[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP0436204A1 - Verfahren zur Gewinnung eines Fadenlaufsignals - Google Patents

Verfahren zur Gewinnung eines Fadenlaufsignals Download PDF

Info

Publication number
EP0436204A1
EP0436204A1 EP90125114A EP90125114A EP0436204A1 EP 0436204 A1 EP0436204 A1 EP 0436204A1 EP 90125114 A EP90125114 A EP 90125114A EP 90125114 A EP90125114 A EP 90125114A EP 0436204 A1 EP0436204 A1 EP 0436204A1
Authority
EP
European Patent Office
Prior art keywords
thread
sensor
signal
frequency
filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP90125114A
Other languages
English (en)
French (fr)
Other versions
EP0436204B1 (de
Inventor
Peter Anderegg
Peter Oehy
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maschinenfabrik Rieter AG
Original Assignee
Maschinenfabrik Rieter AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Maschinenfabrik Rieter AG filed Critical Maschinenfabrik Rieter AG
Priority to EP94102738A priority Critical patent/EP0608001B1/de
Publication of EP0436204A1 publication Critical patent/EP0436204A1/de
Application granted granted Critical
Publication of EP0436204B1 publication Critical patent/EP0436204B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H59/00Adjusting or controlling tension in filamentary material, e.g. for preventing snarling; Applications of tension indicators
    • B65H59/40Applications of tension indicators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H63/00Warning or safety devices, e.g. automatic fault detectors, stop-motions ; Quality control of the package
    • B65H63/02Warning or safety devices, e.g. automatic fault detectors, stop-motions ; Quality control of the package responsive to reduction in material tension, failure of supply, or breakage, of material
    • B65H63/024Warning or safety devices, e.g. automatic fault detectors, stop-motions ; Quality control of the package responsive to reduction in material tension, failure of supply, or breakage, of material responsive to breakage of materials
    • B65H63/028Warning or safety devices, e.g. automatic fault detectors, stop-motions ; Quality control of the package responsive to reduction in material tension, failure of supply, or breakage, of material responsive to breakage of materials characterised by the detecting or sensing element
    • B65H63/032Warning or safety devices, e.g. automatic fault detectors, stop-motions ; Quality control of the package responsive to reduction in material tension, failure of supply, or breakage, of material responsive to breakage of materials characterised by the detecting or sensing element electrical or pneumatic
    • B65H63/0321Warning or safety devices, e.g. automatic fault detectors, stop-motions ; Quality control of the package responsive to reduction in material tension, failure of supply, or breakage, of material responsive to breakage of materials characterised by the detecting or sensing element electrical or pneumatic using electronic actuators
    • B65H63/0327Warning or safety devices, e.g. automatic fault detectors, stop-motions ; Quality control of the package responsive to reduction in material tension, failure of supply, or breakage, of material responsive to breakage of materials characterised by the detecting or sensing element electrical or pneumatic using electronic actuators using piezoelectric sensing means
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01HSPINNING OR TWISTING
    • D01H13/00Other common constructional features, details or accessories
    • D01H13/14Warning or safety devices, e.g. automatic fault detectors, stop motions ; Monitoring the entanglement of slivers in drafting arrangements
    • D01H13/16Warning or safety devices, e.g. automatic fault detectors, stop motions ; Monitoring the entanglement of slivers in drafting arrangements responsive to reduction in material tension, failure of supply, or breakage, of material
    • D01H13/1616Warning or safety devices, e.g. automatic fault detectors, stop motions ; Monitoring the entanglement of slivers in drafting arrangements responsive to reduction in material tension, failure of supply, or breakage, of material characterised by the detector
    • D01H13/1633Electronic actuators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2513/00Dynamic entities; Timing aspects
    • B65H2513/10Speed
    • B65H2513/11Speed angular
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2515/00Physical entities not provided for in groups B65H2511/00 or B65H2513/00
    • B65H2515/30Forces; Stresses
    • B65H2515/31Tensile forces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2553/00Sensing or detecting means
    • B65H2553/20Sensing or detecting means using electric elements
    • B65H2553/26Piezoelectric sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2701/00Handled material; Storage means
    • B65H2701/30Handled filamentary material
    • B65H2701/31Textiles threads or artificial strands of filaments

Definitions

  • the present invention relates to a method for obtaining a thread running signal, in which at least one sensor is attached to the suspension of a thread guide and supplies a signal which, among other things, reflects the vibrations induced in the thread guide by the thread movement.
  • a thread break at a spinning station results in loss of production and subcontracted work and in certain cases can also damage the machine.
  • the main causes of thread breaks are, for example, thin spots in the yarn, poorly maintained parts in the yarn formation process or incorrect setting of the spinning machine.
  • Known thread monitoring devices record parameters such as the ballooning of the thread or the speed of the rotor in a ring spinning machine, the changes over time in the thread thickness of the running thread or the cross-section of the thread.
  • the aforementioned DE-OS 29 19 836 discloses a yarn break sensor which consists of a piezoelectric element which is attached to a part of the yarn guide and whose output signal is further processed to detect a yarn break.
  • the frequency of the mechanical vibrations is about 1 kHz, while the thread guide vibrates at about 15 kHz.
  • These latter vibrations are evaluated in DE-OS 29 19 836 to determine thread breaks in such a way that the natural vibrations are discriminated against the mechanical vibrations.
  • the two connecting lines of the piezoelectric element are connected to a bandpass filter, which receives, ie transmits, the natural vibration component in the output signals of the piezoelectric element. This natural vibration component is then amplified to a certain value by means of an amplifier.
  • a rectifier filter converts the AC signals into DC signals.
  • a voltage range is defined in which normal operation is guaranteed, and a corresponding logic output signal is present at the output of the comparator (DE-OS 29 19 836, p. 10, lines 29 to 11, line 6 ).
  • the thread sensor from DE-OS 29 19 836 is only able to determine thread breaks, but not to measure the thread tension.
  • the invention has for its object to provide an inexpensive thread tension measuring device, which can possibly also serve as a thread break detector, is inexpensive to manufacture and can be attached to existing thread processing or generating machines without the attachment itself to a change in the thread tension or leads to an undesirable additional stress on the thread.
  • the present invention is characterized in terms of method in that that a broadband sensor in the form of a piezo film is used, which is arranged at least essentially in a plane containing the thread running direction or a plane parallel to it in such a way that the suspension of the thread guide executes elastic movements on both sides (in relation to the thread running direction) that to obtain a signal corresponding to the thread tension, either the frequency of an element winding the thread and / or harmonic of this frequency is filtered out from the sensor signal and the level of this filtered frequency or frequencies is measured, the frequency or frequencies filtered out by a filter being well above that Basic oscillation frequency of the thread guide, ie the natural oscillation frequency of the thread guide eye lies or lie, and that the pass frequency of the filter is tracked in accordance with the frequency change of the element winding the thread, the quality of the filter preferably e is kept at least substantially constant.
  • the invention is based on the knowledge belonging to the invention that the output signal of the sensor is a complex analog signal which also contains, among other things, the speed of the rotor as a fundamental vibration in the course of the deflection of the thread guide as well as harmonic values of this fundamental vibration and the so-called thread noise. in addition to other vibrations such as the natural vibrations of the thread guides and vibrations induced by machine vibrations. Furthermore, the invention is based on the inventive finding that both the level of the rotor speed and the level of harmonic frequencies of the rotor speed are a function of the thread tension, so that an evaluation of the thread tension either at the fundamental frequency (f 1) or at the harmonic frequencies (f 2 to f9) the rotor speed is possible.
  • the evaluation of the sensor signal can therefore be based on the fact that the level of the thread tension is detected as a value or that a level comparison is carried out with a reference level.
  • This reference level can depend on machine parameters such as spindle speed, maintenance status, etc.
  • the result of this comparison can then be used to control the corresponding machine, for example to control the spindle speed of a ring spinning machine in the sense of maintaining a predetermined thread tension or a predetermined course of the thread tension using the bobbin forming method.
  • the thread guide is preferably designed as a thread guide eyelet, for example in the form of the well-known Sauschwanzerls.
  • the thread guide eyelet can be fastened to its holder by means of a leaf spring, the sensor being fastened to the leaf spring.
  • the level of the leaf spring itself should be arranged essentially parallel to the thread movement.
  • the piezo sensors used in the prior art are piezo crystals which have a pronounced resonance and are therefore not sufficiently broadband for the purpose of the invention.
  • a special embodiment of the present invention is characterized in that the piezo film is a so-called PVDF film, which is particularly inexpensive to obtain and is extremely thin.
  • These piezo foils are very broadband and the use of such a piezo film advantageously does not falsify the measured vibrations.
  • non-thread-guiding reference sensor for one or more thread tension sensors which emits a signal which is dependent on the machine vibrations, wherein the thread tension signals can be compared with the reference signal and a difference value can be formed .
  • the reference signal can also be used as a threshold value for the generation of binary thread break information.
  • FIG. 2 shows a side view of a spinning station 10 of a ring spinning machine, in which a thread 12 leaves the outlet rollers 14, 16 of the drafting system and leads through the thread guide eyelet 18 and an anti-balloon ring 20 to a ring traveler 22 rotating on the ring track 21 of the ring rail 23, whereby it is wound on the rotating spindle sleeve 24 to a cop 26.
  • the thread Due to the rotation of the rotor, the thread is guided around the spindle sleeve in such a way that a balloon is formed due to the centrifugal force, which is limited by the anti-balloon or balloon limiting ring 20 and has its tip in the thread guide eyelet.
  • the friction and air resistance of the runner, the air resistance of the thread and the frictional resistance between the thread and the runner and between the thread and the balloon confinement ring produce a thread tension which can be measured at the location of the thread guide.
  • This thread tension increases with increasing spindle speed.
  • a spindle speed range between about 6000 rpm and 20,000 rpm, whereby the thread tension sensor, as described here, easily for spindle speeds or rotor revolutions (which are only 1 or 2% lower than the spindle speeds and can therefore be equated with them ) up to 30,000 rpm and higher are suitable.
  • the horizontal components of this frictional force are used, which are proportional to the thread tension due to the friction coefficient.
  • This thread sensor is shown schematically in FIGS. 1a and 1b.
  • the thread guide eyelet 18 is so tapered in the rear part that a bendable, resilient zone 30 with the shape of a Leaf spring is created.
  • the leaf spring-like part 30 is clamped at its end facing away from the thread guide eyelet in a clamping block 35 and is held by means of this clamping block firmly on the frame of the ring spinning machine on a longitudinal rod 37 of the ring spinning machine.
  • a strain-sensitive sensor element 32 is attached, which preferably consists of a PVDF piezo film.
  • This film emits an extension-dependent electrical signal to a downstream electronics (FIG. 5) via the connecting cable 36.
  • the thread 12 runs essentially in a straight line from the pair of delivery rollers 14, 16 to the thread guide 18 and is deflected on the thread guide due to the balloon that is being formed.
  • the rotational movement of the carriage 22 causes the thread to make a circular movement within the thread guide, whereby the forces exerted on the thread guide alternately act on the left and right sides thereof.
  • the leaf spring 30 is also sometimes bent to the left and sometimes to the right (L and R in Fig. 1b), so that the piezo film also performs an alternating movement and generates an alternating voltage. This alternating movement is important for the functioning of the sensor.
  • the piezo film is arranged in a plane which contains the thread running direction in front of the thread guide
  • the piezo film or the leaf spring could also, for example, be arranged laterally offset from the thread guide. This arrangement would also lead to the lateral deflection of the leaf spring on both sides.
  • FIGS. 7A, 7B and 7C It is also possible to form the thread guide eyelet in one piece from shaped sheet metal, as shown in FIGS. 7A, 7B and 7C.
  • the guide eye formed of spring steel is shaped so that it in the leaf spring part 32 originally at least essentially maintains a straight or rectangular cross section (FIG. 7C) of the sheet metal strip.
  • this cross-section changes to an arcuate cross-section (FIG. 7B) so that the narrowest passage of the eyelet is formed by the curved central region 18 'of the strip, while the edge regions are further away from the center of the eyelet are.
  • the thread is always guided by the curved region 18 'of the strip, and there is no scraping of the thread at the edges of the strip.
  • the sheet metal strip can be wider in the leaf spring part than indicated in the eyelet part at 34 '.
  • FIG. 3a first shows the time course 38 of the lateral deflection of the thread guide eyelet when the thread tension is high, specifically for an embodiment corresponding to FIGS. 1a and 1b. It can be seen that the curve 38 according to FIG. 3a essentially represents a type of sine wave 40 with a superimposed high-frequency oscillation 42 of a complex type. The sine oscillation corresponds to the rotational speed of the ring traveler 22 and the superimposed oscillations contain information about all other vibrations to which the thread guide eye is exposed .
  • FIG. 3b If one carries out a spectral analysis of the sensor signal according to FIG. 3a, a result is obtained, as shown in FIG. 3b.
  • the basic vibration are harmonic vibrations f2, f3, f4 to f9 and the so-called thread noise, which ranges from f10 to f11.
  • the thread noise is caused on the one hand by the fibrous surface of the thread, and on the other hand by the constantly fluctuating cross-section of the thread (thinning or thickening).
  • Both the level of the speed f1 and the level of their harmonics f2 to f9 are a function of the thread tension. This makes a comparison between FIGS. 3a and 3b on the one hand and FIGS. 4a and 4b on the other hand clear.
  • the evaluation can be based on the fact that the level of the thread tension is recorded as a value, or that only a level comparison with a reference level is carried out.
  • This reference level can depend on machine parameters such as spindle speed, maintenance status, etc.
  • the comparison with a reference level reduces the thread tension information to a pure thread run or thread break information, which significantly reduces the data transmission and data evaluation effort. It is thus possible to design a ring spinning machine in such a way that only one thread break signal is generated at all spinning positions, but that the thread tension is also measured at some spinning positions.
  • the actual sensor is the same for all spinning positions, only there is a difference in the evaluation of the sensor signal.
  • the very broadband sensitivity of a thread tension sensor according to the invention which, according to current determinations, ranges from less than 1 Hz to over 1 MHz, means that not only does the thread tension of the sensor signal come in, but also machine vibrations, most of which come from the area of the spindle or Rotor speed, but also of high-frequency components from the area of thread noise come. If a thread runs through the thread guide eyelet, these machine vibrations do not interfere because they are too weak. In the event of thread breakage, however, these vibration signals appear and simulate a very weak thread tension signal.
  • a reference sensor is attached to the machine, which works under exactly the same conditions as the thread tension sensor, i.e. it is also attached to a thread guide, but to one that does not carry a thread.
  • the signal from this reference sensor is processed in a similar manner to the signals from the thread-guiding sensors.
  • the upper reference level is now obtained from the signal from the reference sensor.
  • the reference sensor provides the reference level for one or more thread break sensors. This takes into account local conditions that determine the interference level.
  • a reference sensor is preferably used for groups with 20 to 60 active sensors.
  • FIGS. 5a to 5c Possible designs of the signal evaluation electronics are shown in FIGS. 5a to 5c.
  • the signal of the sensor applied to the terminal 52 is amplified with one or more amplifiers 54, freed of unwanted signal components with filter 56 and then fed to a rectifier / integrator 58.
  • the filter 56 can be a so-called moving filter, which includes control of a center frequency in accordance with the respective rotor speed. This center frequency can also be asymmetrical in the frequency pass range of the filter. A particularly preferred filter of this type will be described later in connection with FIG. 8.
  • the output signal of the rectifier / integrator 58 which is present at the terminal 60, is then fed to the circuit according to FIG. 5b as an input signal.
  • the circuit according to FIG. 5a is identified overall by the reference number 62.
  • the signal present at terminal 60 is converted into a digital signal by means of an analog / digital converter 64, which is analyzed by a subsequent microcontroller 66 in order to obtain the thread tension.
  • Terminal 70 makes it possible to apply a reference voltage to the analog / digital converter, this reference voltage being obtained from the above-mentioned reference sensor and, for the purpose of comparison with the signal present at terminal 60, also being prepared by a circuit corresponding to circuit 62.
  • the thread tension signal generated by the microcontroller is present at terminal 68 and can be represented in various ways, e.g. the thread tension signal can be displayed on a screen as part of a screen display. However, it can also be fed to the machine control and taken into account here, for example when controlling the rotational speed of the spindle drive.
  • 5c shows an alternative embodiment of the evaluation of the signal present at terminal 60 by a comparator 72, which compares it in analog form with a reference voltage U Ref , which is present at terminal 74 and, as mentioned above, from the reference sensor via a Circuit corresponding to the circuit 62 is obtained.
  • the output signal of the comparator 72 is then further processed by a microcontroller 76 into a thread tension signal which can be tapped at the terminal 78.
  • the thread tension signal can be displayed or evaluated in accordance with the thread tension signal present at terminal 68. 5c, the analog / digital conversion takes place in the microcontroller 76.
  • a predetermined reference voltage U Ref can be used, which is either constant or whose level can be varied depending on machine operating states.
  • The. Fig. 6 shows an alternative evaluation which can be used in particular when a reference sensor 80, as explained above, is attached to the machine, i.e. when a reference sensor 80 is attached to a thread guide that does not carry a thread.
  • FIG. 6 initially shows a series of input terminals 52, 52.1, 52.2 to 52.n, which each carry the signal from a thread-guiding sensor 32.
  • Each terminal 52 to 52.n leads to a respective circuit 62 according to FIG. 5a and the output terminals 60, 60.1 to 60.n of these circuits 62 are applied to an electronic switch 81 which is able to switch the signals successively or in one to be forwarded to a further circuit 82 in a specific sequence or in a selected sequence, wherein this further circuit 82 can be designed either in accordance with FIG. 5b or in accordance with FIG. 5c.
  • the terminal 52.r carries the voltage from the reference sensor 80, which is likewise amplified, filtered and integrated by means of a circuit 62 in accordance with FIG. 5a.
  • the output signal of the circuit 62 associated with the reference sensor 80 forms the reference voltage for the further processing circuit according to FIG. 5b or FIG. 5c.
  • the level of the reference sensor 80 is compared with the level of the thread guiding sensors 32, 32.1, 32.2 to 32.n. The difference is then further processed as a pure thread tension signal, for example in accordance with FIG. 5b or 5c.
  • the changeover switch 62 is generally not designed as a mechanical switch, but as an electronic circuit, for example using a multiplex method.
  • An arrangement according to FIG. 6 has the advantage that only a complex evaluation circuit is required in order to further process the signals from a large number of yarn break sensors to yarn tension signals.
  • a piezo film sensor is provided for each thread guide, so that a thread break signal can be generated by each of the spinning positions present in total.
  • the cabling is carried out so that there is a possibility at certain spinning positions, for example every twentieth or every fiftieth spinning position, to measure the respective thread tension.
  • One or two thread guides are then provided on the machine on each side, which do not carry a thread, but which are designed like the other thread guides and are also equipped with piezo film sensors in order to generate the above-mentioned reference signals.
  • FIG. 8 is a block diagram which shows the use of a filter in SC design (SC means "switched capacitor”), which is preferably in the form of a chip, namely the MF 10 chip from National Semiconductors.
  • SC means "switched capacitor”
  • a tachometer generator 104 is mounted on the main shaft of the drive motor. This essentially consists of a gearwheel 106 and an initiator or sensor 108 which counts the gaps 110 present in the gearwheel and generates a signal which is dependent on the speed of the main motor and is indicated in the drawing as an "f-sensor". The exact frequency of this signal depends on the number of teeth on the gear and the speed of rotation of the main motor.
  • multiplier 112 After a translation between the main motor and the spindles of the ring spinning machines, due to the interposed drives, it is necessary to multiply the frequency signal by a factor in order to achieve the actual spindle speed. But even then the frequency of the signal must be increased further, since a clock frequency is required to control the filter 56, which is proportional to the spindle speed or rotor speed, but is approximately 100 times higher in frequency. With a spindle speed of 12000 rpm, which corresponds to 200 Hz, a clock frequency of 20 kHz is required, for example.
  • the circuit indicated in the drawing as multiplier 112 therefore receives the frequency signal of the sensor at its input and delivers the desired higher one Clock frequency f-clock at its output.
  • This clock frequency is then applied to a two-phase clock generator 114, which is part of the SC filter 56.
  • This two-phase clock generator generates two signals shifted by the phases ⁇ 1 and ⁇ 2, which are used to actuate two switches via the lines shown as an arrow. These switches are used to temporarily connect a capacitor to the negative terminal of an operational amplifier 120 provided with a further capacitor 122.
  • the clock with which the switches are closed and opened in opposition determines the effective impedance of the capacitance at the input of the OpAmps, which in turn defines the center frequency of the bandpass filter. Center frequency of the filter leads.
  • the amplified sensor signal coming from the amplifier 54 is therefore applied to the input of the filter, and the filtered signal at the output of the filter 56 is then fed to the rectifier / integrator 58, in accordance with the circuit of FIG. 5a.
  • the described type of thread tension measurement can be carried out at all rotor frequencies that are clearly above the basic oscillation frequency of the thread guide, ie the natural oscillation frequency of the thread guide eyelet with suspension system. Normally, this fundamental frequency is around 10 to 20 Hz and the name "Significantly above" indicates frequencies that are around a factor of about 4 to 10 or higher.
  • the thread tension measuring method according to the present invention can be used with rotor speeds above 100 Hz, ie approximately 6000 rpm. Since such speeds are below the useful speeds of interest of the spindles of the ring spinning machine, this lower limit of the voltage evaluation does not represent any restriction in practice.
  • An advantage of a filter in the SC version is that the bandwidth of the passband of the filter is changed in proportion to the center frequency, in that the quality Q of the filter remains at least essentially constant, which benefits the signal evaluation.
  • the sensor in the form of the piezo film should be arranged in a plane containing the thread running direction or a plane parallel to it in such a way that the suspension of the thread guide executes elastic movements on both sides with respect to the thread running direction.
  • the thread running direction means, for example, the running direction of the thread between the pair of delivery rollers and the thread guide or the mean running direction of the thread within the thread balloon, which corresponds to the geometric axis of the thread balloon.
  • FIG. 9 shows a thread tension sensor that works differently than previously described.
  • FIG. 9 shows schematically that the thread guide eyelet 18 is attached to a web 92 of a thread guide holder 94 via a first load cell 90. More specifically, the thread guide eyelet is attached to one end face of the load cell 90, while the other end face of the load cell is attached to the web 92. On the other side of the web 92 there is a further load cell 96, which is also attached to the web 92 with its one end, while a compensation mass 98 with the mass m 2 is attached to the end of the load cell 96 facing away from the web. The load cell 96 is therefore aligned with the load cell 90, but is arranged on the other side of the web 92.
  • the thread guide eyelet 18 has a mass m 1.
  • Vibrations of the thread guide bracket 94 also lead to vibrations of the web. Due to the fluctuating acceleration of the masses m 1 and m 2, these vibrations lead to fluctuations in the forces on the load cells 90 and 96, so that these output signals U1 and U2 provide corresponding fluctuations.
  • A is the acceleration of the web 92 and F is the desired thread tension.
  • C1 and C2 are constants.
  • F is approximately equal to ⁇ U divided by C1.
  • m1 is constant and ⁇ U can be measured directly, a signal for the thread tension has been obtained by means of the invention.
  • a thread tension sensor of the type described last is therefore characterized in that a thread guide eyelet is attached via a load cell on one side of a web of a thread guide holder, that on the other side of the web a further load cell is attached to it and aligned with the first load cell, wherein a mass which compensates for the mass of the thread guide eyelet is attached to the second load cell, and that the output signals of the two load cells are fed to a differential circuit, the output signal of which is proportional to the thread tension.
  • PVDF piezo foils are available from various manufacturers, for example from the US company PENNWALT Corporation under the name "KYNAR" (registered trademark).
  • PVDF is an abbreviation for polyvinylidene fluoride, which belongs to the class of piezoelectric polymers.
  • Piezo foils of this type which are suitable for use with the present invention are preferably broadband with a quality factor Q tending towards zero.
  • 10A shows a particularly preferred embodiment for processing the signals from a group of sensors 52.1 to 52.n and from a reference sensor 52.r by means of a multiplexer which has 16 inputs. For this reason, n will normally have a maximum value of 15 and the further input will be used for the reference sensor. In practice, therefore, a blind thread guide is provided for each group of 15 real thread guides, i.e. of thread guides which actually carry a thread at a spinning station and the circuit according to FIG. 10A will be duplicated for each group of 15 real thread guides.
  • the sensor signals i.e. the signals coming from sensors 52.1 to 52.n are amplified, filtered and rectified in front of the multiplexer 150 by the circuit according to FIG. 5a.
  • the individual channels i.e. the signals connected from the sensors 52.1 to 52.n and 52.r to the analog / digital converter 152 in turn, the microcontroller 154 determining the sensor address for the multiplexer.
  • the levels of the sensors 52.1 to 52.n are compared in terms of amount with the reference level from the reference sensor 52.r, the difference corresponds to the thread tension and can be present either as a comparison value or after an appropriate calibration as an absolute value.
  • FIG. 10B shows a further improvement, according to which only one respective amplifier is assigned to each sensor, and the filter and the analog / digital converter are arranged after the multiplexer.
  • the signals from sensors 52.1 to 52.n and from reference sensor 52.r are amplified Multiplexer fed.
  • the microcontroller 154 gives the multiplexer the sensor address to be switched through.
  • the signal is filtered behind the multiplexer, for example by means of a circuit according to FIG. 8, and converted into a digital signal by the analog / digital converter 152.
  • This signal is then fed to the microcontroller 154.
  • a rectifier 156 is used between the filter and the A / D converter, which means that frequencies up to 300 Hz no longer have to be converted and evaluated , but only frequencies of approx. 1 Hz have to be measured.
  • the individual amplifier stages in / at the sensors can be replaced by a single amplification stage behind the multiplexer.
  • 10A and 10B describe circuit variants which enable the thread tension to be measured for all sensors.
  • Fig. 12 is concerned with determining whether the thread is broken at the respective spinning positions.
  • the sensor signals are processed here in parallel. They are in turn combined in groups 52.1 to 52.n together with a reference sensor 52.r. In this case, the total number of sensors in a group can be up to 32.
  • the signals are first amplified, filtered and rectified and then they are compared in respective comparators, which each correspond to the comparator 72 of FIG. 5c, with the reference signal from the reference sensor 52.r.
  • the output of the respective comparators 72 is actually a digital signal, since the comparator merely makes the decision whether the level from an active sensor is higher or lower than the reference level from the reference sensor. All signals are applied to the microcontroller 154 at parallel (port) inputs.
  • the advantage of this variant is that a simple and low-performing, ie inexpensive microcontroller can be used (for example, type 80C31 from Intel). A thread tension measurement is excluded here.
  • the output signals of the individual microcontrollers 154 which are each assigned to a single sensor group, all communicate with a serial data bus, for example of the type RS232 or RS485.
  • the microcontrollers (approx. 50 units per machine) are connected to a master controller via an advantageously serial data bus, which can also be formed, for example, by the 80C31 component (chip) from Intel.
  • This master controller is intended for the evaluation of the thread information and provides the machine control or a process control with compressed data, possibly statistically evaluated.
  • microcontrollers are distributed over two serial data buses, for example one data bus for each side of the machine.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Textile Engineering (AREA)
  • Quality & Reliability (AREA)
  • Spinning Or Twisting Of Yarns (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)

Abstract

In einem Verfahren zur Gewinnung eines Fadenspannungssignals wird ein Sensor (32) in Form einer Piezofolie an einer Fadenführung (18) oder deren Aufhängung (30) angebracht und liefert ein Signal, das unter anderem die durch die Fadenbewegung in der Fadenführung induzierten Schwingungen wiederspiegelt. Zur Gewinnung eines der Fadenspannung entsprechenden Signals wird entweder die Frequenz (f1) eines den Faden aufwickelnden Elementes (22) und/oder Harmonische dieser Frequenz (f2 bis f9) entsprechend dem Fadenrauschen aus dem Sensorsignal ausgefiltert und der Pegel dieser Frequenz oder Frequenzen gemessen. <IMAGE>

Description

  • Die vorliegende Erfindung betrifft ein Verfahren zur Gewinnung eines Fadenlaufsignals, bei dem wenigstens ein Sensor an der Aufhängung eines Fadenführers angebracht wird und ein Signal liefert, das unter anderem die durch die Fadenbewegung im Fadenführer induzierten Schwingungen wiederspiegelt.
  • Ein Verfahren bzw. ein Fadensensor dieser Art sind bereits aus der DE-OS 29 19 836 bekannt.
  • Es ist das Bestreben in der Textilmaschinenindustrie die Produktion an jeder Spindel einer Spinnmaschine überwachen zu können. Ein Fadenbruch an einer Spinnstelle hat Produktionsausfall und Lohnarbeit zur Folge und kann in gewissen Fällen auch zu Beschädigungen an der Maschine führen. Die Hauptursachen von Fadenbrüchen sind beispielsweise Dünnstellen im Garn, schlecht gewartete Teile im Garnbildungsprozeß oder falsche Einstellung der Spinnmaschine.
  • Bekannte Fadenüberwachungsvorrichtungen erfassen unter anderem Parameter wie die Ballonierung des Fadens oder die Drehzahl des Läufers in einer Ringspinnmaschine, die zeitlichen Änderungen der Fadendicke des laufenden Fadens oder den Querschnitt des Fadens. Aufgrund der hohen Herstellungskosten werden solche Vorrichtungen jedoch nur an wenigen Maschinen eingesetzt. Die eingangs genannte DE-OS 29 19 836 offenbart einen Fadenbruchsensor, der aus einem piezoelektrischen Element besteht, das an einem Teil des Fadenführers befestigt ist und dessen Ausgangssignal zum Feststellen eines Fadenbruches weiterbearbeitet wird.
  • Durch die Berührung des Fadenführers mit den Spinnfäden treten an diesem hochfrequente Schwingungen auf, die mit mechanischen Schwingungen der Ringspinnmaschine vermischt sind. Wie in der DE-OS 29 19 836 nachzulesen ist, beträgt die Frequenz der mechanischen Schwingungen etwa 1 kHz, während der Fadenführer etwa mit 15 kHz schwingt. Diese letzteren Schwingungen werden in der DE-OS 29 19 836 zur Feststellung von Fadenbrüchen in der Weise ausgewertet, daß man die Eigenschwingungen gegenüber den mechanischen Schwingungen diskriminiert. Genauer gesagt sind die zwei Anschlußleitungen des piezoelektrischen Elements mit einem Bandpaßfilter verbunden, das die Eigenschwingungskomponente in den Ausgangssignalen des piezoelektrischen Elements aufnimmt, d.h. durchläßt. Diese Eigenschwingungskomponente wird dann mittels eines Verstärkers auf einen bestimmten Wert verstärkt. Ein Gleichrichterfilter wandelt die Wechselspannungssignale in Gleichspannungssignale um. Mit Hilfe eines Spannungskomparators wird ein Spannungsbereich festgelegt, in dem der Normalbetrieb garantiert ist, und am Ausgang des Komparators liegt ein entsprechendes logisches Ausgangssignal an (DE-OS 29 19 836, S. 10, Z. 29 bis S.11, Z.6).
  • Der Fadensensor aus der DE-OS 29 19 836 ist aber nur in der Lage Fadenbrüche festzustellen, nicht jedoch die Fadenspannung zu messen.
  • Der Erfindung liegt die Aufgabe zugrunde, ein preisgünstiges Fadenspannungsmeßgerät vorzustellen, das ggf. auch als Fadenbruchdetektor dienen kann, in der Herstellung preisgünstig ist und an bestehenden den Faden bearbeitenden oder erzeugenden Maschinen angebracht werden kann, ohne daß die Anbringung selbst zu einer Veränderung der Fadenspannung oder einer unerwünschten zusätzlichen Beanspruchung des Fadens führt.
  • Ausgehend von dem bekannten Verfahren bzw. Sensor zeichnet sich die vorliegende Erfindung verfahrensmäßig dadurch aus, daß ein breitbandiger Sensor in Form einer Piezofolie verwendet wird, welcher zumindest im wesentlichen in einer die Fadenlaufrichtung enthaltenden Ebene oder einer hierzu parallelen Ebene so angeordnet ist, daß die Aufhängung des Fadenführers elastische Bewegungen zu beiden Seiten ausführt, (bezogen auf die Fadenlaufrichtung), daß zur Gewinnung eines der Fadenspannung entsprechenden Signals entweder die Frequenz eines den Faden aufwickelnden Elementes und/oder Harmonische dieser Frequenz, aus dem Sensorsignal ausgefiltert und der Pegel dieser ausgefilterten Frequenz oder Frequenzen gemessen wird, wobei die durch einen Filter ausgefilterte Frequenz oder ausgefilterten Frequenzen deutlich oberhalb der Grundschwingfrequenz des Fadenführers, d.h. der Eigenschwingfrequenz der Fadenführungsöse liegt bzw. liegen, und daß die Durchlaßfrequenz des Filters entsprechend der Frequenzänderung des den Faden aufwickelnden Elementes nachgeführt wird, wobei die Güte des Filters vorzugsweise zumindest im wesentlichen konstant gehalten wird.
  • Die Erfindung beruht auf der zu der Erfindung gehörenden Erkenntnis, daß das Ausgangssignal des Sensors ein komplexes analoges Signal ist, das unter anderem auch die Drehzahl des Läufers als Grundschwingung im zeitlichen Verlauf der Auslenkung der Fadenführung sowie harmonische Werte dieser Grundschwingung und das sogenannte Fadenrauschen enthält, und zwar zusätzlich zu anderen Schwingungen wie Eigenschwingungen der Fadenführer und durch Maschinenvibrationen induzierte Schwingungen. Weiterhin beruht die Erfindung auf der erfinderischen Erkenntnis, daß sowohl der Pegel der Läuferdrehzahl als auch der Pegel von harmonischen Frequenzen der Läuferdrehzahl eine Funktion der Fadenspannung sind, so daß eine Auswertung der Fadenspannung entweder bei der Grundfrequenz (f₁) oder bei den harmonischen Frequenzen (f₂ bis f₉) der Läuferdrehzahl möglich ist.
  • Die Auswertung des Sensorsignals kann daher dahingehen, daß der Pegel der Fadenspannung als Wert erfaßt wird, oder daß ein Pegelvergleich mit einem Referenzpegel vollzogen wird. Dieser Referenzpegel kann von Maschinenparametern, wie Spindeldrehzahl, Wartungszustand usw. abhängen. Das Ergebnis dieses Vergleichs kann dann zur Steuerung der entsprechenden Maschine herangezogen werden, beispielsweise zur Steuerung der Spindeldrehzahl einer Ringspinnmaschine im Sinne des Einhaltens einer vorgegebenen Fadenspannung oder eines vorgegebenen Verlaufs der Fadenspannung über dem Kopsbildungsverfahren.
  • Es soll hier darauf hingewiesen werden, daß die Amplitude der Eigenschwingungen der Fadenführung, welche in der DE-OS 29 19 836 zur Gewinnung des Fadenbruchsignals ausgewertet wird, von der Fadenspannung praktisch unabhängig ist und daher keine Auswertemöglichkeit für die Fadenspannung bietet.
  • Mit dem Verfahren bzw. der Vorrichtung der Erfindung sind verschiedene Vorteile gegeben:
    • a) Das Verfahren bzw. die Vorrichtung erlaubt die quantitative Erfassung der Fadenspannung in einem weiten Frequenz- bzw. Drehzahlbereich, da die schwach ausgebildete Eigenfrequenz oder Resonanzfrequenz des Fadenführers mit Aufhängung unterhalb der Frequenz des Nutzbereiches des Fadenspannungssensors liegt.
    • b) Der Fadensensor ersetzt ein bereits vorhandenes Element an der Spinnmaschine, nämlich den Fadenführer, so daß die Verwendung des Fadenspannungssensors keine zusätzliche Belastung für den Faden darstellt.
    • c) Der Fadensensor kann preisgünstig hergestellt werden und entweder nur als Fadenbruchsensor oder aber auch als Fadenspannungssensor betrieben werden.
    • d) Es kann auch entsprechend der Erfindung ein tragbares Fadenspannungsmeßgerät vorgesehen werden, das insbesondere mit einer Fadenführungsöse in Form eines Sauschwanzerls ausgestattet ist, welche sich um einen laufenden Faden anlegen läßt, ohne das Laufen des Fadens zu unterbrechen.
  • Besonders bevorzugte Varianten des erfindungsgemäßen Verfahrens bzw. der erfindungsgemäßen Vorrichtung, vor allem im Hinblick auf die Signalauswertung sind den Unteransprüchen 2 bis 5 bzw. 7 bis 18 zu entnehmen. Die Ausbildung des mitlaufenden Filters als ein Filter in SC-Ausführung ist besonders kostengünstig und wirksam.
  • Bei Verwendung des erfindungsgemäßen Fadensensors an einer Ringspinnmaschine ist der Fadenführer vorzugsweise als Fadenführungsöse, beispielsweise in Form des bekannten Sauschwanzerls ausgebildet. Die Fadenführungsöse kann an ihrer Halterung mittels einer Blattfeder befestigt sein, wobei der Sensor an der Blattfeder zu befestigen ist. Die Blattfeder selbst soll mit ihrer Ebene im wesentlichen parallel zur Fadenbewegung angeordnet werden. Es ist aber auch möglich, anstatt einer Blattfeder einen Teil der Fadenführung bzw. der Fadenführungsöse selbst als Feder auszubilden, wobei der Sensor oder die Sensoren dann an diesem Federteil angebracht ist bzw. sind.
  • Die Piezosensoren, die im Stand der Technik verwendet werden, sind Piezokristalle, die eine ausgeprägte Resonanz aufweisen und hierdurch bedingt für den Zweck der Erfindung nicht ausreichend breitbandig sind.
  • Eine besondere Ausführungsform der vorliegenden Erfindung zeichnet sich dadurch aus, daß die Piezofolie eine sogenannten PVDF-Folie ist, die besonders preisgünstig zu erhalten und extrem dünn ausgebildet ist. Diese Piezofolien sind sehr breitbandig und die Verwendung einer solchen Piezofolie führt vorteilhafterweise nicht zu einer Verfälschung der gemessenen Schwingungen.
  • Es ist auch erfindungsgemäß möglich, wie in den Ansprüchen 12 bis 15 angegeben, für einen oder mehrere Fadenspannungssensoren einen nicht fadenführenden Referenzsensor vorzusehen, der ein von den Maschinenvibrationen abhängiges Signal abgibt, wobei die Fadenspannungssignale mit dem Referenzsignal verglichen werden können und ein Differenzwert gebildet werden kann. Das Referenzsignal kann aber auch als Schwellenwert für die Erzeugung einer binären Fadenbruchinformation verwendet werden. Es ist aber auch möglich, mittels des Referenzsensors laute Umweltgeräusche wie Ultraschall von Preßluft usw. zu erkennen und im gleich Zeitraum erzeugte Fadenspannungsinformation für ungültig zu erklären.
  • Die Erfindung wird nachfolgend näher erläutert anhand von Ausführungsbeispielen unter Bezugnahme auf die Zeichnung, in welcher zeigen:
  • Fig. 1a
    eine Seitenansicht einer Fadenführungsöse einer Ringspinnmaschine, wobei diese Öse mit einem erfindungsgemäßen Fadensensor ausgestattet ist,
    Fig. 1b
    eine Draufsicht der Ausführung gemäß Fig. 1a,
    Fig. 2
    eine schematische Darstellung einer Spinnstelle einer Ringspinnmaschine mit der Fadenführungsöse der Fig. 1a und 1b,
    Fig. 3a
    eine graphische Darstellung der zeitlichen Abhängigkeit der Auslenkung der Fadenführungsöse bei starker Fadenspannung,
    Fig. 3b
    eine Spektral-Darstellung der Auslenkung bei starker Fadenspannung,
    Fig. 4a
    eine graphische Darstellung der zeitlichen Abhängigkeit der Auslenkung der Fadenführungsöse bei schwacher Fadenspannung,
    Fig. 4b
    eine Spektral-Darstellung der Auslenkung der Fadenführungsöse bei schwacher Fadenspannung,
    Fig. 5a, 5b und 5c
    verschiedene elektronische Sensorsignalbearbeitungsmöglichkeiten,
    Fig. 6
    eine weitere Ausgestaltung eines erfindungsgemäßen Fadenspannungssensors, und
    Fig. 7A
    eine schematische Darstellung einer besonderen Ausführung einer Fadenführungsöse, die für die vorliegende Erfindung besonders geeignet ist, wobei die Führungsöse entsprechend den Fig. 1a und 1b eingebaut wird,
    Fig. 7B
    einen Querschnitt nach der Linie B-B der Fig. 7A,
    Fig. 7C
    einen Querschnitt nach der Linie C-C der Fig. 7A,
    Fig. 8
    ein Blockschaltbild eines mitlaufenden Filters in SC-Ausführung,
    Fig. 9
    eine schematische Darstellung einer besonderen Ausführung der Erfindung,
    Fig. 10A und 10B
    zwei Möglichkeiten, die von einer Gruppe Fadenspannungssensoren enthaltenen Signale auszuwerten, um Fadenspannungssignale zu erzeugen, und
    Fig. 11
    eine Möglichkeit, die von einer Vielzahl von Sensoren erhaltenen Signale zu verarbeiten, um reine Fadenbruchsignale zu erzeugen.
  • Um die nachfolgenden Ausführungen zu erleichtern, wird zunächst auf Fig. 2 hingewiesen. Fig. 2 zeigt eine Seitenansicht einer Spinnstelle 10 einer Ringspinnmaschine, bei der ein Faden 12 die Auslaufwalzen 14, 16 des Streckwerkes verläßt und durch die Fadenführungsöse 18 und einen Antiballonring 20 zu einem auf der Ringbahn 21 der Ringbank 23 umlaufenden Ringläufer 22 führt, wodurch er auf die drehende Spindelhülse 24 zu einer Kops 26 aufgewickelt wird. Durch die Rotation des Läufers wird der Faden derart um die Spindelhülse herumgeführt, daß sich wegen der Zentrifugalkraft ein Ballon ausbildet, der durch den Antiballon- oder Balloneingrenzungsring 20 begrenzt wird und in der Fadenführungsöse seine Spitze hat. Der Reibungs- und Luftwiderstand des Läufers, der Luftwiderstand des Fadens und der Reibungswiderstand zwischen Faden und Läufer und zwischen Faden und Ballongeingrenzungsring erzeugen eine Fadenspannung, die am Ort des Fadenführers meßbar ist.
  • Diese Fadenspannung steigt mit zunehmender Spindeldrehzahl. Von Interesse ist vor allem ein Spindeldrehzahlbereich zwischen etwa 6000 Upm und 20.000 Upm, wobei der Fadenspannungssensor, so wie hier beschrieben, ohne weiteres für Spindeldrehzahlen bzw. Läuferumlaufzahlen (welche nur um 1 oder 2% niedriger liegen als die Spindeldrehzahlen und damit dieser gleichgesetzt werden können) bis 30.000 Upm und höher geeignet sind.
  • Das Berühren des gespannten Fadens in der Fadenführungsöse führt zu Reibungskräften, die sowohl in horizontaler wie auch in vertikaler Richtung wirken.
  • Bei der gezeigten Ausführungsform des erfindungsgemäßen Fadensensors werden die horizontalen Komponenten dieser Reibungskraft ausgenützt, die bedingt durch den Reibungskoeffizient der Fadenspannung proportional sind. Dieser Fadensensor ist in Fig. 1a und 1b schematisch dargestellt. Hier ist die Fadenführungsöse 18 im hinteren Teil so verjüngt, daß eine biegbare, federnde Zone 30 mit der Form einer Blattfeder entsteht. Das blattfederartige Teil 30 ist an seinem der Fadenführungsöse abgewandten Ende in einen Spannblock 35 geklemmt und mittels dieses Spannblockes fest am Rahmen der Ringspinnmaschine an einem Längsstab 37 der Ringspinnmaschine gehalten. Auf der flachen rechten Seite 34 der biegbaren federnden Zone der Blattfeder ist ein dehnungsempfindliches Sensorelement 32 angebracht, das vorzugsweise aus einer PVDF-Piezofolie besteht. Diese Folie gibt über die Anschlußkabel 36 ein dehnungsabhängiges elektrisches Signal an eine nachgeschaltete Elektronik (Fig. 5) ab. Der Faden 12 läuft im wesentlichen geradlinig vom Lieferwalzenpaar 14, 16 zu dem Fadenführer 18 und wird aufgrund des sich ausbildenden Ballons am Fadenführer umgelenkt. Die Drehbewegung des Läufers 22 führt dazu, daß der Faden eine kreisförmige Bewegung innerhalb des Fadenführers ausführt, wodurch die auf den Fadenführer ausgeübten Kräfte abwechseln zu der linken und rechten Seite desselben wirken. Hierdurch wird die Blattfeder 30 ebenfalls mal nach links und mal nach rechts gebogen (L und R in Fig. 1b), so daß die Piezofolie ebenfalls eine Wechselbewegung ausführt und eine Wechselspannung erzeugt. Diese welchselnde Bewegung ist wichtig für die Funktionsweise des Sensors.
  • Obwohl in der Ausführung nach den Fig. 1a, 1b und 2 die Piezofolie in einer Ebene angeordnet ist, die die Fadenlaufrichtung vor dem Fadenführer enthält, könnte die Piezofolie bzw. die Blattfeder auch beispielsweise seitlich versetzt zum Fadenführer angeordnet werden. Auch diese Anordnung würde zur seitlichen Auslenkung der Blattfeder nach beiden Seiten führen.
  • Es besteht auch die Möglichkeit, die Fadenführungsöse einstückig aus geformtem Blech auszubilden wie in den Fig. 7A, 7B und 7C gezeigt. Die aus einem Federstahl gebildete Führungsöse ist so geformt, daß sie im Blattfederteil 32 den ursprünglich geraden bzw. rechteckigen Querschnitt (Fig. 7C) des Blechstreifens zumindest im wesentlichen beibehält. Beim Übergang in die eigentliche Öse 18 ändert sich dieser Querschnitt in einen bogenförmigen Querschnitt (Fig. 7B), so daß der engste Durchgang der Öse durch den gekrümmten mittleren Bereich 18' des Streifens gebildet ist, während die Kantenbereiche weiter von der Mitte der Öse entfernt sind. Durch diese preisgünstig zu realisierende Ausbildung wird der Faden stets von dem gekrümmten Bereich 18' des Streifens geführt, ein Schaben des Fadens an den Kanten des Streifens kommt nicht vor. Der Blechstreifen kann im Blattfederteil breiter sein als im Ösenteil wie bei 34' angedeutet.
  • Fig. 3a zeigt zunächst den zeitlichen Verlauf 38 der seitlichen Auslenkung der Fadenführungsöse bei starker Fadenspannung, und zwar für eine Ausführung entsprechend dere Fig. 1a und 1b. Man sieht, daß die Kurve 38 gemäß Fig. 3a im wesentlichen eine Art Sinuswelle 40 darstellt mit einer überlagerten Hochfrequenzschwingung 42 komplexer Art. Die Sinusschwingung entspricht der Drehzahl des Ringläufers 22 und die übergelagerten Schwingungen enthalten Information über alle anderen Vibrationen, denen die Fadenführungsöse ausgesetzt ist.
  • Wenn man eine Spektralanalyse des Sensorsignals gemäß Fig. 3a vornimmt, so bekommt man ein Ergebnis, wie in der Fig. 3b dargestellt. Hier erkennt man gut die Drehzahl f₁ des Läufers als Grundschwingung im zeitlichen Verlauf der Auslenkung. Der Grundschwingung sind harmonische Schwingungen f₂, f₃, f₄ bis f₉ und das sogenannte Fadenrauschen, das von f₁₀ bis f₁₁ reicht, zugeordnet. Das Fadenrauschen wird einerseits von der faserigen Oberfläche des Fadens, andererseits vom stetig schwankenden Querschnitt des Fadens (Dünnstellen oder Dickstellen) hervorgerufen. Sowohl der Pegel der Drehzahl f₁ als auch der Pegel ihrer Harmonischen f₂ bis f₉ sind eine Funktion der Fadenspannung. Dies macht ein Vergleich zwischen den Fig. 3a und 3b einerseits und den Fig. 4a bzw. 4b andererseits deutlich.
  • Aus der Fig. 4b sieht man, daß die spektrale Zusammensetzung des Signals der spektralen zusammensetzung der Fig. 3b sehr ähnlich ist, jedoch die Amplituden tiefer liegen.
  • Somit ist eine Auswertung des Sensorsignals in beiden Frequenzbereichen möglich. Die Auswertung kann dahingehen, daß der Pegel der Fadenspannung als Wert erfaßt wird, oder daß nur ein Pegelvergleich mit einem Referenzpegel vollzogen wird. Dieser Referenzpegel kann von Maschinenparametern wie Spindeldrehzahl, Wartungszustand usw. abhängen. Der Vergleich mit einem Referenzpegel reduziert die Fadenspannungsinformation auf eine reine Fadenlauf- bzw. Fadenbruchinformation, was den Datenübermittlungs- und Datenauswerteaufwand erheblich verkleinert. Es ist somit möglich, eine Ringspinnmaschine so auszulegen, daß an allen Spinnstellen nur ein Fadenbruchsignal erzeugt wird, daß aber an manchen Spinnstellen auch die Fadenspannung gemessen wird. Der eigentliche Sensor ist aber bei allen Spinnstellen gleich, lediglich in der Auswertung des Sensorsignals gibt es einen Unterschied.
  • Die sehr breitbandige Empfindlichkeit eines erfindungsgemäßen Fadenspannungssensors, die nach derzeitigen Ermittlungen von weniger als 1 Hz bis über 1 MHz reicht, hat zur Folge, daß nicht nur die Fadenspannung des Sensorsignals eingeht, sondern auch Maschinenvibrationen, die mehrheitlich aus dem Bereich der Spindel- bzw. Läuferdrehzahl, aber auch von hochfrequenten Komponenten aus dem Bereich des Fadenrauschens stammen. Läuft ein Faden durch die Fadenführungsöse, stören diese Maschinenvibrationen nicht, da sie zu schwach sind. Im Fall des Fadenbruches kommen diese Vibrationssignale aber zum Vorschein und täuschen ein sehr schwaches Fadenspannungssignal vor.
  • Daher wird ein Referenzsensor an der Maschine angebracht, der unter den genau gleichen Bedingungen arbeitet wie der Fadenspannungssensor, d.h. er wird auch an einem Fadenführer angebracht, jedoch an einem solchen, der keinen Faden führt. Das Signal dieses Referenzsensors wird in ähnlicher Weise verarbeitet wie die Signale der fadenführenden Sensoren. Aus dem Signal des Referenzsensors wird nun der obere Referenzpegel gewonnen. Der Referenzsensor liefert den Referenzpegel für einen oder mehrere Fadenbruchsensoren. Damit werden lokale Gegebenheiten, die den Störpegel bestimmen, berücksichtigt. Es wird bevorzugt für Gruppen mit 20 bis 60 aktiven Sensoren je ein Referenzsensor eingesetzt.
  • Mögliche Ausführungen der Signalauswerteelektronik sind in den Fig. 5a bis 5c gezeigt.
  • Gemäß Fig. 5a wird das an der Klemme 52 anliegende Signal des Sensors mit einem oder mehreren Verstärkern 54 verstärkt, mit Filter 56 von unerwünschten Signalkomponenten befreit und anschließend einem Gleichrichter/Integrator 58 zugeführt. Der Filter 56 kann ein sogenannter mitlaufender Filter sein, der eine Steuerung auf eine Mittenfrequenz entsprechend der jeweiligen Läuferdrehzahl beinhaltet. Diese Mittenfrequenz kann auch asymmetrisch im Frequenzdurchlaßbereich des Filters liegen. Ein besonders bevorzugter Filter dieser Art wird später im Zusammenhang mit Fig. 8 beschrieben.
  • Das Ausgangssignal des Gleichrichters/Integrators 58, das an der Klemme 60 ansteht, wird dann der Schaltung gemäß Fig. 5b als Eingangssignal zugeführt. Die Schaltung gemäß Fig. 5a wird insgesamt mit dem Bezugszeichen 62 gekennzeichnet.
  • In Fig. 5b wird das an der Klemme 60 anstehende Signal mittels eines Analog/Digitalwandlers 64 in ein Digitalsignal gewandelt, das von einem nachfolgenden Mikrocontroller 66 analysiert wird, um die Fadenspannung zu gewinnen. Die Klemme 70 ermöglicht es, eine Referenzspannung an den Analog/Digitalwandler anzulegen, wobei diese Referenzspannung von dem oben erwähnten Referenzsensor gewonnen wird und zwecks Vergleich mit dem an der Klemme 60 anstehenden Signal ebenfalls durch eine Schaltung entsprechend der Schaltung 62 vorbereitet wird. Das vom Mikrocontroller erzeugte Fadenspannungssignal steht an der Klemme 68 an und kann in verschiedenster Weise dargestellt werden, z.B. kann das Fadenspannungssignal als Teil einer Bildschirmanzeige auf einem Bildschirm dargestellt werden. Es kann aber auch der Maschinensteuerung zugeführt und hier berücksichtigt werden, beispielsweise bei der Steuerung der Drehgeschwindigkeit des Spindelantriebes.
  • Die Fig. 5c zeigt eine alternative Ausführung der Auswertung des an der Klemme 60 anstehenden Signals durch einen Komparator 72, der es in analoger Form mit einer Referenzspannung URef vergleicht, welche an der Klemme 74 anliegt und, wie oben erwähnt, vom Referenzsensor über eine Schaltung entsprechend der Schaltung 62 gewonnen wird. Das Ausgangssignal des Komparators 72 wird dann von einem Mikrocontroller 76 zu einem Fadenspannungssignal weiterverarbeitet, das an der Klemme 78 abgegriffen werden kann. Das Fadenspannungssignal kann entsprechend dem an der Klemme 68 anstehenden Fadenspannungssignal angezeigt bzw. ausgewertet werden. Bei der Ausführung gemäß Fig. 5c findet die Analog/ Digitalwandlung im Mikrocontroller 76 statt.
  • Sowohl in Fig. 5b als auch in Fig. 5c kann man, anstatt eine Echtzeitreferenzspannung am Referenzsensor anzulegen, eine vorbestimmte Referenzspannung URef verwenden, die entweder konstant ist oder deren Pegel in Abhängigkeit von Maschinenbetriebszuständen variiert werden kann.
  • Die. Fig. 6 zeigt eine alternative Auswertung, die insbesondere dann benutzt werden kann, wenn ein Referenzsensor 80, wie oben erläutert, an der Maschine angebracht wird, d.h. wenn ein Referenzsensor 80 an einem Fadenführer angebracht wird, der keinen Faden führt.
  • Die Fig. 6 zeigt zunächst eine Reihe von Eingangsklemmen 52, 52.1, 52.2 bis 52.n, welche jeweils das Signal eines fadenführenden Sensors 32 führen. Jede Klemme 52 bis 52.n führt zu einer jeweiligen Schaltung 62 gemäß Fig. 5a und die Ausgangsklemmen 60, 60.1 bis 60.n dieser Schaltungen 62 sind an einen elektronischen Umschalter 81 angelegt, der in der Lage ist, die Signale sukzessiv oder in einer bestimmten Reihenfolge bzw. in einer gewählten Reihenfolge an eine weiteren Schaltung 82 weiterzuführen, wobei diese weitere Schaltung 82 entweder entsprechend der Fig. 5b, oder entsprechend der Fig. 5c ausgebildet sein kann. Die Klemme 52.r führt die Spannung vom Referenzsensor 80, welche ebenfalls mittels einer Schaltung 62 entsprechend der Fig. 5a verstärkt, gefiltert und integriert wird. Wie der Pfeil 84 zeigt, bildet das Ausgangssignal der dem Referenzsensor 80 zugeordneten Schaltung 62 die Referenzspannung für die Weiterverarbeitungsschaltung gemäß Fig. 5b oder Fig. 5c.
  • Mit anderen Worten wird der Pegel des Referenzsensors 80 mit dem Pegel der fadenführenden Sensoren 32, 32.1, 32.2 bis 32.n verglichen. Die Differenz wird dann als reines Fadenspannungssignal weiterverarbeitet, beispielsweise entsprechend der Fig. 5b oder 5c. Der Umschalter 62 wird im Regelfall nicht als mechanischer Schalter ausgebildet, sondern als elektronischer Schaltkreis, beispielsweise nach einem Multiplexverfahren. Eine Anordnung gemäß Fig. 6 hat den Vorteil, daß nur eine aufwendige Auswertungsschaltung erforderlich ist, um die Signale einer Vielzahl von Fadenbruchsensoren zu Fadenspannungssignalen weiterzubearbeiten.
  • Bei einer Ringspinnmaschine mit mehreren Spinnstellen, beispielsweise 1000 oder 1200 Spinnstellen, wird ein Piezofoliensensor bei jedem Fadenführer vorgesehen, so daß ein Fadenbruchsignal von jedem der insgesamt vorhandenen Spinnstellen erzeugt werden kann. Darüberhinaus wird die Verkabelung so vorgenommen, daß an bestimmten Spinnstellen, beispielsweise jede zwanzigste oder jede fünfzigste Spinnstelle eine Möglichkeit besteht, die jeweilige Fadenspannung zu messen. An der Maschine werden dann ein oder zwei Fadenführer pro Seite vorgesehen, die keinen Faden führen, welche aber genauso wie die anderen Fadenführer ausgebildet und ebenfalls mit Piezofoliensensoren ausgestattet sind, um die oben erwähnten Referenzsignale zu erzeugen.
  • Eine besonders bevorzugte Ausführung eines mitlaufenden Filters ist in der Fig. 8 dargestellt. Es handelt sich hier um ein Blockschaltbild, welches die Anwendung eines Filters in SC-Ausführung (SC bedeutet "switched capacitor") zeigt, der vorzugsweise in Form eines Chips vorliegt, nämlich der Chip MF 10 von der Firma National Semiconductors.
  • Da der Durchlaßbereich des Filters entsprechend der jeweiligen Läuferdrehzahlen verändert wird, ist es erforderlich, ein Frequenzsignal zu erzeugen, das der Läuferdrehzahl entspricht. Es ist bekannt, daß die Läuferdrehzahl nur geringfügig niedriger liegt als die Spindeldrehzahl der Ringspinnmaschine. Bei einer Ringspinnmaschine läßt sich die Spindeldrehzahl verhältnismäßig leicht ermitteln, so daß man anstelle der Läuferdrehzahl die Spindeldrehzahl als Leitgröße für den Filter nimmt. Die Erzeugung dieses Frequenzsignals ist in Fig. 8 gezeigt. Die Spindeln werden nämlich von einem Hauptmotor 100 angetrieben, über eine sogenannte Königswelle 102 und Riemen (nicht gezeigt), die jeweils vier Spindeln antreiben. Die genaue Auslegung dieses Antriebs ist im Stand der Technik gut bekannt, beispielsweise von den Rieter-Ringsspinnmaschinen G5/1.
  • Um ein der Spindeldrehzahl proportionales Signal zu erzeugen, wird auf der Hauptwelle des Antriebsmotors ein Tachogenerator 104 montiert. Dieser besteht im wesentlichen aus einem Zahnrad 106 und einem Initiator oder Sensor 108, der die im Zahnrad vorhandenen Lücken 110 zählt und ein von der Drehzahl des Hauptmotors abhängiges Signal erzeugt, das in der Zeichnung als "f-sensor" angegeben ist. Die genaue Frequenz dieses Signals hängt von der Zahnzahl des Zahnrades und der Drehgeschwindigkeit des Hauptmotors ab.
  • Nachdem eine Übersetzung zwischen dem Hauptmotor und den Spindeln der Ringspinnmaschinen erfolgt, aufgrund der dazwischengeschalteten Antriebe, ist es notwendig, das Frequenzsignal mit einem Faktor zu multiplizieren, um die eigentliche Spindeldrehzahl zu erreichen. Aber auch dann muß die Frequenz des Signals noch weiter erhöht werden, da man zur Steuerung des Filters 56 eine Taktfrequenz benötigt, die zwar der Spindeldrehzahl bzw. Läuferdrehzahl proportional ist, aber frequenzmäßig etwa um das Hundertfache höher ist. Bei einer Spindeldrehzahl von 12000 Upm, was 200 Hz entspricht, braucht man beispielsweise eine Taktfrequenz von 20 kHz. Die in der Zeichnung als Multiplikator 112 angedeutete Schaltung erhält daher das Frequenzsignal des Sensors an ihrem Eingang und liefert die erwünschte höhere Taktfrequenz f-takt an ihrem Ausgang.
  • Der Faktor, mit dem das Eingangssignal multipliziert wird, um das Taktfrequenzsignal zu erzeugen, wird durch die Gleichung:

    Faktor = 100 x n / Zahnzahl
    Figure imgb0001


    berechnet, wo n das Übersetzungsverhältnis Drehzahlspindel zu Drehzahlhauptmotorantrieb ist.
  • Diese Taktfrequenz wird dann an einem Zweiphasentaktgenerator 114 angelegt, der einen Teil des SC-Filters 56 darstellt. Mit diesem Zweiphasentaktgenerator werden zwei um die Phasen τ1 und τ2 verschobene Signale erzeugt, welche über die als Pfeil dargestellten Leitungen dazu dienen, zwei Schalter zu betätigen. Diese Schalter dienen dazu einen Kondensator zeitweise mit der negativen Klemme eines mit einem weiteren Kondensator 122 versehenen Operationsverstärkers 120 zu verbinden. Der Takt, mit dem die Schalter gegengleich geschlossen und geöffnet werden, bestimmt die effektive Impedanz der Kapazität am Eingang des OpAmps, was wiederum die Mittenfrequenz des Bandpaßfilters definiert. Mittenfrequenz des Filters führt.
  • Das vom Verstärker 54 kommende verstärkte Sensorsignal wird daher am Eingang des Filters gelegt, und das gefilterte Signal am Ausgang des Filters 56 wird anschließend dem Gleichrichter/Integrator 58 zugeführt, entsprechend der Schaltung der Fig. 5a. Die beschriebene Art der Fadenspannungsmessung kann bei allen Läuferfrequenzen durchgeführt werden, die deutlich oberhalb der Grundschwingfrequenz der Fadenführung, d.h. der Eigenschwingfrequenz der Fadenführungsöse mit Aufhängungssystem liegt. Im Normalfall liegt diese Grundschwingfrequenz bei etwa 10 bis 20 Hz und die Bezeichnung "deutlich oberhalb" deutet auf Frequenzen, die bei einem Faktor von etwa 4 bis 10 oder höher liegen. Somit kann das Fadenspannungsmeßverfahren gemäß vorliegender Erfindung mit Läuferdrehzahlen oberhalb von 100 Hz, d.h. ca. 6000 Upm verwendet werden. Da solche Drehzahlen unterhalb der interessierenden Nutzdrehzahlen der Spindeln der Ringspinnmaschine liegen, stellt diese untere Grenze der Spannungsauswertung in der Praxis keinerlei Einschränkung dar.
  • Ein Vorteil eines Filters in SC-Ausführung liegt darin, daß die Bandbreite des Durchlaßbereiches des Filters proportional zur Mittenfrequenz verändert wird, dadurch, daß die Güte Q des Filters zumindest im wesentlichen konstant bleibt, was der Signalauswertung zugute kommt.
  • Wichtig bei der Anwendung des Sensors gemäß vorliegender Erfindung ist, daß er in einer Ebene auf der Anhängung des Fadenführers so angebracht ist, daß die Umlaufbewegung des Fadens innerhalb des Fadenführers zu einer Auslenkung der Aufhängung nach beiden Seiten und daher zu einer entsprechenden Dehnung und Stauchung der Piezofolie nach beiden Seiten führt. Anders ausgedrückt, soll der Sensor in Form der Piezofolie in einer die Fadenlaufrichtung enthaltenden Ebene oder einer hierzu parallelen Ebene so angeordnet sein, daß die Aufhängung des Fadenführers elastische Bewegungen zu beiden Seiten ausführt, bezogen auf die Fadenlaufrichtung. Die Fadenlaufrichtung bedeutet bei der Ringspinnmschine, beispielsweise die Laufrichtung des Fadens zwischen dem Lieferwalzenpaar und dem Fadenführer oder die mittlere Laufrichtung des Fadens innerhalb des Fadenballons, die mit der geometrischen Achse des Fadenballons übereinstimmt.
  • Schließlich zeigt die Fig. 9 einen Fadenspannungssensor, der anders arbeitet, als bisher beschrieben.
  • In der Fig. 9 wird schematisch dargestellt, daß die Fadenführungsöse 18 über eine erste Kraftmeßzelle 90 an einem Steg 92 einer Fadenführungshalterung 94 angebracht ist. Genauer gesagt, ist die Fadenführungsöse an der einen Stirnfläche der Kraftmeßzelle 90 angebracht, während die andere Stirnseite der Kraftmeßzelle an dem Steg 92 angebracht ist. Auf der anderen Seite des Steges 92 befindet sich eine weitere Kraftmeßzelle 96, welche mit ihrem einen Stirnende ebenfalls am Steg 92 befestigt ist, während eine Kompensationsmasse 98 mit der Masse m₂ an dem dem Steg abgewandten Stirnende der Kraftmeßzelle 96 angebracht ist. Die Kraftmeßzelle 96 ist daher mit der Kraftmeßzelle 90 ausgerichtet, aber auf der anderen Seite des Steges 92 angeordnet. Die Fadenführungsöse 18 hat eine Masse m₁. Aufgrund der Fadenbewegung werden Schwingungen der Fadenführungsöse erzeugt und diese führen zu Schwingungen des Steges, die in der Zeichnung mit a bezeichnet sind. Auch Schwingungen der Fadenführungshalterung 94 führen zu Schwingungen des Steges. Diese Schwingungen führen aufgrund der schwankenden Beschleunigung der Massen m₁ und m₂ zu Schwankungen der Kräfte an den Kraftmeßzellen 90 und 96, so daß diese Ausgangssignale U1 bzw. U2 mit entsprechenden Schwankungen liefern.
  • Man kann diese Spannungen U1 und U2 wie folgt mathematisch darstellen:

    U1 = C1 (A . m₁ + F)
    Figure imgb0002


    U2 = C2 (A . m₂).
    Figure imgb0003



    Hier ist A die Beschleunigung des Steges 92 und F die erwünschte Fadenspannung. C1 und C2 sind Konstanten.
  • Subtrahiert man nunmehr diese beiden Signale, so bekommt man

    ΔU= U1 - U2 = A (C1 . m₁ - C2 . m₂) + C1 . F.
    Figure imgb0004



    Wenn C1 . m₁ - C2 . m₂ = 0
    Figure imgb0005
    ist (abgleich), so kann man schreiben

    ΔU ≈ C1 . F.
    Figure imgb0006


  • Mit anderen Worten ist F etwa gleich ΔU geteilt durch C1. Nachdem C1 . m₁ konstant ist und ΔU direkt gemesen werden kann, hat man mittels der Erfindung ein Signal für die Fadenspannung gewonnen.
  • Ein Fadenspannungssensor der zuletzt beschriebenen Art zeichnet sich daher dadurch aus, daß eine Fadenführungsöse über eine Kraftmeßzelle an der einen Seite eines Steges einer Fadenführungshalterung angebracht ist, daß auf der anderen Seite des Steges eine weitere Kraftmeßzelle an diesem angebracht und mit der ersten Kraftmeßzelle ausgerichtet ist, wobei eine die Masse der Fadenführungsöse kompensierende Masse an der zweiten Kraftmeßzelle angebracht ist, und daß die Ausgangssignale der beiden Kraftmeßzellen einer Differenzschaltung zugeführt werden, deren Ausgangssignal der Fadenspannung proportional ist.
  • An dieser Stelle soll klargestellt werden, daß sogenannte PVDF-Piezofolien von verschiedenen Herstellern erhältlich sind, beispielsweise von der US-Firma PENNWALT Corporation unter der Bezeichnung "KYNAR" (registered trademark). PVDF ist eine Abkürzung für Polyvinylidenfluorid, welche zu der Klasse der piezoelektrischen Polymere gehört. Piezofolien dieser Art, die sich für Anwendung mit der vorliegenden Erfindung eignen, sind vorzugsweise breitbandig mit einem Gütefaktor Q gegen Null strebend.
  • Die Fig. 10A zeigt eine besonders bevorzugte Ausführung für die Verarbeitung der Signale von einer Gruppe von Sensoren 52.1 bis 52.n und von einem Referenzsensor 52.r, mittels eines Multiplexers, der 16 Eingänge aufweist. Aus diesem Grund wird n normalerweise einen maximalen Wert von 15 haben und der weitere Eingang wird für den Referenzsensor verwendet. In der Praxis wird daher ein blinder Fadenführer für jede Gruppe von 15 echten Fadenführern vorgesehen, d.h. von Fadenführern, welche tatsächlich einen Faden an einer Spinnstelle führen und die Schaltung gemäß Fig. 10A wird für jede Gruppe von 15 echten Fadenführern dupliziert werden.
  • Die Sensorsignale, d.h. die Signale, die von Sensoren 52.1 bis 52.n kommen, werden vor dem Multiplexer 150 verstärkt, gefiltert und gleichgerichtet, durch die Schaltung gemäß Fig. 5a. Mittels Multiplexer werden die einzelnen Kanäle, d.h. die Signale, die von den Sensoren 52.1 bis 52.n und 52.r mit dem Analog/Digital-Wandler 152 der Reihe nach verbunden, wobei der Mikrocontroller 154 dem Multiplexer die Sensoradresse bestimmt. Die Pegel der Sensoren 52.1 bis 52.n werden mit dem Referenzpegel vom Referenzsensor 52.r betragsmäßig verglichen, die Differenz entspricht der Fadenspannung und kann entweder als Vergleichswert oder nach entsprechender Kalibration als Absolutwert vorliegen.
  • In diesem Beispiel sind die Bauelemente der Schaltung gemäß Fig. 5a jeweils für jeden Sensor vorgesehen und in der Halterung für den Sensor integriert. Dies ist jedoch etwas aufwendig und die Fig. 10B zeigt eine weitere Verbesserung, wonach jedem Sensor lediglich ein jeweiliger Verstärker zugeordnet ist, und der Filter und der Analog/Digital-Wandler nach dem Multiplexer angeordnet sind.
  • Im weiteren Detail werden die Signale der Sensoren 52.1 bis 52.n und vom Referenzsensor 52.r in verstärkter Form dem Multiplexer zugeführt. Der Mikrocontroller 154 gibt dem Multiplexer die durchzuschaltende Sensoradresse an. Hinter dem Multiplexer wird das Signal gefiltert, beispielsweise mittels einer Schaltung nach der Fig. 8, und durch den Analog/Digitalwandler 152 in ein digitales Signal umgewandelt. Dieses Signal wird dann dem Mikrocontroller 154 zugeführt. Arbeitet das System, bestehend aus Analog/Digital-Wandler und Mikrocontroller nicht genügend schnell, so wird zwischen Filter und A/D-Wandler ein Gleichrichter 156 eingesetzt, was zur Folge hat, daß nicht mehr Frequenzen bis zu 300 Hz gewandelt und ausgewertet werden müssen, sondern nur noch Frequenzen von ca. 1 Hz gemessen werden müssen. Bei günstiger Auslegung der Schaltung können die einzelnen Verstärkerstufen in/bei den Sensoren ersetzt werden, durch eine einzige Verstärkungsstufe hinter dem Multiplexer. Die Fig. 10A und 10B beschreiben Schaltungsvarianten, welche die Messung der Fadenspannung bei allen Sensoren ermöglichen.
  • Im Gegensatz befaßt sich die Fig. 12 mit der Feststellung, ob der Faden an den jeweiligen Spinnstellen gebrochen ist. Die Sensorsignale werden hier parallel verarbeitet. Sie sind wiederum in Gruppen 52.1 bis 52.n zusammen mit einem Referenzsensor 52.r kombiniert. In diesem Fall kann die Gesamtanzahl der Sensoren einer Gruppe bis zu 32 betragen.
  • Wie aus Fig. 11 ersichtlich, werden die Signale zunächst verstärkt, gefiltert und gleichgerichtet und sie werden dann in jeweiligen Komparatoren, die jeweils dem Komparator 72 der Fig. 5c entsprechen, mit dem Referenzsignal vom Referenzsensor 52.r verglichen. Der Ausgang der jeweiligen Komparatoren 72 ist eigentlich ein Digitalsignal, da der Komparator lediglich die Entscheidung trifft, ob der Pegel von einem aktiven Sensor höher oder niedriger liegt als der Bezugspegel vom Referenzsensor. Alle Signale werden dem Mikrocontroller 154 an parallele (Port-)Eingänge angelegt. Der Vorteil dieser Variante ist, daß ein einfacher und leistungsschwacher, d.h. kostengünstiger Mikrocontroller verwendet werden kann (beispielsweise Typ 80C31 von Intel). Eine Fadenspannungsmessung ist hier ausgeschlossen.
  • Es ist ersichtlich, daß die Ausgangssignale der einzelnen Mikrocontroller 154, welche jeweils einer einzelnen Sensorgruppe zugeordnet sind, alle mit einem seriellen Datenbus kommunizieren, beispielsweise der Type RS232 oder RS485.
  • Exemplarisch für alle Schaltungsvarianten werden die Mikrocontroller (ca. 50 St. pro Maschine) über einen vorteilhafterweise seriellen Datenbus mit einem Mastercontroller verbunden, der beispielsweise auch durch das Bauelement (chip) 80C31 von Intel gebildet sein kann. Dieser Mastercontroller ist bestimmt für die Auswertung der Fadeninformationen und stellt der Maschinensteuerung oder einer Prozeßsteuerung komprimierte Daten, evtl. statistisch ausgewert, zur Verfügung.
  • Bei Maschinen mit über 1000 Spindeln kann es vorteilhaft sein, wenn die Mikrocontroller auf zwei serielle Datenbusse verteilt werden, beispielsweise ein Datenbus für jede Seite der Maschine.
  • Es soll auch darauf hingewiesen werden, daß Kombinationen der Schaltungen der Fig. 10A, 10B und 11 möglich sind, und daß es auch möglich ist, die Sensorsignale als Ja/Nein-Information (Fadenbruchinformation) parallel oder per Multiplexer dem Mikrocontroller zuzuführen, während ein Sensor pro Mikrocontrollergruppe als Fadenspannungsmesser per A/D-Wandler (welcher ein integretierter Bestandteil des Mikrocontrollers sein kann) ausgewertet wird.

Claims (18)

  1. Verfahren zur Gewinnung eines Fadenlaufsignals, bei dem wenigstens ein Sensor (32) an der Aufhängung (30) eines Fadenführers (18) angebracht wird und ein Signal liefert, das unter anderem die durch die Fadenbewegung im Fadenführer induzierten Schwingungen wiederspiegelt, dadurch gekennzeichnet, daß ein breitbandiger Sensor in Form einer Piezofolie verwendet wird, welcher zumindest im wesentlichen in einer die Fadenlaufrichtung enthaltenden Ebene oder einer hierzu parallelen Ebene so angeordnet ist, daß die Aufhängung (20) des Fadenführers (18) elastische Bewegungen zu beiden Seiten ausführt, daß zur Gewinnung eines der Fadenspannung entsprechenden Signals entweder die Frequenz (f₁) eines den Faden aufwickelnden Elementes (22) und/oder Harmonische dieser Frequenz (f₂ bis f₉), aus dem Sensorsignal ausgefiltert und der Pegel dieser ausgefilterten Frequenz oder Frequenzen gemessen wird, wobei die durch einen Filter ausgefilterte Frequenz bzw. ausgefilterten Frequenzen deutlich oberhalb der Grundschwingfrequenz des Fadenführers, d.h. der Eigenschwingfrequenz der Fadenführungsöse liegt bzw. liegen, und daß die Durchlaßfrequenz des Filters entsprechend der Frequenzänderung des den Faden aufwickelnden Elementes (22) nachgeführt wird, wobei die Güte (Q) des Filters, vorzugsweise zumindest im wesentlichen konstant gehalten wird.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß das Sensorsignal an einem oder mehreren Verstärkern (54) verstärkt, im Filter (56) von den unerwünschten Frequenzen befreit und anschließend zu einem Gleichrichter/ Integrator (58) überführt wird.
  3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß das Sensorsignal durch einen Analog/Digitalwandler (64) in digitale Form gebracht und anschließend durch einen Mikrocontroller ausgewertet wird.
  4. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß das Sensorsignal mit einer Referenzspannung (URef) verglichen wird, wobei der Pegel dieser Referenzspannung entweder konstant ist oder in Abhängigkeit vom Maschinenbetriebszustand variiert wird.
  5. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß ein Referenzsignal bzw. die Referenzspannung von einem an der zugeordneten Maschine angebrachten Referenzsensor (80) erzeugt wird, der an einem Fadenführer angebracht ist welcher Maschinenvibrationen ermittelt, jedoch selbst kein Garn führt.
  6. Fadensensor (32), der an der Aufhängung (30) eines Fadenführers (18) anbringbar ist, wobei der Sensor (32) ein elektrisches Signal liefert, das die durch die Fadenbewegung in der Fadenführung induzierten Schwingungen wiederspiegelt, wobei dieses Signal filtriert und analysiert wird, dadurch gekennzeichnet, daß der Sensor eine Piezofolie ist, dessen Ebene zumindest im wesentlichen in einer die Fadenlaufrichtung enthaltenden Ebene oder einer hierzu parallelen Ebene so angeordnet ist, daß die Aufhängung des Fadenführers elastische Bewegungen zu beiden Seiten ausführt, daß zur Filterung des Steuersignals ein mitlaufender Filter (56), vorgesehen ist, dessen Durchlaßbereich bei zumindest im wesentlichen konstanter Güte entsprechend der Frequenz (f₁) eines den Faden aufwickelnden Elementes geführt ist, um entweder die Frequenz (f₁) eines den Faden (12) aufwickelnden Elementes (22) und/oder Harmonischen (f₂ bis f₉) dieser Frequenz (f₁) zu gewinnen, und daß eine den Pegel der ausgefilterten Frequenz oder Frequenzen messende Einrichtung (66, 76) vorgesehen ist, deren Ausgangssignal der Fadenspannung entspricht.
  7. Fadensensor nach Anspruch 6, dadurch gekennzeichnet, daß der mitlaufende Filter ein Filter in SC-Ausführung ist, beispielsweise in Form des von National Semiconductors unter der Bezeichnung MF 10 gelieferten Chips.
  8. Fadensensor nach den Ansprüchen 6 oder 7, dadurch gekennzeichnet, daß die Frequenzbandbreite des Durchlaßbereichs des Filters im Bereich zwischen 5 und 15%, vorzugsweise etwa 10% der Frequenz (f₁) oder der gewählten harmonischen Frequenz (f₂ bis f₉) des den Faden aufwickelnden Elementes beträgt.
  9. Fadensensor nach Anspruch 8, dadurch gekennzeichnet, daß der Durchlaßbereich des Filters in Bezug auf die gesuchte Frequenz (f₁ bzw. f₂ bis f₉) des den Faden aufwickelnden Elementes so gewählt ist, daß diese gesuchte Frequenz im oberen Teil des Durchlaßbereiches liegt.
  10. Fadensensor nach einem der Ansprüche 6 bis 9, dadurch gekennzeichnet, daß die Fadenführung eine Fadenführungsöse (18), beispielsweise in Form eines Sauschwanzerls, ist, beispielsweise an einer Ringspinnmaschine oder an einem tragbaren Fadenspannungsmeßgerät.
  11. Fadensensor nach einem der Ansprüche 6 bis 10, dadurch gekennzeichnet, daß die Aufhängung (30) des Fadenführers, welcher einstückig mit dem Fadenführer (18) sein kann, als Blattfeder (30) ausgebildet ist, vorzugsweise der Teil, der von der Führung bzw. Öse zu der Halterung (35) führt, und daß der Sensor (32) an der Blattfeder angebracht ist, wobei die Blattfeder (30) mit ihrer Ebene zumindest im wesentlichen parallel zur Fadenlaufrichtung bzw. der mittleren Fadenlaufrichtung verläuft.
  12. Fadensensor nach einem der vorhergehenden Ansprüche 6 bis 11, dadurch gekennzeichnet, daß an der den Faden erzeugenden bzw. verarbeitenden Maschine ein Referenzsensor (80) vorgesehen ist, der ebenfalls wie der eigentliche Fadenmeßsensor (32) bzw. die eigentlichen Fadenmeßsensoren (32, 32.1 ... 32.n) den Maschinenvibrationen ausgesetzt, jedoch kaum oder nicht durch einen laufenden Faden (12) beeinflußt wird, und daß das Signal des Referenzsensors (80) einen Referenzpegel (URef) für den anderen Sensor (32) bzw. die anderen Meßsensoren (32, 32.1 ... 32.n) liefert.
  13. Fadensensor nach Anspruch 12, dadurch gekennzeichnet, daß die Fadenspannungssignale mit dem Referenzpegel in einem Komparator (72) verglichen und aus diesem Vergleich ein Differenzsignal gebildet ist.
  14. Fadensensor nach Anspruch 12, dadurch gekennzeichnet, daß das Referenzsignal (URef) als Schwellenwert für die Erzeugung einer binären Fadenbruchinformation verwendet ist.
  15. Fadensensor nach Anspruch 12, dadurch gekennzeichnet, daß der Referenzsensor (80) bzw. eine an diesen angeschlossene Auswertungsschaltung laute Umweltgeräusche wie Ultraschall von Preßluft usw. erkennt und die Fadenspannungsmeßschaltung (Fig. 5b; Fig. 5c) so ausgelegt ist, daß im gleichen Zeitraum erzeugte Fadenspannungsinformation für ungültig erklärt ist.
  16. Fadensensor nach einem der vorhergehenden Ansprüche 6 bis 15, dadurch gekennzeichnet, daß er in einem Gehäuse aus Metall oder Kunststoff untergebracht ist, das vorzugsweise von der Maschine bzw. an der Maschine akustisch isoliert angebracht ist, beispielsweise mittels Isolation aus Gummi oder Schaumstoff.
  17. Fadensensor nach einem der vorhergehenden Ansprüche 6 bis 16, dadurch gekennzeichnet, daß das Sensorsignal vor oder nach der Filterung (56) durch einen oder mehrere Verstärker (54) verstärkt und nach dem Verstärken und der Filterung einem Gleichrichter/Integrator (58) zugeführt wird, an dessen Ausgang (60) das Fadenspannungssignal ansteht bzw. dessen Ausgang zu einem Fadenspannungssignal weiter ausgewertet wird.
  18. Fadensensor nach Anspruch 17, dadurch gekennzeichnet, daß das am Ausgang (60) des Gleichrichters/Integrators anstehende Signal einem Analog/Digitalwandler zuführbar ist, dessen Ausgang an einen Mikrocontroller (66) angeschlossen ist, der die Auswertung des Signales vornimmt.
EP90125114A 1989-12-22 1990-12-21 Verfahren zur Gewinnung eines Fadenlaufsignals Expired - Lifetime EP0436204B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP94102738A EP0608001B1 (de) 1989-12-22 1990-12-21 Ringspinnmaschine mit einem Fadenspannungssensor sowie Anwendung eines Fadenspannungssensors zur Steuerung einer Ringspinnmaschine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3942685 1989-12-22
DE3942685A DE3942685A1 (de) 1989-12-22 1989-12-22 Verfahren zur gewinnung eines fadenspannungssignals sowie fadensensor

Related Child Applications (1)

Application Number Title Priority Date Filing Date
EP94102738.5 Division-Into 1990-12-21

Publications (2)

Publication Number Publication Date
EP0436204A1 true EP0436204A1 (de) 1991-07-10
EP0436204B1 EP0436204B1 (de) 1995-02-08

Family

ID=6396263

Family Applications (2)

Application Number Title Priority Date Filing Date
EP90125114A Expired - Lifetime EP0436204B1 (de) 1989-12-22 1990-12-21 Verfahren zur Gewinnung eines Fadenlaufsignals
EP94102738A Expired - Lifetime EP0608001B1 (de) 1989-12-22 1990-12-21 Ringspinnmaschine mit einem Fadenspannungssensor sowie Anwendung eines Fadenspannungssensors zur Steuerung einer Ringspinnmaschine

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP94102738A Expired - Lifetime EP0608001B1 (de) 1989-12-22 1990-12-21 Ringspinnmaschine mit einem Fadenspannungssensor sowie Anwendung eines Fadenspannungssensors zur Steuerung einer Ringspinnmaschine

Country Status (5)

Country Link
US (1) US5164710A (de)
EP (2) EP0436204B1 (de)
JP (1) JPH06229855A (de)
CS (1) CS643490A2 (de)
DE (3) DE3942685A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0616058A1 (de) * 1993-03-17 1994-09-21 ATEX SpA System zur Regelung der Garnqualität und zugehörige Vorrichtung
DE4423548A1 (de) * 1993-08-25 1995-03-02 Rieter Ag Maschf Fadenüberwachungsvorrichtung

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5136202A (en) * 1990-08-31 1992-08-04 Atochem North America, Inc Material sensor
DE69408563T2 (de) * 1993-04-29 1998-07-23 Barmag Barmer Maschf Verfahren zur überwachung eines laufenden fadens
US5606113A (en) * 1994-09-06 1997-02-25 The University Of Chicago Acoustic methods to monitor sliver linear density and yarn strength
DE4443716A1 (de) * 1994-12-09 1996-06-13 Hottinger Messtechnik Baldwin Kraftmeßvorrichtung zur Messung der Zugspannung von Fäden, Bändern oder dergleichen sowie Federblatt und Verfahren zur Herstellung eines Federblatts
DE19614027A1 (de) * 1996-04-09 1998-01-22 Inst Textil & Faserforschung Verfahren zum Nachweis von untexturierten Garnabschnitten in texturierten Filamentgarnen mittels Bestimmung hochfrequenter Fadenzugkraftsschwankungen
DE19625513A1 (de) * 1996-06-26 1998-01-02 Schlafhorst & Co W Verfahren und Vorrichtung zum Herstellen von Kreuzspulen
JP2000110039A (ja) * 1998-09-30 2000-04-18 Murata Mach Ltd 多重撚糸機
FI990651A (fi) * 1999-03-23 2000-09-24 Valmet Corp Menetelmä ja laitteisto paperi- tai kartonkirainan päänviennin suorittamiseksi
GB9910331D0 (en) * 1999-05-06 1999-06-30 Fibrevision Limited Yarn quality monitoring
DE19940161A1 (de) * 1999-08-25 2001-03-01 Schlafhorst & Co W Vorrichtung zum Abgleich eines Fadenzugkraftsensors
DE10249278A1 (de) * 2002-10-23 2004-06-09 Memminger-Iro Gmbh Fadenspannungssensor
EP1707523A1 (de) * 2005-03-31 2006-10-04 Schärer Schweiter Mettler AG Verfahren und Vorrichtung zum Umspulen von Garnen
JP5354343B2 (ja) * 2005-11-18 2013-11-27 ウステル・テヒノロジーズ・アクチエンゲゼルシヤフト ファンシーヤーンの特徴付け方法
JP4931069B2 (ja) * 2007-06-08 2012-05-16 株式会社豊田中央研究所 糸張力検出器及びジェットルームにおける緯糸張力検出装置
JP5838768B2 (ja) 2011-11-30 2016-01-06 ソニー株式会社 検知装置、受電装置、非接触電力伝送システム及び検知方法
CN104328549B (zh) * 2013-01-29 2016-08-17 潍坊医学院 一种用于减少细纱机纱线断头的控制方法及装置
CN107190377B (zh) * 2017-07-10 2022-08-26 江南大学 在线检测环锭细纱机纺纱张力的装置及方法
CN111411429A (zh) * 2020-04-01 2020-07-14 东华大学 一种四罗拉环锭细纱机的须条检测装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3968637A (en) * 1973-08-06 1976-07-13 Akzona Incorporated Yarn break detection by means of triboelectrical noise signal
GB2023671A (en) * 1978-05-16 1980-01-03 Kitamura S Detecting yarn breaks in spinning machines
US4182167A (en) * 1978-09-07 1980-01-08 Toray Industries, Inc. Yarn tension meter
DE3721298A1 (de) * 1986-07-16 1988-02-04 Textima Veb K Fadenlaufsensor, insbesondere fuer ringspinnmaschinen
DE3813707A1 (de) * 1987-04-28 1988-11-17 Elitex Zavody Textilniho Zugkraftmesser fuer textilfaeden

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2930179A (en) * 1958-11-03 1960-03-29 Adams Inc Control system for textile machines
DE1273861B (de) * 1964-02-25 1968-07-25 Heim Sigrid Anordnung zum Messen einer Faden-, Band- oder Drahtspannung, insbesondere von Fadenspannungen bei Spulmaschinen der Textilindustrie
DE1573747A1 (de) * 1966-01-24 1969-07-24 Palitex Project Co Gmbh Geraet zum elektrischen Messen der Spannung an laufenden Faeden in Textilmaschinen
CH439034A (de) * 1966-02-21 1967-06-30 Dolder Alfred Verfahren zur Erzeugung eines Steuersignals beim Auftreten eines Fadenbruches an Textilmaschinen und Einrichtung zur Durchführung des Verfahrens
NL6808471A (de) * 1968-06-15 1969-07-25
DE1917601C3 (de) * 1969-04-05 1980-09-25 Bayer Ag, 5090 Leverkusen Benzoxazolyl-(2)-dihydronaphtho [4,5-b] thiophene und deren Verwendung als optische Aufheller
CH542296A (de) * 1972-10-11 1973-09-30 Peyer Siegfried Fadenüberwachungsvorrichtung für Textilmaschinen
CH580533A5 (de) * 1974-07-12 1976-10-15 Loepfe Ag Geb
CH587974A5 (de) * 1975-04-23 1977-05-31 Loepfe Ag Geb
IT1054038B (it) * 1976-01-09 1981-11-10 Lanerossi Spa Metodo e dispositivi per la rile vazione automatica della presenza o assenza del filo nelle macchine di filatura
CH625484A5 (de) * 1977-10-05 1981-09-30 Loepfe Ag Geb
CH625188A5 (en) * 1977-12-20 1981-09-15 Zellweger Uster Ag Process for evaluating an analog signal derived from the cross-section or diameter of an elongate textile product
DE2954620C2 (de) * 1978-06-13 1990-01-11 Kitamura, Shinzo, Hirakata, Osaka, Jp
CH639486A5 (de) * 1979-09-14 1983-11-15 Mettler S Fr Soehne Ag Maschin Piezoelektrischer geber zum erzeugen eines von der fadenzugkraft eines textilfadens abhaengigen signals.
DE3236942A1 (de) * 1981-10-09 1983-04-28 Barmag Barmer Maschinenfabrik Ag, 5630 Remscheid Aufspulvorrichtung fuer synthetische faeden
DE3506698A1 (de) * 1985-02-26 1986-08-28 FAG Kugelfischer Georg Schäfer KGaA, 8720 Schweinfurt Vorrichtung zum messen der fadenzugkraft eines fadens
DD248382A1 (de) * 1986-04-21 1987-08-05 Textima Veb K Verfahren und vorrichtung zur gewinnung einer fadenlaufinformation an ringspinn- und ringzwirnmaschinen
US4830296A (en) * 1986-06-05 1989-05-16 Murata Kikai Kabushiki Kaisha Automatic winder
EP0368608A1 (de) * 1988-11-08 1990-05-16 Hiroshi Yamaguchi Ringspinnvorrichtung mit einem Ringmotor und Verfahren zur Steuerung und Regelung des Spinnbetriebs dieser Vorrichtung

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3968637A (en) * 1973-08-06 1976-07-13 Akzona Incorporated Yarn break detection by means of triboelectrical noise signal
GB2023671A (en) * 1978-05-16 1980-01-03 Kitamura S Detecting yarn breaks in spinning machines
US4182167A (en) * 1978-09-07 1980-01-08 Toray Industries, Inc. Yarn tension meter
DE3721298A1 (de) * 1986-07-16 1988-02-04 Textima Veb K Fadenlaufsensor, insbesondere fuer ringspinnmaschinen
DE3813707A1 (de) * 1987-04-28 1988-11-17 Elitex Zavody Textilniho Zugkraftmesser fuer textilfaeden

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0616058A1 (de) * 1993-03-17 1994-09-21 ATEX SpA System zur Regelung der Garnqualität und zugehörige Vorrichtung
DE4423548A1 (de) * 1993-08-25 1995-03-02 Rieter Ag Maschf Fadenüberwachungsvorrichtung

Also Published As

Publication number Publication date
EP0436204B1 (de) 1995-02-08
EP0608001A1 (de) 1994-07-27
US5164710A (en) 1992-11-17
DE59008432D1 (de) 1995-03-23
JPH06229855A (ja) 1994-08-19
DE59010879D1 (de) 1999-09-02
EP0608001B1 (de) 1999-07-28
CS643490A2 (en) 1991-10-15
DE3942685A1 (de) 1991-06-27

Similar Documents

Publication Publication Date Title
EP0436204B1 (de) Verfahren zur Gewinnung eines Fadenlaufsignals
DE2462129C3 (de) Anordnung zum Erkennen des fehlerhaften Arbeitens voon Spinnmaschinen
EP0631136B1 (de) Vorrichtung zur Messung der Masse oder des Substanzquerschnitts von Faserbändern und Verwendung der Vorrichtung
EP1350870B1 (de) Vorrichtung zum Optimieren der Regulierungseinstellung einer Spinnereimaschine sowie entsprechendes Verfahren
DE2819272A1 (de) Steuerschaltung fuer eine regelvorrichtung fuer die faserbanddicke in vorspinnmaschinen
CH672323A5 (de)
DE10236778B4 (de) Verfahren und Vorrichtung zum Verstrecken von mindestens eines Faserband
DE4029172A1 (de) Verfahren und vorrichtung zum charakterisieren der qualitaet von baendern und litzen aus textilfasern
DE3689362T2 (de) Vorrichtung und Verfahren zur Messung der Festigkeit einer Materialbahn.
DE4211684A1 (de) Verfahren und Vorrichtung zur Drehzahlregelung von Spinnmaschinen
DE2528290C3 (de) Arbeitsverfahren und Vorrichtung zum Überwachen des gesponnenen Fadens an Offen-End-Rotorspinnmaschinen
CH687994A5 (de) Vorrichtung zur Produktionssteigerung von Spinnereimaschinen.
EP0426979A2 (de) Verfahren und Vorrichtung zum Bestimmen von Wartungsintervallen an einer Spinnereimaschine
DE3035196A1 (de) Verfahren und vorrichtung zur beseitugung eines fehlers bei der regelung der faserbanddichte auf textilmaschinen
CH522051A (de) Verfahren und Vorrichtung zur Überwachung und/oder Regelung der Speisung von Karden
DE2918740C2 (de) Vorrichtung zur Erzeugung von Steuergrößen für Garnreiniger, Fadenwächter und dergleichen
EP1687469B1 (de) Streckwerk für eine spinnereimaschine
DE10227676A1 (de) Verfahren und Vorrichtung zur Auswertung von Signalen eines Sensors
DE19921429A1 (de) Verfahren und Vorrichtung zur Fehlerkorrektur eines von einem Meßorgan gelieferten Meßwertes von Faserband in einer Textilmaschine
DE102005022874A1 (de) Verfahren zur Schwingungsreduzierung in Papiermaschinen
EP0754788B1 (de) Verfahren und Vorrichtung zur Vermeidung von Masseschwankungen in Fasermaterial
DE19547544A1 (de) Verfahren zum Überprüfen des Fadenprofils
DE102007000679A1 (de) Verfahren und Vorrichtung zum Erfassen eines Risses und/oder eines Elastizitätsmoduls einer Materialbahn
DE2412153C3 (de) Vorrichtung zum Konstanthalten der Fadenspannung an Aufspulvorrichtungen
WO2006070008A1 (de) Verfahren zur bestimmung der längenbezogenen masse oder des querschnitts von textilem faserverbund sowie entsprechende vorrichtung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE FR GB IT LI SE

17P Request for examination filed

Effective date: 19910612

17Q First examination report despatched

Effective date: 19931026

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB IT LI SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19950208

XX Miscellaneous (additional remarks)

Free format text: TEILANMELDUNG 94102738.5 EINGEREICHT AM 21/12/90.

REF Corresponds to:

Ref document number: 59008432

Country of ref document: DE

Date of ref document: 19950323

ITF It: translation for a ep patent filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19950508

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19950410

EN Fr: translation not filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19951221

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19951221

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19961120

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19961121

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19971231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19971231

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20051221