[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP0106808B1 - Machine hydrostatique à pistons radiaux et cylindrée variable - Google Patents

Machine hydrostatique à pistons radiaux et cylindrée variable Download PDF

Info

Publication number
EP0106808B1
EP0106808B1 EP83830132A EP83830132A EP0106808B1 EP 0106808 B1 EP0106808 B1 EP 0106808B1 EP 83830132 A EP83830132 A EP 83830132A EP 83830132 A EP83830132 A EP 83830132A EP 0106808 B1 EP0106808 B1 EP 0106808B1
Authority
EP
European Patent Office
Prior art keywords
shaft
cam
machine
movable body
machine according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP83830132A
Other languages
German (de)
English (en)
Other versions
EP0106808A3 (en
EP0106808A2 (fr
Inventor
Gualtiero Maurer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP0106808A2 publication Critical patent/EP0106808A2/fr
Publication of EP0106808A3 publication Critical patent/EP0106808A3/fr
Application granted granted Critical
Publication of EP0106808B1 publication Critical patent/EP0106808B1/fr
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/12Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00 by varying the length of stroke of the working members
    • F04B49/123Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00 by varying the length of stroke of the working members by changing the eccentricity of one element relative to another element
    • F04B49/125Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00 by varying the length of stroke of the working members by changing the eccentricity of one element relative to another element by changing the eccentricity of the actuation means, e.g. cams or cranks, relative to the driving means, e.g. driving shafts
    • F04B49/126Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00 by varying the length of stroke of the working members by changing the eccentricity of one element relative to another element by changing the eccentricity of the actuation means, e.g. cams or cranks, relative to the driving means, e.g. driving shafts with a double eccenter mechanism
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B1/00Multi-cylinder machines or pumps characterised by number or arrangement of cylinders
    • F04B1/04Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinders in star- or fan-arrangement
    • F04B1/06Control
    • F04B1/07Control by varying the relative eccentricity between two members, e.g. a cam and a drive shaft

Definitions

  • This invention relates to a hydrostatic machine with radial pistons.
  • hydraulic machine is used to design a machine which can be a motor or an operator, for example a motor or a pump in which a hydraulic fluid, generally oil, exchanges pressure energy with an element. mechanical.
  • hydraulic machine In the word "hydrostatic machine” one must also design the hydraulic transmissions which include a motor and a pump.
  • variable displacement machine solved in particular many problems of oleostatic transmission, in particular is widely used today the combination of a variable displacement pump and a fixed displacement motor, since it results easier to intervene on the variability of the pump to obtain in the motor, with fixed displacement, a continuous variation of the number of revolutions and consequently the inverse continuous variation of the driving torque.
  • variable displacement motor By having a variable displacement motor, obvious constructive advantages are obtained when it is supplied with a fixed mounted pump, for example a simple gear pump, coupled to a heat or electric motor. .
  • variable displacement pump If, in addition, a variable displacement pump is also available, the functional characteristics of the hydraulic transmission greatly increase.
  • the displacement In machines with axial pistons the displacement varies by continuously varying the inclination of the axis of the cylinder-holder body relative to the engine axis, or by varying a control plate for the axial pistons, while in the radial piston machines the displacement is obtained by varying the eccentricity of the eccentric which determines the stroke of the radial pistons.
  • a known embodiment provides a movable eccentric back and forth, controlled by small hydraulic pistons inserted in the body of the shaft on which this eccentric is mounted.
  • the object of this invention is a hydrostatic machine with radial pistons having a shaft joined to an eccentric cam, with variable eccentricity, in the manner of obtaining a hydraulic machine with variable displacement which, among other things, can be automatically self-adjusted to adapt to varying load conditions.
  • This hydrostatic machine is configured in its general layout as a radial piston machine of the type generally used as a hydraulic motor with several radial pistons with shaft provided with eccentric cam and which comprises a carcass in which the cavities of the cylinders are drilled and a cam eccentric circular, the axis of symmetry which is parallel to the axis of rotation of the machine, linked to the shaft in the axial direction and which has an eccentricity with respect to the axis of the shaft and therefore of the machine.
  • the eccentric cam is pivotally movable about the axis of a movable body interposed between the shaft and the eccentric cam, which is in turn pivoted around the same axis, which is parallel to the axis of the shaft and to the axis of symmetry of the cam, so that in a rotation of the eccentric cam around the axis of the body mo bile, the center of the cam passes from a position where it is located at a distance from the shaft in which the resulting eccentricity is the difference of the two eccentric distances, to another diametrically opposite position where the two eccentricities lie between them.
  • the distance from the center of the cam to the shaft axis measures the effective eccentricity that this cam has in relation to the shaft.
  • eccentricity Since in the machine of this invention this eccentricity does not have a fixed value, but variable, according to the loading conditions of the machine, as will be better explained, following the description and the claims, the word “eccentricity” will be used to indicate the instantaneous and variable distance between the axis of symmetry of the eccentric circular cam (this means the axis which passes through its center) and the axis of the shaft.
  • the word "disaxation" and its derivatives will be used to indicate the distance between the axis of the movable body (which is also the axis of rotation of the eccentric cam) and the axis of the shaft, and this distance is a characteristic which has a fixed value, this means that it is a constructive characteristic of the machine.
  • This movable body is also engaged with the shaft and the eccentric cam respectively with screw couplings, at least one of which is with reversible screws, these screws having cylindrical helix threads with different geometric characteristics (one of these screws can be simply axial grooves); as well as a relative rotation between the shaft and the eccentric cam corresponds to a displacement of the movable body along its axis.
  • the movement of the movable body to cause the variation in the displacement of the machine can happen through actuation from the outside, for example, through an oleodynamic control.
  • the machine of the invention has an offset between the axis of the shaft and the axis of the movable body.
  • this last distance and this offset may be different from each other, and this is part of the scope of this invention, to facilitate description and as a preferred embodiment it is then assumed that this distance and this offset are of the same length.
  • the machine of the invention generally comprises: a shaft 1 with axis A, an eccentric disc 2 or cam with axis of symmetry B and a movable body 3 with axis of rotation C.
  • the movable body 3 is coupled to the shaft 1 and the cam 2 with screw coupling 4 and 5 respectively.
  • the screws 4 and 5, according to the invention, must be of different threads and at least one must be reversible.
  • the thread 4 is represented as a coupling with axial slots, as well as the shaft 1 and the movable body 3 are coupled with axial sliding, without reciprocal rotation.
  • the shaft 1 and the cam 2 are coupled so as not to move axially with respect to each other, by mechanical construction, but they can roll one compared to each other.
  • At least one elastic element pushes the mobile body 3 towards an axial direction.
  • the axis C of the movable body 3 is offset from the axis A of the shaft by a distance d.
  • the axis B of the cam 2 is disposed at the same distance d from the axis C of the movable body 3.
  • cam 2 is coupled on its periphery with radial pistons (not shown) which are arranged in a conventional manner in a cylinder block (not shown).
  • the fixed element of the machine can be the carcass, in this case the shaft-cam assembly rotates around the axis of the shaft, or else the carcass is the rotating element and the assembly camshaft is fixed.
  • the shaft-cam assembly is not rigid, but the cam 2 can take different positions by varying its eccentricity while the shaft 1 can be actually fixed.
  • the axis of symmetry B of the cam 2 can move along the circle F, having as its center the axis C of the moving body 3.
  • the value of the torsional moment also has a sinusoidal shape, and consequently the axial thrust of the mobile body 3 will also have a sinusoidal shape due to the torsional moment.
  • this torsional moment is none other than the motor moment which manifests itself in the machine as a consequence of the value of the pressure in the cylinders, the motor moment it takes to overcome the resistant moment.
  • the curves p ,, P2 ; ... p n illustrated in the 4 th image (fig. 4), show on the ordinate the sinusoidal shape of the axial thrust values H, caused by a torsional moment produced by the action of various pressures in the cylinders.
  • Each curve represents a constant pressure at the variation of the angle 0 (on the abscissa) and therefore of the eccentricity.
  • a variation of the pressure will thus obtain a family of curves each of which is at constant pressure and these curves are arranged with increasing pressure upwards.
  • the line m shown in the 4 th picture (Fig. 4) which starts from the origin, represents the characteristic, for example linear, elastic imployé means that provides a Z reaction (ordinate).
  • This line has an inclination which depends on the rigidity of the elastic means adopted.
  • the points Q of intersection between this line and the curves of the axial thrust H due to the moment of torsion are thus shown.
  • intersection points Q represent the point of equilibrium between the pressure on the cam 2 (torsional moment) and the reaction of the elastic means depending on the rotation 0 of the cam 2.
  • the machine which adjusts itself according to this invention has subsequent notable advantages which derive from its intrinsic properties.
  • the movable body 3 as already said, is characterized in that it has two screw threads with different geometric characteristics on two different parts of its surface.
  • It may consist of a cylindrical element which has two cylindrical ends on the surface of which these threads are executed with screws engaging with the shaft and with the cam, as shown in the first image. (Fig. 1).
  • Another embodiment consists in making the movable body in the form of a sleeve with a thread on the outside and the other inside the hole of the sleeve as illustrated with 8 in the 5th image (fig. 5).
  • Another embodiment provides a body generically in the form of a cylindrical mushroom in which an external thread is executed on the external surface of the cylinder which constitutes the cap of the mushroom and another thread on the cylindrical tail of this mushroom.
  • This embodiment is illustrated with the 9 in the 5th image and with 10 in the 7 "" "'image.
  • each of these embodiments corresponds to the conjugate form of the couplings in the shaft or in the eccentric cam to guarantee the correct functioning of the screw coupling.
  • the embodiment of the elastic means is as wide as possible, since it is requested that these elastic means oppose the movement of this movable body being engaged between the latter and the shaft or the cam.
  • These elastic means can be cylindrical springs, springs with valuts, springs with cut or undercut, which are expediently requested from suitable appendages applied to the movable body and the same springs can be housed inside or inside. outside of the shaft or cam.
  • a particularly interesting embodiment plans to replace the springs, which are too heavy and bulky, with a servo-amplifier amplifier of the characteristic of a small calibrated spring, leads to control, depending on the deformation of the spring, the value of the pressure oil which acts on a piston which contrasts the axial movement of the moving body and therefore the rotation of the eccentric cam.
  • a further embodiment provides for the use of the elastic qualities of a compressed gas, for example by placing in fluid communication a hydraulic accumulator with a variable volume cavity defined by a piston which moves in a cylinder, the piston and the cylinder being respectively joined to the movable body and to the shaft or to the movable body and to the cam.
  • the hydraulic accumulator which has very contained dimensions, can be installed outside the machine and can find a favorable position very close to it.
  • the eccentric cam is pivotally movable relative to the shaft to which it is coupled with its own means which allow it to rotate but prevent it from axial movements.
  • connection provides for a cylindrical sliding accomplishment with clean lateral shoulders to prevent axial displacements.
  • This cylindrical seat is executed on the, or in the head of the shaft and has an axis which coincides with the axis of the movable body and a corresponding housing in the cam to the axis which coincides with the axis of eccentricity of drug.
  • the large load on the eccentric cam and the slowness of the rotation can be such as to drive out all the oil from the two surfaces until contact thus obstructing the regular functioning of the device.
  • radial piston machines in addition to automatic non-return valves, three types of distributor for the actuating fluid of the cylinders are used, in particular the axial type distributor with cylindrical rotation, the plain rolling axial type distributor, and the pentagonal distributor mounted on the peripheral surface of the eccentric cam.
  • the distributor rotates in axis with the drive shaft, while the cam rotates in axis with the movable body
  • the value of the angle of equilibrium is no longer determined by a well-determined pressure but depends significantly on the constructive and functional parameters of the machine such as friction, variations in oil viscosity and ecc work tolerances.
  • One possible means for modifying the elastic characteristic of the elastic means is to use a pressure control fluid to increase or decrease the force, for example using a piston employed by these elastic means and which moves in a cylinder.
  • This control fluid can come from an own hydraulic power plant, or can be taken from the supply line and therefore have the same variable supply pressure depending on the operating conditions.
  • a particularly effective solution is to control the pressure of this control fluid through a throttle subject to the axial movement of the movable body, thus obtaining an exact correspondence between the position of the movable body which is a function of the supply pressure and the value of the pressure of the control fluid leaving the choke.
  • the elastic means are dimensioned in such a way as to have a reduced residual response by an assigned quantity, as well as these elastic means have the function of reducing, to the desired extent, the positioning force necessary for move the moving body on command, regardless of the load conditions.
  • This eccentric cam 15 is movably coupled to the shaft 12 being rotatably supported for example through rolling bearings 16 by a cylindrical head 17, preferably conical, projecting from the shaft 12, with axis C eccentric relative to axis A of tree 12.
  • the eccentric cam 15 has a cylindrical recess 18, preferably conical, complementary to the head 17 of the shaft 12, with its axis coinciding with the axis C of offset.
  • cam 15 is secured, through bolts 19, an enlarged head 20 of a reversible screw 21 having its axis coincide with the axis C of offset of the recess 18 and therefore of the cam 15, which screw is disposed at the inside this recess 18, the other end 23 of this screw 21 being rotatably supported in a seat 22 executed in the shaft 12.
  • the reversible screw 21 is engaged in the hole 24 of a cylindrical sleeve 8 which constitutes the body mobile, this sleeve 8 having on its outer surface rectilinear slots 25 or helix with very long pitch.
  • the slots 25 of the sleeve 8 are engaged in the corresponding slots 26 of an axial hole in the shaft 12, the axis of this hole being coincident with the axis C of the screw and therefore eccentric with respect to the axis A of the shaft 12, so that this hole results in an axis with the eccentric head 17 of the shaft 12.
  • the hole in the shaft 12 opens at the other end into a recess 27 with an enlarged diameter in which slides, with fluid holding, a piston disc 28 which is secured, through an appendage 29, to the sleeve 8.
  • This piston disc 29 is also crossed in the center, from the other end 23 of the screw 25 which in this case is executed with a smooth tail.
  • this recess 27 with an enlarged diameter is another housed a compression spring 30 which acts between this piston disc 28 and the shaft 12.
  • the eccentric cam 15 rotates by a certain angle and the sleeve 8 is returned by the screw 21 secured to the eccentric 15, so as to be guided to slide in the annular gap between the screw 21 and the head 17 of the shaft, driving the disc of the piston 28 which, in addition to pressing the spring 30, also reduces the volume of the widened recess 27.
  • This enlarged recess 27 is placed in fluid communication, preferably with a hydraulic accumulator (not shown) from which the elastic compression of the gas it contains is used.
  • the cylinder chamber located on the other side of the piston disc 28, when it moves in the enlarged recess 27, can be used to modify the characteristic of the spring by sending oil into this chamber at controlled pressure.
  • An annular distributor 31 is arranged around the shaft 12. Since the disc 15 moves angularly relative to the shaft 12, the distributor also must perform the same angular rotation around the shaft 12.
  • the eccentric cam 15 has a button 32 tilting laterally, which engages in a radial slot 33 executed in the distributor 31, as it carries it in rotation despite the eccentricity between the eccentric cam 15 and the axis A of the tree 12.
  • the pistons 37 receive the thrust in the cylinders of a hydraulic fluid under pressure and transmit it through suitable hydrostatic pads to the eccentric cam 38 by rotating it.
  • the eccentric cam 38 is pivotally engaged on the shaft 35, being rotatably supported for example through a mechanical sliding coupling, on a cylindrical or slightly conical head 39, projecting from the shaft 35 and with axis C eccentric relative to axis A of the shaft 35.
  • the disc 38 has a complementary recess 40, cylindrical or slightly conical, with an axis coinciding with the axis of misalignment and a central protuberance 41 inside this recess 40 in which a threaded hole 42 with reversible screw is made having the same axis C of offset.
  • this screw 43 which constitutes the movable body 9
  • this screw 43 has, integral with itself at the other end, an appendage 44 with disc or mushroom shape which has on its peripheral edge straight threads 45 or with long pitch propeller.
  • the shaft 35 inside has an axial cylindrical recess 46, the axis of this recess being coincident with the axis C of the screw 43, and therefore off-center with respect to the axis A of the shaft 35.
  • the inner surface of the recess 46 has slots 47 in which the slots 45 of this appendage 44 in the form of a mushroom are engaged.
  • This recess 46 opens into the cylindrical projecting head 39.
  • the mushroom disc 44 in turn is integral with a peripheral mantle 48 thus defining a recess 51 of the cylinder in which a counter-cylinder 49 is engaged slidingly and with fluid resistance 49 housed in the recess 40 of the eccentric cam 38.
  • the eccentric cam 38 rotates by a certain angle, while the shaft 35 is retained by the load applied and the screw 43 is returned to the hole 40 of the eccentric 38, driving the mushroom disc 44 and reducing the volume of the cylinder recess 51 and compressing a spring 50 disposed inside this recess 51.
  • This cylinder recess 51 is arranged in fluid communication with a hydraulic accumulator (not shown) from which the elastic properties of the gas are used and which, however, operates in parallel with the spring.
  • the embodiment presented provides for a rotating planar distributor 52 and yet the planar distributor 52 must be rotated in synchro- nie with the eccentric cam 38, while this cam 38 rotates with the shaft 35. But during the rotation of the shaft, this cam performs small angular displacements relative to the shaft.
  • the eccentric cam 38 has a cylindrical projection 53 in axis with the screw 43, this projection 53 being housed in a cylindrical sleeve 54 suitably supported in the carcass 34 and in axis with the axis A of the shaft 35.
  • the housing hole of the projection of the sleeve 54 has, on the contrary, its axis displaced by the same offset as the axis C of the screw 43, as are the angular displacements of the eccentric cam 38 during rotation.
  • a radial slot 55 In the end part of the cylindrical projection 53 is executed a radial slot 55 in which a sliding prismatic shoe 53 is engaged, executed in the end part of a small shaft 57.
  • This small shaft in turn drives the disc to distribute the rotating plane 52.
  • FIG. 7 discloses an embodiment of the machine according to this invention, as Working motor fixed shaft and rotating casing mounted within a wheel of a vehicle.
  • a rotating carcass 58 coaxial with the axis A of the shaft 59, and therefore of the machine, are defined recesses 60 of cylinders in which the pistons 61 radially movable slide back and forth.
  • This eccentric cam 62 is pivotally engaged with the shaft 59, being rotatably supported, for example with a mechanical sliding coupling by means of a counter-shaft 65 integral with the disc and which rotates a hole 66 executed in the shaft 59 having the axis C eccentric with respect to the axis A of the shaft.
  • This countershaft 65 is integral with a part of the disc 62 and on the other hand with a reversible screw 67, the axis C of the screw coincides with the axis of the countershaft, being offset from the axis of symmetry of the eccentric disc.
  • the reversible screw 67 is engaged in a threaded hole 68 executed in the central tail 69 of a cap 70 in the form of a mushroom which constitutes the movable body 10.
  • This cap 70 has on the peripheral edge threads 71 straight or with long pitch propeller, which engage in axial sliding in a cylindrical recess 72 executed in an enlarged part 73 of the shaft, the axis of this recess 72 being coincide with the axis C of the screw, therefore off-axis with respect to the axis A of the shaft.
  • the front surface of this recess of the shaft has threads 74 in which the threads 71 of the cap 70 in the form of a mushroom are engaged.
  • the peripheral mantle 74 of the cap delimits a recess 76 of the cylinder in which a counter-cylinder 77 is engaged in sliding and fluid-holding 77 and in turn mounted on a seat 78 executed on the counter-shaft 65 in axis with the screw 67 .
  • the eccentric cam 62 rotates by a certain angle while the shaft 59 is fixed, and the screw, bending into the hole in the tail, recalls the cap in the form of fungus by reducing the volume of the cylinder recess.
  • This cylinder recess is full of oil which in this way is pressurized and slows down the rotation of the screw.
  • the increase in oil pressure is transmitted through a hole 79 made in the tail, also in the recess of the hole 68 screw threaded and therefore acts on a small piston 80 which slides with fluid holding in a hole axial 81 executed centrally with the screw 67 and which passes inside the counter-shaft 65 and the eccentric cam 62.
  • the small piston 80 is contrasted by a calibrated and calibrated spring 82 housed inside the axial hole 81. Under the action of the oil pressure, the small piston 80 compresses the spring 28 so that the pressure which prevails in the cylinder recess is essentially a linear function of the deformation of the spring.
  • the small piston 80 has inside a recess at the bottom of which is provided a discharge hole 83 which has a conical seat.
  • This conical seat by effect of the reaction of the calibrated spring on the small piston, is held normally closed by a small cone head 84, supported at one end of a bar 85, the other end of which controls a valve of high pressure 86 normally closed, outside placed in communication with a source of oil under pressure.
  • the recall of the screw corresponds to an increase in the pressure in the cylinder recess and therefore a displacement of the small piston in the direction of compressing the calibrated spring 82.
  • the cap 70 can thus be attracted by the screw until when the pressure inside the cylindrical recess balances the action of the spring on the small piston, followed by closing of the conical seat.
  • a reduction in the action of the screw on the cap corresponds to an instantaneous drop in pressure in the cylinder recess and the spring acting against the small piston, by means of the bar, opens the valve 86 of high pressure, allowing the oil to enter the cylinder recess, until the spring action is rebalanced.
  • the device constituted by the small piston, by the bar and by the high pressure valve functions in the manner of a servomechanism amplifying the elastic characteristic of the calibrated spring.
  • the axial hole 81 also serves as a discharge channel of the oil supplied to the cylinders and a small hole 88 made at the bottom of the axial hole makes it possible to drain the oil drawing which fills the carcass during operation.
  • the carcass has at its periphery a circular flange 89 provided with holes 90 to allow mounting to the tire of a vehicle wheel.
  • the shaft has at its exterior a thread 91 so that it can be supported in a keeper 92 for mounting to the suspensions of a vehicle, by means of bolts which pass through the holes 93.
  • Flexible conduits, joined to the mouths 94 allow to supply and discharge the oil.
  • the machine according to this invention finds its use in all fields in which pumps or hydraulic motors are used which can operate either as a pump or as a motor.
  • an advantageous embodiment provides a machine with the fixed shaft and rotating carcass, and by equipping this cylinder block with a strip or a tire, a compact driving wheel is obtained which self-adjusts for a vehicle. In a vehicle, the four wheels can thus be easily driven.
  • the hydraulic braking of the vehicle can also be obtained, since these machines behave like pumps whenever the external moment exceeds the moment of the machine, in the case where the energy of the pumped fluid can be immagined in an accumulator hydraulic with gas or dissipated through a properly cooled dissipative valve.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Transmission Devices (AREA)
  • Reciprocating Pumps (AREA)

Description

  • Cette invention se rapporte à une machine hydrostatique à pistons radiaux.
  • Avec le mot «machine hydrostatique» on conce- voit une machine qui peut être motrice ou opératrice, par exemple un moteur ou une pompe dans laquelle un fluide hydraulique, en général de l'huile, échange de l'énergie de pression avec un élément mécanique.
  • Dans le mot «machine hydrostatique» on doit aussi concevoir les transmissions hydrauliques qui comprennent un moteur et une pompe.
  • Ils existent déjà des machines hydrostatiques à pistons radiaux qui sont en général à cylindrée fixée, puisque on a très peu de réalisations à cylindrée variable qui en général se limitent à obtenir deux cylindrées seulement. Cela est dû aux grandes difficultés techniques rencontrées jusqu'à aujourd'hui pour réaliser cette variation de cylindrée, outre au coût plus élevé par rapport aux machines à cylindrée variable du type axial déjà présentes dans le marché.
  • L'emploi de la machine à cylindrée variable résolue notamment beaucoup de problèmes de transmission oléostatic, en particulier est très employée aujourd'hui la combinaison d'une pompe à cylindrée variable et un moteur à cylindrée fixée, puisque il résulte plus aisé d'intervenir sur la variabilité de la pompe pour obtenir dans le moteur, à cylindrée fixée, une variation continue du nombre des tours et par conséquent la variation continue inverse de la couple motrice.
  • D'autre part en disposant d'un moteur à cylindrée variable on obtient d'évidents avantages constructifs quand il est alimenté d'une pompe à porté fixée, par exemple d'une simple pompe à engrenages, accouplée à un moteur thermique, ou électrique.
  • Si en outre on dispose aussi d'une pompe à cylindrée variable les caractéristiques fonctionnelles de la transmission hydraulique s'agrandissent beaucoup.
  • A cet égard, comme on a déjà dit, on construit des machines radiaux et axiales à cylindrée variable.
  • Dans les machines à pistons axiaux la variation de cylindrée arrive en variant avec continuité l'inclination de l'axe du corps porte-cylindre par rapport à l'axe moteur, ou en variant un plateau de commande des pistons axiaux, tandis que dans les machines à pistons radiaux la variation de cylindrée s'obtient en variant l'excentricité de l'excentrique qui détermine la course des pistons radiaux.
  • Une réalisation connue prévoit un excentrique mobile en va-et-viens, commandé par de petits pistons hydrauliques insérés dans le corps de l'arbre sur lequel cet excentrique est monté.
  • On doit noter que dans les deux cas il faut une commande propre pour obtenir la variation de cylindrée, cela veut dire la machine n'est pas amène à s'égaler spontanément aux variations de la charge.
  • En outre ce mécanisme de commande est de réalisation difficile et un notable effort est demandé si on veut varier la cylindrée de la machine pendant le fonctionnement de la machine sous charge.
  • Pour entourer cet obstacle ont eu un certain succès les machines radiaux employées comme des moteurs, dans lequel on se limite à deux seules cylindrées possibles, qu'on peut obtenir à travers un signal de pression qui avec un jeu de soupapes, réduit la surface active, c'est-à-dire l'aire de poussée des pistons, ou, on joint, en série ou en parallèle, des groupes de cylindrées, dans lesquels glissent des pistons qui agissent sur les CAMES logées dans le contour de la casse roulante.
  • Parmi toutes les tentatives qu'on a fait dans le passé, pour rendre ces machines à cylindrée variable, outre aux moteurs, dans lesquels l'excentrique est déplaçable radialement par rapport à l'arbre, et aux moteurs dans lesquels on agit en réduisant la surface active des pistons mêmes, dont on a déjà dit, on peut citer plusieurs mécanismes très compliqués qui peuvent varier la course des pistons à travers l'emploi de deux excentriques tournants, montés l'un dans l'autre et en les faisant rouler entre eux avec une commande convenable.
  • RÉSUMÉ DE L'INVENTION
  • L'objet de cette invention est une machine hydrostatique à pistons radiaux ayant un arbre joint à une came excentrique, avec excentricité variable, de la façon d'obtenir une machine hydraulique à cylindrée variable qui, entre autre, peut être autoréglée automatiquement pour s'adapter à la variation des conditions de charge.
  • Cette machine hydrostatique se configure dans sa disposition générale comme une machine à pistons radiaux du type employé généralement comme un moteur hydraulique à plusieurs pistons radiaux à arbre muni de came excentrique et qui comprend une carcasse dans laquelle sont percés radialement les cavités des cylindres et une came circulaire excentrique, l'axe de symétrie de laquelle est parallèle à l'axe de rotation de la machine, lié à l'arbre en direction axiale et qui présente une excentricité par rapport à l'axe de l'arbre et par conséquent de la machine.
  • Les pistons mobiles radialement à l'intérieur de ces cavités radiales sont mouvés en allée et retour par cette came excentrique en telle façon que cette excentricité définie la cylindrée de la machine et réalise la transmission de puissance par moyen du fluide qui circule dans laquelle.
  • Dans la machine selon cette invention, à différence des machines de la technique précédente dans lesquelles le came excentrique était solidaire à l'arbre, la came excentrique est mobile pivotamment autour de l'axe d'un corps mobile interposé entre arbre et came excentrique, qui est à son tour pivotant autour du même axe, lequel est parallèle à l'axe de l'arbre et à l'axe de symétrie de la came, de façon que dans une rotation de la came excentrique autour de l'axe du corps mobile, le centre de la came passe d'une position où il se trouve à une distance de l'arbre dans laquelle l'excentricité résultante est la différence des deux distances excentriques, à une autre position diamétralement opposée où les deux excentricités se somment entre eux.
  • Ce point passé, le centre de la came s'approche de l'axe de l'arbre jusqu'à la position du minimum de la distance de laquelle on avait commencé.
  • En dérive que la distance du centre de la came de l'axe de l'arbre mesure l'excentricité effective que cette came présente par rapport à l'arbre.
  • Puisque dans la machine de cette invention cette excentricité ne présente pas une valeur fixée, mais variable, selon les conditions de charge de la machine, comme on expliquera mieux, en suivant la description et les revendications on employera le mot «excentricité» pour indiquer la distance instantanée et variable entre l'axe de symétrie de la came circulaire excentrique (cela veut dire l'axe qui passe par son centre) et l'axe de l'arbre.
  • On employera au contraire le mot «disaxement» et ses dérivés pour indiquer la distance entre l'axe du corps mobile (qui est aussi l'axe de rotation de la came excentrique) et l'axe de l'arbre, et cette distance est une caractéristique qui a une valeur fixée, cela veut dire qu'elle est une caractéristique constructive de la machine.
  • Ce corps mobile est en outre engagé avec l'arbre et la came excentrique respectivement avec des accouplements à vis, dont au moins un est a vis réversibles, ces vis ayant des filetages à hélice cylindrique à caractéristiques géométriques différentes (une de ces vis pouvant être simplement des rainures axiales); ainsi que à une rotation relative entre l'arbre et la came excentrique correspond un déplacement du corps mobile le long de son axe.
  • On remarque que une machine du type susmentionné est illustrée dans le brevet britannique GB-A-538 230 où deux éléments excentriques sont liés à travers un élément cylindrique mouvable axialement, qui a une connexion à vis ou à spirale (et aussi aux rainures axiales) avec chacun de ces éléments excentriques.
  • Selon l'invention il est fondamental que le déplacement axiale de ce corps mobile est contrasté par moyens élastiques respectivement entre le corps mobile et la came excentrique, ainsi qu'on aura un système auto-réglé par l'équilibre entre le moment de torsion qui provoque une rotation relative entre la came et l'arbre, et la réaction élastique de ces moyens éiastiques.
  • Même si le système auto-réglé, dont on a parlé au-dessus, est hautement préférable, dans certaines applications particulières la machine peut être réalisée, dans le milieu de cette invention, comme un système à l'extérieur.
  • Dans ce cas le déplacement du corps mobile pour provoquer la variation de cylindrée de la machine peut arriver à travers l'actionnement de l'extérieur par exemple parmi une commande oléodynamique. DESCRIPTION DES IMAGES
  • L'invention sera maintenant décrite en se rapportant aux dessins y annexés, dont:
    • la première image, fig. 1, nous montre d'une façon schématique la machine de cette invention vue latéralement;
    • la deuxième image, fig. 2, nous montre schématiquement la machine vue en face;
    • la troisième image, fig. 3, est un diagramme qui nous montre la loi sinusoïdale de la variation de l'excentricité;
    • la quatrième image, fig. 4, est un diagramme qui nous montre la relation d'équilibre entre la force qui correspond au moment dû à la pression qui fonctionne contre les pistons et la réaction du moyen élastique qui crée le moment antagoniste;
    • la cinquième image, fig. 5, est une première forme de réalisation de machine à arbre fixé et carcasse roulante;
    • la sixième image, fig. 6, est une seconde forme de réalisation de la machine à arbre roulant et carcasse fixée;
    • la septième image, fig. 7, est la troisième forme de réalisation de la machine à arbre fixé et carcasse roulante.
    DESCRIPTION EN DÉTAIL DE L'INVENTION
  • Comme on a déjà dit, la machine de l'invention présente un désaxement entre l'axe de l'arbre et l'axe du corps mobile.
  • Il existe, en outre, une distance entre l'axe de symétrie de la came excentrique et l'axe du corps mobile.
  • Bien que cette dernière distance et ce désaxement peuvent être différents entre eux, et cela fait parti du cadre de cette invention, pour faciliter la description et comme réalisation préférée on suppose ensuite que cette distance et ce désaxement sont de la même longueur.
  • De cette façon, si on se rapporte à la deuxième image, et si on appelle cette longueur d on aura que dans la rotation de la came excentrique 2 autour de l'axe c du corps mobile 3, le centre géométrique ou axe B de la came excentrique 2, gagnera une distance variable ou excentricité E par rapport à l'axe A de l'arbre 1, ainsi que cette excentricité passera d'une valeur minimum à une valeur maximum 2d, et qui après retournera à une valeur minimum (dans l'exemple illustré est zéro) après une nouvelle rotation de 180° de la came.
  • En se rapportant aux images 1 et 2, la machine de l'invention comprend en moyen général: un arbre 1 avec axe A, un disque excentrique 2 ou came avec axe de symétrie B et un corps mobile 3 avec axe de rotation C.
  • Le corps mobile 3 est accouplé à l'arbre 1 et la came 2 avec accouplement à vis respectivement 4 et 5.
  • Les vis 4 et 5, selon l'invention, doivent être de filetages différents et une au moins doit être réversible. Comme cas particulier, le filetage 4 est représenté comme un accouplement à fentes axiales, ainsi que l'arbre 1 et le corps mobile 3 sont couplés à glissement axial, sans rotation réciproque.
  • En outre on doit comprendre que dans la machine selon l'invention l'arbre 1 et la came 2 sont couplés à ne pas se déplacer axialement l'un par rapport à l'autre, par construction mécanique, mais ils peuvent rouler l'un par rapport à l'autre.
  • Au moins un élément élastique pousse le corps mobile 3 vers une direction axiale.
  • Dans la première image on fait voir deux ressorts 6 et 7 à compression qui agissent entre le corps mobile 3 et respectivement l'arbre 1 et la came 2, chacune dans une direction.
  • L'axe C du corps mobile 3 est désaxé de l'axe A de l'arbre d'une distance d.
  • L'axe B de la came 2 est disposé à la même distance d de l'axe C du corps mobile 3.
  • Comme on a déjà dit en précédence, l'égalité entre les distances AC et CB est seulement a titre d'exemple, les distances pouvant être différentes sans sortir de l'invention, tout le reste restant égale.
  • Dans une machine de ce type la came 2 est couplée sur sa périphérie avec des pistons radiaux (pas illustrés) qui sont agencés de manière conventionnelle dans un bloc cylindres (pas illustrée).
  • En moyen conventionnel aussi, l'élément fixe de la machine peut être la carcasse, dans ce cas l'ensemble arbre-came tourne autour de l'axe de l'arbre, ou bien la carcasse est l'élément tournant et l'ensemble arbre-came est fixé.
  • On doit aussi rappeler que, à différence de la technique précédente, dans cette invention, l'ensemble arbre-came n'est pas rigide, mais la came 2 peut prendre des positions différentes en variant son excentricité tandis que l'arbre 1 peut être réalment fixé.
  • En effet (2ème image) l'axe de symétrie B de la came 2 peut se déplacer le long du circle F, en ayant comme centre l'axe C du corps mobile 3.
  • Dans les positions 2a, 2b et 2c de la came 2 indiquées en traits interrompus, les positions relatives de l'axe de symétrie B, sont Ba, Bb et Bc. On observe que la position Bc est sur l'axe de l'arbre 1, puisque on suppose l'équidistance entre les distances AC et CB.
  • En correspondance de ces positions, l'excentricité de la came 2 prend les valeurs Ea = 2d, Eb le zéro.
  • Dans l'exemple illustré dans la première image (fig. 1), une rotation de la came 2 par rapport à l'arbre 1 provoque un déplacement axial du corps mobile 3, par effet de l'accouplement à vis 5.
  • A ce déplacement s'oppose la force élastique d'un des ressorts 6 ou 7 selon la direction du déplacement.
  • Pourtant en faisant correspondre la position axiale de repos du corps mobile 3, poussé par ces moyens élastiques 6 ou 7, à la position dans laquelle la came excentrique 2 se dispose avec son axe de symétrie B coïncidente avec l'axe de rotation A de l'arbre 1 et donc de la machine, cette came 2 présente une excentricité nulle, étant centré par rapport à la machine. Applicant maintenant un moment de torsion à la came 2, en tenant immobile l'arbre 1, on obtient une rotation de la came 2 avec excentricité E qui augmente par rapport à l'axe A de l'arbre 1, avec une conséquente variation de la cylindrée de la machine, et un déplacement axial du corps mobile 3 avec sollicitation des moyens élastiques 6 au 7 jusqu'à rejoindre une position d'équilibre entre le moment de torsion et la réaction de ces moyens élastiques 6 ou 7. Le moment de torsion qui fait rouler la came dérive de la force expliquée par la pression dans les pistons multipliquée par .l'excentricité E gagnée par la came qui sert de bras de manivelle. (Cette condition ne se vérifie naturellement à excentricité nulle). L'excentricité E, ça veut dire la longueur de ce bras de manivelle, est une fonction sinusoïdale de l'angle de rotation 0 de la came excentrique 2 autour de l'axe C cu corps mobile 3. Indiquée avec d la valeur de la distance de l'axe C du corps mobile 3 de l'axe A de l'arbre 1 et de l'axe B de la came excentrique 2, l'excentricité E résultante est avec facilité exprimible en fonction de l'angle de rotation de la came 2 autour de l'axe C du corps mobile et en se référant à la construction de la 3ème image, nous avons cette relation:
    • E = 2d sin 2 puisque 0 est variable entre 0 et 2π ainsi que l'excentricité est nulle par 0 = 0 et elle est maxime par 0 = 2π.
  • La valeur du moment de torsion a aussi une forme sinusoïdale, et par conséquent la poussée axiale du corps mobile 3 aura aussi une forme sinusoïdale due au moment de torsion.
  • Par contre la réaction des moyens élastiques 6, 7 a (au contraire) une loi linéaire puisque le déplacement axial du corps mobile 3 est proportionnel à la rotation angulaire de la came.
  • On arrive que, les caractéristiques constructives du dispositif fixées, par chaque pression agissant sur les pistons, il existe toujours une position d'équilibre bien déterminée entre le moment de torsion et la réaction des moyens élastiques.
  • D'autre part ce moment de torsion n'est autre que le moment moteur qui se manifeste dans la machine en conséquence de la valeur de la pression dans les cylindres, moment moteur qu'il faut pour vaincre le moment résistant.
  • Il existe donc une relation directe et simple entre le déplacement angulaire de la came excentrique 2 et le moment résistant (charge) appliqué à la machine, ainsi qu'il va se déterminer en moyen autoréglé intrinsequement et continue, une variation de l'excentricité E de la came 2 par rapport à l'axe A de l'arbre 1, avec conséquente variation de la cylindrée de la machine, laquelle excentricité E se stabilise donc dans la position à laquelle on a l'équilibre entre le moment de torsion et la réaction des moyens élastiques.
  • Il est simple se convaincre de ce fait, relevant que le bras de manivelle augmente en conséquence de l'accroissement de pression et cela jusqu'à que 0 = π et quand; après π, la pression a rejoint des valeurs relativement hautes, cette pression compense largement la diminution du bras de manivelle, ainsi que le moment de torsion croit encore en comprimant ultérieurement le long de l'axe, ces moyens élastiques 6 ou 7.
  • Une étude analytique qui décrit le comportement du dispositif montre que la pression croît à l'augmentation de l'angle 0 et tend à l'infini quand on approxime à 2 π (cette dernière condition naturellement est seulement théorique). Par des valeurs 0 tout près à 2π le bras de manivelle, cela veut dire l'excentricité, retourne à 0 (zéro), ainsi que le moment résultant de ces deux tendences contrapposées, tend surprenamment à une valeur maximum non superable.
  • Un autre résultat surprenant qui dérive de l'étude analytique est que le dispositif est insensible à des valeurs de la pression inférieurs à une pression minimum bien déterminée correspon- dente à l'équilibre entre moment de torsion et réaction des moyens élastiques quand 0 tend à 0.
  • Les courbes p,, P2; ...pn illustrées dans la 4ème image (fig.4), montrent en ordonnées la forme sinusoïdale des valeurs de poussées axiale H, provoquée d'un moment de torsion produit par l'action de diverses pressions dans les cylindres.
  • Chaque courbe représente une pression constante à la variation de l'angle 0 (en abscisse) et donc de l'excentricité. A la variation de la pression on obtiendra ainsi une famille de courbes chacune desquelles est à pression constante et ces courbes sont disposées avec pression croissante vers le haut.
  • La ligne m montrée dans la 4ème image (fig. 4), qui part de l'origine, représente la caractéristique, par exemple linéaire, du moyen élastique imployé qui fournisse une réaction Z (en ordonnée).
  • Cette ligne a une inclinaison qui dépend de la rigidité des moyens élastiques adoptés. Sont ainsi montrés les points Q de intersection entre cette ligne et les courbes de la poussée axiale H dûe au moment de torsion.
  • Ces points Q de intersection représentent le point d'équilibre entre la pression sur la came 2 (moment de torsion) et la réaction du moyen élastique dépendant de la rotation 0 de la came 2.
  • Cela signifie que à cause d'un certain moment de torsion la came roule d'un certain angle, en gagnant une certaine excentricité E.
  • On voit que à gauche la poussée axiale H dûe au moment de torsion (qui a une forme sinusoïdale) augmente plus rapidement de la réaction Z des moyens élastiques (qui a une forme linéaire), tandis que à droite du point d'équilibre arrive le contraire; cela veut dire que la poussée axiale H dûe au moment de torsion croît moins rapidement et une fois passé π, diminue par rapport à la caractéristique linéaire des moyens élastiques.
  • La machine qui se autourègle selon cette invention présente ultérieurs des avantages notables qui dérivent de ses propriétées intrinsèques.
  • Premièrement le fait que le moment tournant présente un maximum, permet d'établir exactement les valeurs maximales de sollicitation auxquelles tous les organes mécaniques sont sollicités et il est sûr que ces valeurs ne seront jamais dépassées.
  • Seule la pression peut rejoindre des valeurs élevées, mais il est très simple de se précautioner contre les surpressions et avec une grande confiance, en introduisant une propre soupape de pression maximale dans le circuit d'alimentation.
  • En outre puisque la pression présente un minimum fonctionnel caractéristique de la machine, un choix approprié de ce minimum met à l'arbre des phénomènes de cavitation (cela veut dire aspiration des petites boules d'aire aux pressions basses d'aspiration dans le cas du fonctionnement comme une pompe, ou du fonctionnement irrégulier à l'abaissement de la pression en correspondance du nombre de tours trop élevé dans le cas de fonctionnement comme un moteur).
  • Au contraire au tendre de la pression à son limite inférieur bien défini, au tendre à Zéro de l'excentricité de la came, cela veut dire en correspondance des hautes velocités de rotation, le débit aussi, tend à un maximum asyntotique, la valeur duquel n'est jamais dépassée et donc assure la présence de fluide dans le circuit à n'importe quel régime de rotation une fois que on a bien dimensionée ce débit maximum. Cela est contraire à ce qui arrive en toutes les machines hydrostatiques traditionnelles, axiales et radiales à cylindrée variable, dans lesquelles l'augmentation de la vélocité de rotation demande un débit croissante linéairement pourtant des demandes de débit supérieures aux débits maximum de projet peuvent facilement se vérifier.
  • A cela on arrivait en limitant notablement l'angle minimum de régulation et par conséquant le gain de couple qu'on pouvait obtenir était relativement petit.
  • En outre dans la machine de cette invention, puisque pour un ample niveau de régulation de la cylindrée, les pressions d'exercice se mentien- nent relativement basses, soit pas très supérieures à la pression minimale asyntotique et en même temps les mêmes débits de cet intervalle varient très peu, on a que toutes les pertes hydrauliques qui dépendent de la pression (entre filaments) de la débit (perte de charge) restent pratiquement invariées et indépendentes du nombre de tours. Le rendement totale de la machine dépend donc seulement des frictions mécaniques de résistence à la rotation qui croissent naturellement à l'accroître du nombre de tours et constituent le seul motif qui limite l'emploi économique de cette machine aux hautes vélocités de rotation.
  • Le corps mobile 3, comme on a déjà dit, est caractérisé du fait qu'il présente deux filetages à vis avec des caractéristiques géométriques différentes sur deux parties différentes de sa surface.
  • Plusieurs formes d'exécution permettent de réaliser un corps mobile qui satisfait cette condition.
  • Il peut être constitué d'un élément cylindrique qui présente deux extrémités cylindriques sur la surface desquelles sont exécutés ces filetages à vis de engage avec l'arbre et avec la came, comme on montre dans la première image. (Fig. 1).
  • Une autre forme d'exécution consiste en réalisant le corps mobile dans la forme d'un manchon avec un filetage à l'extérieur et l'autre à l'intérieur du trou du manchon comme illustré avec le 8 dans la Sème image (fig. 5).
  • Une autre forme d'exécution prévoit un corps génériquement à forme de champignon cylindrique dans lequel un filetage extérieur est exécuté sur la surface extérieur du cylindre qui constitue le chapeau du champignon et un autre filetage sur la queue cylindrique de ce champignon. Cette forme de réalisation est illustrée avec le 9 dans la sème image et avec 10 dans la 7"""' image.
  • Beaucoup de formes d'exécution on les obtient par la combinaison de celles citées.
  • Naturellement à chacun de ces formes d'exécution correspond la forme conjuguée des accouplements dans l'arbre ou dans la came excentrique pour garantir le fonctionnement correcte de l'accouplement à vis.
  • Même la ferme d'exécution du filetage à vis peut varier amplement, puisqu'on demande seulement que les vis exécutées sur les surfaces du corps mobile soient géométriquement différentes de la façon que une translation du corps mobile le long de son axe donne toujours comme résultat un déplacement angulaire de la came excentrique par rapport à l'arbre. En particulier en posant l'attention sur le fait qu'il faut que au moins une des vis soit reversible, on peut exécuter l'autre vis dans la forme la plus favorable, par exemple en façon de vis à pas infinie, cela veut dire une vis dégénérée en simples cannelures longitudinales. Cela est de grand avantage puisqu'il permet de limiter la reversibilité à la vis de diamètre mineur avec une conséquente réduction du pas, soit de l'espace nécessaire pour le déplacement axial du corps mobile.
  • On rapporte à la technique de la construction des vis, le choix de la meilleure valeur pour le pas et pour l'angle d'enveloppement de la vis, et de la forme de la section du filetage.
  • La forme d'exécution des moyens élastiques est la plus ample possible, puisqu'on demande que ces moyens élastiques s'opposent au déplacement de ce corps mobile étant engagés entre celui-ci et l'arbre ou la came.
  • Pourtant on peut prévoir un seul moyen élastique interposé indifféremment entre le corps mobile et l'arbre, dans ce cas le dispositif est limité dans son fonctionnement à une rotation de la came d'un tour entier dans un sens (0 < 0 < 2 π).
  • Si on prévoit deux moyens élastiques qui agissent respectivement entre le corps mobile et l'arbre, entre le corps mobile et la came, le dispositif est actif par une rotation de la came pour un tour entier dans les deux sens opposés (- 2π < 0 < 2π). Il est donc possible d'utiliser un tour entier de l'une et de l'autre partie par rapport à la position de repos 0 = 0.
  • Ces moyens élastiques peuvent être des ressorts cylindriques, ressorts à valuts, ressorts à coupe ou à sous-coupe, qui sont avec opportunité sollecités parmi convenables appendices appliqués au corps mobile et les ressorts mêmes peuvent être logés soi à l'intérieur soi à l'extérieur de l'arbre ou de la came.
  • Une réalisation particulièrement intéressante prévoit de substituer les ressorts, qui sont trop lourds et encombrants, avec un servo-mécanisme amplificateur de la caractéristique d'un petit ressort calibré, amène à commander, en fonction de la déformation du ressort, la valeur de la pression de l'huile qui agit sur un piston qui contraste le mouvement axiale du corps mobile et donc la rotation de la came excentrique.
  • Une ultérieure forme de réalisation prévoit l'utilisation des qualités élastiques d'un gaz comprimé, par exemple en mettant en communication de fluide un accumulateur hydraulique avec une cavité à volume variable définie par un piston qui se mouve dans un cylindre, le piston et le cylindre étant respectivement joints au corps mobile et à l'arbre ou au corps mobile et à la came.
  • En outre l'accumulateur hydraulique qui a des dimensions très contenus est installable à l'extérieur de la machine et peut trouver un positionnement favorable tout près d'elle.
  • Aisément, la combinaison de ressorts élastiques, servomécanisme et accumulateur hydraulique permet d'obtenir la caractéristique élastique la plus indiquée dans les différents domaines d'emploi.
  • Dans la machine selon cette invention la came excentrique est mobile pivotamment par rapport à l'arbre auquel elle est couplée avec des moyens propres qui lui permettent de tourner mais lui empêchent les déplacements axiaux.
  • La forme d'exécution la plus simple de cette liaison prévoit un accomplement cylindrique à glissement avec les épaules latérales propres pour empêcher les déplacements axiaux.
  • Cette siège cylindrique est exécutée sur la, ou dans la tête de l'arbre et a un axe qui coïncide avec l'axe du corps mobile et un correspondent logement dans la came à l'axe qui coïncide avec l'axe d'excentricité de la came.
  • A cause des très bonnes conditions de lubrification, étant tout le dispositif immergé dans le fluide, qui sert aussi de lubrificant, il est possible une parfaite rotation.
  • Pourtant la grande charge sur la came excentrique et la lenteur de la rotation peuvent être telles de chasser tout l'huile des deux surfaces jusqu'au contact ainsi d'obstaculer le fonctionnement régulier du dispositif.
  • On prévoit donc de réaliser le palier de la came sur l'arbre en façon de palier hydrostatique alimenté par le fluide même à la pression d'alimentation.
  • On peut obtenir un certain succès en supportant la came excentrique avec une couronne continue de petits rouleaux. Il est bien de préférer des formes d'exécution dans lesquelles les forces axiales des moyens élastiques soient internes au système corps mobile - came excentrique, pour éviter des forces axiales qui sollicent la came par rapport à l'arbre.
  • Pourtant dans certaines formes d'exécution il n'est pas possible de bilancer ces forces axiales, et les arrêtés qui tiennent en siège la came excentrique résultent notablement sollicités.
  • En ce cas là, en exécutant l'accomplement came-arbre comme un support hydrostatique conique, on peut proportionner la conicité en manière que la composante axiale de la poussé sur la came, due aux pistons, équilibre en partie ou complètement ces forces axiales.
  • Dans les machines à pistons radiaux on emploie surtout outre aux valves automatiques de non retour, trois types de distributeur du fluide d'actionnement des cylindres, en particulier le distributeur de type axial à rotation cylindrique, le distributeur de type axial roulant plain, et le distributeur pentagonale monté sur la surface périférique de la came excentrique.
  • Dans la machine, selon cette invention l'application des valves automatiques de non retour et du distributeur pentagonale roulant, ne présente aucun problème particulier.
  • Pour l'application des distributeurs roulants cylindriques axiaux et roulants plains, il faut se rappeler du fait que la came excentrique roule d'un certain angle par rapport à l'arbre, donc la position du point mort supérieur (P.M.S.) se déplace d'une même quantité.
  • Il sert donc que le P.M.S. du distributeur suivit le P.M.S. de la came excentrique.
  • En considérant, en outre, que la distributeur tourne en axe avec l'arbre moteur, tandis que la came tourne en axe avec le corps mobile, on doit prévoir que la liaison entre came distributrice et came excentriques arrive couramment malgré ce désaxement, par exemple en employant un accouplement à patin et bouton radial, pour consentir le déplacement radial du patin, tandis que le bouton tourne, et traîner en cette manière en rotation le distributeur, ainsi que le P.M.S. de la came excentrique est toujours radialement aligné avec le P.M.S. du distributeur.
  • Comme on peut voir dans le diagramme de la 4 ème image (fig. 4) qui montre la forme des courbes caractéristiques à pression constante en fonction de l'angle 0 de positionnement de la came excentrique, les courbes se trouvent l'une à côté de l'autre aux petites valeurs de l'angle 0, puisqu'ils naissent toutes de ia même origine et s'ouvrent à éventail aux grandes valeurs de l'angle 0. Cela indique que aux petites excentricités, la valeur de la pression dans le point d'équilibre varie de peu.
  • En effet la caractéristique linéaire des moyens élastiques rencontre ces courbes dans le trait croissant rapidement.
  • Il peut arriver que la valeur de l'angle d'équilibre ne soit plus déterminé d'une pression bien déterminée mais dépende en manière importante des paramètres constructifs et fonctionnaux de la machine tel que les frictions, les variations de viscosité de l'huile et les tolérances de travail ecc.
  • Aux hautes vélocités de rotation le régime de rotation du moteur résulte pourtant incertain.
  • Il peut donc être convenable de modifier la caractéristique élastique des moyens élastiques intervenant en quelque manière sur eux au fin de déplacer vers le droit les points d'intersection de la caractéristique élastique avec les courbes représentantes la poussée axiale H due au moment tournant.
  • On obtient, ainsi, des points d'équilibre corres- pondents à des pressions plus différenciées, avec fonctionnement conséquent plus stable de la machine aux hautes velocités de rotation.
  • Un possible moyen pour modifier la caractéristique élastique des moyens élastiques est d'employer un fluide de contrôle sous pression pour augmenter ou pour diminuer la force par exemple à l'aide d'un piston employé par ces moyens élastiques et qui se mouve dans un cylindre. Ce fluide de contrôle peut provenir d'une propre centrale hydraulique, ou peut être prélevé de la conduite d'alimentation et donc posseder la même pression variable d'alimentation selon les conditions de fonctionnement.
  • Une solution particulièrement efficace est de commander la pression de ce fluide de contrôle à travers en étrangleur asservie au déplacement axial du corps mobile, ainsi d'obtenir une correspondance exacte entre la position du corps mobile qui est fonction de la pression d'alimentation et la valeur de la pression du fluide de contrôle sortant de l'étrangleur.
  • Dans certaines applications il est utile d'avoir une machine dont la cylindrée est variable à commande pour réaliser un programme préfixé de fonctionnement de la machine.
  • Dans le cas là, on dimensionne les moyens élastiques d'une telle façon d'avoir une réponse résiduelle réduite d'une quantitée assignée ainsi que ces moyens élastiques ont la fonction de diminuer, dans la mesure désirée, l'effort de positionnement nécessaire pour déplacer à commande le corps mobile, indépendamment des conditions de charge.
  • Il en résulte donc que le servomécanisme auquel est collegué le corps mobile aura des alimentations réduites et demande une petite puissance pour son actionnement.
  • En se référant à la Sème image (fig. 5) on a décrit une réalisation de la machine selon cette invention qui fonctionne comme un moteur à carcasse roulante et arbre fixé. A l'intérieur d'une carcasse roulante 11, coaxiale avec l'axe A de l'arbre 12 et donc de la machine, sont définies des cavités 13 des cylindres dans lesquelles découlent en allée et retour des pistons 14 mobiles radialement. Ces pistons 14 qui reçoivent la poussée dans les cylindres par un fluide hydraulique en pression, transmettent leur mouvement alternatif à la came circulaire excentrique 15 à travers des convenables patins à soutien hydrostatique.
  • Cette came excentrique 15 est couplée mobile- ment à l'arbre 12 étant supporté à rotation par exemple à travers des paliers 16 à roulement par une tête cylindrique 17, préférablement coniqué, saillant de l'arbre 12, avec axe C excentrique par rapport à l'axe A de l'arbre 12.
  • La came excentrique 15 présente un évidage cylindrique 18, préférablement conique, complémentaire à la tête 17 de l'arbre 12, avec son axe coïncidant avec l'axe C de disaxement. A la came 15 est solidaire, à travers des boulons 19, une tête élargie 20 d'une vis reversible 21 ayant son axe coïncident avec l'axe C de désaxement de l'évidage 18 et donc de la came 15, laquelle vis est disposée à l'intérieur de cet évidage 18, l'autre extrémité 23 de cet vis 21 étant supportée à rotation dans un siège 22 exécutée dans l'arbre 12. La vis reversible 21 est engagée dans le trou 24 d'un manchon cylindrique 8 qui constitue le corps mobile, ce manchon 8 présentant sur sa surface extérieure des fentes rectilignes 25 ou à hélice à pas très long.
  • Les fentes 25 du manchon 8 sont engagée dans les fentes correspondentes 26 d'un trou axiale dans l'arbre 12, l'axe de ce trou étant coïncidant avec l'axe C de la vis et donc excentrique par rapport à l'axe A de l'arbre 12, ainsi que ce trou résulte en axe avec la tête excentrique 17 de l'arbre 12.
  • Le trou de l'arbre 12 débouche à l'autre extrême dans un évidage 27 à diamètre élargi dans lequel glisse, à tenue de fluide, un disque de piston 28 qui est solidaire, à travers une appendice 29, au manchon 8.
  • Ce disque de piston 29 est en outre attraversé au centre, de l'autre extrémité 23 de la vis 25 qui dans ce cas est exécutée à queue lisse.
  • L'évidage 27 ayant diamètre élargi dans l'arbre 12, résulte pourtant fermée à tenue par le disque de piston 28 et par l'engagement entre la tête 17 de l'arbre 12, et l'évidage correspondant 18 dans la came excentrique 15 parmi des garnitures insérées en correspondance des paliers 16 de support du disque 15. En cet évidage 27 à diamètre élargi est en autre logée un ressort 30 à compression qui agit entre ce disque de piston 28 et l'arbre 12. Sous l'action de la poussée transmise par les pistons 14, la came excentrique 15 tourne d'un certain angle et le manchon 8 est rappellé par la vis 21 solidaire à l'excentrique 15, en manière d'être guidé à glisser dans l'interstice annulaire entre la vis 21 et la tête 17 de l'arbre, entraînant le disque du piston 28 qui outre à presser le ressort 30, réduit aussi le volume de l'évidage élargi 27.
  • Cet évidage élargi 27 est posé en communication de fluide, préférablement avec un accumula- tuer hydraulique (non représenté) duquel on utilise la compression élastique du gaz qu'il contient.
  • Le élèvement de pression dans l'accumulateur en fonction de la réduction de volume de cet évidage 27 faitfonctionner l'accumulateur en parallèle au ressort 30.
  • La chambre de cylindre située de l'autre côté du disque de piston 28, quand il se déplace dans l'évidage élargi 27, peut être utilisée pour modifier la caractéristique du ressort en envoyant dans cette chambre de l'huile à pression commandée.
  • Un distributeur annulaire 31 est disposé autour de l'arbre 12. Puisque le disque 15 se déplace angulairement par rapport à l'arbre 12, le distributeur aussi doit accomplir la même rotation angulaire autour de l'arbre 12.
  • A cet égard la came excentrique 15 présente un bouton 32 penchant latéralement, qui s'engage dans une fente radiale 33 exécutée dans le distributeur 31, ainsi qu'elle le porte en rotation malgré l'excentricité existente entre la came excentrique 15 et l'axe A de l'arbre 12.
  • En se référant à la 6ème image (fig. 6), on décrit une réalisation de la machine selon cette invention qui fonctionne indifféremment comme une pompe ou comme un moteur à carcasse fixée 34 et à l'arbre tournant 35. A l'intérieur de la carcasse 34 sont définis des évidages 36 des cylindres dans lesquels glissent en allée et retour des pistons 37 mobiles radialement.
  • Les pistons 37 reçoivent la poussée dans les cylindres d'un fluide hydraulique en pression et la transmettent à travers de convenables patins hydrostatiques à la came excentrique 38 en la mettant en rotation.
  • La came excentrique 38 est engagée pivotamment sur l'arbre 35, étant supportée à rotation par exemple à travers un accouplement mécanique à glissement, sur une tête 39 cylindrique ou légèrement conique, saillant de l'arbre 35 et avec axe C excentrique par rapport à l'axe A de l'arbre 35.
  • Le disque 38 présente un évidage complémentaire 40, cylindrique ou légèrement conique, avec axe coïncidant avec l'axe C de désaxement et une protubérance centrale 41 à l'intérieure de cet évidage 40 dans laquel est pratiqué un trou fileté 42 à vis reversible ayant la même axe C de désaxement.
  • Dans ce trou fileté 42 on engage une vis 43 qui constitue le corps mobile 9, cette vis 43 présente, solidale avec elle-même à l'autre extrémité, une appendice 44 à disque ou à forme de champignon qui présente sur son bord périphérique des filetta- ges droites 45 ou à hélice à pas long.
  • L'arbre 35 à son intérieur présente un évidage cylindrique axial 46, l'axe de cet évidage étant coïncidant avec l'axe C de la vis 43, et donc désaxé par rapport à l'axe A de l'arbre 35.
  • La surface intérieure de l'évidage 46 présente des fentes 47 dans lequel sont engagées les fentes 45 de cette appendice 44 à forme de champignon. Cet évidage 46 débouche dans la tête saillante cylindrique 39. Le disque à champignon 44 à son tour est solidaire à un manteau périphérique 48 ainsi de définir un évidage 51 de cylindre dans laquelle est engagé glissant et à tenue de fluide un controcylindre 49 à son tour logé dans l'évidage 40 de la came excentrique 38.
  • Sous l'action de la poussée transmise par les pistons 37, la came excentrique 38 tourne d'un certain angle, tandis que l'arbre 35 est retenu par la charge appliqué et la vis 43 est rappelée dans le trou 40 de l'excentrique 38, entraînant le disque à champignon 44 et en réduisant le volume de l'évidage 51 de cylindre et en comprimant un ressort 50 disposé à l'intérieur de cet évidage 51.
  • Cet évidage 51 de cylindre est disposé en communication de fluide avec un accumulateur hydraulique (non représenté) duquel on utilise les propriétés élastiques du gaz et qui pourtant fonctionne en parallèle au ressort.
  • La forme d'exécution présentée prévoit un distributeur plan tournant 52 et pourtant il faut entraîner en rotation le distributeur plan 52 en sinchro- nie avec la came excentrique 38, tandis que cette came 38 tourne avec l'arbre 35. Mais pendant la rotation de l'arbre, cette came accomplit de petits déplacements angulaires par rapport à l'arbre.
  • A cet égard la came excentrique 38 présente une saillie cylindrique 53 en axe avec la vis 43, cette saillie 53 étant logée dans un manchon cylindrique 54 convenablement supporté dans la carcasse 34 et en axe avec l'axe A de l'arbre 35.
  • Le trou de logement de la saillie du manchon 54 a, au contraire, son axe déplacé du même désaxement que l'axe C de la vis 43, ainsi que sont permis les déplacements angulaires de la came excentrique 38 pendant la rotation. Dans la partie terminale de la saillie cylindrique 53 est exécutée une fente radiale 55 dans laquelle on engage un patin prismatique 53 à glissement, exécuté dans la partie terminale d'un petit arbre 57.
  • Ce petit arbre à son tour entraîne en rotation le disque distributer plan tournant 52.
  • En se référant à la 7eme image (fig. 7) on décrit une réalisation de la machine selon cette invention, fonctionnante comme moteur à arbre fixé et carcasse tournante montée à l'intérieur d'une roue de un vehicle. A l'intérieur d'une carcasse tournante 58 coaxiale avec l'axe A de l'arbre 59, et donc de la machine, sont définis des évidages 60 de cylindres dans lesquels glissent en allée et retour des pistons 61 mobiles radialement.
  • Ces pistons mobiles qui reçoivent la poussée dans les cylindres d'un fluide hydraulique en pression, transmettent leur mouvement alternatif à la came circulaire excentrique 62 à travers un patin pentagonal 63 qui sert aussi de distributeur, alimenté à travers le canal 64.
  • Cette came excentrique 62 est engagée pivotamment à l'arbre 59, étant supportée à rotation, par exemple avec un accouplement mécanique à glissement par le moyen de un contre-arbre 65 solidal au disque et qui tourne un trou 66 exécuté dans l'arbre 59 ayant l'axe C excentrique par rapport à l'axe A de l'arbre. Ce contre-arbre 65 est solidaire d'une partie au disque 62 et de l'autre part avec une vis reversible 67, l'axe C de la vis coïncident avec l'axe du contre-arbre, étant désaxé par rapport à l'axe de symétrie du disque excentrique. La vis reversible 67 est engagée dans un trou fileté 68 exécuté dans la queue centrale 69 d'un capuchon 70 à forme de champignon qui constitue le corps mobile 10.
  • Ce capuchon 70 présente sur le bord périférique des filetages 71 droites ou à hélice de pas long, qui s'engagent à glissement axial dans un évidement cylindrique 72 exécuté dans une partie 73 élargie de l'arbre, l'axe de cet évidement 72 étant coïncident avec l'axe C de la vis donc désaxé par rapport à l'axe A de l'arbre.
  • La surface antérieure de cet évidement de l'arbre présente des filetages 74 dans lesquels sont engagées les filetages 71 du capuchon 70 à forme de champignon. Le manteau périférique 74 du capuchon délimite un évidement 76 du cylindre dans lequel est engagé à glissement et à tenue de fluide un contro-cylindre 77 et à son tour monté sur un siège 78 exécuté sur le contre-arbre 65 en axe avec la vis 67.
  • Sous l'action de la poussée transmise par les pistons 61, la came excentrique 62 tourne d'un certain angle tandis que l'arbre 59 est fixé, et la vis en penchant dans le trou de la queue, rappelle le capuchon à forme de champignon en réduisant le volume de l'évidement du cylindre.
  • Cet évidement de cylindre est plein de huile que en cette manière est mis en pression et freine la rotation de la vis.
  • L'accroissement de la pression de l'huile se transmet à travers un trou 79 exécuté dans la queue, aussi dans l'évidement du trou 68 fileté à vis et donc agit sur un petit piston 80 qui glisse à tenue de fluide dans un trou axial 81 exécuté centralement à la vis 67 et qui passe à l'intérieur du contre-arbre 65 et de la came excentrique 62. Le petit piston 80 est contrasté par un ressort 82 étallonné et calibré logé à l'intérieur du trou axial 81. Sous l'action de la pression de l'huile, le petit piston 80 comprime le ressort 28 ainsi que la pression qui domine dans l'évidement de cylindre est en substance une fonction linéaire de la déformation du ressort.
  • Le petit piston 80 présente à son intérieur un évidement au fond duquel est pratiqué un trou 83 de décharge qui présente un siège conique.
  • Ce siège conique, par effet de la réaction du ressort calibré sur le petit piston, est tenu normalement fermé par une petite tête 84 à cône, soutenue à une extrémité d'une barre 85, l'autre extrémité de laquelle commande un clapet de haute pression 86 normalement fermé, à l'extérieure posé en communication avec une source d'huile en pression.
  • Pourtant, comme on a déjà dit, au rappel de la vis correspond une augmentation de la pression dans l'évidement de cylindre et donc un déplacement du petit piston dans le sens à comprimer le ressort calibré 82.
  • En conséquence le siège cônique 83 s'éloigne de la petite tête 84 et une partie de l'huile peut s'échapper à l'autre côté du petit piston 80 dans le trou axial 81 convenablement collegué à la décharge au moyen d'une conduite 87.
  • Le capuchon 70 peut ainsi être attiré par la vis jusqu'à quand la pression à l'intérieur de l'évidement cylindrique balance l'action du ressort sur le petit piston, suivi d'une fermeture du siège cônique. Contrairement, à une réduction de l'action de la vis sur le capuchon correspond une tombée instantanée de la pression dans l'évidage de cylindre et le ressort en ageant contre le petit piston, par moyen de la barre, ouvre le clapet 86 d'haute pression, consentant à l'huile d'entrer dans l'évidage de cylindre, jusqu'à rééquilibrer l'action du ressort. Le dispositif constitué par le petit piston, par la barre et par le clapet à haute pression, fonctionne à la manière d'un servomécanisme amplificateur de la caractéristique élastique du ressort calibré.
  • Comme on peut voir dans la 7ème image (fig. 7) le trou axial 81 sert aussi de canal de décharge de l'huile qui à alimenté les cylindres et un petit trou 88 pratiqué au fond du trou axial permet de drainer l'étirage d'huile qui remplit la carcasse pendant le fonctionnement. La carcasse présente à sa périphérie une bride circulaire 89 munie des troux 90 pour permettre le montage au bandage d'une roue de véhicule.
  • L'arbre présente à son extérieùr un filetage 91 ainsi de pouvoir être soutenu dans une gâche 92 de montage à les suspentions d'un véhicle, par moyen de boulons qui passent dans les trous 93. Des conduits souples, joints à les embouchures 94 permettent d'alimenter et décharger l'huile.
  • La machine selon cette invention, trouve son emploi dans tous les domaines dont on emploie des pompes ou des moteurs hydrauliques pouvant fonctionner soit comme pompe, soit comme moteur.
  • Pourtant on peut prévoir des réalisations particulièrement étudiées pour l'emploi seulement comme pompes ou seulement comme moteur.
  • Dans le cas d'emploi comme pompe et en faisant fonctionner la machine avec 8 compris entre n et 2 π, on obtient une auto-réduction de la cylindrée et donc du débit à l'augmenter de la pression avec un grand avantage dans l'emploi pour actionner des presses hydrauliques, ou pour charger des accumulateurs hydrauliques d'énergie.
  • Dans le cas d'emploi comme moteur, une réalisation avantageuse prévoit une machine à l'arbre fixé et carcasse tournante ainsi que en équipant ce bloc cylindre avec une bande ou un pneumatique on obtient une roue compacte motrice qui s'autorègle pour un véhicule. Dans un véhicle on peut ainsi rendre facilement motrices les quatres roues.
  • L'effet différentiel en virage s'exerce automatiquement puisque la réaction des moyens élastiques détermine la position du corps mobile et donc l'équilibre entre moment moteur et moment résistent, cela veut dire la cylindrée, tandis que à la différence entre le nombre des tours de la roue intérieure et de celle extérieure prévoit la répartition automatique des capacités volumétriques.
  • En outre on peut obtenir aussi le freinage hydraulique du véhicule, puisque ces machines se comportent comme des pompes toutes les fois que le moment extérieur supère le moment de la machine, dans le cas dont l'énergie du fluide pompé peut être immagazinée dans un accumulateur hydraulique à gas ou dissipé à travers une valve dissipatrice proprement refroidie.

Claims (13)

1. Machine hydrostatique à pistons radiaux ayant un arbre (1), l'axe géométrique (A) duquel constitue l'axe de rotation de la partie roulante de la machine, un bloc cylindres coaxial à cet arbre dans lequel sont définis des évidements de cylindres, un disque circulaire ou came (2) ayant un axe géométrique de symétrie (B) parallel à l'axe de l'arbre et de lui distancé ainsi qu'une excentricité (d) du disque est défini par rapport à cet axe de l'arbre, l'arbre et le disque étant couplés par rapport à un déplacement axial relatif, pistons mobiles radialement en allée et retour dans ces cylindres commandés par ce disque ou came, ainsi que cette excentricité définit la cylindrée de la machine, un fluide hydraulique pour la transmission de puissance, un corps mobile (3) engagé pivotant à vis (4, 5), d'une partie (4) avec cet arbre et de l'autre partie (5) avec cette came excentrique, l'axe de rotation (C) de ce corps mobile étant parallèle à l'axe de l'arbre et à l'axe de symétrie du disque et désaxé d'une distance fixée (d) par rapport à chacun de ces axes; au moins une des engagés à vis étant réversible, l'autre pouvant être simplement des rainures axiales; moyens de support à rotation pour engager pivotamment cet arbre et ce disque ou came pour permettre la rotation de ce corps mobile, caractérisée par le fait de comprendre: moyens élastiques (6, 7) engagés d'une part avec ce corps mobile et d'autre part avec cet arbre ou avec ce disque ou came, aptes à s'opposer à un déplacement de ce corps mobile, ainsi que l'application à cette came d'un moment de torsion provoque une rotation de celui-ci par rapport à l'arbre, et par conséquent provoque la force de réaction de ces moyens élastiques contre le déplacement hélicoïdale de ce corps mobile jusqu'à l'équilibre entre ce moment de torsion et cette force de réaction des moyens élastiques, en correspondance d'une position angulaire bien déterminée de la came.
2. Machine selon la lè" revendication, dans laquelle ce moyen élastique est un ressort.
3. Machine selon la 1ère revendication dans laquelle ce moyen élastique est une servomécanisme (80 à 86) amplificateur de la caractéristique élastique d'un petit ressort (82) amène à commander, en fonction de la déformation du ressort, la valeur de la pression de l'huile qui agit sur un piston (80) qui contraste le mouvement axiale du corps mobile et donc la rotation du disque.
4. Machine selon la 1ère revendication, dans laquelle ce moyen élastique est le gaz contenu dans un accumulateur hydraulique.
5. Machine selon la revendication 1, dont ce moyen élastique comprend en combinaison un ressort avec ou sans servo-mécanisme et le gaz contenu dans un accumulateur hydraulique.
6. La machine selon n'importe quelle revendication de 2 à 5, dont un fluide de contrôle sous pression est employé avec ce moyen élastique pour modifier sa réponse élastique.
7. Machine selon la revendication 6, dont ce fluide de contrôle est constitué par le fluide d'alimentation de cette machine.
8. Machine selon les revendications 6 et 7 dont un étrangleur, asservi au déplacement axial de ce corps mobile, fait varier la pression de ce fluide de contrôle en dépendance de ce corps mobile.
9. Machine hydrostatique selon n'importe quelle des revendications précédentes, qui comprend en outre un distributeur tournant pour l'alimentation et de décharge du fluide hydraulique d'alimentation, caractérisée du fait que ce distributeur (31, 52), coaxial avec l'arbre, est couplé avec cette came excentrique ainsi que le point mort supérieur de la came est toujours alligné radialement avec le point mort supérieur du distributeur.
10. Machine selon la revendication 1, étant une pompe.
11. Machine selon la revendication 1, étant un moteur.
12. Agrégat comportant une machine selon les revendications 10 et 11 respectivement, la pompe et le moteur étant connectés entre eux parmi de conduites, de la façon de constituer une transmission hydrostatique.
13. Agrégat comportant une machine selon les revendications 10 et 11 respectivement, la pompe et le moteur étant connectés directement entre eux de la façon de constituer un convertisseur hydrostatique de couple ou variateur hydrostatique de vélocité.
EP83830132A 1982-06-30 1983-06-28 Machine hydrostatique à pistons radiaux et cylindrée variable Expired EP0106808B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
IT48727/82A IT1189306B (it) 1982-06-30 1982-06-30 Macchina idrostatica a pistoni radiali e cilindrata variabile
IT4872782 1982-06-30

Publications (3)

Publication Number Publication Date
EP0106808A2 EP0106808A2 (fr) 1984-04-25
EP0106808A3 EP0106808A3 (en) 1985-01-09
EP0106808B1 true EP0106808B1 (fr) 1989-11-08

Family

ID=11268278

Family Applications (1)

Application Number Title Priority Date Filing Date
EP83830132A Expired EP0106808B1 (fr) 1982-06-30 1983-06-28 Machine hydrostatique à pistons radiaux et cylindrée variable

Country Status (3)

Country Link
EP (1) EP0106808B1 (fr)
DE (1) DE3380826D1 (fr)
IT (1) IT1189306B (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL8500402A (nl) * 1985-02-13 1986-09-01 Schelde Nl Aandrijving van verbruikers aan boord van een schip.
IT1295283B1 (it) * 1997-10-06 1999-05-04 Sabi Pompe E Impianti S R L Regolatore di portata applicabile a pompe dosatrici

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB538230A (en) * 1940-02-02 1941-07-25 Charles Hyland Improvements in or relating to eccentrics
GB577287A (en) * 1943-06-04 1946-05-13 George Walstan Drury Improvements in reciprocating pumps
FR1120102A (fr) * 1955-01-14 1956-07-02 Dispositif de commande d'excentricité

Also Published As

Publication number Publication date
DE3380826D1 (en) 1989-12-14
IT8248727A0 (it) 1982-06-30
EP0106808A3 (en) 1985-01-09
IT1189306B (it) 1988-02-04
EP0106808A2 (fr) 1984-04-25

Similar Documents

Publication Publication Date Title
EP0399888B1 (fr) Appareil de transmission mécanique automatique à variation continue du rapport de transmission depuis un rapport infini jusqu&#39;à un rapport inférieur à 1/1
FR2673685A1 (fr) Compresseur du type rotatif pour climatisation ou refrigeration.
EP1602826B1 (fr) Entrainement de pompe
EP0106808B1 (fr) Machine hydrostatique à pistons radiaux et cylindrée variable
CA1307163C (fr) Machine rotative a pistons et a barillet avec rotule de centrage fixe
FR2749045A1 (fr) Compresseur, notamment pour des systemes de climatisation dans des vehicules
FR2644210A1 (fr) Dispositif d&#39;immobilisation mutuelle de deux elements montes a rotation relative
FR2559846A1 (fr) Machine hydraulique de type rotatif
EP0211884A1 (fr) Machine tournante a pistons radiaux apte a former pompe ou moteur
BE1015545A3 (fr) Systeme de transformation d&#39;energie a appareil volumetrique.
BE376532A (fr)
EP2825785B1 (fr) Machine hydraulique a cylindree variable, notamment pour vehicule automobile
WO2002070876A1 (fr) Chambre d&#39;expansion de moteur a air comprime
FR2977644A1 (fr) Moteur hydraulique a pistons axiaux a cylindree variable et faible encombrement
BE419727A (fr)
BE369336A (fr)
BE478340A (fr)
BE508009A (fr)
BE393421A (fr)
BE428647A (fr)
FR2883948A1 (fr) Dispositif de transformation reversible d&#39;un mouvement rectiligne alternatif en un mouvement de rotation, et machines associees
BE555936A (fr)
BE419230A (fr)
BE437052A (fr)
BE389834A (fr)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): CH DE FR GB LI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Designated state(s): CH DE FR GB LI

17P Request for examination filed

Effective date: 19850624

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB LI

REF Corresponds to:

Ref document number: 3380826

Country of ref document: DE

Date of ref document: 19891214

GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

GBRI Gb: ep (uk) patent reinstated (gb rule 110(3)a/1987)
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19920629

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19930630

Ref country code: CH

Effective date: 19930630

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19940615

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19940627

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19941115

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19950628

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19950628

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19960229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19960301

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST