[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP0009433A1 - Procédé et installation de fabrication de poudre métallique à partir d'un métal ou alliage en fusion - Google Patents

Procédé et installation de fabrication de poudre métallique à partir d'un métal ou alliage en fusion Download PDF

Info

Publication number
EP0009433A1
EP0009433A1 EP79400619A EP79400619A EP0009433A1 EP 0009433 A1 EP0009433 A1 EP 0009433A1 EP 79400619 A EP79400619 A EP 79400619A EP 79400619 A EP79400619 A EP 79400619A EP 0009433 A1 EP0009433 A1 EP 0009433A1
Authority
EP
European Patent Office
Prior art keywords
fluid
enclosure
cryogenic fluid
particles
aforementioned
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP79400619A
Other languages
German (de)
English (en)
Other versions
EP0009433B1 (fr
Inventor
Jean Foulard
Gérard Bentz
Jean Galey
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Air Liquide SA
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Original Assignee
Air Liquide SA
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Air Liquide SA, LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude filed Critical Air Liquide SA
Priority to AT79400619T priority Critical patent/ATE193T1/de
Publication of EP0009433A1 publication Critical patent/EP0009433A1/fr
Application granted granted Critical
Publication of EP0009433B1 publication Critical patent/EP0009433B1/fr
Expired legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/12Making metallic powder or suspensions thereof using physical processes starting from gaseous material

Definitions

  • the present invention essentially relates to a process for manufacturing a metallic powder by lowering the temperature of the vapor of a molten metallic material in a closed treatment enclosure, leading to the transformation of said vapor into solid particles.
  • metal material designates either a metal proper, or an alloy of at least two metals.
  • metal powders consist of solid particles either of a single metal such as iron, zinc, magnesium, calcium, cadmium, etc., or of an alloy metallic, for example a magnesium-zinc alloy, or even a metallic compound, for example zinc oxide or magnesium nitride.
  • Such powders find wide applications in various industrial branches, in particular for the manufacture of paints, the treatment of rubbers, in the metallurgical (sintered materials), chemical (catalysts), ceramic, pharmaceutical, etc. industries.
  • a problem currently posed in the powdered metal technique is the obtaining, in industrial quantities, of extremely divided powders having an average particle size of the order of 0.08 microns, consisting of particles having a shape as regular as possible and having a minimum particle size dispersion, that is to say located in a particle size range between 0.02 and 0.13 micron
  • a high vapor pressure causes accelerated evaporation of the metal bath and therefore makes the process applicable on an industrial scale.
  • the use of a cryogenic fluid in the liquid phase causes very rapid cooling, therefore an energetic quenching, of the metallic vapor and allows the direct passage from the gaseous state to the solid state. This change of state and the evacuation of solid particles concomitant with that of the cryogenic fluid results in a constant renewal of the phenomenon of condensation of the vapors above the bath.
  • the solid particles which are thus formed from an incipient suddenly cooled metallic vapor have a regular shape and dimensions not exceeding a few hundred angstroms.
  • the cryogenic fluid is introduced into said enclosure and is continuously removed therefrom.
  • a continuous circulation of cryogenic fluid allows a continuous production of powder at an optimal particle formation regime.
  • the cryogenic fluid is discharged in the liquid phase.
  • the cryogenic fluid is discharged in the gas phase.
  • the cryogenic fluid consists of a chemically inert element or a mixture of chemically inert elements.
  • cryogenic fluid makes it possible to obtain metallic powders formed from chemically pure metals.
  • the cryogenic fluid consists of a chemically active element or a mixture of chemically active elements.
  • cryogenic fluid allows the formation of specific chemical compounds, for example oxides, nitrides or metal hydrides.
  • the cryogenic fluid consists of a mixture of chemically inert elements and chemically active elements.
  • the invention also relates to an installation for implementing the aforementioned method, this installation comprising means for continuously discharging a cryogenic fluid in the liquid phase inside a closed enclosure, means for transferring, out of from said enclosure, a stream of fluid carrying solid metallic particles in suspension, and a closed separation chamber; connected to said transfer means and receiving the above-mentioned fluid stream, said separation chamber being provided with means for collecting the aforementioned solid particles and means for discharging said stream of fluid free of said particles.
  • the installation comprises a melting device 1, for example an induction furnace or a heating crucible, which contains the metallic material M in the liquid state, and is closed by a cover. 2 which thus provides, above the bath, a closed enclosure 3, therefore isolated from the ambient atmosphere in which the metallic vapor is released.
  • a melting device for example an induction furnace or a heating crucible, which contains the metallic material M in the liquid state, and is closed by a cover. 2 which thus provides, above the bath, a closed enclosure 3, therefore isolated from the ambient atmosphere in which the metallic vapor is released.
  • a reactor 4 constituted by a tubular sleeve of section slightly smaller than that of the enclosure, open at its two ends, the lower end plunging slightly into the metal bath M and at the interior of which is concentrated most of the vapor phase of the metallic material.
  • the furnace or the like 1 and the reactor 4 are made of any refractory material, of the type usually used in metallurgy, the furnace being provided with heating means (not shown) which make it possible to maintain the molten metal at the temperature necessary to obtain the desired vapor pressure.
  • a pipe 5 pours out a cryogenic fluid, for example liquefied nitrogen at -196 ° C, stored in a storage device (not shown), in the reactor 4 via a funnel 6 housed in said reactor and opening out in the vicinity of the surface of the metal bath so that said fluid arrives just above the latter.
  • the reactor 4 is connected, by a heat-insulated conduit 7, to a closed separation chamber 8 which communicates with the outside only by a one-way pressure limiting valve 9.
  • In the chamber 8 are housed containers 11 for collecting the particles , these containers being mounted on a rotary support 10 which makes it possible to take them in turn below the duct 7.
  • the reactor 4 is supplied with cryogenic liquid with a sufficient flow rate to permanently maintain, above the metal bath M, a thick layer of cryogenic liquid which exceeds the level of connection of the conduit 7 to the reactor.
  • the solid particles which form in reactor 4 as a result of the condensation of metallic vapors thus remain in suspension in the cryogenic liquid which is transferred, by drawing off by means of the conduit 7, into the separation chamber 8.
  • the cryogenic liquid then passes to the gaseous state, creating and maintaining in the chamber 8 a neutral atmosphere and the solid particles separate by gravity and fall into the containers 11 where they are collected to give a powder.
  • the filling of these containers must be carried out in several stages owing to the reduction in the volume of the powder following the evaporation of the cryogenic liquid.
  • the rotary support allows these successive filling steps to be carried out.
  • the cryogenic liquid charged with particles in suspension and brought into the separation chamber 8 by the conduit 7 is received in separation vessels 12 provided with a filtering wall 13 which retains the particles and lets the liquid pass.
  • the liquid thus filtered is brought, by a first lagged pipe 14, to a recovery tank 15 and from there it is returned, by a recycling pump 16 and a second lagged pipe 17, to reactor 4.
  • the reactor 4 is supplied with cryogenic liquid with an insufficient flow rate to maintain a liquid layer above the metal bath.
  • the vapor is condensed at the point of impact of the cryogenic liquid with the surface of the bath and the metallic particles are entrained out of the enclosure 2 by the fluid in the vapor phase. The recovery of these particles can be done by gravity.
  • the metallic material can consist of a metal (Fe, Cu, Zn, Mg, Al, etc.) or an alloy (brass, bronze, etc.).
  • the choice of the composition of this alloy that is to say the choice of constituents (which have different melting temperatures), and the proportions of these constituents, make it possible to adjust the kinetics of evaporation.
  • an alloy having a high proportion of a metal with a low melting point, such as Mg makes it possible to obtain a metallic vapor formed almost exclusively of said metal with low melting point.
  • the composition of this alloy can be determined so as to obtain, for a chosen temperature of the metal bath, a high vapor pressure of the zinc. The solid particles obtained are then formed exclusively of zinc.
  • the cryogenic fluid can consist of inert liquefied elements (N2, Ar, He, etc ...) or active (02, H2, NH3 etc 7) by liquefied compounds such as hydrocarbons or a mixture formed of inert liquefied elements and active liquefied elements or else inert liquefied elements and liquefied compounds.
  • inert liquefied elements N2, Ar, He, etc
  • active 02, H2, NH3 etc
  • the choice of the percentage of the active element or of the compound makes it possible to adjust the kinetics of the reaction of the combination of the metal with the metalloid which constitutes said element or resulting from the decomposition of said compound.
  • the powder obtained after separation of the cryogenic fluid consists of zinc particles of dimension between 0.03 and 0.10 micron, and has a specific surface (BET) of 40 m2 per gram.
  • the heating of the melting device 1 could be obtained for example by induction, or by means of radiation, for example concentrated solar radiation by means of an optical system or radiation produced by a laser, or also by means of an arc or an electrical resistance so as to obtain a melting and a point or overall overheating of the material to be vaporized.

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Powder Metallurgy (AREA)

Abstract

L'invention concerne la fabrication de poudres métalliques par abaissement de la température de la vapeur d'un bain de métal en fusion. On déverse, sur le bain métallique ayant une tension de vapeur d'au moins 1 mm de mercure, un fluide cryogénique en phase liquide (5), on sépare le fluide des particules solides qu'il contient en suspension (8) et on collecte ces dernières (11). L'invention s'applique à la préparation des peintures, au traitement des caoutchoucs, aux industries métallurgiques, chimiques, pharmaceutiques et céramiques.

Description

  • La présente invention concerne essentiellement un procédé de fabrication d'une poudre métallique par un abaissement de la température de la vapeur d'un matériau métallique en fusion dans une enceinte de traitement fermée, entraînant la transformation de ladite vapeur en particules solides.
  • Le terme "matériau métallique" désigne soit un métal proprement dit, soit un alliage de deux métaux au moins.
  • Par "poudres métalliques", on entend des poudres qui sont constituées par des particules solides soit d'un métal unique tel que le fer, le zinc, le magnésium, le calcium, le cadmium, etc..., soit d'un alliage métallique, par exemple un alliage magnésium-zinc, soit encore d'un composé métallique, par exemple l'oxyde de zinc ou le nitrure de magnésium. De telles poudres trouvent de larges applications dans diverses branches industrielles, en particulier pour la fabrication des peintures, le traitement des caoutchoucs, dans les industries métallurgiques (matériaux frittés), chimiques (catalyseurs), céramiques, pharmaceutiques, etc...
  • On connaît déjà un procédé de fabrication de poudres métalliques à partir d'un métal fondu qui consiste à balayer la vapeur du métal fondu au moyen d'un gaz inerte préalablement refroidi pour provoquer la condensation de ladite vapeur. Ce procédé ne réalise toutefois qu'un apport frigorifique très faible et ne permet pas d'obtenir des quantités importantes de poudre. De plus, la poudre obtenue est formée de particules de, forme irrégulière et présentant une dispersion granulométrique importante.
  • Un problème posé actuellement dans la technique des métaux pulvérulents est l'obtention, en quantité industrielle, de poudres extrêmement divisées ayant une granulométrie moyenne de l'ordre de 0,08 micron, constituée par des particules ayant une forme aussi régulière que possible et présentant une dispersion granulométrique minimale, c'est-à-dire située dans une fourchette granulométrique comprise entre 0,02 et 0,13 micron
  • et enfin présentant une grande pureté chimique.
  • Ces buts sont atteints avec le procédé selon l'invention par le fait qu'il consiste à déverser sur le bain, porté à une température telle que sa tension de vapeur soit d'au moins 1 mm de mercure, un fluide cryogénique en phase liquide, à évacuer hors de l'enceinte le fluide cryogénique qui contient, en suspension, les particules solides, à séparer ces dernières dudit fluide et à les collecter pour obtenir la poudre précitée.
  • Les expériences faites sur divers matériaux métalliques (métaux purs ou alliages) ont montré que la tension de vapeur susmentionnée peut être comprise avantageusement dans une gamme entre 1 et 500 millimètres de mercure.
  • Une tension de vapeur élevée entraîne une évaporation accélérée du bain métallique et rend par conséquent le procédé applicable à l'échelle industrielle. L'emploi d'un fluide cryogénique en phase liquide provoque un refroidissement très rapide, donc une trempe énergique, de la vapeur métallique et permet le passage direct de l'état gazeux à l'état solide. Ce changement d'état et l'évacuation des particules solides concomitante à celle du fluide cryogénique a pour conséquence un renouvellement constant du phénomène de condensation des vapeurs au-dessus du bain.
  • Il en résulte que les particules solides qui se forment ainsi à partir d'une vapeur métallique naissante brusquement refroidie ont une forme régulière et des dimensions n'éxédant pas quelques centaines d'angstrôms.
  • Selon une autre caractéristique de l'invention, le fluide cryogénique est introduit dans ladite enceinte et en est évacué de façon continue.
  • Une circulation continue de fluide cryogénique permet une production continue de poudre à un régime optimal de formation des particules.
  • Selon une autre caractéristique de l'invention, le fluide cryogénique est évacué en phase liquide.
  • Selon une autre caractéristique de l'invention, le fluide cryogénique est évacué en phase gazeuse.
  • Selon encore une autre caractéristique de l'invention, le fluide cryogénique est constitué par un élément chimiquement inerte ou un mélange d'éléments chimiquement inertes.
  • L'emploi d'un tel fluide cryogénique permet d'obtenir des poudres métalliques formées de métaux chimiquement purs.
  • Selon encore une autre caractéristique de l'invention, le fluide cryogénique est constitué par un élément chimiquement actif ou un mélange d'éléments chimiquement actifs.
  • L'emploi d'un tel fluide cryogénique permet la formation de composés chimiques déterminés, par exemple d'oxydes, de nitrures ou d'hydrures métalliques.
  • Toujours selon l'invention, le fluide cryogénique est constitué par un mélange d'éléments chimiquement inertes et d'éléments chimiquement actifs.
  • L'emploi d'un tel fluide permet de contrôler la formation des composés chimiques que l'on désire obtenir.
  • L'invention vise également une installation pour la mise en oeuvre du procédé précité, cette installation comportant des moyens pour déverser, de façon continue, un fluide cryogénique en phase liquide à l'intérieur d'une enceinte fermée, des moyens pour transférer, hors de ladite enceinte, un courant de fluide véhiculant des particules métalliques solides en suspension, et une chambre de séparation fermée; reliée aux dits moyens de transfert et recevant le courant de fluide précité, ladite chambre de séparation étant munie de moyens pour collecter les particules solides précitées et de moyens pour évacuer ledit courant de fluide débarrassé des dites particules.
  • D'autres caractéristiques et avantages de l'invention apparaîtront au cours de la description qui va suivre.
  • Dans le dessin annexé, donné à titre d'exemple non limitatif :
    • - La figure 1 montre de façon schématique, une installation pour la mise en oeuvre du procédé selon l'invention, dans laquelle le fluide cryogénique est évacué en phase liquide, la collection des particules se faisant par gravité ;
    • - La figure 2 montre une variante de l'installation de la figure 1, dans laquelle la collection des particules se fait par filtration.
    • - La figure 3 montre, de façon schématique et partielle, une installation dans laquelle le fluide cryogénique est évacué en phase gazeuse.
  • Selon le mode de réalisation représenté à la figure 1, l'installation comporte un dispositif de fusion 1, par exemple un four à induction ou un creuset chauffant, qui contient le matériau métallique M à l'état liquide, et est fermé par un couvercle 2 qui ménage ainsi, au-dessus du bain, une enceinte 3 fermée, donc isolée de l'atmosphère ambiante dans laquelle se dégage la vapeur métallique.
  • A l'intérieur de l'enceinte 3 est logé un réacteur 4, constitué par un manchon tubulaire de section légèrement inférieure à celle de l'enceinte, ouvert à ses deux extrémités, l'extrémité inférieure plongeant légèrement dans le bain métallique M et à l'intérieur duquel se trouve concentrée la plus grande partie de la phase vapeur du matériau métallique.
  • Le four ou analogue 1 et le réacteur 4 sont faits en un matériau réfractaire quelconque, du type habituellement utilisé en métallurgie, le four étant muni de moyens de chauffage (non représentés) qui permettent de maintenir le métal fondu à la température nécessaire pour obtenir la tension de vapeur désirée. Une canalisation 5 déverse un fluide cryogénique, par exemple de l'azote liquéfié à - 196°C, emmagasiné dans un dispositif de stockage (non représenté), dans le réacteur 4 par l'intermédiaire d'un entonnoir 6 logé dans ledit réacteur et débouchant au voisinage de la surface du bain métallique de façon que ledit fluide arrive juste au-dessus de ce dernier. Le réacteur 4 est relié, par un conduit calorifugé 7, à une chambre de séparation fermée 8 qui ne communique avec l'extérieur que par une soupape de limitation de pression unidirectionnelle 9. Dans la chambre 8 sont logés des récipients 11 pour collecter les particules, ces récipients étant montés sur un support rotatif 10 qui permet de les amener à tour de rôle au-dessous du conduit 7.
  • Le réacteur 4 est alimenté en liquide cryogénique avec un débit suffisant pour entretenir en permanence, au dessus du bain métallique M, une couche épaisse de liquide cryogénique qui dépasse le niveau de raccordement du conduit 7 au réacteur. Les particules solides qui se forment dans le réacteur 4 par suite de la condensation des vapeurs métalliques restent ainsi en suspension dans le liquide cryogénique qui est transféré, par soutirage au moyen du conduit 7, dans la chambre de séparation 8. Le liquide cryogénique passe alors à l'état gazeux, créant et entretenant dans la chambre 8 une atmosphère neutre et les particules solides se séparent par gravité et tombent dans les récipients 11 où elles sont collectées pour donner une poudre. Le remplissage de ces récipients doit être réalisé en plusieurs étapes par suite de la diminution du volume de la poudre consécutive à l'évaporation du liquide cryogénique. Le support rotatif permet d'effectuer ces étapes successives de remplissage.
  • Selon le mode de réalisation représenté à la figure 2, dans laquelle les mêmes chiffres de référence désignent les mêmes éléments que dans la figure 1, le liquide cryogénique chargé de particules en suspension et amené dans la chambre de séparation 8 par le conduit 7 est reçu dans des vases de séparation 12 munis d'une paroi filtrante 13 qui retient les particules et laisse passer le liquide. Le liquide ainsi filtré est amené, par une première canalisation calorifugée 14, à un réservoir de récupération 15 et de là il est retourné, par une pompe de recyclage 16 et une seconde canalisation calorifugée 17, au réacteur 4.
  • Selon le mode de réalisation de la figure 3, dans laquelle les mêmes chiffres de référence désignent également les mêmes éléments que dans les figures 1 et 2, le réacteur 4 est alimenté en liquide cryogénique avec un débit insuffisant pour entretenir une couche liquide au dessus du bain métallique. Dans ce cas, la vapeur est condensée au point d'impact du liquide cryogénique avec la surface du bain et les particules métalliques sont entraînées hors de l'enceinte 2 par le fluide en phase vapeur. La récupération de ces particules peut se faire par gravité.
  • Le matériau métallique peut être constitué par un métal (Fe, Cu, Zn, Mg, Al etc,) ou un alliage (laiton, bronze, etc...).
  • Il est à noter que, dans ce dernier cas, le choix de la composition de cet alliage, c'est-à-dire le choix des constituants (qui présentent des températures de fusion différentes), et des proportions de ces constituants, permet de régler la cinétique de l'évaporation. C'est ainsi par exemple qu'un alliage ayant une forte proportion d'un métal à bas point de fusion, tel que le Mg, permet d'obtenir une vapeur métallique formée presque exclusivement dudit métal à bas point de fusion. De même, en utilisant un alliage de cuivre (métal peu volatil) et de zinc (métal très volatil) on peut déterminer la composition de cet alliage de façon à obtenir, pour une température choisie du bain métallique une tension de vapeur élevée du zinc. Les particules solides obtenues sont alors formées exclusivement de zinc.
  • Le fluide cryogénique peut être constitué par des éléments liquéfiés inertes (N2,Ar,He, etc...) ou actifs (02,H2,NH3 etc...) par des composés liquéfiés tels que les hydrocarbures ou un mélange formé d'éléments liquéfiés inertes et dléléments liquéfiés actifs ou encore d'éléments liquéfiés inertes et de composés liquéfiés. Dans le cas de tels mélanges, le choix du pourcentage de l'élément actif ou du composé permet de régler la cinétique de la réaction de la combinaison du métal avec le métalloïde qui constitue ledit élément ou provenant de la décomposition dudit composé.
  • On donnera ci-après un exemple de fabrication d'une poudre de zinc à partir d'un alliage Cu-Zn, selon le mode de mise en oeuvre de la figure 1.
  • Matériau métallique : alliage UZ 30 (norme AFNOR) : Cu = 70 % - Zn = 30 % Température du bain métallique : 1065°C Tension de vapeur du Zn : 486 mm de mercure Tension de vapeur du Cu : 10-4mm de mercure Fraction molaire du zinc ; 0,3 Activité du zinc dans l'alliage : 0,16 Coefficient d'activité du zinc dans l'alliage : 0,54 Fluide cryogénique : azote liquide (-196°C)
  • La poudre obtenue après séparation du fluide cryogénique. est constituée de particules de zinc de dimension comprise entre 0,03 et 0,10 micron, et présente une surface spécifique (BET) de 40 m2 par gramme.
  • Le fait d'utiliser un alliage Cu-Zn permet de surchauffer le Zn, donc d'obtenir une tension de vapeur de zinc importante comparativement à la tension de vapeur du cuivre et par conséquent d'obtenir des particules métalliques formées uniquement de zinc.
  • De nombreuses variantes pourraient être apportées au procédé décrit ci-dessus sans pour autant sortir du cadre de l'invention. C'est ainsi que le chauffage du dispositif de fusion 1 pourrait être obtenu par exemple par induction, ou au moyen d'un rayonnement, par exemple le rayonnement solaire concentré au moyen d'un système optique ou un rayonnement produit par un laser, ou encore au moyen d'un arc ou d'une résistance électrique de façon à obtenir une fusion et une surchauffe ponctuelle ou globale du matériau à vaporiser.
  • On pourrait même utiliser un chauffage par plasma. De même on pourrait, au lieu d'azote, utiliser un autre gaz-inerte comme l'argon.

Claims (14)

1. - Procédé de fabrication d'une poudre métallique par un abaissement, de la température de la vapeur d'un matériau métallique en fusion dans une enceinte de traitement fermée, entraînant la transformation de ladite vapeur en particules solides, caractérisé en ce qu'il consiste à déverser sur ledit bain porté à une température telle que sa tension de vapeur soit d'au moins 1 mm de mercure, un fluide cryogénique en phase liquide, à évacuer hors de l'enceinte, le fluide cryogénique qui contient, en suspension, les particules solides, à séparer ces dernières dudit fluide et à les collecter pour obtenir la poudre précitée.
2. - Procédé selon la revendication 1, caractérisé en ce que le fluide cryogénique est introduit dans ladite enceinte et en est évacué de façon continue.
3. - Procédé selon la revendication 2, caractérisé en ce que ledit fluide cryogénique est évacué de l'enceinte en phase liquide.
4. - Procédé selon la revendication 3, caractérisé en ce que la phase liquide précitée est évacuée par soutirage.
5. - Procédé selon la revendication 2, caractérisé en ce que ledit fluide cryogénique est évacué de l'enceinte en phase gazeuse.
6. - Procédé selon la revendication 1, caractérisé en ce que la séparation des particules et leur collection se fait par action gravifique.
7. - Procédé selon la revendication 3, caractérisé en ce que la séparation des particules et leur collection se fait par filtration.
8. - Procédé selon la revendication 1, caractérisé en ce que le matériau précité est un métal pur ou sensiblement pur.
9. Procédé selon la revendication 1, caractérisé en ce que le matériau précité est constitué par un alliage de deux ou plusieurs métaux.
10. - Procédé selon la revendication 1, caractérisé en ce que le fluide cryogénique est constitué par un élément chimiquement inerte ou un mélange d'éléments chimiquement inertes.
11. - Procédé selon la revendication 1, caractérisé en ce que le fluide cryogénique précité est constitué par un élément chimiquement actif ou un mélange d'éléments chimiquement actifs.
12. - Procédé selon la revendication 1, caractérisé en ce que le fluide cryogénique précité est constitué par un mélange d'éléments chimiquement inertes et d'éléments chimiquement actifs.
13. - Procédé selon la revendication 1, caractérisé en ce que le matériau métallique est constitué par un alliage Cu-Zn à 30 % de Zn, en ce que ledit alliage est porté à une température de 1065°C et en ce que le fluide cryogénique est constitué par de l'azote.
14. - Installation pour la fabrication d'une poudre métallique par solidification de la vapeur d'un bain d'un matériau métallique en fusion dans une enceinte fermée pour la mise en oeuvre du procédét selon l'une des revendications 1 à 13, caractérisée en ce qu'elle comporte des moyens 5 pour déverser, de façon continue, un fluide cryogénique en phase liquide à l'intérieur de l'enceinte précitée 3, des moyens 7 pour transférer, hors de ladite enceinte, un courant de fluide véhiculant des particules métalliques solides en suspension et une chambre de séparation fermée 8 reliée aux dits moyens de transfert 7 et recevant le courant de fluide précité, ladite chambre de séparation étant munie de moyens 11 pour collecter les particules solides précitées et de moyens 9 pour évacuer ledit courant de fluide débarrassé des dites particules.
EP79400619A 1978-09-18 1979-09-06 Procédé et installation de fabrication de poudre métallique à partir d'un métal ou alliage en fusion Expired EP0009433B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT79400619T ATE193T1 (de) 1978-09-18 1979-09-06 Verfahren und vorrichtung zur herstellung von metallpulver aus der schmelze eines metalls oder einer legierung.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR7826648 1978-09-18
FR7826648A FR2435988A1 (fr) 1978-09-18 1978-09-18 Procede et installation de fabrication de poudre metallique a partir d'un metal ou alliage en fusion

Publications (2)

Publication Number Publication Date
EP0009433A1 true EP0009433A1 (fr) 1980-04-02
EP0009433B1 EP0009433B1 (fr) 1981-09-09

Family

ID=9212724

Family Applications (1)

Application Number Title Priority Date Filing Date
EP79400619A Expired EP0009433B1 (fr) 1978-09-18 1979-09-06 Procédé et installation de fabrication de poudre métallique à partir d'un métal ou alliage en fusion

Country Status (8)

Country Link
US (1) US4309214A (fr)
EP (1) EP0009433B1 (fr)
JP (1) JPS5541999A (fr)
AT (1) ATE193T1 (fr)
CA (1) CA1139970A (fr)
DE (1) DE2960783D1 (fr)
ES (1) ES8100937A1 (fr)
FR (1) FR2435988A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2545394A1 (fr) * 1983-05-04 1984-11-09 Air Liquide Procede de fabrication de poudres metalliques a partir d'un materiau metallique en fusion
FR2545393A1 (fr) * 1983-05-04 1984-11-09 Air Liquide Procede de production de particules solides metalliques a partir d'un bain metallique
FR2660584A1 (fr) * 1990-04-10 1991-10-11 Rdm Ste Civile Procede et dispositif de compactage de poudres.

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2626797B1 (fr) * 1988-02-04 1991-04-19 Commissariat Energie Atomique Procede et installation pour l'amelioration de la qualite d'une poudre metallique ou ceramique
US5922403A (en) * 1996-03-12 1999-07-13 Tecle; Berhan Method for isolating ultrafine and fine particles
US6228187B1 (en) 1998-08-19 2001-05-08 Air Liquide America Corp. Apparatus and methods for generating an artificial atmosphere for the heat treating of materials
US6468497B1 (en) * 2000-11-09 2002-10-22 Cyprus Amax Minerals Company Method for producing nano-particles of molybdenum oxide
US7572430B2 (en) * 2000-11-09 2009-08-11 Cyprus Amax Minerals Company Method for producing nano-particles
US6491863B2 (en) 2000-12-12 2002-12-10 L'air Liquide-Societe' Anonyme A' Directoire Et Conseil De Surveillance Pour L'etude Et L'exploitation Des Procedes George Claude Method and apparatus for efficient utilization of a cryogen for inert cover in metals melting furnaces
US7384448B2 (en) * 2004-02-16 2008-06-10 Climax Engineered Materials, Llc Method and apparatus for producing nano-particles of silver
CN103990807B (zh) * 2014-04-21 2017-04-12 江苏科创金属新材料有限公司 一种用于锌粉制备装置的节能设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1495961A (en) * 1923-02-15 1924-05-27 Int Precipitation Co Process for the production of metal powder or dust
DE903777C (de) * 1944-07-01 1954-02-11 Eisenwerke Muelheim Meiderich Verfahren zum Herstellen von Metallpulver, wie insbesondere von Stahl- oder Eisenpulver, mittels eines Granulationsverfahrens
US2934331A (en) * 1955-12-22 1960-04-26 Thomas J Walsh Apparatus for making a metal slurry product
FR2299932A1 (fr) * 1975-02-07 1976-09-03 Anvar Lithium tres finement divise et son procede de fabrication
FR2375940A1 (fr) * 1976-12-28 1978-07-28 Zaklady Bieli Cynkowej Olawa Procede de condensation de vapeurs de zinc en une poudre de zinc a grains fins et dispositif pour la mise en oeuvre de ce procede

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3042511A (en) * 1959-02-09 1962-07-03 Dow Chemical Co Apparatus for condensation of a metal vapor
US3165396A (en) * 1961-01-09 1965-01-12 Nat Res Corp Deflection of metal vapor away from the vertical in a thermal evaporation process
US3151971A (en) * 1961-03-03 1964-10-06 Nat Res Corp Vacuum vapor condensation process for producing fine metal powders
JPS482666U (fr) * 1971-05-31 1973-01-12
US3856513A (en) * 1972-12-26 1974-12-24 Allied Chem Novel amorphous metals and amorphous metal articles
US4124377A (en) * 1977-07-20 1978-11-07 Rutger Larson Konsult Ab Method and apparatus for producing atomized metal powder
US4169730A (en) * 1978-01-24 1979-10-02 United States Bronze Powders, Inc. Composition for atomized alloy bronze powders

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1495961A (en) * 1923-02-15 1924-05-27 Int Precipitation Co Process for the production of metal powder or dust
DE903777C (de) * 1944-07-01 1954-02-11 Eisenwerke Muelheim Meiderich Verfahren zum Herstellen von Metallpulver, wie insbesondere von Stahl- oder Eisenpulver, mittels eines Granulationsverfahrens
US2934331A (en) * 1955-12-22 1960-04-26 Thomas J Walsh Apparatus for making a metal slurry product
FR2299932A1 (fr) * 1975-02-07 1976-09-03 Anvar Lithium tres finement divise et son procede de fabrication
FR2375940A1 (fr) * 1976-12-28 1978-07-28 Zaklady Bieli Cynkowej Olawa Procede de condensation de vapeurs de zinc en une poudre de zinc a grains fins et dispositif pour la mise en oeuvre de ce procede

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2545394A1 (fr) * 1983-05-04 1984-11-09 Air Liquide Procede de fabrication de poudres metalliques a partir d'un materiau metallique en fusion
FR2545393A1 (fr) * 1983-05-04 1984-11-09 Air Liquide Procede de production de particules solides metalliques a partir d'un bain metallique
EP0125161A1 (fr) * 1983-05-04 1984-11-14 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Procédé de fabrication de poudres métalliques à partir d'un matériau métallique en fusion
EP0125173A1 (fr) * 1983-05-04 1984-11-14 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Procédé de production de particules solides métalliques à partir d'un bain métallique
FR2660584A1 (fr) * 1990-04-10 1991-10-11 Rdm Ste Civile Procede et dispositif de compactage de poudres.

Also Published As

Publication number Publication date
ES483267A0 (es) 1980-12-01
JPS5620327B2 (fr) 1981-05-13
US4309214A (en) 1982-01-05
JPS5541999A (en) 1980-03-25
ATE193T1 (de) 1981-09-15
FR2435988A1 (fr) 1980-04-11
EP0009433B1 (fr) 1981-09-09
DE2960783D1 (en) 1981-11-26
ES8100937A1 (es) 1980-12-01
CA1139970A (fr) 1983-01-25
FR2435988B1 (fr) 1981-03-20

Similar Documents

Publication Publication Date Title
EP0009433B1 (fr) Procédé et installation de fabrication de poudre métallique à partir d'un métal ou alliage en fusion
FR2679473A1 (fr) Procede et dispositif de production de poudres et notamment de poudres metalliques par atomisation.
CH648062A5 (fr) Procede et installation pour la preparation de metaux.
FR2677998A1 (fr) Procede et appareillage pour realiser une couche par diffusion de gaz, a travers un puits d'aluminium.
US4818282A (en) Method for recovering metal-carbide scrap by alloying
EP0012074B1 (fr) Procédé de nettoyage d'un piège froid pour métaux liquides et dispositif pour la mise en oeuvre de ce procédé
EP0614852A1 (fr) Procédé de préparation du disilane à partir du monosilane par décharge électrique et piégeage cryogénique et réacteur pour sa mise en oeuvre
EP0202174B1 (fr) Procédé et dispositif de purification du lithium
EP0125173B1 (fr) Procédé de production de particules solides métalliques à partir d'un bain métallique
EP3320129B1 (fr) Machine de fabrication additive contenant un dispositif mettant en oeuvre in-situ un procédé permettant de retirer les oxydes présents à la surface des nodules d'une poudre métallique avant l'utilisation de celle-ci dans la fabrication additive par fusion
FR2765892A1 (fr) Procede destine au revetement par diffusion en phase gazeuse de pieces en materiau resistant a la chaleur avec un materiau de revetement
EP0119913B1 (fr) Procédé de fabrication de pièces en matériau inorganique présentant une forte porosité, utilisable pour la réalisation de pièces en matériau hygroscopique, inflammable ou radioactif
EP0125161B1 (fr) Procédé de fabrication de poudres métalliques à partir d'un matériau métallique en fusion
FR2901713A1 (fr) Procede de distribution de produits precurseurs, notamment pyrophoriques
FR2472033A1 (fr) Fabrication de corps creux, par projection thermique, par exemple par chalumeau ou torche a plasma, d'alliages metalliques et/ou de matieres ceramiques
FR2727635A1 (fr) Procede de fabrication de particules fines ou ultrafines et reacteur pour la production de telles particules
CH627715A5 (en) Process for the production of aluminium chloride of high purity
EP0580912A1 (fr) Procédé de fabrication d'alliages de métaux en vue d'obtenir une poudre homogène d'oxydes de ces métaux et ses applications à l'obtention de semi-conducteurs et de supra-conducteurs.
EP0457674B1 (fr) Dispositif et procédé pour la préparation d'alliages en poudre, par solidification rapide
CH631138A5 (fr) Procede de production de chlorure d'aluminium.
BE411279A (fr)
FR3101793A1 (fr) Installation et procédé d’obtention d’un produit à partir d’une composition fondue
FR2997965B1 (fr) Enceinte pour le traitement thermique d'un materiau reactif, notamment pour la realisation de depot de couches sur un substrat, et procede de traitement thermique dans une telle enceinte
FR2606395A1 (fr) Procede de preparation de poudre d'oxydes submicronique et appareil pour sa mise en oeuvre
BE380026A (fr)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LU NL SE

17P Request for examination filed
ITF It: translation for a ep patent filed
GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LU NL SE

REF Corresponds to:

Ref document number: 193

Country of ref document: AT

Date of ref document: 19810915

Kind code of ref document: T

REF Corresponds to:

Ref document number: 2960783

Country of ref document: DE

Date of ref document: 19811126

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19820930

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19900808

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19900815

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19900828

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19900930

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19910812

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19910814

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19910816

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19910828

Year of fee payment: 13

Ref country code: BE

Payment date: 19910828

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19910906

ITTA It: last paid annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Effective date: 19910930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19920401

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19920906

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19920907

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19920930

BERE Be: lapsed

Owner name: L' AIR LIQUIDE S.A. POUR L'ETUDE ET L'EXPLOITATION

Effective date: 19920930

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19920906

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19930528

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19930602

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

EUG Se: european patent has lapsed

Ref document number: 79400619.7

Effective date: 19930406

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT