Feuerraumes bringt zusätzlich eine Verkürzung der Verweilzeit der Verbrennungsgase in Flammennähe und damit eine weitere Verringerung der NOx-Erzeugung mit sich. Der Feuerraum umschließt die Flamme des Brenners an drei Längsseiten und an der dem Brenner gegenüberliegenden Stirnseite, während er an der vierten Längsseite gegen den Rauchgassammelraum offen ist. Diese Umschließung der Flamme durch den Feuerraum bewirkt eine Rezirkulation der heißen Verbrennungsgase gegen die Flammenrichtung nach Art der Umkehrflamme bei Heizkesseln mit heißer Brennkammer. Die seitliche Öffnung des Feuerraums zum Rauchgassammelraum hin bewirkt jedoch zusätzlich eine Zirkulation der Verbrennungsgase um eine zur Flamme parallele Achse, so daß sich in dem Feuerraum beiderseits der Flamme zwei gegen die Flammenrichtung schraubenförmig zirkulierend strömende Walzen der Verbrennungsgase bilden. Durch diese Zirkulation werden die Verbrennungsgase an der vorzugsweise tonnenförmig gewölbten Längswand des Feuerraums entlanggeführt und dabei sanft abgekühlt, so daß ihre Temperatur nicht über die Temperatur ansteigt, bei welcher die NOx-Bildung verstärkt einsetzt. Durch die walzenförmige Zirkulation werden die an der Feuerraumwand gekühlten Gase teilweise wieder in den Kern der Flamme zurückgeführt, so daß eine vollständige rückstandslose Verbrennung der fossilen Brennstoffe gewährleistet ist. Ein Teil der zirkulierenden Gase strömt kontinuierlich zu den Wärmetauschern in dem Rauchgassammelraum.
  • Der Rauchgassammelraum ist vorzugsweise unterhalb des Feuerraums angeordnet. Dadurch wird die Strömung der an dem Wärmetauscher zunehmend abgekühlten Rauchgase begünstigt und insbesondere ist eine vorteilhafte Kondensatabführung am Boden des Rauchgassammelraumes möglich, wenn der Heizkessel als sogenannter Brennwertkessel ausgebildet ist, bei welchem die Abgase an der Austrittsseite des Wärmetauschers bis unter den Taupunkt abgekühlt werden, so daß der in den Abgasen enthaltene Wasserdampf mit den verbleibenden Schadstoff (insbesondere Schwefeloxide, Asche, Heizölrückstände) kondensiert und abgeschieden wird. Die Wärmetauscher, die vorzugsweise als Rohrregister den Rauchgassammelraum durchsetzen, können mit relativ geringer Wärmekapazität ausgebildet sein, so daß der Heizkessel mit geringer Trägheit und geringen Energieverlusten reagiert.
  • Die Wand des Feuerraums ist mit geringer Wärmekapazität dünnwandig und zumindest an der Innenseite korrosionsbeständig ausgebildet. Die geringe Wärmekapazität bewirkt eine minimale Trägheit der Feuerraumwand, so daß diese beim Zünden des Brenners innerhalb von Sekunden auf die gewünschte optimale Temperatur zwischen etwa 300 und 500°C gelangt. Auch beim Brennerstart ist daher die Unterkühlung der Flamme und der damit verbundene Schadstoffausstoß minimal. Da erfindungsgemäß vor allem aber auch die Brennerleistung ohne nachteiligen Einfluß auf den Wirkungsgrad und den Schadstoffgehalt der Abgase variiert werden kann, kann die Brennerleistung bei geringerem Wärmebedarf reduziert werden, so daß auch die Zahl der Brennerstarts erheblich verringert werden kann.
  • Die erfindungsgemäß geforderte korrosionsbeständige, sanft gekühlte Feuerraumwand mit geringer Wärmekapazität kann in unterschiedlicher Weise realisiert werden.
  • Die Wand des Feuerraums kann aus zwei Wandlagen bestehen. Die innere Wandlage ist dabei dünnwandig und besteht aus einem korrosionsfesten Material, vorzugsweise aus einem Stahlblech mit einer Stärke von etwa 0,5 bis 2,5 mm oder aus einem dünnwandigen keramischen Material. Die äußere Wandlage ist vorzugweise lose auf der inneren Wandlage angeordnet und mit einer Vorspannung unter gleichmäßigem Anpreßdruck an der inneren Wandlage gehalten. Die äußere Wandlage besteht vorzugsweise aus einem Kupfer- oder Aluminiumblech mit einer Wandstärke von etwa 0,5 bis 1,5 mm, auf welchem zur Kühlung wasserführende Rohrschlangen aufgelötet oder aufgeschweißt sind oder als eingeprägte Wasserkanäle ausgebildet sind. Die lösbar über die innere Wandlage gespannte äußere Wandlage hat den Vorteil, daß die äußere Wandlage ausgetauscht werden kann, um ihre Kühlleistung dem Brenner anzupassen. Außerdem kann die Kühlleistung gesteuert werden, indem der Anpreßdruck der äußeren Wandlage gegen die innere Wandlage, z. B. durch hydraulische Regulierung der Vorspannung, variiert wird. Mit zunehmendem Anpreßdruck nimmt die Berührungsfläche zwischen der inneren und der äußeren Wandlage und damit der Wärmeübergang für die Kühlung zu. Das gut wärmeleitende Material der äußeren Wandlage bewirkt eine gleichmäßige Kühlung der gesamten Wand des Feuerraums trotz der geringen Anzahl der im gegenseitigem Abstand angeordneten Rohrschlangen.
  • In einer anderen Ausführungsform kann die Wand des Feuerraums auch aus Gußmaterial, z. B. Gußeisen, bestehen, wobei das Kühlwasser führende Wasserkanäle angegossen sind, die in geringer Anzahl im gegenseitigen Abstand angeordnet sind.
  • Wird die Brennerleistung während des Betriebs zur Anpassung an einen unterschiedlichen Wärmebedarf in einem größeren Bereich variiert, so ist es vorteilhaft, auch die Kühlung der Feuerraumwand anzupassen, um deren Temperatur möglichst auf dem optimalen Wert von etwa 400 bis 500°C zu halten. Hierzu kann der Flüssigkeitsdurchsatz durch die das Kühlwasser führenden Wasserkanäle gesteuert werden.
  • Zur Kühlung der Feuerraumwand wird vorzugsweise Wasser verwendet, welches bereits in den Wärmetauschern, vorzugsweise in dem brennerfernsten Wärmetauscher vorgewärmt ist. Dies ergibt sich daraus, daß die Feuerraumwand nicht für die Wassererwärmung vorgesehen ist, sondern nur sanft gekühlt werden soll, um die Wandtemperatur nicht zu stark ansteigen zu lassen.
  • Die unter dem Feuerraum angeordneten Wärmetauscher sind vorzugsweise so ausgebildet, daß sie die Verbrennungsgase nur von oben nach unten führen und keine waagerechten Züge für die Verbrennungsgase aufweisen. Außer den günstigen Strömungsverhältnissen für die Verbrennungsgase hat dies den Vorteil, daß sich evtl. Verbrennungsrückstände, wie Ruß und dgl., nicht an den Wärmetauschern ablagern können, sondern durch die Wärmetauscher hindurch nach unten fallen, so daß sie zusammen mit dem Kondensat gesammelt und entsorgt werden. Die Wirksamkeit der Wärmetauscher wird deshalb nicht durch Ablagerungen beeinträchtigt.
  • Der an seiner Unterseite offene Feueraum und die vertikale Führung der Verbrennungsgase in den Wärmetauschern ermöglicht eine besonders einfache Reinigung des Heizkessels. Es kann oben im Feuerraum eine Sprüheinrichtung für eine Reinigungsflüssigkeit, vorzugsweise Wasser, vorgesehen sein, durch welche die Reinigungflüssigkeit in den Feuerraum eingesprüht werden kann. Die Reinigungsflüssigkeit spült dabei sowohl die Wand des Feuerraums als auch die Wärmetauscher ab und fließt durch die Wärmetauscher nach unten ab, wo sie aufgefangen und entsorgt wird. Der gesamte Heizkessel kann auf diese Weise bei Bedarf oder automatisch in vorgegebenen Zeitintervallen in äußerst einfacher Weise gereinigt werden, ohne daß manuelle Reinigungsarbeiten oder sogar eine teilweise Demontage des Heizkessels notwendig sind.
  • Die Wand des Rauchgassammelraumes kann mit der Wand des Feuerraums, bei einer doppellagigen Wand des Feuerraums mit der inneren Wandlage einstückig hergestellt werden. Da der Feuerraum von dem Wärmetauscher und dem Rauchgassammelraum funktionsmäßig völlig getrennt ist, ist es auch möglich, den Wärmetauscher und den Rauchgassammelraum als selbständige Bauteile auszubilden, die gas- und wasserdicht lösbar mit dem Feuerraum verbunden werden. Dadurch kann in besonders einfacher Weise ein den jeweiligen Anforderungen angepaßter Wärmetauscher in Verbindung mit einem Feuerraum verwendet werden, der für ein breites Spektrum von Anwendungsfällen einheitlich serienmäßig hergestellt werden kann. Außerdem ist es möglich, den Feuerraum ohne sonstige Änderungen des Heizkessels auszutauschen, wenn dies zur Anpassung an eine zukünftige Verbesserung der Brennerkonstruktion zweckmäßig ist. Schließlich hat dies den Vorteil, daß der Feuerraum auch in Verbindung mit Wärmetauschern und Rauchgassammelräumen anderer Hersteller verwendet werden kann.
  • Bei Heizkesselleistungen bis ca. 40 kW kann der Feuerraum ein Volumen von vorzugsweise ca. 6 bis 12 dm³ haben. Das Verhältnis Länge zu Breite liegt dabei vorzugsweise zwischen 1,5 und 1,0, während das Verhältnis von Länge zu Höhe des Feuerraumes vorzugsweise im Bereich zwischen 2,0 und 1,0 liegt. Bei diesen Abmessungen ergibt sich eine besonders günstige Ausbildung der zirkulierenden Verbrennungsgaswalzen und ein günstiges Verhältnis von walzenförmig in die Flamme rückzirkulierenden Verbrennungsgasen zu in den Rauchgassammelraum austretenden Verbrennungsgasen.
  • Im folgenden wird die Erfindung anhand von in der Zeichnung dargestellten Ausführungsbeispielen näher erläutert. Es zeigen:
  • Figur 1 -
    schematisch einen Längsschnitt des Heizkessels mit Darstellung der Zirkulationsströmung der Verbrennungsgase,
    Figur 2 -
    schematisch einen Querschnitt des Heizkessels mit Darstellung der Zirkulationsströmung der Verbrennungsgase,
    Figur 3 -
    schematisch einen Querschnitt des Heizkessels mit äußerer Wandlage,
    Figur 4 und 5 -
    unterschiedliche Ausführungen der Rohrschlangen der äußeren Wandschale,
    Figur 6 -
    einen Querschnitt einer zweiten Ausführungsform,
    Figur 7 -
    einen Querschnitt einer dritten Ausführungsform,
    Figur 8 -
    einen Querschnitt einer vierten Ausführungsform,
    Figur 9 -
    einen Querschnitt einer fünften Ausführungsform.
  • Wie in den Figuren 1 und 2 dargestellt ist, besteht der Heizkessel aus einem tonnenförmig gewölbten Feuerraum 1, der an seinen beiden axialen Stirnseiten geschlossen ist. Mittig in einer Stirnwand ist eine Öffnung 9 vorgesehen, in welcher ein Preßluft-Öl- oder Gasgebläsebrenner (nach DIN 4788, Teil 2 bis 5) eingesetzt werden kann. Die Flamme 10 des Brenners brennt dabei horizontal in axialer Richtung in den Feuerraum 1.
  • An der Unterseite ist der Feuerraum 1 über seine gesamte axiale Länge offen und geht in einen Rauchgassammelraum 11 über, der die gleiche Länge und Breite wie der Feuerraum 1 aufweist. Die offene Durchtrittsfläche zwischen dem Feuerraum und dem Rauchgassammelraum 11 beträgt etwa 1/3 bis 1/4 der gesamten Mantelumfangsfläche des Feuerraums 1. Der Rauchgassammelraum 11 wird von einem Wärmetauscher 12 horizontal durchsetzt, der die Form eines Rohrregisters aufweist. Unterhalb des Wärmetauschers 12 ist ein Abzugstutzen 13 vorgesehen, über den der Rauchgassammelraum 11 an einen Kamin angeschlossen werden kann.
  • Die Länge des Feuerraumes 11 beträgt etwa das 1,5- bis 1,0fache seiner Breite und etwa das 2,0- bis 1,0fache seiner Höhe. Das gesamte Volumen des Feuerraums 1 beträgt ca. 6 bis 12 dm³.
  • Im dem Ausführungsbeispiel der Figuren 1 bis 3 werden der Feuerraum 1 und der Rauchgassammelraum 11 gasdicht von einer gemeinsamen Wand 4 umschlossen, die aus einem 0,5 bis 2,5 mm starken Stahlblech besteht. Im Bereich des Feuerraumes 1 ist außen auf der Wand 4 eine äußere Wandlage 5 angeordnet, die sich in loser Berührung an die Stirnflächen und die Umfangsmantelflächen der Wand 4 anlegt. Die äußere Wandlage 5 ist mittels Schrauben oder Zapfen 14 im Bereich des unteren Randes des Feuerraums 1 an der Wand 4 festgelegt. Die äußere Wandlage 5 besteht aus einem Kupfer- oder Aluminium-Blech einer Stärke von 0,5 bis 1,5 mm. Sie ist von den Befestigungspunkten durch die Schrauben oder Zapfen 14 ausgehend in zwei Teilen nach oben über den Feuerraum 1 geführt und wird z. B. oben auf dem Scheitel des Feuerraums 1 durch Bolzen 15 zusammengehalten. Auf den Bolzen 15 sitzende Federn 8 spannen die äußere Wandlage 5 über die Wand 4 und bewirken einen Anpreßdruck der äußeren Wandlage 5 gegen die Wand 4, der zu einer bereichsweisen wärmeleitenden Berührung zwischen der Wand 4 und der äußeren Wandlage 5 führt. Eine Verstärkung des Druckes der Federn 8 bewirkt eine großflächigere Berührung und damit einen besseren Wärmeübergang zwischen der Wand 4 und der äußeren Wandlage 5, während ein schwächerer Druck der Federn 8 zu einer geringeren Berührung und einem schlechterem Wärmeübergang führt. Anstelle von Federn 8 können auch vorzugsweise hydraulisch steuerbare Spannmittel vorgesehen sein, die die äußere Wandlage 5 mit einstellbarem Anpreßdruck und damit mit einstellbarem Wärmeübergang über die Wand 4 spannen.
  • Auf der äußeren Wandlage sind mäanderförmige Rohrschlangen 7 angeordnet, die in gleichmäßiger Verteilung mit gegenseitigem Abstand auf den Stirn- und Mantelflächen der äußeren Wandlage 5 verlaufen. Der gegenseitige Abstand der einzelnen Windungen der Rohrschlangen 7 wird nach der erforderlichen Kühlleistung bemessen. Die Rohrschlangen 7 können auf die äußere Wandlage 5 aufgelötet und aufgeschweißt sein, wie dies in Figur 4 dargestellt ist und runden oder ovalen Querschnitt aufweisen, wie dies in Figur 4 durch die Querschnitte 7 bzw. 7ʹ dargestellt ist. Die äußere Wandlage kann auch ein zweischaliges Blech mit eingeprägten Kanälen als Rohrschlangen 7ʺ sein, wie dies in Figur 5 angedeutet ist.
  • Durch die Rohrschlangen 7 wird ein Kühlmittel geleitet, wozu vorzugsweise ein Bruchteil des in dem Wärmetauscher 12 vorgewärmten Wassers verwendet wird, das über ein Regelventil 6 in steuerbarer Durchflußmenge abgezweigt wird.
  • Wie aus den Figuren 1 und 2 zu erkennen ist, strömen die heißen Verbrennungsgase der Flamme 10 in einer axialen Rezirkulationsströmung 2 gegen die Richtung der Flamme 10 zurück . Diese Rezirkulation kann noch durch eine in Figur 1 angedeutete Auswölbung 16 der dem Brenner gegenüberliegenden Stirnwand des Feuerraumes 1 begünstigt werden. Aufgrund der asymmetrischen Öffnung des Feuerraumes 1 gegen den Rauchgassammelraum 11 erhalten die axial zurückströmenden Verbrennungsgase zusätzlich eine Bewegungskomponente in radialer Richtung, die vor allem die von der Flamme 10 nach oben strömenden Verbrennungsgase entlang der gekühlten Feuerraumwand 4 nach unten führt. Ein Teil der auf diese Weise mit der radialen Zirkulationsströmung 3 nach unten geführten Verbrennungsgase strömt durch den Wärmetauscher 12 in den Rauchgassammelraum 11, während der andere Teil durch die walzenförmige Zirkulation 3 wieder in die Flamme 10 zurückgeführt wird.
  • Durch die axiale Rezirkulation mit der walzenförmigen Drehung beiderseits der Flamme 10 entlang der gekühlten Wand 4 ergibt sich einerseits eine ausreichende Rückführung der Verbrennungsgase in die Flamme 10, um eine vollständige Verbrennung zu gewährleisten, und andererseits eine gewisse Kühlung der in die Flamme zurückgeführten Verbrennungsgase, die eine zu hohe Flammentemperatur verhindert und damit der NOx-Bildung entgegenwirkt. Der ständig nach unten in den Rauchgassammelraum strömende Anteil der heißen Verbrennungsgase bewirkt in Verbindung mit dem kleinen Volumen des Feuerraums 1 eine kurze Verweilzeit der Verbrennungsgase im Feuerraum 1, was ebenfalls die Entstehung von NOx in den Abgasen entgegenwirkt.
  • In Figur 6 ist eine zweite Ausführungsform des Heizkessels dargestellt. In dieser Ausführungsform ist der Feuerraum 1 mit seiner Wand 4 ein gesondertes Bauteil, das mittels Schraubbolzen 14, die auch zur Befestigung der äußeren Wandlage 5 dienen, lösbar mit dem Wärmetauscher 12 verbunden ist. Der Wärmetauscher 12 ist wiederum durch Schraubbolzen 14 lösbar mit dem anschließenden Rauchgassammelraum 11 verbunden . Die Verbindung zwischen dem Feuerraum 1 und dem Wärmetauscher 12 sowie zwischen dem Wärmetauscher 12 und dem Rauchgassammelraum 11 ist gasdicht und flüssigkeitsdicht. Zur Verwendung als Brennwertkessel, bei welchem die Rauchgase unter den Taupunkt abgekühlt werden und kondensieren, ist ein Kondensatablaß 17 im Boden des Rauchgassammelraumes 11 vorgesehen.
  • Figur 7 zeigt ein drittes Ausführungsbeispiel, bei welchem die Wand 4 des Feuerraums 1 aus einem dünnwandigen gegossenen Material, z. B. aus einem Gußmetall oder aus einem keramischen Material besteht. Die Rohrschlangen 7 sind durch an die Wand 4 angegossene Kanäle gebildet. Der Wärmetauscher 12, die Rauchgassammelkammer 11 und die Verbindung des Feuerraumes 1 mit dem Wärmetauscher 12 und des Wärmetauschers 12 mit der Rauchgassammelkammer 11 entsprechen dem Ausführungsbeispiel der Figur 6. Über eine Rücklaufleitung R1 wird das kalte Rücklaufwasser einer Heizungsanlage dem Wärmetauscher 12 zugeführt,wird in diesem erwärmt und über die Vorlaufleitung V1 wieder in die Heizungsanlage eingespeist. Von der Rücklaufleitung R1 ist eine Leitung R2 abgezweigt, über welche ein geringer Teilstrom des kalten Rücklaufwassers zur Kühlung der Feuerraumwand 4 in die Rohrschlangen 7 eingeleitet wird. Eine Vorlaufleitung V2 speist das Kühlwasser nach dem Durchströmen der Rohrschlange 7 in die Vorlaufleitung V1 und damit in die Heizungsanlage. Ein in die Leitung V2 eingesetztes Regelventil 18 steuert die Durchflußmenge des Kühlwassers durch die Rohrschlangen 7 entsprechend der mittels eines Fühlers 19 ermittelten Temperatur des Rücklaufwassers in der Leitung R2. Durch die Steuerung der Durchflußmenge mittels des Regelventils 18 wird gewährleistet, daß die Temperatur innen an der Wand 4 nicht über 600°C ansteigt und bei einer Leistungsabsenkung des Brenners nicht soweit absinkt, daß eine Unterkühlung der Verbrennungsgase im Feuerraum 1 auftritt.
  • Figur 8 zeigt eine weitere Ausführungsform, bei welcher die Wand 4 des Feuerraums in gleicher Weise aufgebaut ist, wie bei dem Ausführungsbeispiel der Figur 7. Im Gegensatz zu dem Ausführungsbeispiel der Figur 7 sind jedoch zwei Wärmetauscher 12 in Strömungsrichtung der Rauchgase hintereinander angeordnet. Dem brennernahen oberen Wärmetauscher 12 wird über die Rücklaufleitung R1 das Rücklaufwasser der Heizungsanlage zugeführt, das nach Erwärmung im Wärmetauscher 12 über die Vorlaufleitung V1 wieder der Heizungsanlage zugeführt wird. Der brennerferne untere Wärmetauscher 12 dient dazu, die bereits am oberen Wärmetauscher abgekühlten Rauchgase weiter bis zur Kondensation abzukühlen, so daß der Heizkessel als Brennwertkessel betrieben werden kann. Um an dem unteren Wärmetauscher 12 die notwendige Abkühlung der Rauchgase unter den Kondensationspunkt zu erreichen, wird dem unteren Wärmetauscher 12 über die Leitung R2 kaltes Wasser aus der untersten kältesten Schicht eines Schichtenspeichers zugeführt. Dieses in dem unteren Wärmetauscher 12 vorgewärmte Wasser wird über die Leitung V2 den Rohrschlangen 7 zur Kühlung der Wand 4 des Feuerraums 1 zugeführt. Auch hier wird die Durchflußmenge durch das Regelventil 18 entsprechend der mittels des Fühlers 19 ermittelten Wassertemperatur in der Rohrleitung V2 eingestellt. Da durch den unteren Wärmetauscher 12 den Rauchgasen für die Kondensation nur noch eine geringe Restwärme entzogen werden muß, muß nur eine geringe Menge des kalten Wassers dem unteren Wärmetauscher 12 zugeführt werden. Diese geringe Durchflußmenge ist ausreichend für die Kühlung der Feuerraumwand 4, da diese nur so wenig gekühlt werden muß, daß die Temperatur an der Innenseite der Wand 4 nicht über etwa 600°C ansteigt.
  • Figur 9 zeigt ein fünftes Ausführungsbeispiel des Heizkessels. Um den Heizkessel einfach reinigen zu können, ist oben in dem Feuerraum eine Sprüheinrichtung 22 angeordnet. Diese Sprüheinrichtung 22 besteht aus einer sich in Längsrichtung des Feuerraums 1 erstreckenden hitzebeständigen Rohrleitung mit über den Umfang und die Länge verteilten Austrittsöffnungen für eine Reinigungsflüssigkeit, vorzugsweise Wasser. Zur Reinigung des gesamten Heizkessels wird bei Bedarf oder automatisch in vorgegebenen Zeitintervallen Wasser oder eine sonstige Reinigungsflüssigkeit durch die Sprüheinrichtung 22 versprüht, wie dies in Figur 9 durch Pfeile angedeutet ist. Das Wasser spült evtl. vorhandene Verbrennungsrückstände von der Wand 4 des Feuerraums 1 ab. Da die Führungen für die Verbrennungsgase den Wärmetauscher 12 vertikal von oben nach unten durchsetzen, fließt das eingesprühte Wasser auch von oben nach unten durch den Wärmetauscher 12 und spült auch an diesem evtl. abgelagerte Verbrennungsrückstände ab. Das gesamte Spülwasser von der Wand 4 des Feuerraums 1 und von dem Wärmetauscher 12 mit den abgespülten Verbrennungsrückständen wird unten in der Rauchgassammelkammer 11 aufgefangen und über den Kondensatablaß 17 abgeleitet.

Claims (21)

  1. Verfahren zum Betreiben eines Heizkessels mit einem Feuerraum, dessen Wand gekühlt wird, mit wenigstens einem Gebläsebrenner, dessen Flamme in den Feuerraum gerichtet ist, und mit an den Feuerraum anschließenden Wärmetauschern, die von den Rauchgasen durchströmt werden, wobei den Rauchgasen die Wärme im wesentlichen nur durch die Wärmetauscher entzogen wird, dadurch gekennzeichnet, daß die Wand des Feuerraums in Abhängigkeit von der Brennerleistung so gekühlt wird, daß bei maximaler Brennerleistung die Temperatur an der Innenseite der Wand ca. 600 °C nicht überschreitet und bei Reduzierung der Brennerleistung bis ca. 1/10 der maximalen Brennerleistung ca. 180 °C nicht unterschreitet.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Kühlung der Wand des Feuerraums zur Anpassung an die variierende Brennerleistung während des Betriebs gesteuert wird.
  3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß die Wand des Feuerraums flüssigkeitsgekühlt, vorzugsweise wassergekühlt wird und die Kühlung entsprechend der Temperatur der Kühlflüssigkeit gesteuert wird.
  4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, daß die Durchflußmenge der Kühlflüssigkeit entsprechend der Temperatur der Kühlflüssigkeit gesteuert wird.
  5. Verfahren nach Anspruch 3, dadurch gekennzeichnet, daß der Wärmeübergang von der Wand des Feuerraums zu der Kühlflüssigkeit entsprechend der Temperatur der Kühlflüssigkeit gesteuert wird.
  6. Heizkessel mit wenigstens einem Gebläsebrenner, mit einem Feuerraum (1), der die Flamme (10) des Gebläsebrenners mit einer gekühlten Wand (4) umschließt und an einer zur Achse der Flamme (10) im wesentlichen parallelen Seite über seine gesamte Länge und Breite offen ist und in einen von Wärmetauschern (12) durchsetzten Rauchgassammelraum (11) übergeht, und mit einem an den Rauchgassammelraum (11) anschließenden Abzugstutzen (13), dadurch gekennzeichnet, daß die Wand (4) des Feuerraums (1) von einer äußeren Wandlage (5) umschlossen ist, die unter verstellbarem Anpreßdruck an der Wand (4) anliegt, im Abstand voneinander angeordnete flüssigkeitsdurchströmte Rohrschlangen (7, 7', 7") aufweist und die Wand (4) nur bereichsweise berührt.
  7. Heizkessel nach Anspruch 6, dadurch gekennzeichnet, daß die äußere Wandlage (5) aus einem lose an der Wand (4) anliegenden wärmeleitenden Blech besteht.
  8. Heizkessel nach Anspruch 7, dadurch gekennzeichnet, daß das Blech lösbar an der Wand (4) angebracht ist.
  9. Heizkessel nach einem der Ansprüche 6 bis 8, dadurch gekennzeichnet, daß die Rohrschlangen (7, 7', 7") durch in dem Wärmetauscher (12) vorgewärmtes Wasser durchströmt sind.
  10. Heizkessel nach einem der Ansprüche 6 bis 9, dadurch gekennzeichnet, daß die Durchflußmenge der die Rohrschlangen (7, 7', 7") durchströmenden Flüssigkeit mittels eines Regelventils (6) in Abhängigkeit von der Brennerleistung einstellbar ist.
  11. Heizkessel nach einem der Ansprüche 6 bis 10, dadurch gekennzeichnet, daß die Wand (4) des Feuerraums (1) aus korrosionsbeständigem Stahlblech oder einem keramischen Material besteht.
  12. Heizkessel mit wenigstens einem Gebläsebrenner, mit einem Feuerraum (1), der die Flamme (10) des Gebläsebrenners mit einer gekühlten Wand (4) umschließt und an einer zur Achse der Flamme (10) im wesentlichen parallelen Seite über seine gesamte Länge und Breite offen ist und in einen von Wärmetauschern (12) durchsetzten Rauchgassammelraum (11) übergeht, und mit einem an den Rauchgassammelraum (11) anschließenden Abzugstutzen (13) dadurch gekennzeichnet, daß die Wand (4) des Feuerraums (1) aus einem dünnwandig gegossenen Material, vorzugsweise Metallguß, mit im Abstand voneinander angeordneten angegossenen flüssgkeitsdurchströmten Rohrschlangen (7) besteht und daß die Durchflußmenge der die Rohrschlangen (7) durchströmenden Flüssigkeit mittels eines Regelventils (18) in Abhängigkeit von der Brennerleistung einstellbar ist.
  13. Heizkessel nach Anspruch 12, dadurch gekennzeichnet, daß die Rohrschlangen (7) durch in dem Wärmetauscher (12) vorgewärmtes Wasser durchströmt sind.
  14. Heizkessel nach einem der Ansprüche 6 bis 13, dadurch gekennzeichnet, daß der Feuerraum (1) tonnenförmig gewölbt ist, daß die Flamme (10) des Brenners im wesentlichen in der Mittelachse des Feuerraums (10) brennt, daß der Rauchgassammelraum (11) unter dem Feuerraum (1) angeordnet ist, und daß die Durchtrittsfläche zwischen dem Feuerraum (1) und dem Rauchgassammelraum (11) etwa 1/4 bis 1/3 der Umfangsmantelfläche des Feuerraumes (1) einnimmt.
  15. Heizkessel nach Anspruch 14, dadurch gekennzeichnet, daß die Länge des Feuerraumes (1) etwa das 1,5- bis 1,0-fache seiner Breite beträgt.
  16. Heizkessel nach Anspruch 14 oder 15, dadurch gekennzeichnet, daß die Länge des Feuerraumes (1) etwa das 2,0- bis 1,0-fache seiner Höhe beträgt.
  17. Heizkessel nach einem der Ansprüche 6 bis 16, dadurch gekennzeichnet, daß das Volumen des Feuerraumes (1) ca. 6 bis 12 dm³ beträgt.
  18. Heizkessel nach einem der Ansprüche 6 bis 17, dadurch gekennzeichnet, daß die Wand (4) den Feuerraum (1), die Wärmetauscher (12) und den Rauchgassammelraum (11) gemeinsam gasdicht umschließt.
  19. Heizkessel nach einem der Ansprüche 6 bis 17, dadurch gekennzeichnet, daß die Wand (4) des Feuerraumes (1) mit den Wärmetauschern (12) gasdicht und flüssigkeitsdicht lösbar verbunden ist, wobei vorzugsweise die Wärmetauscher (12) auch gasdicht und flüssigkeitsdicht lösbar mit dem Rauchgassammelraum (11) verbunden sind.
  20. Heizkessel nach einem der Ansprüche 6 bis 19, dadurch gekennzeichnet, daß die Wärmetauscher (12) nur vertikal von oben nach unten führende Verbrennungsgasführungen aufweisen.
  21. Heizkessel nach Anspruch 20, dadurch gekennzeichnet, daß in dem Feuerraum (1) eine Sprüheinrichtung (22) vorgesehen ist, um eine Reinigungsflüssigkeit in den Heizkessel einzuleiten.
EP87117187A 1987-01-20 1987-11-21 Heizkessel und Verfahren zum Betreiben des Heizkessels Expired - Lifetime EP0275401B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT87117187T ATE72319T1 (de) 1987-01-20 1987-11-21 Heizkessel und verfahren zum betreiben des heizkessels.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3701439 1987-01-20
DE3701439A DE3701439C3 (de) 1987-01-20 1987-01-20 Verfahren zum Betreiben eines Heizkessels und nach diesem Verfahren betriebener Heizkessel

Publications (3)

Publication Number Publication Date
EP0275401A2 EP0275401A2 (de) 1988-07-27
EP0275401A3 EP0275401A3 (en) 1988-11-09
EP0275401B1 true EP0275401B1 (de) 1992-01-29

Family

ID=6319106

Family Applications (1)

Application Number Title Priority Date Filing Date
EP87117187A Expired - Lifetime EP0275401B1 (de) 1987-01-20 1987-11-21 Heizkessel und Verfahren zum Betreiben des Heizkessels

Country Status (4)

Country Link
US (1) US4796569A (de)
EP (1) EP0275401B1 (de)
AT (1) ATE72319T1 (de)
DE (2) DE3701439C3 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19581074C1 (de) * 1994-09-21 2000-05-31 Rudolf Justl Brennwertkessel

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL194652C (nl) * 1989-05-20 2002-10-04 Vaillant Joh Gmbh & Co Doorstroomwaterverhitter.
DE10156124B4 (de) * 2001-11-16 2004-06-24 Astrium Gmbh Flüssigkeitsgekühltes Raketentriebwerk mit mäanderförmigen Kühlkanälen
EP2960608A4 (de) * 2013-02-21 2016-11-09 Obchestvo S Ogranichennoj Otvetstvennostju Promishlennaja Kompanija Tehnologija Metallov Verfahren zur kühlung des gehäuses eines schmelzaggregats und schmelzaggregat
CN107702320A (zh) * 2016-09-30 2018-02-16 重庆重锅能源科技有限公司 环保节能锅炉
US20190353402A1 (en) * 2018-05-17 2019-11-21 Dong Yong Hot Water System Inc. Temperature control system of gas-fired water heater

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE622114A (de) *
FR520171A (fr) * 1919-01-13 1921-06-21 Hugo Junkers Dispositif contre la condensation de l'eau des gaz de chauffage sur les parois refroidies
DE337324C (de) * 1919-01-14 1921-05-30 Hugo Junkers Schutzvorrichtung an Fluessigkeitserhitzern
DE811865C (de) * 1950-05-18 1951-08-23 Walter Dipl-Ing Bruemmerhoff Gasgefeuerter Kessel
DE950315C (de) * 1952-09-17 1956-10-04 Rudolf Hingst Dipl Ing Waermeschutzwand fuer Feuer- oder Reaktionsraeume
US3120869A (en) * 1958-05-15 1964-02-11 Babcock & Wilcox Co Furnace wall of spaced tubes welded to contoured plate
CH510237A (de) * 1968-06-15 1971-07-15 Troesch Hans A Dr Ing Verfahren zum Regeln von Heizungsanlagen und Heizungsanlage zur Ausführung des Verfahrens
US3704747A (en) * 1970-09-30 1972-12-05 Vni I Pi Ochistke Tekhnologrch Evaporative cooling of metallurgical furnaces
US4026352A (en) * 1974-09-04 1977-05-31 Sergei Mikhailovich Andoniev Device for evaporative cooling of metallurgical units
FR2296149A1 (fr) * 1974-12-24 1976-07-23 Hanrez Sa J Atel Chaudiere pour le chauffage de liquides
US4250840A (en) * 1979-02-15 1981-02-17 Kudinov Gennady A Blast furnace cooling arrangement
JPS57144842A (en) * 1981-03-05 1982-09-07 Osaka Gas Co Ltd Hot water heater
DE3205121C2 (de) * 1982-02-12 1985-11-28 Hans Dr.h.c. 3559 Battenberg Vießmann Heizungskessel
DE3205122C2 (de) * 1982-02-12 1985-11-14 Hans Dr.h.c. 3559 Battenberg Vießmann Heizungskessel
GB8320277D0 (en) * 1983-07-27 1983-09-01 Simpson V J Gas fired boilers
DE8324969U1 (de) * 1983-08-31 1986-10-02 Buderus Ag, 6330 Wetzlar Zentralheizungskessel
DE3431392A1 (de) * 1984-08-25 1986-02-27 Krupp Koppers GmbH, 4300 Essen Verfahren und vorrichtung zur erzeugung von mitteldruckdampf bei der kuehlung eines kohlevergasers
FI71420C (fi) * 1984-10-26 1987-12-14 Neste Oy Vaermepanna.

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19581074C1 (de) * 1994-09-21 2000-05-31 Rudolf Justl Brennwertkessel

Also Published As

Publication number Publication date
DE3701439A1 (de) 1988-07-28
EP0275401A2 (de) 1988-07-27
DE3701439C2 (de) 1989-05-24
ATE72319T1 (de) 1992-02-15
DE3776543D1 (de) 1992-03-12
US4796569A (en) 1989-01-10
EP0275401A3 (en) 1988-11-09
DE3701439C3 (de) 1994-07-28

Similar Documents

Publication Publication Date Title
DE2808213C2 (de) Rekuperativkoksofen sowie Verfahren zum Betreiben desselben
DE60308696T2 (de) Wärmetauscher für ein brennwertgerät mit doppelrohrbündel
DE2950901C2 (de) Zentralheizungsanlage
EP0275401B1 (de) Heizkessel und Verfahren zum Betreiben des Heizkessels
EP1794495B1 (de) Fossil beheizter durchlaufdampferzeuger
DE3329777A1 (de) Heizungskessel fuer fluessige und gasfoermige brennstoffe
DE29602990U1 (de) Wasserheizer
EP0518880A1 (de) Vorrichtung zur indirekten beheizung von fluiden.
DE3304868C2 (de) Wassererhitzer
DE9105410U1 (de) Zentralheizungskessel
DE2942167C2 (de) Brennkammer für einen mit flüssigen oder gasförmigen Brennstoffen beheizten Heizkessel
WO1991000481A1 (de) Heizkessel
EP0497224B1 (de) Niedertemperaturheizkessel zum Verbrennen flüssiger oder gasförmiger Brennstoffe
DE2952564C1 (de) Heizungskessel
EP0851180B1 (de) Heizungsanlage
DE2758181A1 (de) Vorrichtung zur rueckgewinnung der abgaswaerme von heizungsfeuerungen
EP0079980B1 (de) Warmwasser-, Heisswasser- oder Dampfkessel mit Gas- oder Ölfeuerung
DE50237C (de) Dampferzeuger mit capillaren Dampfentwickelungsrohren (System Serpollet)
AT5653U1 (de) Wärmetauscher
AT397856B (de) Heizungsanlage für heizung und brauchwassererwärmung
DE69200149T2 (de) Gasbetriebener Wasserrohrkessel.
EP0059898A2 (de) Arbeitsverfahren zum Betreiben einer mit einem separaten Rauchgas-Wärmeaustauscher versehenen Warmwasserheizungsanlage
DE8128210U1 (de) Vorrichtung zur erhoehung der waermeausbeute bei einem zimmerkamin oder herdfeuer
DE3138344A1 (de) Vorrichtung zur erhoehung der waermeausbeute bei einem zimmerkamin oder herdfeuer
DE2362236A1 (de) Verfahren und vorrichtung zur besseren ausnutzung der waermeenergie bei heizungen, insbesondere warmwasserheizungen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

17P Request for examination filed

Effective date: 19890411

17Q First examination report despatched

Effective date: 19900308

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

Effective date: 19920129

Ref country code: NL

Effective date: 19920129

Ref country code: BE

Effective date: 19920129

Ref country code: GB

Effective date: 19920129

Ref country code: SE

Effective date: 19920129

REF Corresponds to:

Ref document number: 72319

Country of ref document: AT

Date of ref document: 19920215

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3776543

Country of ref document: DE

Date of ref document: 19920312

ET Fr: translation filed
NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]
PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: JOH. VAILLANT GMBH U. CO

Effective date: 19920929

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19921130

PLBM Termination of opposition procedure: date of legal effect published

Free format text: ORIGINAL CODE: 0009276

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: OPPOSITION PROCEDURE CLOSED

27C Opposition proceedings terminated

Effective date: 19940221

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20011119

Year of fee payment: 15

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030731

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20061122

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20061130

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20070223

Year of fee payment: 20

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO