EP0009433A1 - Process and apparatus for producing metallic powder starting from a molten metal or alloy - Google Patents
Process and apparatus for producing metallic powder starting from a molten metal or alloy Download PDFInfo
- Publication number
- EP0009433A1 EP0009433A1 EP79400619A EP79400619A EP0009433A1 EP 0009433 A1 EP0009433 A1 EP 0009433A1 EP 79400619 A EP79400619 A EP 79400619A EP 79400619 A EP79400619 A EP 79400619A EP 0009433 A1 EP0009433 A1 EP 0009433A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- fluid
- enclosure
- cryogenic fluid
- particles
- aforementioned
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 27
- 239000002184 metal Substances 0.000 title claims abstract description 27
- 239000000843 powder Substances 0.000 title claims abstract description 19
- 238000000034 method Methods 0.000 title claims description 24
- 229910045601 alloy Inorganic materials 0.000 title claims description 16
- 239000000956 alloy Substances 0.000 title claims description 16
- 230000008569 process Effects 0.000 title description 5
- 239000012530 fluid Substances 0.000 claims abstract description 43
- 239000002245 particle Substances 0.000 claims abstract description 32
- 239000007787 solid Substances 0.000 claims abstract description 16
- 239000007791 liquid phase Substances 0.000 claims abstract description 10
- 238000004519 manufacturing process Methods 0.000 claims abstract description 7
- 229910052725 zinc Inorganic materials 0.000 claims description 12
- 238000000926 separation method Methods 0.000 claims description 11
- 238000009434 installation Methods 0.000 claims description 10
- 239000007769 metal material Substances 0.000 claims description 10
- 239000000203 mixture Substances 0.000 claims description 10
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 8
- 239000000725 suspension Substances 0.000 claims description 6
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 claims description 5
- 239000012071 phase Substances 0.000 claims description 5
- 238000007599 discharging Methods 0.000 claims description 4
- 238000001914 filtration Methods 0.000 claims description 4
- 239000000463 material Substances 0.000 claims description 4
- 229910052753 mercury Inorganic materials 0.000 claims description 4
- 150000002739 metals Chemical class 0.000 claims description 4
- 229910052757 nitrogen Inorganic materials 0.000 claims description 4
- 229910017518 Cu Zn Inorganic materials 0.000 claims description 3
- 229910017752 Cu-Zn Inorganic materials 0.000 claims description 3
- 229910017943 Cu—Zn Inorganic materials 0.000 claims description 3
- TVZPLCNGKSPOJA-UHFFFAOYSA-N copper zinc Chemical compound [Cu].[Zn] TVZPLCNGKSPOJA-UHFFFAOYSA-N 0.000 claims description 3
- 239000007789 gas Substances 0.000 claims description 3
- 229910052729 chemical element Inorganic materials 0.000 claims 1
- 239000002923 metal particle Substances 0.000 claims 1
- 238000007711 solidification Methods 0.000 claims 1
- 230000008023 solidification Effects 0.000 claims 1
- 239000000126 substance Substances 0.000 abstract description 3
- 239000000919 ceramic Substances 0.000 abstract description 2
- 229920001971 elastomer Polymers 0.000 abstract description 2
- 239000003973 paint Substances 0.000 abstract description 2
- 239000005060 rubber Substances 0.000 abstract description 2
- 239000011701 zinc Substances 0.000 description 14
- 239000007788 liquid Substances 0.000 description 13
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 11
- 150000001875 compounds Chemical class 0.000 description 6
- 238000002844 melting Methods 0.000 description 6
- 230000008018 melting Effects 0.000 description 6
- 239000010949 copper Substances 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 239000011777 magnesium Substances 0.000 description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000009833 condensation Methods 0.000 description 3
- 230000005494 condensation Effects 0.000 description 3
- 238000001704 evaporation Methods 0.000 description 3
- 230000008020 evaporation Effects 0.000 description 3
- 230000005484 gravity Effects 0.000 description 3
- 229910052749 magnesium Inorganic materials 0.000 description 3
- 239000013528 metallic particle Substances 0.000 description 3
- 230000005855 radiation Effects 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000006698 induction Effects 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- -1 magnesium nitride Chemical class 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 239000012808 vapor phase Substances 0.000 description 2
- 229910001369 Brass Inorganic materials 0.000 description 1
- 229910000906 Bronze Inorganic materials 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- UDHXJZHVNHGCEC-UHFFFAOYSA-N Chlorophacinone Chemical compound C1=CC(Cl)=CC=C1C(C=1C=CC=CC=1)C(=O)C1C(=O)C2=CC=CC=C2C1=O UDHXJZHVNHGCEC-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910000881 Cu alloy Inorganic materials 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 229910001297 Zn alloy Inorganic materials 0.000 description 1
- PGTXKIZLOWULDJ-UHFFFAOYSA-N [Mg].[Zn] Chemical compound [Mg].[Zn] PGTXKIZLOWULDJ-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 239000010951 brass Substances 0.000 description 1
- 239000010974 bronze Substances 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000010924 continuous production Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- KUNSUQLRTQLHQQ-UHFFFAOYSA-N copper tin Chemical compound [Cu].[Sn] KUNSUQLRTQLHQQ-UHFFFAOYSA-N 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 229910000765 intermetallic Inorganic materials 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 229910052987 metal hydride Inorganic materials 0.000 description 1
- 150000004681 metal hydrides Chemical class 0.000 description 1
- 229910052752 metalloid Inorganic materials 0.000 description 1
- 150000002738 metalloids Chemical class 0.000 description 1
- 238000005272 metallurgy Methods 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000013021 overheating Methods 0.000 description 1
- 239000012255 powdered metal Substances 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000011819 refractory material Substances 0.000 description 1
- 238000005057 refrigeration Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000010408 sweeping Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/02—Making metallic powder or suspensions thereof using physical processes
- B22F9/12—Making metallic powder or suspensions thereof using physical processes starting from gaseous material
Definitions
- the present invention essentially relates to a process for manufacturing a metallic powder by lowering the temperature of the vapor of a molten metallic material in a closed treatment enclosure, leading to the transformation of said vapor into solid particles.
- metal material designates either a metal proper, or an alloy of at least two metals.
- metal powders consist of solid particles either of a single metal such as iron, zinc, magnesium, calcium, cadmium, etc., or of an alloy metallic, for example a magnesium-zinc alloy, or even a metallic compound, for example zinc oxide or magnesium nitride.
- Such powders find wide applications in various industrial branches, in particular for the manufacture of paints, the treatment of rubbers, in the metallurgical (sintered materials), chemical (catalysts), ceramic, pharmaceutical, etc. industries.
- a problem currently posed in the powdered metal technique is the obtaining, in industrial quantities, of extremely divided powders having an average particle size of the order of 0.08 microns, consisting of particles having a shape as regular as possible and having a minimum particle size dispersion, that is to say located in a particle size range between 0.02 and 0.13 micron
- a high vapor pressure causes accelerated evaporation of the metal bath and therefore makes the process applicable on an industrial scale.
- the use of a cryogenic fluid in the liquid phase causes very rapid cooling, therefore an energetic quenching, of the metallic vapor and allows the direct passage from the gaseous state to the solid state. This change of state and the evacuation of solid particles concomitant with that of the cryogenic fluid results in a constant renewal of the phenomenon of condensation of the vapors above the bath.
- the solid particles which are thus formed from an incipient suddenly cooled metallic vapor have a regular shape and dimensions not exceeding a few hundred angstroms.
- the cryogenic fluid is introduced into said enclosure and is continuously removed therefrom.
- a continuous circulation of cryogenic fluid allows a continuous production of powder at an optimal particle formation regime.
- the cryogenic fluid is discharged in the liquid phase.
- the cryogenic fluid is discharged in the gas phase.
- the cryogenic fluid consists of a chemically inert element or a mixture of chemically inert elements.
- cryogenic fluid makes it possible to obtain metallic powders formed from chemically pure metals.
- the cryogenic fluid consists of a chemically active element or a mixture of chemically active elements.
- cryogenic fluid allows the formation of specific chemical compounds, for example oxides, nitrides or metal hydrides.
- the cryogenic fluid consists of a mixture of chemically inert elements and chemically active elements.
- the invention also relates to an installation for implementing the aforementioned method, this installation comprising means for continuously discharging a cryogenic fluid in the liquid phase inside a closed enclosure, means for transferring, out of from said enclosure, a stream of fluid carrying solid metallic particles in suspension, and a closed separation chamber; connected to said transfer means and receiving the above-mentioned fluid stream, said separation chamber being provided with means for collecting the aforementioned solid particles and means for discharging said stream of fluid free of said particles.
- the installation comprises a melting device 1, for example an induction furnace or a heating crucible, which contains the metallic material M in the liquid state, and is closed by a cover. 2 which thus provides, above the bath, a closed enclosure 3, therefore isolated from the ambient atmosphere in which the metallic vapor is released.
- a melting device for example an induction furnace or a heating crucible, which contains the metallic material M in the liquid state, and is closed by a cover. 2 which thus provides, above the bath, a closed enclosure 3, therefore isolated from the ambient atmosphere in which the metallic vapor is released.
- a reactor 4 constituted by a tubular sleeve of section slightly smaller than that of the enclosure, open at its two ends, the lower end plunging slightly into the metal bath M and at the interior of which is concentrated most of the vapor phase of the metallic material.
- the furnace or the like 1 and the reactor 4 are made of any refractory material, of the type usually used in metallurgy, the furnace being provided with heating means (not shown) which make it possible to maintain the molten metal at the temperature necessary to obtain the desired vapor pressure.
- a pipe 5 pours out a cryogenic fluid, for example liquefied nitrogen at -196 ° C, stored in a storage device (not shown), in the reactor 4 via a funnel 6 housed in said reactor and opening out in the vicinity of the surface of the metal bath so that said fluid arrives just above the latter.
- the reactor 4 is connected, by a heat-insulated conduit 7, to a closed separation chamber 8 which communicates with the outside only by a one-way pressure limiting valve 9.
- In the chamber 8 are housed containers 11 for collecting the particles , these containers being mounted on a rotary support 10 which makes it possible to take them in turn below the duct 7.
- the reactor 4 is supplied with cryogenic liquid with a sufficient flow rate to permanently maintain, above the metal bath M, a thick layer of cryogenic liquid which exceeds the level of connection of the conduit 7 to the reactor.
- the solid particles which form in reactor 4 as a result of the condensation of metallic vapors thus remain in suspension in the cryogenic liquid which is transferred, by drawing off by means of the conduit 7, into the separation chamber 8.
- the cryogenic liquid then passes to the gaseous state, creating and maintaining in the chamber 8 a neutral atmosphere and the solid particles separate by gravity and fall into the containers 11 where they are collected to give a powder.
- the filling of these containers must be carried out in several stages owing to the reduction in the volume of the powder following the evaporation of the cryogenic liquid.
- the rotary support allows these successive filling steps to be carried out.
- the cryogenic liquid charged with particles in suspension and brought into the separation chamber 8 by the conduit 7 is received in separation vessels 12 provided with a filtering wall 13 which retains the particles and lets the liquid pass.
- the liquid thus filtered is brought, by a first lagged pipe 14, to a recovery tank 15 and from there it is returned, by a recycling pump 16 and a second lagged pipe 17, to reactor 4.
- the reactor 4 is supplied with cryogenic liquid with an insufficient flow rate to maintain a liquid layer above the metal bath.
- the vapor is condensed at the point of impact of the cryogenic liquid with the surface of the bath and the metallic particles are entrained out of the enclosure 2 by the fluid in the vapor phase. The recovery of these particles can be done by gravity.
- the metallic material can consist of a metal (Fe, Cu, Zn, Mg, Al, etc.) or an alloy (brass, bronze, etc.).
- the choice of the composition of this alloy that is to say the choice of constituents (which have different melting temperatures), and the proportions of these constituents, make it possible to adjust the kinetics of evaporation.
- an alloy having a high proportion of a metal with a low melting point, such as Mg makes it possible to obtain a metallic vapor formed almost exclusively of said metal with low melting point.
- the composition of this alloy can be determined so as to obtain, for a chosen temperature of the metal bath, a high vapor pressure of the zinc. The solid particles obtained are then formed exclusively of zinc.
- the cryogenic fluid can consist of inert liquefied elements (N2, Ar, He, etc ...) or active (02, H2, NH3 etc 7) by liquefied compounds such as hydrocarbons or a mixture formed of inert liquefied elements and active liquefied elements or else inert liquefied elements and liquefied compounds.
- inert liquefied elements N2, Ar, He, etc
- active 02, H2, NH3 etc
- the choice of the percentage of the active element or of the compound makes it possible to adjust the kinetics of the reaction of the combination of the metal with the metalloid which constitutes said element or resulting from the decomposition of said compound.
- the powder obtained after separation of the cryogenic fluid consists of zinc particles of dimension between 0.03 and 0.10 micron, and has a specific surface (BET) of 40 m2 per gram.
- the heating of the melting device 1 could be obtained for example by induction, or by means of radiation, for example concentrated solar radiation by means of an optical system or radiation produced by a laser, or also by means of an arc or an electrical resistance so as to obtain a melting and a point or overall overheating of the material to be vaporized.
Landscapes
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
- Powder Metallurgy (AREA)
Abstract
Description
La présente invention concerne essentiellement un procédé de fabrication d'une poudre métallique par un abaissement de la température de la vapeur d'un matériau métallique en fusion dans une enceinte de traitement fermée, entraînant la transformation de ladite vapeur en particules solides.The present invention essentially relates to a process for manufacturing a metallic powder by lowering the temperature of the vapor of a molten metallic material in a closed treatment enclosure, leading to the transformation of said vapor into solid particles.
Le terme "matériau métallique" désigne soit un métal proprement dit, soit un alliage de deux métaux au moins.The term "metallic material" designates either a metal proper, or an alloy of at least two metals.
Par "poudres métalliques", on entend des poudres qui sont constituées par des particules solides soit d'un métal unique tel que le fer, le zinc, le magnésium, le calcium, le cadmium, etc..., soit d'un alliage métallique, par exemple un alliage magnésium-zinc, soit encore d'un composé métallique, par exemple l'oxyde de zinc ou le nitrure de magnésium. De telles poudres trouvent de larges applications dans diverses branches industrielles, en particulier pour la fabrication des peintures, le traitement des caoutchoucs, dans les industries métallurgiques (matériaux frittés), chimiques (catalyseurs), céramiques, pharmaceutiques, etc...By "metallic powders" is meant powders which consist of solid particles either of a single metal such as iron, zinc, magnesium, calcium, cadmium, etc., or of an alloy metallic, for example a magnesium-zinc alloy, or even a metallic compound, for example zinc oxide or magnesium nitride. Such powders find wide applications in various industrial branches, in particular for the manufacture of paints, the treatment of rubbers, in the metallurgical (sintered materials), chemical (catalysts), ceramic, pharmaceutical, etc. industries.
On connaît déjà un procédé de fabrication de poudres métalliques à partir d'un métal fondu qui consiste à balayer la vapeur du métal fondu au moyen d'un gaz inerte préalablement refroidi pour provoquer la condensation de ladite vapeur. Ce procédé ne réalise toutefois qu'un apport frigorifique très faible et ne permet pas d'obtenir des quantités importantes de poudre. De plus, la poudre obtenue est formée de particules de, forme irrégulière et présentant une dispersion granulométrique importante.There is already known a method for manufacturing metal powders from a molten metal which consists in sweeping the vapor of the molten metal by means of an inert gas previously cooled to cause the condensation of said vapor. However, this process achieves only a very low refrigeration supply and does not make it possible to obtain large quantities of powder. In addition, the powder obtained is formed of particles of irregular shape and having a large particle size dispersion.
Un problème posé actuellement dans la technique des métaux pulvérulents est l'obtention, en quantité industrielle, de poudres extrêmement divisées ayant une granulométrie moyenne de l'ordre de 0,08 micron, constituée par des particules ayant une forme aussi régulière que possible et présentant une dispersion granulométrique minimale, c'est-à-dire située dans une fourchette granulométrique comprise entre 0,02 et 0,13 micronA problem currently posed in the powdered metal technique is the obtaining, in industrial quantities, of extremely divided powders having an average particle size of the order of 0.08 microns, consisting of particles having a shape as regular as possible and having a minimum particle size dispersion, that is to say located in a particle size range between 0.02 and 0.13 micron
et enfin présentant une grande pureté chimique.and finally having a high chemical purity.
Ces buts sont atteints avec le procédé selon l'invention par le fait qu'il consiste à déverser sur le bain, porté à une température telle que sa tension de vapeur soit d'au moins 1 mm de mercure, un fluide cryogénique en phase liquide, à évacuer hors de l'enceinte le fluide cryogénique qui contient, en suspension, les particules solides, à séparer ces dernières dudit fluide et à les collecter pour obtenir la poudre précitée.These objects are achieved with the method according to the invention by the fact that it consists in pouring onto the bath, brought to a temperature such that its vapor pressure is at least 1 mm of mercury, a cryogenic fluid in the liquid phase, to evacuate outside the enclosure the cryogenic fluid which contains, in suspension, the solid particles, to separate the latter from said fluid and collecting them to obtain the aforementioned powder.
Les expériences faites sur divers matériaux métalliques (métaux purs ou alliages) ont montré que la tension de vapeur susmentionnée peut être comprise avantageusement dans une gamme entre 1 et 500 millimètres de mercure.Experiments on various metallic materials (pure metals or alloys) have shown that the aforementioned vapor pressure can advantageously be in a range between 1 and 500 millimeters of mercury.
Une tension de vapeur élevée entraîne une évaporation accélérée du bain métallique et rend par conséquent le procédé applicable à l'échelle industrielle. L'emploi d'un fluide cryogénique en phase liquide provoque un refroidissement très rapide, donc une trempe énergique, de la vapeur métallique et permet le passage direct de l'état gazeux à l'état solide. Ce changement d'état et l'évacuation des particules solides concomitante à celle du fluide cryogénique a pour conséquence un renouvellement constant du phénomène de condensation des vapeurs au-dessus du bain.A high vapor pressure causes accelerated evaporation of the metal bath and therefore makes the process applicable on an industrial scale. The use of a cryogenic fluid in the liquid phase causes very rapid cooling, therefore an energetic quenching, of the metallic vapor and allows the direct passage from the gaseous state to the solid state. This change of state and the evacuation of solid particles concomitant with that of the cryogenic fluid results in a constant renewal of the phenomenon of condensation of the vapors above the bath.
Il en résulte que les particules solides qui se forment ainsi à partir d'une vapeur métallique naissante brusquement refroidie ont une forme régulière et des dimensions n'éxédant pas quelques centaines d'angstrôms.As a result, the solid particles which are thus formed from an incipient suddenly cooled metallic vapor have a regular shape and dimensions not exceeding a few hundred angstroms.
Selon une autre caractéristique de l'invention, le fluide cryogénique est introduit dans ladite enceinte et en est évacué de façon continue.According to another characteristic of the invention, the cryogenic fluid is introduced into said enclosure and is continuously removed therefrom.
Une circulation continue de fluide cryogénique permet une production continue de poudre à un régime optimal de formation des particules.A continuous circulation of cryogenic fluid allows a continuous production of powder at an optimal particle formation regime.
Selon une autre caractéristique de l'invention, le fluide cryogénique est évacué en phase liquide.According to another characteristic of the invention, the cryogenic fluid is discharged in the liquid phase.
Selon une autre caractéristique de l'invention, le fluide cryogénique est évacué en phase gazeuse.According to another characteristic of the invention, the cryogenic fluid is discharged in the gas phase.
Selon encore une autre caractéristique de l'invention, le fluide cryogénique est constitué par un élément chimiquement inerte ou un mélange d'éléments chimiquement inertes.According to yet another characteristic of the invention, the cryogenic fluid consists of a chemically inert element or a mixture of chemically inert elements.
L'emploi d'un tel fluide cryogénique permet d'obtenir des poudres métalliques formées de métaux chimiquement purs.The use of such a cryogenic fluid makes it possible to obtain metallic powders formed from chemically pure metals.
Selon encore une autre caractéristique de l'invention, le fluide cryogénique est constitué par un élément chimiquement actif ou un mélange d'éléments chimiquement actifs.According to yet another characteristic of the invention, the cryogenic fluid consists of a chemically active element or a mixture of chemically active elements.
L'emploi d'un tel fluide cryogénique permet la formation de composés chimiques déterminés, par exemple d'oxydes, de nitrures ou d'hydrures métalliques.The use of such a cryogenic fluid allows the formation of specific chemical compounds, for example oxides, nitrides or metal hydrides.
Toujours selon l'invention, le fluide cryogénique est constitué par un mélange d'éléments chimiquement inertes et d'éléments chimiquement actifs.Still according to the invention, the cryogenic fluid consists of a mixture of chemically inert elements and chemically active elements.
L'emploi d'un tel fluide permet de contrôler la formation des composés chimiques que l'on désire obtenir.The use of such a fluid makes it possible to control the formation of the chemical compounds which it is desired to obtain.
L'invention vise également une installation pour la mise en oeuvre du procédé précité, cette installation comportant des moyens pour déverser, de façon continue, un fluide cryogénique en phase liquide à l'intérieur d'une enceinte fermée, des moyens pour transférer, hors de ladite enceinte, un courant de fluide véhiculant des particules métalliques solides en suspension, et une chambre de séparation fermée; reliée aux dits moyens de transfert et recevant le courant de fluide précité, ladite chambre de séparation étant munie de moyens pour collecter les particules solides précitées et de moyens pour évacuer ledit courant de fluide débarrassé des dites particules.The invention also relates to an installation for implementing the aforementioned method, this installation comprising means for continuously discharging a cryogenic fluid in the liquid phase inside a closed enclosure, means for transferring, out of from said enclosure, a stream of fluid carrying solid metallic particles in suspension, and a closed separation chamber; connected to said transfer means and receiving the above-mentioned fluid stream, said separation chamber being provided with means for collecting the aforementioned solid particles and means for discharging said stream of fluid free of said particles.
D'autres caractéristiques et avantages de l'invention apparaîtront au cours de la description qui va suivre.Other characteristics and advantages of the invention will emerge during the description which follows.
Dans le dessin annexé, donné à titre d'exemple non limitatif :
- - La figure 1 montre de façon schématique, une installation pour la mise en oeuvre du procédé selon l'invention, dans laquelle le fluide cryogénique est évacué en phase liquide, la collection des particules se faisant par gravité ;
- - La figure 2 montre une variante de l'installation de la figure 1, dans laquelle la collection des particules se fait par filtration.
- - La figure 3 montre, de façon schématique et partielle, une installation dans laquelle le fluide cryogénique est évacué en phase gazeuse.
- - Figure 1 shows schematically, an installation for implementing the method according to the invention, in which the cryogenic fluid is discharged in the liquid phase, the collection of particles being by gravity;
- - Figure 2 shows a variant of the installation of Figure 1, in which the collection of particles is by filtration.
- - Figure 3 shows, schematically and partially, an installation in which the cryogenic fluid is discharged in the gas phase.
Selon le mode de réalisation représenté à la figure 1, l'installation comporte un dispositif de fusion 1, par exemple un four à induction ou un creuset chauffant, qui contient le matériau métallique M à l'état liquide, et est fermé par un couvercle 2 qui ménage ainsi, au-dessus du bain, une enceinte 3 fermée, donc isolée de l'atmosphère ambiante dans laquelle se dégage la vapeur métallique.According to the embodiment represented in FIG. 1, the installation comprises a melting device 1, for example an induction furnace or a heating crucible, which contains the metallic material M in the liquid state, and is closed by a cover. 2 which thus provides, above the bath, a closed
A l'intérieur de l'enceinte 3 est logé un réacteur 4, constitué par un manchon tubulaire de section légèrement inférieure à celle de l'enceinte, ouvert à ses deux extrémités, l'extrémité inférieure plongeant légèrement dans le bain métallique M et à l'intérieur duquel se trouve concentrée la plus grande partie de la phase vapeur du matériau métallique.Inside the
Le four ou analogue 1 et le réacteur 4 sont faits en un matériau réfractaire quelconque, du type habituellement utilisé en métallurgie, le four étant muni de moyens de chauffage (non représentés) qui permettent de maintenir le métal fondu à la température nécessaire pour obtenir la tension de vapeur désirée. Une canalisation 5 déverse un fluide cryogénique, par exemple de l'azote liquéfié à - 196°C, emmagasiné dans un dispositif de stockage (non représenté), dans le réacteur 4 par l'intermédiaire d'un entonnoir 6 logé dans ledit réacteur et débouchant au voisinage de la surface du bain métallique de façon que ledit fluide arrive juste au-dessus de ce dernier. Le réacteur 4 est relié, par un conduit calorifugé 7, à une chambre de séparation fermée 8 qui ne communique avec l'extérieur que par une soupape de limitation de pression unidirectionnelle 9. Dans la chambre 8 sont logés des récipients 11 pour collecter les particules, ces récipients étant montés sur un support rotatif 10 qui permet de les amener à tour de rôle au-dessous du conduit 7.The furnace or the like 1 and the
Le réacteur 4 est alimenté en liquide cryogénique avec un débit suffisant pour entretenir en permanence, au dessus du bain métallique M, une couche épaisse de liquide cryogénique qui dépasse le niveau de raccordement du conduit 7 au réacteur. Les particules solides qui se forment dans le réacteur 4 par suite de la condensation des vapeurs métalliques restent ainsi en suspension dans le liquide cryogénique qui est transféré, par soutirage au moyen du conduit 7, dans la chambre de séparation 8. Le liquide cryogénique passe alors à l'état gazeux, créant et entretenant dans la chambre 8 une atmosphère neutre et les particules solides se séparent par gravité et tombent dans les récipients 11 où elles sont collectées pour donner une poudre. Le remplissage de ces récipients doit être réalisé en plusieurs étapes par suite de la diminution du volume de la poudre consécutive à l'évaporation du liquide cryogénique. Le support rotatif permet d'effectuer ces étapes successives de remplissage.The
Selon le mode de réalisation représenté à la figure 2, dans laquelle les mêmes chiffres de référence désignent les mêmes éléments que dans la figure 1, le liquide cryogénique chargé de particules en suspension et amené dans la chambre de séparation 8 par le conduit 7 est reçu dans des vases de séparation 12 munis d'une paroi filtrante 13 qui retient les particules et laisse passer le liquide. Le liquide ainsi filtré est amené, par une première canalisation calorifugée 14, à un réservoir de récupération 15 et de là il est retourné, par une pompe de recyclage 16 et une seconde canalisation calorifugée 17, au réacteur 4.According to the embodiment represented in FIG. 2, in which the same reference numbers designate the same elements as in FIG. 1, the cryogenic liquid charged with particles in suspension and brought into the
Selon le mode de réalisation de la figure 3, dans laquelle les mêmes chiffres de référence désignent également les mêmes éléments que dans les figures 1 et 2, le réacteur 4 est alimenté en liquide cryogénique avec un débit insuffisant pour entretenir une couche liquide au dessus du bain métallique. Dans ce cas, la vapeur est condensée au point d'impact du liquide cryogénique avec la surface du bain et les particules métalliques sont entraînées hors de l'enceinte 2 par le fluide en phase vapeur. La récupération de ces particules peut se faire par gravité.According to the embodiment of FIG. 3, in which the same reference numerals also designate the same elements as in FIGS. 1 and 2, the
Le matériau métallique peut être constitué par un métal (Fe, Cu, Zn, Mg, Al etc,) ou un alliage (laiton, bronze, etc...).The metallic material can consist of a metal (Fe, Cu, Zn, Mg, Al, etc.) or an alloy (brass, bronze, etc.).
Il est à noter que, dans ce dernier cas, le choix de la composition de cet alliage, c'est-à-dire le choix des constituants (qui présentent des températures de fusion différentes), et des proportions de ces constituants, permet de régler la cinétique de l'évaporation. C'est ainsi par exemple qu'un alliage ayant une forte proportion d'un métal à bas point de fusion, tel que le Mg, permet d'obtenir une vapeur métallique formée presque exclusivement dudit métal à bas point de fusion. De même, en utilisant un alliage de cuivre (métal peu volatil) et de zinc (métal très volatil) on peut déterminer la composition de cet alliage de façon à obtenir, pour une température choisie du bain métallique une tension de vapeur élevée du zinc. Les particules solides obtenues sont alors formées exclusivement de zinc.It should be noted that, in the latter case, the choice of the composition of this alloy, that is to say the choice of constituents (which have different melting temperatures), and the proportions of these constituents, make it possible to adjust the kinetics of evaporation. Thus, for example, an alloy having a high proportion of a metal with a low melting point, such as Mg, makes it possible to obtain a metallic vapor formed almost exclusively of said metal with low melting point. Likewise, by using an alloy of copper (low volatile metal) and zinc (very volatile metal), the composition of this alloy can be determined so as to obtain, for a chosen temperature of the metal bath, a high vapor pressure of the zinc. The solid particles obtained are then formed exclusively of zinc.
Le fluide cryogénique peut être constitué par des éléments liquéfiés inertes (N2,Ar,He, etc...) ou actifs (02,H2,NH3 etc...) par des composés liquéfiés tels que les hydrocarbures ou un mélange formé d'éléments liquéfiés inertes et dléléments liquéfiés actifs ou encore d'éléments liquéfiés inertes et de composés liquéfiés. Dans le cas de tels mélanges, le choix du pourcentage de l'élément actif ou du composé permet de régler la cinétique de la réaction de la combinaison du métal avec le métalloïde qui constitue ledit élément ou provenant de la décomposition dudit composé.The cryogenic fluid can consist of inert liquefied elements (N2, Ar, He, etc ...) or active (02, H2, NH3 etc ...) by liquefied compounds such as hydrocarbons or a mixture formed of inert liquefied elements and active liquefied elements or else inert liquefied elements and liquefied compounds. In the case of such mixtures, the choice of the percentage of the active element or of the compound makes it possible to adjust the kinetics of the reaction of the combination of the metal with the metalloid which constitutes said element or resulting from the decomposition of said compound.
On donnera ci-après un exemple de fabrication d'une poudre de zinc à partir d'un alliage Cu-Zn, selon le mode de mise en oeuvre de la figure 1.An example of the production of a zinc powder from a Cu-Zn alloy will be given below, according to the embodiment of FIG. 1.
Matériau métallique : alliage UZ 30 (norme AFNOR) : Cu = 70 % - Zn = 30 % Température du bain métallique : 1065°C Tension de vapeur du Zn : 486 mm de mercure Tension de vapeur du Cu : 10-4mm de mercure Fraction molaire du zinc ; 0,3 Activité du zinc dans l'alliage : 0,16 Coefficient d'activité du zinc dans l'alliage : 0,54 Fluide cryogénique : azote liquide (-196°C)Metallic material: UZ 30 alloy (AFNOR standard): Cu = 70% - Zn = 30% Temperature of the metal bath: 1065 ° C Vapor pressure of Zn: 486 mm of mercury Vapor pressure of Cu: 10 -4 mm of mercury Molar fraction of zinc; 0.3 Zinc activity in the alloy: 0.16 Zinc activity coefficient in the alloy: 0.54 Cryogenic fluid: liquid nitrogen (-196 ° C)
La poudre obtenue après séparation du fluide cryogénique. est constituée de particules de zinc de dimension comprise entre 0,03 et 0,10 micron, et présente une surface spécifique (BET) de 40 m2 par gramme.The powder obtained after separation of the cryogenic fluid. consists of zinc particles of dimension between 0.03 and 0.10 micron, and has a specific surface (BET) of 40 m2 per gram.
Le fait d'utiliser un alliage Cu-Zn permet de surchauffer le Zn, donc d'obtenir une tension de vapeur de zinc importante comparativement à la tension de vapeur du cuivre et par conséquent d'obtenir des particules métalliques formées uniquement de zinc.The fact of using a Cu-Zn alloy makes it possible to overheat the Zn, therefore to obtain a high zinc vapor pressure compared to the vapor pressure of copper and consequently to obtain metallic particles formed only of zinc.
De nombreuses variantes pourraient être apportées au procédé décrit ci-dessus sans pour autant sortir du cadre de l'invention. C'est ainsi que le chauffage du dispositif de fusion 1 pourrait être obtenu par exemple par induction, ou au moyen d'un rayonnement, par exemple le rayonnement solaire concentré au moyen d'un système optique ou un rayonnement produit par un laser, ou encore au moyen d'un arc ou d'une résistance électrique de façon à obtenir une fusion et une surchauffe ponctuelle ou globale du matériau à vaporiser.Many variants could be made to the process described above without departing from the scope of the invention. Thus, the heating of the melting device 1 could be obtained for example by induction, or by means of radiation, for example concentrated solar radiation by means of an optical system or radiation produced by a laser, or also by means of an arc or an electrical resistance so as to obtain a melting and a point or overall overheating of the material to be vaporized.
On pourrait même utiliser un chauffage par plasma. De même on pourrait, au lieu d'azote, utiliser un autre gaz-inerte comme l'argon.We could even use plasma heating. Similarly one could, instead of nitrogen, use another inert gas like argon.
Claims (14)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AT79400619T ATE193T1 (en) | 1978-09-18 | 1979-09-06 | METHOD AND APPARATUS FOR THE PRODUCTION OF METAL POWDER FROM THE MELT OF A METAL OR AN ALLOY. |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR7826648A FR2435988A1 (en) | 1978-09-18 | 1978-09-18 | PROCESS AND PLANT FOR MANUFACTURING METAL POWDER FROM A METAL OR MOLTEN ALLOY |
FR7826648 | 1978-09-18 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0009433A1 true EP0009433A1 (en) | 1980-04-02 |
EP0009433B1 EP0009433B1 (en) | 1981-09-09 |
Family
ID=9212724
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP79400619A Expired EP0009433B1 (en) | 1978-09-18 | 1979-09-06 | Process and apparatus for producing metallic powder starting from a molten metal or alloy |
Country Status (8)
Country | Link |
---|---|
US (1) | US4309214A (en) |
EP (1) | EP0009433B1 (en) |
JP (1) | JPS5541999A (en) |
AT (1) | ATE193T1 (en) |
CA (1) | CA1139970A (en) |
DE (1) | DE2960783D1 (en) |
ES (1) | ES483267A0 (en) |
FR (1) | FR2435988A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2545393A1 (en) * | 1983-05-04 | 1984-11-09 | Air Liquide | PROCESS FOR PRODUCING METALLIC SOLID PARTICLES FROM A METAL BATH |
FR2545394A1 (en) * | 1983-05-04 | 1984-11-09 | Air Liquide | PROCESS FOR PRODUCING METAL POWDERS FROM FUSION METAL MATERIAL |
FR2660584A1 (en) * | 1990-04-10 | 1991-10-11 | Rdm Ste Civile | Method and device for compacting powders |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2626797B1 (en) * | 1988-02-04 | 1991-04-19 | Commissariat Energie Atomique | PROCESS AND PLANT FOR IMPROVING THE QUALITY OF A METAL OR CERAMIC POWDER |
US5922403A (en) * | 1996-03-12 | 1999-07-13 | Tecle; Berhan | Method for isolating ultrafine and fine particles |
US6228187B1 (en) | 1998-08-19 | 2001-05-08 | Air Liquide America Corp. | Apparatus and methods for generating an artificial atmosphere for the heat treating of materials |
US6468497B1 (en) * | 2000-11-09 | 2002-10-22 | Cyprus Amax Minerals Company | Method for producing nano-particles of molybdenum oxide |
US7572430B2 (en) * | 2000-11-09 | 2009-08-11 | Cyprus Amax Minerals Company | Method for producing nano-particles |
US6491863B2 (en) | 2000-12-12 | 2002-12-10 | L'air Liquide-Societe' Anonyme A' Directoire Et Conseil De Surveillance Pour L'etude Et L'exploitation Des Procedes George Claude | Method and apparatus for efficient utilization of a cryogen for inert cover in metals melting furnaces |
US7384448B2 (en) * | 2004-02-16 | 2008-06-10 | Climax Engineered Materials, Llc | Method and apparatus for producing nano-particles of silver |
CN103990807B (en) * | 2014-04-21 | 2017-04-12 | 江苏科创金属新材料有限公司 | Energy-saving equipment for zinc powder preparation device |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1495961A (en) * | 1923-02-15 | 1924-05-27 | Int Precipitation Co | Process for the production of metal powder or dust |
DE903777C (en) * | 1944-07-01 | 1954-02-11 | Eisenwerke Muelheim Meiderich | Process for producing metal powder, such as steel or iron powder in particular, by means of a granulation process |
US2934331A (en) * | 1955-12-22 | 1960-04-26 | Thomas J Walsh | Apparatus for making a metal slurry product |
FR2299932A1 (en) * | 1975-02-07 | 1976-09-03 | Anvar | VERY FINE DIVIDED LITHIUM AND ITS MANUFACTURING PROCESS |
FR2375940A1 (en) * | 1976-12-28 | 1978-07-28 | Zaklady Bieli Cynkowej Olawa | Condensing zinc vapour into powder - using nitrogen gas which is cooled, freed from dust, then returned to the vapour |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3042511A (en) * | 1959-02-09 | 1962-07-03 | Dow Chemical Co | Apparatus for condensation of a metal vapor |
US3165396A (en) * | 1961-01-09 | 1965-01-12 | Nat Res Corp | Deflection of metal vapor away from the vertical in a thermal evaporation process |
US3151971A (en) * | 1961-03-03 | 1964-10-06 | Nat Res Corp | Vacuum vapor condensation process for producing fine metal powders |
JPS482666U (en) * | 1971-05-31 | 1973-01-12 | ||
US3856513A (en) * | 1972-12-26 | 1974-12-24 | Allied Chem | Novel amorphous metals and amorphous metal articles |
US4124377A (en) * | 1977-07-20 | 1978-11-07 | Rutger Larson Konsult Ab | Method and apparatus for producing atomized metal powder |
US4169730A (en) * | 1978-01-24 | 1979-10-02 | United States Bronze Powders, Inc. | Composition for atomized alloy bronze powders |
-
1978
- 1978-09-18 FR FR7826648A patent/FR2435988A1/en active Granted
-
1979
- 1979-08-09 ES ES483267A patent/ES483267A0/en active Granted
- 1979-08-27 US US06/070,036 patent/US4309214A/en not_active Expired - Lifetime
- 1979-09-06 DE DE7979400619T patent/DE2960783D1/en not_active Expired
- 1979-09-06 EP EP79400619A patent/EP0009433B1/en not_active Expired
- 1979-09-06 AT AT79400619T patent/ATE193T1/en not_active IP Right Cessation
- 1979-09-14 CA CA000335712A patent/CA1139970A/en not_active Expired
- 1979-09-14 JP JP11743379A patent/JPS5541999A/en active Granted
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1495961A (en) * | 1923-02-15 | 1924-05-27 | Int Precipitation Co | Process for the production of metal powder or dust |
DE903777C (en) * | 1944-07-01 | 1954-02-11 | Eisenwerke Muelheim Meiderich | Process for producing metal powder, such as steel or iron powder in particular, by means of a granulation process |
US2934331A (en) * | 1955-12-22 | 1960-04-26 | Thomas J Walsh | Apparatus for making a metal slurry product |
FR2299932A1 (en) * | 1975-02-07 | 1976-09-03 | Anvar | VERY FINE DIVIDED LITHIUM AND ITS MANUFACTURING PROCESS |
FR2375940A1 (en) * | 1976-12-28 | 1978-07-28 | Zaklady Bieli Cynkowej Olawa | Condensing zinc vapour into powder - using nitrogen gas which is cooled, freed from dust, then returned to the vapour |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2545393A1 (en) * | 1983-05-04 | 1984-11-09 | Air Liquide | PROCESS FOR PRODUCING METALLIC SOLID PARTICLES FROM A METAL BATH |
FR2545394A1 (en) * | 1983-05-04 | 1984-11-09 | Air Liquide | PROCESS FOR PRODUCING METAL POWDERS FROM FUSION METAL MATERIAL |
EP0125161A1 (en) * | 1983-05-04 | 1984-11-14 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Process for producing metal powder starting from a molten metal |
EP0125173A1 (en) * | 1983-05-04 | 1984-11-14 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Process for producing solid metal particles from a molten metal |
FR2660584A1 (en) * | 1990-04-10 | 1991-10-11 | Rdm Ste Civile | Method and device for compacting powders |
Also Published As
Publication number | Publication date |
---|---|
FR2435988B1 (en) | 1981-03-20 |
EP0009433B1 (en) | 1981-09-09 |
ES8100937A1 (en) | 1980-12-01 |
CA1139970A (en) | 1983-01-25 |
FR2435988A1 (en) | 1980-04-11 |
ATE193T1 (en) | 1981-09-15 |
JPS5541999A (en) | 1980-03-25 |
US4309214A (en) | 1982-01-05 |
ES483267A0 (en) | 1980-12-01 |
JPS5620327B2 (en) | 1981-05-13 |
DE2960783D1 (en) | 1981-11-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0009433B1 (en) | Process and apparatus for producing metallic powder starting from a molten metal or alloy | |
FR2679473A1 (en) | PROCESS AND DEVICE FOR PRODUCING POWDERS AND ESPECIALLY METAL POWDERS BY ATOMIZATION. | |
CH648062A5 (en) | PROCESS AND PLANT FOR THE PREPARATION OF METALS. | |
FR2677998A1 (en) | METHOD AND APPARATUS FOR MAKING A GAS DIFFUSION LAYER THROUGH AN ALUMINUM WELL. | |
US4818282A (en) | Method for recovering metal-carbide scrap by alloying | |
EP0012074B1 (en) | Method of cleaning a cold trap for liquid metals, and device for carrying out this method | |
EP0614852A1 (en) | Process for preparation of disilane from monosilane by electric discharge and use of a cryogenic trap and reactor for carrying out the process | |
EP0202174B1 (en) | Process and apparatus for purifying lithium | |
EP0125173B1 (en) | Process for producing solid metal particles from a molten metal | |
EP3320129B1 (en) | Additive manufacturing machine containing a device implementing in-situ a process for removing the oxides present on the surface of the nodules of a metal powder before its use in additive manufacturing by fusion | |
FR2765892A1 (en) | PROCESS FOR COATING BY GAS PHASE DIFFUSION OF PARTS MADE OF HEAT-RESISTANT MATERIAL WITH A COATING MATERIAL | |
EP0119913B1 (en) | Method of manufacturing highly porous bodies from inorganic material which may be used for preparing hygroscopic, inflammable or radioactive articles | |
EP0125161B1 (en) | Process for producing metal powder starting from a molten metal | |
FR2901713A1 (en) | METHOD FOR DISTRIBUTING PRECURSOR PRODUCTS, IN PARTICULAR PYROPHORIC PRODUCTS | |
FR2472033A1 (en) | MANUFACTURE OF HOLLOW BODIES, BY THERMAL PROJECTION, FOR EXAMPLE BY PLASMA TORCH OR TORCH, OF METAL ALLOYS AND / OR CERAMIC MATERIALS | |
FR2727635A1 (en) | PROCESS FOR THE MANUFACTURE OF FINE OR ULTRAFINE PARTICLES AND REACTOR FOR THE PRODUCTION OF SUCH PARTICLES | |
CH627715A5 (en) | Process for the production of aluminium chloride of high purity | |
EP0580912A1 (en) | Process for making metal alloys for obtaining a homogenous powder of oxides of said metals and their applications for obtaining semi-conductors and super-conductors | |
EP0457674B1 (en) | Process and apparatus for preparing powder alloys by rapid solidification | |
CH631138A5 (en) | PROCESS FOR PRODUCING ALUMINUM CHLORIDE. | |
BE411279A (en) | ||
FR3101793A1 (en) | Installation and process for obtaining a product from a molten composition | |
FR2997965B1 (en) | ENCLOSURE FOR THERMAL TREATMENT OF A REACTIVE MATERIAL, IN PARTICULAR FOR MAKING LAYER DEPOSITION ON A SUBSTRATE, AND THERMAL TREATMENT METHOD IN SUCH AN ENCLOSURE | |
FR2606395A1 (en) | Process for the preparation of submicronic oxide powders and apparatus for carrying it out | |
BE380026A (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Designated state(s): AT BE CH DE FR GB IT LU NL SE |
|
17P | Request for examination filed | ||
ITF | It: translation for a ep patent filed | ||
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Designated state(s): AT BE CH DE FR GB IT LU NL SE |
|
REF | Corresponds to: |
Ref document number: 193 Country of ref document: AT Date of ref document: 19810915 Kind code of ref document: T |
|
REF | Corresponds to: |
Ref document number: 2960783 Country of ref document: DE Date of ref document: 19811126 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19820930 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 19900808 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 19900815 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: LU Payment date: 19900828 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 19900930 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 19910812 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 19910814 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 19910816 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 19910828 Year of fee payment: 13 Ref country code: BE Payment date: 19910828 Year of fee payment: 13 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Effective date: 19910906 |
|
ITTA | It: last paid annual fee | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Effective date: 19910930 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Effective date: 19920401 |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee | ||
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Effective date: 19920906 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Effective date: 19920907 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Effective date: 19920930 |
|
BERE | Be: lapsed |
Owner name: L' AIR LIQUIDE S.A. POUR L'ETUDE ET L'EXPLOITATION Effective date: 19920930 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 19920906 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Effective date: 19930528 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Effective date: 19930602 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
EUG | Se: european patent has lapsed |
Ref document number: 79400619.7 Effective date: 19930406 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |