[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP0128336B1 - Vorrichtung zum Verdichten von Giessereiformsand - Google Patents

Vorrichtung zum Verdichten von Giessereiformsand Download PDF

Info

Publication number
EP0128336B1
EP0128336B1 EP84105049A EP84105049A EP0128336B1 EP 0128336 B1 EP0128336 B1 EP 0128336B1 EP 84105049 A EP84105049 A EP 84105049A EP 84105049 A EP84105049 A EP 84105049A EP 0128336 B1 EP0128336 B1 EP 0128336B1
Authority
EP
European Patent Office
Prior art keywords
gas
sand
pattern
layer
moulding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP84105049A
Other languages
English (en)
French (fr)
Other versions
EP0128336A1 (de
Inventor
Norbert Ing.-Grad. Damm
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BMD Badische Maschinenfabrik Durlach GmbH
Original Assignee
BMD Badische Maschinenfabrik Durlach GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BMD Badische Maschinenfabrik Durlach GmbH filed Critical BMD Badische Maschinenfabrik Durlach GmbH
Publication of EP0128336A1 publication Critical patent/EP0128336A1/de
Application granted granted Critical
Publication of EP0128336B1 publication Critical patent/EP0128336B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C15/00Moulding machines characterised by the compacting mechanism; Accessories therefor

Definitions

  • the invention relates to a device for compacting foundry molding sand by the sudden action of gas pressure on the molding sand heaped up in a molding box above a model plate with a model, a gas-permeable layer on which the gas pressure is brought about being arranged directly above the surface of the uncompressed molding sand.
  • the gas pressure is converted into kinetic energy, which is transferred to the molding sand surface.
  • the gas permeability of the additional mass there is an exchange of momentum between the gas and the molding sand surface.
  • the gas penetrates the molding sand and leads to a fluidization effect. In connection with the impact energy generated by the gas pressure, this is responsible for the compression of the molding sand.
  • the invention is based on the object of developing the device mentioned at the outset in such a way that crack formation within the mold is avoided with a largely uniform profile of the mold hardness in horizontal cross-sectional planes of the mold.
  • the layer has a gas permeability which is adapted to the height of the molding sand to be compacted in such a way that it is lower in the region of high and / or plateau-like model contours than in the model-free region of the model plate.
  • the present invention achieves the same goal in that the gas permeability of the layer to the height course of the model is adjusted above the model plate, ie the gas pressure in the area of a high compression stroke (lowering of the molding sand surface) is more effective than in the area of small compression strokes (large and extensive model heights).
  • the gas permeability of the layer to the height course of the model is adjusted above the model plate, ie the gas pressure in the area of a high compression stroke (lowering of the molding sand surface) is more effective than in the area of small compression strokes (large and extensive model heights).
  • more gas penetrates into the molding sand at those points, thus leading to greater fluidization than in the latter areas. Practical investigations have shown that the indicated crack formation is reliably avoided.
  • the reason for this may be that the compression achieved by the gas pressure through the exchange of impulses between the sand particles and the fluidization effect takes place for all partial molding sand volumes at the same speed or in the same time span, so that adjacent molding sand volumes carry out the compression stroke at the same time and neither vertical Relative movements between this molding sand volume, still horizontal pressure compensation movements occur due to a leading compression in certain parts of the mold.
  • the effect shown can be further increased in that zones of different gas permeability of the layer are also delimited from one another in the vertical direction by partition walls immersed in the molding sand.
  • These bulkheads separate mold sand volumes that are vertically adjacent to one another at least over part of the filling height, corresponding to the extent of the gas permeability of the layer, so that the influences on the gas pressure wave that are predetermined by the different gas permeability are also maintained at a distance in the depth of the mold. This prevents «short circuit» currents between adjacent sand volumes.
  • These bulkheads can extend, for example, into the area of the model contour. This means that they not only separate these mold sand volumes from each other in the loosely heaped state, but also protrude into the finally compacted area of the mold.
  • the gas-permeable layer is partly fixed in place, partly loosely placed on the surface of the molding sand and can be moved with it. As far as the layer can be moved, it forms an additional mass accelerated by gas pressure, the kinetic energy of which is transferred to the molding sand and leads to an additional compaction effect.
  • the procedure is preferably such that the layer is stationary in the area above the model, ie where the lower gas permeability is provided, and in the area above the free model plate, in which the larger compression stroke is to be carried out.
  • the entire gas-permeable layer may be placed on the surface of the molding sand and with this mitbeweg - its bar, wherein then preferably provided that the mass density of the layer high in the area and / or plateau-like pattern contours is smaller than in the model-free region of the pattern plate .
  • the layer is preferably designed to be flexible so that it can follow a different compression stroke.
  • a filling frame is placed on the molding box in the gas pressure molding process which, together with the molding box, picks up the loosely poured molding sand.
  • the stationary part of the gas-permeable layer is attached to the filling frame so that it can always remain on the filling frame and does not interfere with lowering movements of the molding box with the finished mold.
  • the bulkheads are attached both to the fixed part of the gas-permeable layer and to the molding box and extend into the molding box. In this way, the bulkhead walls do not interfere with the mold box movements.
  • the gas-permeable layer is formed from one or more perforated sheets with a free hole cross section adapted to the desired gas permeability.
  • FIG. 1 shows a model plate 1 with a model 2, which closes a molding box 3 on the underside.
  • a filling frame 4 is placed on the molding box 3 and forms the molding space together with the molding box.
  • a pressurized gas pre-chamber 5 is arranged above this molding space and is closed at the top by a plate 6.
  • the line 8 of a compressed gas store 7 opens into the antechamber 5, into which a valve (not shown) with a large opening cross section is arranged.
  • the devices required for manipulating the molding box 3 and the filling frame 4 and for filling the molding sand can be of a conventional type and are therefore not shown in detail in the drawing.
  • the gas pressure required for compression can either be taken from a compressed gas store, as shown in the drawing, or else can be generated by the explosion of a fuel gas mixture.
  • a gas-permeable layer 10 Arranged above the free surface of the molding sand filling 11 in the molding box 3 and filling frame 4 is a gas-permeable layer 10, which in this exemplary embodiment has two areas of different gas permeability, namely an outer edge area 12 with high gas permeability and a central area 13 with lower gas permeability. This middle area is located approximately above the model 2, in particular the high and plateau-like areas of the model contour, while the area 12 of greater gas permeability is located approximately above the areas of the model plate 1 free of the model 2.
  • the gas-permeable layer is formed in two parts, one part 14 forming the zone 12 with greater gas permeability, the other part 15 forming the zone 13 with less gas permeability.
  • the gas permeability in zone 13 is at most 10% of the free cross section of the filling frame in this area.
  • the part 15 with the zone 13 of lower gas permeability is fixed in this embodiment, for example fixed to the filling frame 4 by means of ribs 16, while the other part 14 is loosely placed on the molding sand surface below the ribs 16.
  • the parts 14 and 15 of different gas permeability can each be formed from perforated plates, the zone 13 having a lower gas Permeable perforated plate of part 15 can be supported by a grate 17.
  • the zones 12, 13 of different gas permeability are separated from one another to the depth of the molding sand filling by bulkheads 18, which are fastened to the filling frame, specifically via the ribs 16 together with the stationary part 15 of the gas-permeable layer, and for example to the level of the molding box 3 pass.
  • the bulkhead walls 19 can be continued with fastening ribs 20 in the upper part of the molding box 3 in analogy to conventional box shears.
  • the bulkheads 19 end at the required distance above the highest model contour.
  • an inverted arrangement of the parts 14 and 15 can also be provided, for example when it comes to the production of bathtub lower parts in which the walls are located in the edge region of the molding box 3.
  • zones 12, 13 can advantageously be arranged vertically up to the model area.
  • the division of the zones of different gas permeability can be adapted to the conditions specified by the model.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Casting Devices For Molds (AREA)

Description

  • Die Erfindung betrifft eine Vorrichtung zum Verdichten von Giessereiformsand durch schlagartige Einwirkung von Gasdruck auf den in einem Formkasten über einer Modellplatte mit Modell aufgeschütteten Formsand, wobei unmittelbar oberhalb der Oberfläche des unverdichteten Formsandes eine gasdurchlässige Schicht angeordnet ist, auf die der Gasdruck zur Wirkung gebracht wird.
  • In der nach Art 29 (1) (a) EPÜ den nächsten Stand der Technik bildenden EP-A-0 089 547, die gemäss Art. 54 (3) EPÜ für die Frage der erfinderischen Tätigkeit nicht in Betracht zu ziehen ist, ist ein Gasdruck-Formverfahren beschrieben, bei dem der Formsand in den aus Formkasten und Füllrahmen bestehenden, unten durch die Modellplatte mit dem Modell abgeschlossenen Formraum eingefüllt, auf die freie Formsand-Oberfläche eine gasdurchlässige Schicht in Form einer Zusatzmasse aufgelegt und anschliessend auf die Zusatzmasse gespeichertes Druckgas schlagartig entspannt wird. Da die Zusatzmasse lose aufgelegt ist, folgt sie der Absenkbewegung der Formsand-Oberfläche aufgrund der Verdichtung des Formsandes. In der Zusatzmasse wird der Gasdruck in kinetische Energie umgesetzt, die sich auf die Formsand-Oberfläche überträgt. Zugleich findet aber auch - aufgrund der Gasdurchlässigkeit der Zusatzmasse - ein Impulsaustausch zwischen dem Gas und der Formsand-Oberfläche statt. Ferner dringt das Gas in den Formsand ein und führt zu einem Fluidisierungseffekt. Dieser ist in der Verbindung mit der durch den Gasdruck erzeugten Aufprallenergie für die Verdichtung des Formsandes verantwortlich. In diesem Zusammenhang wird ferner vorgeschlagen, die Zusatzmasse in Einzelmassen zu zerlegen und diese an die gegebene Modellkontur anzupassen derart, dass die Masse über hohen Modellkonturen kleiner ist als über tiefen Konturen. Hiermit soll insbesondere erreicht werden, dass die Dichte bzw. Formhärte in horizontalen Ebenen etwa gleiche Werte annimmt. Praktische Versuche jedoch haben gezeigt, dass sich dieses Ziel nur schwer erreichen lässt. Es hat sich insbesondere gezeigt, dass bei Modellen, deren Kontur grosse Höhenunterschiede oder aber plateauartige Flächen aufweist, zwar eine befriedigende Formhärte erreicht wird, jedoch Risse auftreten, die im wesentlichen von oben nach unten verlaufen. Hieraus könnte auf Scherkräfte geschlossen werden, die im wesentlichen in vertikeler Richtung wirksam sind.
  • Andere bekannte Vorschläge gehen dahin, entweder oberhalb des Formkastens mit der Sandfüllung eine Verteilerplatte mit düsenartigen Bohrungen anzuordnen, deren Querschnitt über hohen Modellkonturen grösser ist als über niedrigen Modellkonturen oder im modellfreien Bereich (US-A-3 170 202), oder aber bestimmte Oberflächenpartien, z. B. oberhalb des Modells, durch einen topfartigen Behälter abzudecken (DE-A-2 949 340), dessen Wände in den Formsand eingreifen und dessen geschlossener Boden mit Abstand oberhalb der Formsand-Oberfläche ortsfest angeordnet ist. Beide bekannten Vorrichtungen führen zu keinem befriedigenden Verdichtungsergebnis. Im ersten Fall entstehen auf der Formsand-Oberfläche entsprechend der Düsenanordnung eine Vielzahl von Kratern, während im zweiten Fall der unterhalb des Bodens liegende Formsand praktisch unverdichtet bleibt, und der allein auf den ausserhalb des Behälters liegenden Bereich der Formsand-Oberfläche wirkende Gasdruck auch dort kraterartige Vertiefungen hinterlässt. Hiermit wird also das genannte Problem nicht behoben, es treten im Gegenteil zusätzliche Nachteile aufgrund der Kraterbildung ein.
  • Der Erfindung liegt die Aufgabe zugrunde, die eingangs genannte Vorrichtung dahingehend weiterzubilden, dass bei einem weitgehend gleichmässigen Verlauf der Formhärte in horizontalen Querschnittsebenen der Form Rissbildungen innerhalb der Form vermieden werden.
  • Diese Aufgabe wird erfindungsgemäss dadurch gelöst, dass die Schicht eine der Höhe des zu verdichtenden Formsandes angepasste Gasdurchlässigkeit derart aufweist, dass diese im Bereich hoher und/oder plateauartiger Modellkonturen geringer ist als im modellfreien Bereich der Modellplatte.
  • Während mit dem eingangs beschriebenen Verfahren gezeigt worden ist, dass sich der Verlauf der Formhärte durch eine an die Modellkontur angepasste Massenbelegung an der Zusatzmasse beeinflussen lässt, wird durch die vorliegende Erfindung das gleiche Ziel dadurch erreicht, dass die Gasdurchlässigkeit der Schicht an den Höhenverlauf des Modells oberhalb der Modellplatte angepasst wird, d.h. der Gasdruck im Bereich eines hohen Verdichtungshubs (Absenkung der Formsand-Oberfläche) stärker zur Wirkung gebracht wird als im Bereich kleinen Verdichtungshubs (grosse und ausgedehnte Modellhöhen). Im übrigen dringt an jenen Stellen auch mehr Gas in den Formsand ein, führt also zu einer stärkeren Fluidisierung als in den letztgenannten Bereichen. Praktische Untersuchungen haben ergeben, dass hiermit die angedeutete Rissbildung sicher vermieden wird. Die Ursache dürfte darin liegen, dass die aus dem Gasdruck durch Impulsaustausch zwischen den Sandpartikeln sowie durch den Fluidisierungseffekt erreichte Verdichtung für alle partielle Formsandvolumen mit gleicher Geschwindigkeit bzw. in einer gleichen Zeitspanne erfolgt, so dass benachbarte Formsandvolumina zur gleichen Zeit den Verdichtungshub ausführen und weder vertikale Relativbewegungen zwischen diesem Formsandvolumina, noch horizontale Druckausgleichsbewegungen aufgrund einer voreilenden Verdichtung in bestimmten Formpartien auftreten.
  • Gemäss einer bevorzugten Ausführungsform der Erfindung kann die dargestellte Wirkung noch dadurch gesteigert werden, dass Zonen unterschiedlicher Gasdurchlässigkeit der Schicht durch in den Formsand eintauchende Schottwände auch in vertikaler Richtung gegeneinander abgegrenzt sind.
  • Diese Schottwände trennen also zumindest über einen Teil der Füllhöhe vertikal nebeneinander liegende Formsandvolumina entsprechend dem Ausmass der Gasdurchlässigkeit der Schicht gegeneinander ab, so dass die durch die unterschiedliche Gasdurchlässigkeit vorgegebenen Einflüsse auf die Gasdruckwelle auch in der Tiefe der Form distanziert aufrechterhalten werden. Dadurch werden vor allem «Kurzschluss»-Strömungen zwischen benachbartem Sandvolumina vermieden. Diese Schottwände können beispielsweise bis in den Bereich der Modellkontur hineinreichen. Dies bedeutet, dass sie nicht nur diese Formsandvolumina im lose aufgeschütteten Zustand voneinander trennen, sondern auch bis in den abschliessend verdichteten Bereich der Form hineinragen.
  • Gemäss einem weiteren Merkmal der Erfindung ist die gasdurchlässige Schicht teilweise ortsfest angebracht, teilweise lose auf die Oberfläche des Formsandes aufgelegt und mit diesem mitbewegbar. Soweit die Schicht mitbewegbar ist, bildet sie eine vom Gasdruck beschleunigte Zusatzmasse, deren kinetische Energie auf den Formsand übertragen wird und zu einem zusätzlichen Verdichtungseffekt führt. Dabei wird vorzugsweise so vorgegangen, dass die Schicht in dem oberhalb des Modells liegenden Bereich, wo also die geringere Gasdurchlässigkeit vorgesehen ist, ortsfest, in dem oberhalb der freien Modellplatte liegenden Bereich, in welchem also der grössere Verdichtungshub durchzuführen ist, mitbewegbar ist.
  • Statt dessen kann aber auch die gesamte gasdurchlässige Schicht auf die Oberfläche des Formsandes aufgelegt und mit dieser mitbeweg- bar sein, wobei dann vorzugsweise vorgesehen ist, dass die Massenbelegung der Schicht im Bereich hoher und/oder plateauartiger Modellkonturen geringer ist als im modellfreien Bereich der Modellplatte. In einem solchen Fall wird die Schicht vorzugsweise flexibel ausgebildet, so dass sie einem unterschiedlichen Verdichtungshub folgen kann.
  • In der Regel wird beim Gasdruck-Formverfahren auf den Formkasten ein Füllrahmen aufgesetzt, der zusammen mit dem Formkasten den lose aufgeschütteten Formsand aufnimmt. In diesem Fall ist der ortsfeste Teil der gasdurchlässigen Schicht am Füllrahmen befestigt, so dass er stets am Füllrahmen verbleiben kann und Absenkbewegungen des Formkastens mit der fertigen Form nicht stört.
  • Bei dieser Ausführungsform sind die Schottwände sowohl am ortsfesten Teil der gasdurchlässigen Schicht als auch am Formkasten angebracht und reichen bis in den Formkasten hinein. Auf diese Weise stören auch die Schottwände die Formkastenbewegungen nicht.
  • Gemäss einer zweckmässigen Ausführungsform ist die gasdurchlässige Schicht aus ein oder mehr Lochblechen mit der gewünschten Gasdurchlässigkeit angepasstem freien Lochquerschnitt gebildet.
  • Nachstehend ist die Erfindung anhand eines in der Zeichnung dargestellten Ausführungsbeispiels beschrieben.
  • In der Zeichnung zeigen:
    • Fig. 1 eine schematische Ansicht der wesentlichen Teile einer Vorrichtung zur Gasdruckverdichtung, teilweise im Schnitt;
    • Fig. 2 eine Ausführungsform der Vorrichtung mit Formkasten und Füllrahmen im Schnitt;
    • Fig. 3 eine Draufsicht auf die Ausführungsform gemäss Fig. 2 und
    • Fig. 4 eine vergrösserte Detailansicht des Bereichs IV in Fig. 2.
  • In Fig. 1 ist eine Modellplatte 1 mit einem Modell 2 erkennbar, die einen Formkasten 3 unterseitig abschliesst. Auf den Formkasten 3 ist ein Füllrahmen 4 aufgesetzt, der zusammen mit dem Formkasten den Formraum bildet. Oberhalb dieses Formraums ist eine Druckgas-Vorkammer 5 angeordnet, die oberseitig durch eine Platte 6 abgeschlossen ist. In die Vorkammer 5 mündet die Leitung 8 eines Druckgasspeichers 7, in die ein nicht gezeigtes Ventil mit grossem Öffnungsquerschnitt angeordnet ist. Die für die Manipulation des Formkastens 3 und des Füllrahmens 4 sowie die zum Einfüllen des Formsandes notwendigen Einrichtungen können von üblicher Art sein und sind deshalb in der Zeichnung nicht näher dargestellt. Der zum Verdichten erforderliche Gasdruck kann entweder, wie in der Zeichnung gezeigt, aus einem Druckgasspeicher entnommen oder aber auch durch Explosion eines Brenngasgemisches erzeugt werden.
  • Oberhalb der freien Oberfläche der Formsandfüllung 11 im Formkasten 3 und Füllrahmen 4 ist eine gasdurchlässige Schicht 10 angeordnet, die bei diesem Ausführungsbeispiel zwei Bereiche unterschiedlicher Gasdurchlässigkeit aufweist, nämlich einen äusseren Randbereich 12 hoher Gasdurchlässigkeit und einen mittleren Bereich 13 geringerer Gasdurchlässigkeit. Dieser mittlere Bereich befindet sich etwa oberhalb des Modells 2, insbesondere der hohen und plateauartigen Bereiche der Modellkontur, während der Bereich 12 grösserer Gasdurchlässigkeit sich etwa oberhalb der vom Modell 2 freien Bereiche der Modellplatte 1 befindet.
  • Bei dem Ausführungsbeispiel gemäss Fig. 2 bis 4 ist die gasdurchlässige Schicht zweiteilig ausgebildet, wobei ein Teil 14 die Zone 12 grösserer Gasdurchlässigkeit, das andere Teil 15 die Zone 13 geringerer Gasdurchlässigkeit bildet. Beispielsweise beträgt die Gasdurchlässigkeit in der Zone 13 maximal 10% des freien Querschnitts des Füllrahmens in diesem Bereich.
  • Das Teil 15 mit der Zone 13 geringerer Gasdurchlässigkeit ist bei diesem Ausführungsbeispiel ortsfest angebracht, beispielsweise über Rippen 16 am Füllrahmen 4 befestigt, während das andere Teil 14 lose auf die Formsandoberfläche unterhalb der Rippen 16 aufgelegt ist.
  • Die Teile 14 und 15 unterschiedlicher Gasdurchlässigkeit können jeweils aus Lochblechen gebildet sein, wobei das die Zone 13 geringerer Gasdurchlässigkeit bildende Lochblech des Teils 15 von einem Rost 17. abgestützt sein kann.
  • Die Zonen 12, 13 unterschiedlicher Gasdurchlässigkeit sind bis in die Tiefe der Formsandfüllung durch Schottwände 18 voneinander getrennt, die am Füllrahmen, und zwar über die Rippen 16 zusammen mit dem ortsfesten Teil 15 des gasdurchlässigen Schicht befestigt sind und beispielsweise bis auf das Niveau des Formkastens 3 reichen. In besonderer Weise können die Schottwände 19 mit Befestigungsrippen 20 im oberen Teil des Formkastens 3 in Analogie zu üblichen Kastenschoren weitergeführt werden. Bei dieser Anordnung enden die Schottwände 19 mit dem erforderlichen Abstand über der höchsten Modellkontur. Je nach Art des Modells kann auch eine umgekehrte Anordnung der Teile 14 und 15 vorgesehen sein, beispielsweise wenn es sich um die Herstellung von Badewannen-Unterteilen handelt, bei denen die Wandungen im Randbereich des Formkastens 3 liegen. Vorteilhaft können die Zonen 12, 13 bei grossvolumigen Ballenmodellen vertikal bis in den Modellbereich angeordnet werden. Im übrigen lässt sich die Aufteilung der Zonen unterschiedlicher Gasdurchlässigkeit an die jeweils durch das Modell vorgegebenen Verhältnisse anpassen.

Claims (9)

1. Vorrichtung zum Verdichten von Giessereiformsand durch schlagartige Einwirkung von Gasdruck auf den in einem Formkasten (3) über einer Modellplatte (1) mit Modell (2) aufgeschütteten Formsand (11), wobei unmittelbar oberhalb der Oberfläche des unverdichteten Formsandes eine gasdurchlässige Schicht (10) angeordnet ist, auf die der Gasdruck zur Wirkung gebracht wird und die eine der Höhe des zu verdichtenden Formsandes (11) angepasste Gasdurchlässigkeit derart aufweist, dass diese im Bereich (13) hoher und/ oder plateauartiger Modellkonturen geringer ist als im modellfreien Bereich (12) der Modellplatte.
2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass Zonen (12, 13) unterschiedlicher Gasdurchlässigkeit der Schicht (10) durch in den Formsand (11) eintauchende Schottwände (18) auch in vertikaler Richtung gegeneinander abgegrenzt sind.
3. Vorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die gasdurchlässige Schicht (10) teilweise (15) ortsfest angebracht, teilweise (14) lose auf die Oberfläche des Formsandes (11) aufgelegt und mit diesem mitbewegbar ist.
4. Vorrichtung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Schicht (10) im oberhalb des Modells (2) liegenden Bereich (13) ortsfest, in dem oberhalb der freien Modellplatte (1) liegenden Bereich (12) mitbewegbar ist.
5. Vorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die gesamte gasdurchlässige Schicht (10) auf die Oberfläche des Formsandes (11) aufgelegt und mit dieser mitbewegbar ist, und dass die Massenbelegung der Schicht (10) im Bereich (13) hoher und/oder plateauartiger Modellkonturen geringer ist als im modellfreien Bereich (12) der Modellplatte.
6. Vorrichtung nach einem der Ansprüche 1 bis 5 mit einem auf den Formkasten aufgesetzten Füllrahmen, dadurch gekennzeichnet, dass der ortsfeste Teil (15) der gasdurchlässigen Schicht (10) am Füllrahmen (4) befestigt ist.
7. Vorrichtung nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die Schottwände (18) nur am ortsfesten Teil (15) der gasdurchlässigen Schicht (10) angebracht sind und bis in den Formkasten (3) hineinreichen.
8. Vorrichtung nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die Schottwände (18) in vertikaler Richtung geteilt sind, wobei der obere Teil (18) ortsfest am Füllrahmen (4) und der untere Teil (19) ortsfest am Formkasten (3) angebracht ist und in diesen hineinreicht.
9. Vorrichtung nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass die gasdurchlässige Schicht (10) aus einer oder mehr Lochblechen mit der gewünschten Gasdurchlässigkeit angepasstem freiem Lochquerschnitt gebildet ist.
EP84105049A 1983-05-11 1984-05-04 Vorrichtung zum Verdichten von Giessereiformsand Expired EP0128336B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3317196 1983-05-11
DE19833317196 DE3317196A1 (de) 1983-05-11 1983-05-11 Vorrichtung zum verdichten von giessereiformsand

Publications (2)

Publication Number Publication Date
EP0128336A1 EP0128336A1 (de) 1984-12-19
EP0128336B1 true EP0128336B1 (de) 1988-03-30

Family

ID=6198731

Family Applications (1)

Application Number Title Priority Date Filing Date
EP84105049A Expired EP0128336B1 (de) 1983-05-11 1984-05-04 Vorrichtung zum Verdichten von Giessereiformsand

Country Status (5)

Country Link
US (1) US4592406A (de)
EP (1) EP0128336B1 (de)
JP (2) JPS59218241A (de)
DD (1) DD216654A5 (de)
DE (2) DE3317196A1 (de)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3836876C2 (de) * 1988-10-29 1994-06-09 Badische Maschf Gmbh Verfahren und Vorrichtung zum Verdichten von Gießerei-Formstoff
ES2131433B1 (es) * 1996-01-18 2000-03-01 Loramendi Sa Dispositivo de alta compactacion para maquinas de moldeo de cajas de arena por impacto de aire.
WO1998045070A1 (es) * 1997-04-08 1998-10-15 Loramendi, S.A. Dispositivo de alta compactacion para maquinas de moldeo de cajas de arena por impacto de aire
DE60127231T2 (de) * 2000-04-13 2007-07-05 Sintokogio, Ltd., Nagoya Kompressionsverfahren für giess-sand und vorrichtung dafür
CN1214880C (zh) * 2000-04-21 2005-08-17 新东工业株式会社 铸型造型方法及装置

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0089547A1 (de) * 1982-03-23 1983-09-28 BMD Badische Maschinenfabrik Durlach GmbH Verfahren und Vorrichtung zum Verdichten von Giessereiformstoff

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3170202A (en) * 1962-08-22 1965-02-23 Sr William J Huston Foundry process
CH462392A (de) * 1967-08-16 1968-09-15 Buehrer Erwin Verfahren zum Dosieren von zwei Formsandsorten in einen Formkasten einer Giessereiform
DE1961234C3 (de) * 1969-12-05 1975-02-06 Kramatorskij Nautschno-Issledowatel' Skij I Projektno-Technologitscheskij Institut Maschinostrojenija, Kramatorsk (Sowjetunion) Verfahren und Vorrichtung zum Verdichten von GieBereiformmassen
DE2305229C3 (de) * 1972-02-04 1975-04-17 Sintokogio, Ltd., Nagoya, Aichi (Japan) Formkasten
US4067380A (en) * 1973-06-28 1978-01-10 British Cast Iron Research Association Making foundry moulds
IT1114445B (it) * 1976-11-02 1986-01-27 Baker Perkins Holdings Ltd Metodo ed apparato per la prodzione di forme ed anime di fonderia
AT381877B (de) * 1978-12-15 1986-12-10 Fischer Ag Georg Verfahren und vorrichtung zum verdichten von koernigen stoffen, insbesondere giessereiformstoff
CH642288A5 (de) * 1980-02-18 1984-04-13 Fischer Ag Georg Verfahren und einrichtung zum verdichten von formstoff, insbesondere fuer giessformen.
WO1982003348A1 (en) * 1981-04-02 1982-10-14 Koebel Alfons Method and device for pneumatically compacting molding sand
CH653579A5 (de) * 1981-07-20 1986-01-15 Fischer Ag Georg Verfahren zum verdichten von koernigen formstoffen, insbesondere giessereiformstoffen, und vorrichtung zur durchfuehrung des verfahrens.

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0089547A1 (de) * 1982-03-23 1983-09-28 BMD Badische Maschinenfabrik Durlach GmbH Verfahren und Vorrichtung zum Verdichten von Giessereiformstoff

Also Published As

Publication number Publication date
DE3470121D1 (en) 1988-05-05
JPH07100586A (ja) 1995-04-18
EP0128336A1 (de) 1984-12-19
JP2516863B2 (ja) 1996-07-24
US4592406A (en) 1986-06-03
DE3317196A1 (de) 1984-11-22
JPS59218241A (ja) 1984-12-08
DD216654A5 (de) 1984-12-19
DE3317196C2 (de) 1988-11-17

Similar Documents

Publication Publication Date Title
EP0295472B1 (de) Verfahren und Vorrichtung zum Verdichten von Formstoff in Giesserei-Formmaschinen
DD251300A5 (de) Verfahren und vorrichtung zum verdichten von giessereiformstoffen
EP0128336B1 (de) Vorrichtung zum Verdichten von Giessereiformsand
DE7602966U1 (de) Giesserei-formmaschine fuer kastenformen
EP0062331A1 (de) Verfahren und Vorrichtung zum pneumatischen Verdichten von Formsand
DE3202395A1 (de) Verfahren und vorrichtung zum pneumatischen verdichten von formsand
DE832870C (de) Verfahren und Vorrichtung zur Herstellung von profilierten Bauteilen
EP0089547B1 (de) Verfahren und Vorrichtung zum Verdichten von Giessereiformstoff
DE2828156C2 (de) Gießereiformmaschine zum Herstellen von Formhälften in Formkasten
DE3311965C2 (de) Vorrichtung zur Herstellung von Betonplatten
DE69604358T2 (de) Verfahren und Vorrichtung zur Herstellung gasaushärtbarer Formen
EP0131723B1 (de) Vorrichtung zum Verdichten von Giesserei-Formstoff mittels Druckgas
DE1963640C3 (de) Rüttelanlage zur Herstellung von Formkörpern durch Verdichtung
DE29810967U1 (de) Vorrichtung zum Herstellen von Blöcken aus Schaumstoff-Flocken
EP0673698B1 (de) Vorrichtung zur Herstellung von Giessformen
DE2712489C3 (de) Vorrichtung zum Einfüllen und Verdichten des Formsandes bei der Herstellung von Sandformen für Gießereizwecke
DE3329585C2 (de)
DE2326495A1 (de) Verfahren und vorrichtung zum herstellen von erzeugnissen aus beton
EP0203322B1 (de) Vorrichtung zum Verdichten von Giesserei-formstoff mittels Druckgas
EP0029133A1 (de) Verfahren und Vorrichtung zum Herstellen einer Giessereiform
CH653579A5 (de) Verfahren zum verdichten von koernigen formstoffen, insbesondere giessereiformstoffen, und vorrichtung zur durchfuehrung des verfahrens.
DE8606530U1 (de) Vorrichtung zum Herstellen von Gießformen
DE1058702B (de) Verfahren und Vorrichtung zur maschinellen Herstellung von Giessereiformen aus Formsand
DE1155883B (de) Verfahren zur Herstellung von Kernen und Formen fuer Giessereizwecke
DE2350286C3 (de) Verfahren und Vorrichtung zur Herstellung von Formkörpern aus körnigen plastischen Massen durch Vibration

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): CH DE FR IT LI

17P Request for examination filed

Effective date: 19850605

17Q First examination report despatched

Effective date: 19860422

D17Q First examination report despatched (deleted)
ITF It: translation for a ep patent filed
GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR IT LI

REF Corresponds to:

Ref document number: 3470121

Country of ref document: DE

Date of ref document: 19880505

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20010414

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20010507

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20010529

Year of fee payment: 18

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020531

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021203

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030131

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST