[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP0009433A1 - Process and apparatus for producing metallic powder starting from a molten metal or alloy - Google Patents

Process and apparatus for producing metallic powder starting from a molten metal or alloy Download PDF

Info

Publication number
EP0009433A1
EP0009433A1 EP79400619A EP79400619A EP0009433A1 EP 0009433 A1 EP0009433 A1 EP 0009433A1 EP 79400619 A EP79400619 A EP 79400619A EP 79400619 A EP79400619 A EP 79400619A EP 0009433 A1 EP0009433 A1 EP 0009433A1
Authority
EP
European Patent Office
Prior art keywords
fluid
enclosure
cryogenic fluid
particles
aforementioned
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP79400619A
Other languages
German (de)
French (fr)
Other versions
EP0009433B1 (en
Inventor
Jean Foulard
Gérard Bentz
Jean Galey
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Air Liquide SA
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Original Assignee
Air Liquide SA
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Air Liquide SA, LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude filed Critical Air Liquide SA
Priority to AT79400619T priority Critical patent/ATE193T1/en
Publication of EP0009433A1 publication Critical patent/EP0009433A1/en
Application granted granted Critical
Publication of EP0009433B1 publication Critical patent/EP0009433B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/12Making metallic powder or suspensions thereof using physical processes starting from gaseous material

Definitions

  • the present invention essentially relates to a process for manufacturing a metallic powder by lowering the temperature of the vapor of a molten metallic material in a closed treatment enclosure, leading to the transformation of said vapor into solid particles.
  • metal material designates either a metal proper, or an alloy of at least two metals.
  • metal powders consist of solid particles either of a single metal such as iron, zinc, magnesium, calcium, cadmium, etc., or of an alloy metallic, for example a magnesium-zinc alloy, or even a metallic compound, for example zinc oxide or magnesium nitride.
  • Such powders find wide applications in various industrial branches, in particular for the manufacture of paints, the treatment of rubbers, in the metallurgical (sintered materials), chemical (catalysts), ceramic, pharmaceutical, etc. industries.
  • a problem currently posed in the powdered metal technique is the obtaining, in industrial quantities, of extremely divided powders having an average particle size of the order of 0.08 microns, consisting of particles having a shape as regular as possible and having a minimum particle size dispersion, that is to say located in a particle size range between 0.02 and 0.13 micron
  • a high vapor pressure causes accelerated evaporation of the metal bath and therefore makes the process applicable on an industrial scale.
  • the use of a cryogenic fluid in the liquid phase causes very rapid cooling, therefore an energetic quenching, of the metallic vapor and allows the direct passage from the gaseous state to the solid state. This change of state and the evacuation of solid particles concomitant with that of the cryogenic fluid results in a constant renewal of the phenomenon of condensation of the vapors above the bath.
  • the solid particles which are thus formed from an incipient suddenly cooled metallic vapor have a regular shape and dimensions not exceeding a few hundred angstroms.
  • the cryogenic fluid is introduced into said enclosure and is continuously removed therefrom.
  • a continuous circulation of cryogenic fluid allows a continuous production of powder at an optimal particle formation regime.
  • the cryogenic fluid is discharged in the liquid phase.
  • the cryogenic fluid is discharged in the gas phase.
  • the cryogenic fluid consists of a chemically inert element or a mixture of chemically inert elements.
  • cryogenic fluid makes it possible to obtain metallic powders formed from chemically pure metals.
  • the cryogenic fluid consists of a chemically active element or a mixture of chemically active elements.
  • cryogenic fluid allows the formation of specific chemical compounds, for example oxides, nitrides or metal hydrides.
  • the cryogenic fluid consists of a mixture of chemically inert elements and chemically active elements.
  • the invention also relates to an installation for implementing the aforementioned method, this installation comprising means for continuously discharging a cryogenic fluid in the liquid phase inside a closed enclosure, means for transferring, out of from said enclosure, a stream of fluid carrying solid metallic particles in suspension, and a closed separation chamber; connected to said transfer means and receiving the above-mentioned fluid stream, said separation chamber being provided with means for collecting the aforementioned solid particles and means for discharging said stream of fluid free of said particles.
  • the installation comprises a melting device 1, for example an induction furnace or a heating crucible, which contains the metallic material M in the liquid state, and is closed by a cover. 2 which thus provides, above the bath, a closed enclosure 3, therefore isolated from the ambient atmosphere in which the metallic vapor is released.
  • a melting device for example an induction furnace or a heating crucible, which contains the metallic material M in the liquid state, and is closed by a cover. 2 which thus provides, above the bath, a closed enclosure 3, therefore isolated from the ambient atmosphere in which the metallic vapor is released.
  • a reactor 4 constituted by a tubular sleeve of section slightly smaller than that of the enclosure, open at its two ends, the lower end plunging slightly into the metal bath M and at the interior of which is concentrated most of the vapor phase of the metallic material.
  • the furnace or the like 1 and the reactor 4 are made of any refractory material, of the type usually used in metallurgy, the furnace being provided with heating means (not shown) which make it possible to maintain the molten metal at the temperature necessary to obtain the desired vapor pressure.
  • a pipe 5 pours out a cryogenic fluid, for example liquefied nitrogen at -196 ° C, stored in a storage device (not shown), in the reactor 4 via a funnel 6 housed in said reactor and opening out in the vicinity of the surface of the metal bath so that said fluid arrives just above the latter.
  • the reactor 4 is connected, by a heat-insulated conduit 7, to a closed separation chamber 8 which communicates with the outside only by a one-way pressure limiting valve 9.
  • In the chamber 8 are housed containers 11 for collecting the particles , these containers being mounted on a rotary support 10 which makes it possible to take them in turn below the duct 7.
  • the reactor 4 is supplied with cryogenic liquid with a sufficient flow rate to permanently maintain, above the metal bath M, a thick layer of cryogenic liquid which exceeds the level of connection of the conduit 7 to the reactor.
  • the solid particles which form in reactor 4 as a result of the condensation of metallic vapors thus remain in suspension in the cryogenic liquid which is transferred, by drawing off by means of the conduit 7, into the separation chamber 8.
  • the cryogenic liquid then passes to the gaseous state, creating and maintaining in the chamber 8 a neutral atmosphere and the solid particles separate by gravity and fall into the containers 11 where they are collected to give a powder.
  • the filling of these containers must be carried out in several stages owing to the reduction in the volume of the powder following the evaporation of the cryogenic liquid.
  • the rotary support allows these successive filling steps to be carried out.
  • the cryogenic liquid charged with particles in suspension and brought into the separation chamber 8 by the conduit 7 is received in separation vessels 12 provided with a filtering wall 13 which retains the particles and lets the liquid pass.
  • the liquid thus filtered is brought, by a first lagged pipe 14, to a recovery tank 15 and from there it is returned, by a recycling pump 16 and a second lagged pipe 17, to reactor 4.
  • the reactor 4 is supplied with cryogenic liquid with an insufficient flow rate to maintain a liquid layer above the metal bath.
  • the vapor is condensed at the point of impact of the cryogenic liquid with the surface of the bath and the metallic particles are entrained out of the enclosure 2 by the fluid in the vapor phase. The recovery of these particles can be done by gravity.
  • the metallic material can consist of a metal (Fe, Cu, Zn, Mg, Al, etc.) or an alloy (brass, bronze, etc.).
  • the choice of the composition of this alloy that is to say the choice of constituents (which have different melting temperatures), and the proportions of these constituents, make it possible to adjust the kinetics of evaporation.
  • an alloy having a high proportion of a metal with a low melting point, such as Mg makes it possible to obtain a metallic vapor formed almost exclusively of said metal with low melting point.
  • the composition of this alloy can be determined so as to obtain, for a chosen temperature of the metal bath, a high vapor pressure of the zinc. The solid particles obtained are then formed exclusively of zinc.
  • the cryogenic fluid can consist of inert liquefied elements (N2, Ar, He, etc ...) or active (02, H2, NH3 etc 7) by liquefied compounds such as hydrocarbons or a mixture formed of inert liquefied elements and active liquefied elements or else inert liquefied elements and liquefied compounds.
  • inert liquefied elements N2, Ar, He, etc
  • active 02, H2, NH3 etc
  • the choice of the percentage of the active element or of the compound makes it possible to adjust the kinetics of the reaction of the combination of the metal with the metalloid which constitutes said element or resulting from the decomposition of said compound.
  • the powder obtained after separation of the cryogenic fluid consists of zinc particles of dimension between 0.03 and 0.10 micron, and has a specific surface (BET) of 40 m2 per gram.
  • the heating of the melting device 1 could be obtained for example by induction, or by means of radiation, for example concentrated solar radiation by means of an optical system or radiation produced by a laser, or also by means of an arc or an electrical resistance so as to obtain a melting and a point or overall overheating of the material to be vaporized.

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Powder Metallurgy (AREA)

Abstract

A system for producing metal powder in which a cryogenic fluid in the liquid phase is poured over a metal bath having a vapor pressure of at least 1 mm Hg, and the solid particles suspended in the fluid are separated therefrom and collected. The particles find application in the manufacture of paints, in the treatment of rubber, and in the metallurgical, chemical pharmaceutical and ceramic industries.

Description

La présente invention concerne essentiellement un procédé de fabrication d'une poudre métallique par un abaissement de la température de la vapeur d'un matériau métallique en fusion dans une enceinte de traitement fermée, entraînant la transformation de ladite vapeur en particules solides.The present invention essentially relates to a process for manufacturing a metallic powder by lowering the temperature of the vapor of a molten metallic material in a closed treatment enclosure, leading to the transformation of said vapor into solid particles.

Le terme "matériau métallique" désigne soit un métal proprement dit, soit un alliage de deux métaux au moins.The term "metallic material" designates either a metal proper, or an alloy of at least two metals.

Par "poudres métalliques", on entend des poudres qui sont constituées par des particules solides soit d'un métal unique tel que le fer, le zinc, le magnésium, le calcium, le cadmium, etc..., soit d'un alliage métallique, par exemple un alliage magnésium-zinc, soit encore d'un composé métallique, par exemple l'oxyde de zinc ou le nitrure de magnésium. De telles poudres trouvent de larges applications dans diverses branches industrielles, en particulier pour la fabrication des peintures, le traitement des caoutchoucs, dans les industries métallurgiques (matériaux frittés), chimiques (catalyseurs), céramiques, pharmaceutiques, etc...By "metallic powders" is meant powders which consist of solid particles either of a single metal such as iron, zinc, magnesium, calcium, cadmium, etc., or of an alloy metallic, for example a magnesium-zinc alloy, or even a metallic compound, for example zinc oxide or magnesium nitride. Such powders find wide applications in various industrial branches, in particular for the manufacture of paints, the treatment of rubbers, in the metallurgical (sintered materials), chemical (catalysts), ceramic, pharmaceutical, etc. industries.

On connaît déjà un procédé de fabrication de poudres métalliques à partir d'un métal fondu qui consiste à balayer la vapeur du métal fondu au moyen d'un gaz inerte préalablement refroidi pour provoquer la condensation de ladite vapeur. Ce procédé ne réalise toutefois qu'un apport frigorifique très faible et ne permet pas d'obtenir des quantités importantes de poudre. De plus, la poudre obtenue est formée de particules de, forme irrégulière et présentant une dispersion granulométrique importante.There is already known a method for manufacturing metal powders from a molten metal which consists in sweeping the vapor of the molten metal by means of an inert gas previously cooled to cause the condensation of said vapor. However, this process achieves only a very low refrigeration supply and does not make it possible to obtain large quantities of powder. In addition, the powder obtained is formed of particles of irregular shape and having a large particle size dispersion.

Un problème posé actuellement dans la technique des métaux pulvérulents est l'obtention, en quantité industrielle, de poudres extrêmement divisées ayant une granulométrie moyenne de l'ordre de 0,08 micron, constituée par des particules ayant une forme aussi régulière que possible et présentant une dispersion granulométrique minimale, c'est-à-dire située dans une fourchette granulométrique comprise entre 0,02 et 0,13 micronA problem currently posed in the powdered metal technique is the obtaining, in industrial quantities, of extremely divided powders having an average particle size of the order of 0.08 microns, consisting of particles having a shape as regular as possible and having a minimum particle size dispersion, that is to say located in a particle size range between 0.02 and 0.13 micron

et enfin présentant une grande pureté chimique.and finally having a high chemical purity.

Ces buts sont atteints avec le procédé selon l'invention par le fait qu'il consiste à déverser sur le bain, porté à une température telle que sa tension de vapeur soit d'au moins 1 mm de mercure, un fluide cryogénique en phase liquide, à évacuer hors de l'enceinte le fluide cryogénique qui contient, en suspension, les particules solides, à séparer ces dernières dudit fluide et à les collecter pour obtenir la poudre précitée.These objects are achieved with the method according to the invention by the fact that it consists in pouring onto the bath, brought to a temperature such that its vapor pressure is at least 1 mm of mercury, a cryogenic fluid in the liquid phase, to evacuate outside the enclosure the cryogenic fluid which contains, in suspension, the solid particles, to separate the latter from said fluid and collecting them to obtain the aforementioned powder.

Les expériences faites sur divers matériaux métalliques (métaux purs ou alliages) ont montré que la tension de vapeur susmentionnée peut être comprise avantageusement dans une gamme entre 1 et 500 millimètres de mercure.Experiments on various metallic materials (pure metals or alloys) have shown that the aforementioned vapor pressure can advantageously be in a range between 1 and 500 millimeters of mercury.

Une tension de vapeur élevée entraîne une évaporation accélérée du bain métallique et rend par conséquent le procédé applicable à l'échelle industrielle. L'emploi d'un fluide cryogénique en phase liquide provoque un refroidissement très rapide, donc une trempe énergique, de la vapeur métallique et permet le passage direct de l'état gazeux à l'état solide. Ce changement d'état et l'évacuation des particules solides concomitante à celle du fluide cryogénique a pour conséquence un renouvellement constant du phénomène de condensation des vapeurs au-dessus du bain.A high vapor pressure causes accelerated evaporation of the metal bath and therefore makes the process applicable on an industrial scale. The use of a cryogenic fluid in the liquid phase causes very rapid cooling, therefore an energetic quenching, of the metallic vapor and allows the direct passage from the gaseous state to the solid state. This change of state and the evacuation of solid particles concomitant with that of the cryogenic fluid results in a constant renewal of the phenomenon of condensation of the vapors above the bath.

Il en résulte que les particules solides qui se forment ainsi à partir d'une vapeur métallique naissante brusquement refroidie ont une forme régulière et des dimensions n'éxédant pas quelques centaines d'angstrôms.As a result, the solid particles which are thus formed from an incipient suddenly cooled metallic vapor have a regular shape and dimensions not exceeding a few hundred angstroms.

Selon une autre caractéristique de l'invention, le fluide cryogénique est introduit dans ladite enceinte et en est évacué de façon continue.According to another characteristic of the invention, the cryogenic fluid is introduced into said enclosure and is continuously removed therefrom.

Une circulation continue de fluide cryogénique permet une production continue de poudre à un régime optimal de formation des particules.A continuous circulation of cryogenic fluid allows a continuous production of powder at an optimal particle formation regime.

Selon une autre caractéristique de l'invention, le fluide cryogénique est évacué en phase liquide.According to another characteristic of the invention, the cryogenic fluid is discharged in the liquid phase.

Selon une autre caractéristique de l'invention, le fluide cryogénique est évacué en phase gazeuse.According to another characteristic of the invention, the cryogenic fluid is discharged in the gas phase.

Selon encore une autre caractéristique de l'invention, le fluide cryogénique est constitué par un élément chimiquement inerte ou un mélange d'éléments chimiquement inertes.According to yet another characteristic of the invention, the cryogenic fluid consists of a chemically inert element or a mixture of chemically inert elements.

L'emploi d'un tel fluide cryogénique permet d'obtenir des poudres métalliques formées de métaux chimiquement purs.The use of such a cryogenic fluid makes it possible to obtain metallic powders formed from chemically pure metals.

Selon encore une autre caractéristique de l'invention, le fluide cryogénique est constitué par un élément chimiquement actif ou un mélange d'éléments chimiquement actifs.According to yet another characteristic of the invention, the cryogenic fluid consists of a chemically active element or a mixture of chemically active elements.

L'emploi d'un tel fluide cryogénique permet la formation de composés chimiques déterminés, par exemple d'oxydes, de nitrures ou d'hydrures métalliques.The use of such a cryogenic fluid allows the formation of specific chemical compounds, for example oxides, nitrides or metal hydrides.

Toujours selon l'invention, le fluide cryogénique est constitué par un mélange d'éléments chimiquement inertes et d'éléments chimiquement actifs.Still according to the invention, the cryogenic fluid consists of a mixture of chemically inert elements and chemically active elements.

L'emploi d'un tel fluide permet de contrôler la formation des composés chimiques que l'on désire obtenir.The use of such a fluid makes it possible to control the formation of the chemical compounds which it is desired to obtain.

L'invention vise également une installation pour la mise en oeuvre du procédé précité, cette installation comportant des moyens pour déverser, de façon continue, un fluide cryogénique en phase liquide à l'intérieur d'une enceinte fermée, des moyens pour transférer, hors de ladite enceinte, un courant de fluide véhiculant des particules métalliques solides en suspension, et une chambre de séparation fermée; reliée aux dits moyens de transfert et recevant le courant de fluide précité, ladite chambre de séparation étant munie de moyens pour collecter les particules solides précitées et de moyens pour évacuer ledit courant de fluide débarrassé des dites particules.The invention also relates to an installation for implementing the aforementioned method, this installation comprising means for continuously discharging a cryogenic fluid in the liquid phase inside a closed enclosure, means for transferring, out of from said enclosure, a stream of fluid carrying solid metallic particles in suspension, and a closed separation chamber; connected to said transfer means and receiving the above-mentioned fluid stream, said separation chamber being provided with means for collecting the aforementioned solid particles and means for discharging said stream of fluid free of said particles.

D'autres caractéristiques et avantages de l'invention apparaîtront au cours de la description qui va suivre.Other characteristics and advantages of the invention will emerge during the description which follows.

Dans le dessin annexé, donné à titre d'exemple non limitatif :

  • - La figure 1 montre de façon schématique, une installation pour la mise en oeuvre du procédé selon l'invention, dans laquelle le fluide cryogénique est évacué en phase liquide, la collection des particules se faisant par gravité ;
  • - La figure 2 montre une variante de l'installation de la figure 1, dans laquelle la collection des particules se fait par filtration.
  • - La figure 3 montre, de façon schématique et partielle, une installation dans laquelle le fluide cryogénique est évacué en phase gazeuse.
In the attached drawing, given by way of nonlimiting example:
  • - Figure 1 shows schematically, an installation for implementing the method according to the invention, in which the cryogenic fluid is discharged in the liquid phase, the collection of particles being by gravity;
  • - Figure 2 shows a variant of the installation of Figure 1, in which the collection of particles is by filtration.
  • - Figure 3 shows, schematically and partially, an installation in which the cryogenic fluid is discharged in the gas phase.

Selon le mode de réalisation représenté à la figure 1, l'installation comporte un dispositif de fusion 1, par exemple un four à induction ou un creuset chauffant, qui contient le matériau métallique M à l'état liquide, et est fermé par un couvercle 2 qui ménage ainsi, au-dessus du bain, une enceinte 3 fermée, donc isolée de l'atmosphère ambiante dans laquelle se dégage la vapeur métallique.According to the embodiment represented in FIG. 1, the installation comprises a melting device 1, for example an induction furnace or a heating crucible, which contains the metallic material M in the liquid state, and is closed by a cover. 2 which thus provides, above the bath, a closed enclosure 3, therefore isolated from the ambient atmosphere in which the metallic vapor is released.

A l'intérieur de l'enceinte 3 est logé un réacteur 4, constitué par un manchon tubulaire de section légèrement inférieure à celle de l'enceinte, ouvert à ses deux extrémités, l'extrémité inférieure plongeant légèrement dans le bain métallique M et à l'intérieur duquel se trouve concentrée la plus grande partie de la phase vapeur du matériau métallique.Inside the enclosure 3 is housed a reactor 4, constituted by a tubular sleeve of section slightly smaller than that of the enclosure, open at its two ends, the lower end plunging slightly into the metal bath M and at the interior of which is concentrated most of the vapor phase of the metallic material.

Le four ou analogue 1 et le réacteur 4 sont faits en un matériau réfractaire quelconque, du type habituellement utilisé en métallurgie, le four étant muni de moyens de chauffage (non représentés) qui permettent de maintenir le métal fondu à la température nécessaire pour obtenir la tension de vapeur désirée. Une canalisation 5 déverse un fluide cryogénique, par exemple de l'azote liquéfié à - 196°C, emmagasiné dans un dispositif de stockage (non représenté), dans le réacteur 4 par l'intermédiaire d'un entonnoir 6 logé dans ledit réacteur et débouchant au voisinage de la surface du bain métallique de façon que ledit fluide arrive juste au-dessus de ce dernier. Le réacteur 4 est relié, par un conduit calorifugé 7, à une chambre de séparation fermée 8 qui ne communique avec l'extérieur que par une soupape de limitation de pression unidirectionnelle 9. Dans la chambre 8 sont logés des récipients 11 pour collecter les particules, ces récipients étant montés sur un support rotatif 10 qui permet de les amener à tour de rôle au-dessous du conduit 7.The furnace or the like 1 and the reactor 4 are made of any refractory material, of the type usually used in metallurgy, the furnace being provided with heating means (not shown) which make it possible to maintain the molten metal at the temperature necessary to obtain the desired vapor pressure. A pipe 5 pours out a cryogenic fluid, for example liquefied nitrogen at -196 ° C, stored in a storage device (not shown), in the reactor 4 via a funnel 6 housed in said reactor and opening out in the vicinity of the surface of the metal bath so that said fluid arrives just above the latter. The reactor 4 is connected, by a heat-insulated conduit 7, to a closed separation chamber 8 which communicates with the outside only by a one-way pressure limiting valve 9. In the chamber 8 are housed containers 11 for collecting the particles , these containers being mounted on a rotary support 10 which makes it possible to take them in turn below the duct 7.

Le réacteur 4 est alimenté en liquide cryogénique avec un débit suffisant pour entretenir en permanence, au dessus du bain métallique M, une couche épaisse de liquide cryogénique qui dépasse le niveau de raccordement du conduit 7 au réacteur. Les particules solides qui se forment dans le réacteur 4 par suite de la condensation des vapeurs métalliques restent ainsi en suspension dans le liquide cryogénique qui est transféré, par soutirage au moyen du conduit 7, dans la chambre de séparation 8. Le liquide cryogénique passe alors à l'état gazeux, créant et entretenant dans la chambre 8 une atmosphère neutre et les particules solides se séparent par gravité et tombent dans les récipients 11 où elles sont collectées pour donner une poudre. Le remplissage de ces récipients doit être réalisé en plusieurs étapes par suite de la diminution du volume de la poudre consécutive à l'évaporation du liquide cryogénique. Le support rotatif permet d'effectuer ces étapes successives de remplissage.The reactor 4 is supplied with cryogenic liquid with a sufficient flow rate to permanently maintain, above the metal bath M, a thick layer of cryogenic liquid which exceeds the level of connection of the conduit 7 to the reactor. The solid particles which form in reactor 4 as a result of the condensation of metallic vapors thus remain in suspension in the cryogenic liquid which is transferred, by drawing off by means of the conduit 7, into the separation chamber 8. The cryogenic liquid then passes to the gaseous state, creating and maintaining in the chamber 8 a neutral atmosphere and the solid particles separate by gravity and fall into the containers 11 where they are collected to give a powder. The filling of these containers must be carried out in several stages owing to the reduction in the volume of the powder following the evaporation of the cryogenic liquid. The rotary support allows these successive filling steps to be carried out.

Selon le mode de réalisation représenté à la figure 2, dans laquelle les mêmes chiffres de référence désignent les mêmes éléments que dans la figure 1, le liquide cryogénique chargé de particules en suspension et amené dans la chambre de séparation 8 par le conduit 7 est reçu dans des vases de séparation 12 munis d'une paroi filtrante 13 qui retient les particules et laisse passer le liquide. Le liquide ainsi filtré est amené, par une première canalisation calorifugée 14, à un réservoir de récupération 15 et de là il est retourné, par une pompe de recyclage 16 et une seconde canalisation calorifugée 17, au réacteur 4.According to the embodiment represented in FIG. 2, in which the same reference numbers designate the same elements as in FIG. 1, the cryogenic liquid charged with particles in suspension and brought into the separation chamber 8 by the conduit 7 is received in separation vessels 12 provided with a filtering wall 13 which retains the particles and lets the liquid pass. The liquid thus filtered is brought, by a first lagged pipe 14, to a recovery tank 15 and from there it is returned, by a recycling pump 16 and a second lagged pipe 17, to reactor 4.

Selon le mode de réalisation de la figure 3, dans laquelle les mêmes chiffres de référence désignent également les mêmes éléments que dans les figures 1 et 2, le réacteur 4 est alimenté en liquide cryogénique avec un débit insuffisant pour entretenir une couche liquide au dessus du bain métallique. Dans ce cas, la vapeur est condensée au point d'impact du liquide cryogénique avec la surface du bain et les particules métalliques sont entraînées hors de l'enceinte 2 par le fluide en phase vapeur. La récupération de ces particules peut se faire par gravité.According to the embodiment of FIG. 3, in which the same reference numerals also designate the same elements as in FIGS. 1 and 2, the reactor 4 is supplied with cryogenic liquid with an insufficient flow rate to maintain a liquid layer above the metal bath. In this case, the vapor is condensed at the point of impact of the cryogenic liquid with the surface of the bath and the metallic particles are entrained out of the enclosure 2 by the fluid in the vapor phase. The recovery of these particles can be done by gravity.

Le matériau métallique peut être constitué par un métal (Fe, Cu, Zn, Mg, Al etc,) ou un alliage (laiton, bronze, etc...).The metallic material can consist of a metal (Fe, Cu, Zn, Mg, Al, etc.) or an alloy (brass, bronze, etc.).

Il est à noter que, dans ce dernier cas, le choix de la composition de cet alliage, c'est-à-dire le choix des constituants (qui présentent des températures de fusion différentes), et des proportions de ces constituants, permet de régler la cinétique de l'évaporation. C'est ainsi par exemple qu'un alliage ayant une forte proportion d'un métal à bas point de fusion, tel que le Mg, permet d'obtenir une vapeur métallique formée presque exclusivement dudit métal à bas point de fusion. De même, en utilisant un alliage de cuivre (métal peu volatil) et de zinc (métal très volatil) on peut déterminer la composition de cet alliage de façon à obtenir, pour une température choisie du bain métallique une tension de vapeur élevée du zinc. Les particules solides obtenues sont alors formées exclusivement de zinc.It should be noted that, in the latter case, the choice of the composition of this alloy, that is to say the choice of constituents (which have different melting temperatures), and the proportions of these constituents, make it possible to adjust the kinetics of evaporation. Thus, for example, an alloy having a high proportion of a metal with a low melting point, such as Mg, makes it possible to obtain a metallic vapor formed almost exclusively of said metal with low melting point. Likewise, by using an alloy of copper (low volatile metal) and zinc (very volatile metal), the composition of this alloy can be determined so as to obtain, for a chosen temperature of the metal bath, a high vapor pressure of the zinc. The solid particles obtained are then formed exclusively of zinc.

Le fluide cryogénique peut être constitué par des éléments liquéfiés inertes (N2,Ar,He, etc...) ou actifs (02,H2,NH3 etc...) par des composés liquéfiés tels que les hydrocarbures ou un mélange formé d'éléments liquéfiés inertes et dléléments liquéfiés actifs ou encore d'éléments liquéfiés inertes et de composés liquéfiés. Dans le cas de tels mélanges, le choix du pourcentage de l'élément actif ou du composé permet de régler la cinétique de la réaction de la combinaison du métal avec le métalloïde qui constitue ledit élément ou provenant de la décomposition dudit composé.The cryogenic fluid can consist of inert liquefied elements (N2, Ar, He, etc ...) or active (02, H2, NH3 etc ...) by liquefied compounds such as hydrocarbons or a mixture formed of inert liquefied elements and active liquefied elements or else inert liquefied elements and liquefied compounds. In the case of such mixtures, the choice of the percentage of the active element or of the compound makes it possible to adjust the kinetics of the reaction of the combination of the metal with the metalloid which constitutes said element or resulting from the decomposition of said compound.

On donnera ci-après un exemple de fabrication d'une poudre de zinc à partir d'un alliage Cu-Zn, selon le mode de mise en oeuvre de la figure 1.An example of the production of a zinc powder from a Cu-Zn alloy will be given below, according to the embodiment of FIG. 1.

Matériau métallique : alliage UZ 30 (norme AFNOR) : Cu = 70 % - Zn = 30 % Température du bain métallique : 1065°C Tension de vapeur du Zn : 486 mm de mercure Tension de vapeur du Cu : 10-4mm de mercure Fraction molaire du zinc ; 0,3 Activité du zinc dans l'alliage : 0,16 Coefficient d'activité du zinc dans l'alliage : 0,54 Fluide cryogénique : azote liquide (-196°C)Metallic material: UZ 30 alloy (AFNOR standard): Cu = 70% - Zn = 30% Temperature of the metal bath: 1065 ° C Vapor pressure of Zn: 486 mm of mercury Vapor pressure of Cu: 10 -4 mm of mercury Molar fraction of zinc; 0.3 Zinc activity in the alloy: 0.16 Zinc activity coefficient in the alloy: 0.54 Cryogenic fluid: liquid nitrogen (-196 ° C)

La poudre obtenue après séparation du fluide cryogénique. est constituée de particules de zinc de dimension comprise entre 0,03 et 0,10 micron, et présente une surface spécifique (BET) de 40 m2 par gramme.The powder obtained after separation of the cryogenic fluid. consists of zinc particles of dimension between 0.03 and 0.10 micron, and has a specific surface (BET) of 40 m2 per gram.

Le fait d'utiliser un alliage Cu-Zn permet de surchauffer le Zn, donc d'obtenir une tension de vapeur de zinc importante comparativement à la tension de vapeur du cuivre et par conséquent d'obtenir des particules métalliques formées uniquement de zinc.The fact of using a Cu-Zn alloy makes it possible to overheat the Zn, therefore to obtain a high zinc vapor pressure compared to the vapor pressure of copper and consequently to obtain metallic particles formed only of zinc.

De nombreuses variantes pourraient être apportées au procédé décrit ci-dessus sans pour autant sortir du cadre de l'invention. C'est ainsi que le chauffage du dispositif de fusion 1 pourrait être obtenu par exemple par induction, ou au moyen d'un rayonnement, par exemple le rayonnement solaire concentré au moyen d'un système optique ou un rayonnement produit par un laser, ou encore au moyen d'un arc ou d'une résistance électrique de façon à obtenir une fusion et une surchauffe ponctuelle ou globale du matériau à vaporiser.Many variants could be made to the process described above without departing from the scope of the invention. Thus, the heating of the melting device 1 could be obtained for example by induction, or by means of radiation, for example concentrated solar radiation by means of an optical system or radiation produced by a laser, or also by means of an arc or an electrical resistance so as to obtain a melting and a point or overall overheating of the material to be vaporized.

On pourrait même utiliser un chauffage par plasma. De même on pourrait, au lieu d'azote, utiliser un autre gaz-inerte comme l'argon.We could even use plasma heating. Similarly one could, instead of nitrogen, use another inert gas like argon.

Claims (14)

1. - Procédé de fabrication d'une poudre métallique par un abaissement, de la température de la vapeur d'un matériau métallique en fusion dans une enceinte de traitement fermée, entraînant la transformation de ladite vapeur en particules solides, caractérisé en ce qu'il consiste à déverser sur ledit bain porté à une température telle que sa tension de vapeur soit d'au moins 1 mm de mercure, un fluide cryogénique en phase liquide, à évacuer hors de l'enceinte, le fluide cryogénique qui contient, en suspension, les particules solides, à séparer ces dernières dudit fluide et à les collecter pour obtenir la poudre précitée.1. - Method for manufacturing a metallic powder by lowering the temperature of the vapor of a molten metallic material in a closed treatment enclosure, causing said vapor to be transformed into solid particles, characterized in that it consists in pouring onto said bath brought to a temperature such that its vapor pressure is at least 1 mm of mercury, a cryogenic fluid in the liquid phase, to evacuate from the enclosure, the cryogenic fluid which contains, in suspension , the solid particles, to separate the latter from said fluid and to collect them to obtain the aforementioned powder. 2. - Procédé selon la revendication 1, caractérisé en ce que le fluide cryogénique est introduit dans ladite enceinte et en est évacué de façon continue.2. - Method according to claim 1, characterized in that the cryogenic fluid is introduced into said enclosure and is evacuated continuously. 3. - Procédé selon la revendication 2, caractérisé en ce que ledit fluide cryogénique est évacué de l'enceinte en phase liquide.3. - Method according to claim 2, characterized in that said cryogenic fluid is discharged from the enclosure in the liquid phase. 4. - Procédé selon la revendication 3, caractérisé en ce que la phase liquide précitée est évacuée par soutirage.4. - Method according to claim 3, characterized in that the aforementioned liquid phase is removed by drawing off. 5. - Procédé selon la revendication 2, caractérisé en ce que ledit fluide cryogénique est évacué de l'enceinte en phase gazeuse.5. - Method according to claim 2, characterized in that said cryogenic fluid is discharged from the enclosure in the gas phase. 6. - Procédé selon la revendication 1, caractérisé en ce que la séparation des particules et leur collection se fait par action gravifique.6. - Method according to claim 1, characterized in that the separation of the particles and their collection is done by gravitational action. 7. - Procédé selon la revendication 3, caractérisé en ce que la séparation des particules et leur collection se fait par filtration.7. - Method according to claim 3, characterized in that the separation of the particles and their collection is done by filtration. 8. - Procédé selon la revendication 1, caractérisé en ce que le matériau précité est un métal pur ou sensiblement pur.8. - Method according to claim 1, characterized in that the aforementioned material is a pure or substantially pure metal. 9. Procédé selon la revendication 1, caractérisé en ce que le matériau précité est constitué par un alliage de deux ou plusieurs métaux.9. Method according to claim 1, characterized in that the aforementioned material consists of an alloy of two or more metals. 10. - Procédé selon la revendication 1, caractérisé en ce que le fluide cryogénique est constitué par un élément chimiquement inerte ou un mélange d'éléments chimiquement inertes.10. - Method according to claim 1, characterized in that the cryogenic fluid consists of a chemical element only inert or a mixture of chemically inert elements. 11. - Procédé selon la revendication 1, caractérisé en ce que le fluide cryogénique précité est constitué par un élément chimiquement actif ou un mélange d'éléments chimiquement actifs.11. - Method according to claim 1, characterized in that the above cryogenic fluid consists of a chemically active element or a mixture of chemically active elements. 12. - Procédé selon la revendication 1, caractérisé en ce que le fluide cryogénique précité est constitué par un mélange d'éléments chimiquement inertes et d'éléments chimiquement actifs.12. - Method according to claim 1, characterized in that the above cryogenic fluid consists of a mixture of chemically inert elements and chemically active elements. 13. - Procédé selon la revendication 1, caractérisé en ce que le matériau métallique est constitué par un alliage Cu-Zn à 30 % de Zn, en ce que ledit alliage est porté à une température de 1065°C et en ce que le fluide cryogénique est constitué par de l'azote.13. - Method according to claim 1, characterized in that the metallic material consists of a Cu-Zn alloy containing 30% Zn, in that said alloy is brought to a temperature of 1065 ° C and in that the fluid cryogenic consists of nitrogen. 14. - Installation pour la fabrication d'une poudre métallique par solidification de la vapeur d'un bain d'un matériau métallique en fusion dans une enceinte fermée pour la mise en oeuvre du procédét selon l'une des revendications 1 à 13, caractérisée en ce qu'elle comporte des moyens 5 pour déverser, de façon continue, un fluide cryogénique en phase liquide à l'intérieur de l'enceinte précitée 3, des moyens 7 pour transférer, hors de ladite enceinte, un courant de fluide véhiculant des particules métalliques solides en suspension et une chambre de séparation fermée 8 reliée aux dits moyens de transfert 7 et recevant le courant de fluide précité, ladite chambre de séparation étant munie de moyens 11 pour collecter les particules solides précitées et de moyens 9 pour évacuer ledit courant de fluide débarrassé des dites particules.14. - Installation for the manufacture of a metallic powder by solidification of the vapor of a bath of a molten metallic material in a closed enclosure for the implementation of the method according to one of claims 1 to 13, characterized in that it comprises means 5 for continuously discharging a cryogenic fluid in the liquid phase inside the aforementioned enclosure 3, means 7 for transferring, out of said enclosure, a stream of fluid carrying solid metal particles in suspension and a closed separation chamber 8 connected to said transfer means 7 and receiving the above-mentioned fluid stream, said separation chamber being provided with means 11 for collecting the aforementioned solid particles and means 9 for discharging said stream of fluid freed from said particles.
EP79400619A 1978-09-18 1979-09-06 Process and apparatus for producing metallic powder starting from a molten metal or alloy Expired EP0009433B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT79400619T ATE193T1 (en) 1978-09-18 1979-09-06 METHOD AND APPARATUS FOR THE PRODUCTION OF METAL POWDER FROM THE MELT OF A METAL OR AN ALLOY.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR7826648A FR2435988A1 (en) 1978-09-18 1978-09-18 PROCESS AND PLANT FOR MANUFACTURING METAL POWDER FROM A METAL OR MOLTEN ALLOY
FR7826648 1978-09-18

Publications (2)

Publication Number Publication Date
EP0009433A1 true EP0009433A1 (en) 1980-04-02
EP0009433B1 EP0009433B1 (en) 1981-09-09

Family

ID=9212724

Family Applications (1)

Application Number Title Priority Date Filing Date
EP79400619A Expired EP0009433B1 (en) 1978-09-18 1979-09-06 Process and apparatus for producing metallic powder starting from a molten metal or alloy

Country Status (8)

Country Link
US (1) US4309214A (en)
EP (1) EP0009433B1 (en)
JP (1) JPS5541999A (en)
AT (1) ATE193T1 (en)
CA (1) CA1139970A (en)
DE (1) DE2960783D1 (en)
ES (1) ES483267A0 (en)
FR (1) FR2435988A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2545393A1 (en) * 1983-05-04 1984-11-09 Air Liquide PROCESS FOR PRODUCING METALLIC SOLID PARTICLES FROM A METAL BATH
FR2545394A1 (en) * 1983-05-04 1984-11-09 Air Liquide PROCESS FOR PRODUCING METAL POWDERS FROM FUSION METAL MATERIAL
FR2660584A1 (en) * 1990-04-10 1991-10-11 Rdm Ste Civile Method and device for compacting powders

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2626797B1 (en) * 1988-02-04 1991-04-19 Commissariat Energie Atomique PROCESS AND PLANT FOR IMPROVING THE QUALITY OF A METAL OR CERAMIC POWDER
US5922403A (en) * 1996-03-12 1999-07-13 Tecle; Berhan Method for isolating ultrafine and fine particles
US6228187B1 (en) 1998-08-19 2001-05-08 Air Liquide America Corp. Apparatus and methods for generating an artificial atmosphere for the heat treating of materials
US6468497B1 (en) * 2000-11-09 2002-10-22 Cyprus Amax Minerals Company Method for producing nano-particles of molybdenum oxide
US7572430B2 (en) * 2000-11-09 2009-08-11 Cyprus Amax Minerals Company Method for producing nano-particles
US6491863B2 (en) 2000-12-12 2002-12-10 L'air Liquide-Societe' Anonyme A' Directoire Et Conseil De Surveillance Pour L'etude Et L'exploitation Des Procedes George Claude Method and apparatus for efficient utilization of a cryogen for inert cover in metals melting furnaces
US7384448B2 (en) * 2004-02-16 2008-06-10 Climax Engineered Materials, Llc Method and apparatus for producing nano-particles of silver
CN103990807B (en) * 2014-04-21 2017-04-12 江苏科创金属新材料有限公司 Energy-saving equipment for zinc powder preparation device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1495961A (en) * 1923-02-15 1924-05-27 Int Precipitation Co Process for the production of metal powder or dust
DE903777C (en) * 1944-07-01 1954-02-11 Eisenwerke Muelheim Meiderich Process for producing metal powder, such as steel or iron powder in particular, by means of a granulation process
US2934331A (en) * 1955-12-22 1960-04-26 Thomas J Walsh Apparatus for making a metal slurry product
FR2299932A1 (en) * 1975-02-07 1976-09-03 Anvar VERY FINE DIVIDED LITHIUM AND ITS MANUFACTURING PROCESS
FR2375940A1 (en) * 1976-12-28 1978-07-28 Zaklady Bieli Cynkowej Olawa Condensing zinc vapour into powder - using nitrogen gas which is cooled, freed from dust, then returned to the vapour

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3042511A (en) * 1959-02-09 1962-07-03 Dow Chemical Co Apparatus for condensation of a metal vapor
US3165396A (en) * 1961-01-09 1965-01-12 Nat Res Corp Deflection of metal vapor away from the vertical in a thermal evaporation process
US3151971A (en) * 1961-03-03 1964-10-06 Nat Res Corp Vacuum vapor condensation process for producing fine metal powders
JPS482666U (en) * 1971-05-31 1973-01-12
US3856513A (en) * 1972-12-26 1974-12-24 Allied Chem Novel amorphous metals and amorphous metal articles
US4124377A (en) * 1977-07-20 1978-11-07 Rutger Larson Konsult Ab Method and apparatus for producing atomized metal powder
US4169730A (en) * 1978-01-24 1979-10-02 United States Bronze Powders, Inc. Composition for atomized alloy bronze powders

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1495961A (en) * 1923-02-15 1924-05-27 Int Precipitation Co Process for the production of metal powder or dust
DE903777C (en) * 1944-07-01 1954-02-11 Eisenwerke Muelheim Meiderich Process for producing metal powder, such as steel or iron powder in particular, by means of a granulation process
US2934331A (en) * 1955-12-22 1960-04-26 Thomas J Walsh Apparatus for making a metal slurry product
FR2299932A1 (en) * 1975-02-07 1976-09-03 Anvar VERY FINE DIVIDED LITHIUM AND ITS MANUFACTURING PROCESS
FR2375940A1 (en) * 1976-12-28 1978-07-28 Zaklady Bieli Cynkowej Olawa Condensing zinc vapour into powder - using nitrogen gas which is cooled, freed from dust, then returned to the vapour

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2545393A1 (en) * 1983-05-04 1984-11-09 Air Liquide PROCESS FOR PRODUCING METALLIC SOLID PARTICLES FROM A METAL BATH
FR2545394A1 (en) * 1983-05-04 1984-11-09 Air Liquide PROCESS FOR PRODUCING METAL POWDERS FROM FUSION METAL MATERIAL
EP0125161A1 (en) * 1983-05-04 1984-11-14 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Process for producing metal powder starting from a molten metal
EP0125173A1 (en) * 1983-05-04 1984-11-14 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Process for producing solid metal particles from a molten metal
FR2660584A1 (en) * 1990-04-10 1991-10-11 Rdm Ste Civile Method and device for compacting powders

Also Published As

Publication number Publication date
FR2435988B1 (en) 1981-03-20
EP0009433B1 (en) 1981-09-09
ES8100937A1 (en) 1980-12-01
CA1139970A (en) 1983-01-25
FR2435988A1 (en) 1980-04-11
ATE193T1 (en) 1981-09-15
JPS5541999A (en) 1980-03-25
US4309214A (en) 1982-01-05
ES483267A0 (en) 1980-12-01
JPS5620327B2 (en) 1981-05-13
DE2960783D1 (en) 1981-11-26

Similar Documents

Publication Publication Date Title
EP0009433B1 (en) Process and apparatus for producing metallic powder starting from a molten metal or alloy
FR2679473A1 (en) PROCESS AND DEVICE FOR PRODUCING POWDERS AND ESPECIALLY METAL POWDERS BY ATOMIZATION.
CH648062A5 (en) PROCESS AND PLANT FOR THE PREPARATION OF METALS.
FR2677998A1 (en) METHOD AND APPARATUS FOR MAKING A GAS DIFFUSION LAYER THROUGH AN ALUMINUM WELL.
US4818282A (en) Method for recovering metal-carbide scrap by alloying
EP0012074B1 (en) Method of cleaning a cold trap for liquid metals, and device for carrying out this method
EP0614852A1 (en) Process for preparation of disilane from monosilane by electric discharge and use of a cryogenic trap and reactor for carrying out the process
EP0202174B1 (en) Process and apparatus for purifying lithium
EP0125173B1 (en) Process for producing solid metal particles from a molten metal
EP3320129B1 (en) Additive manufacturing machine containing a device implementing in-situ a process for removing the oxides present on the surface of the nodules of a metal powder before its use in additive manufacturing by fusion
FR2765892A1 (en) PROCESS FOR COATING BY GAS PHASE DIFFUSION OF PARTS MADE OF HEAT-RESISTANT MATERIAL WITH A COATING MATERIAL
EP0119913B1 (en) Method of manufacturing highly porous bodies from inorganic material which may be used for preparing hygroscopic, inflammable or radioactive articles
EP0125161B1 (en) Process for producing metal powder starting from a molten metal
FR2901713A1 (en) METHOD FOR DISTRIBUTING PRECURSOR PRODUCTS, IN PARTICULAR PYROPHORIC PRODUCTS
FR2472033A1 (en) MANUFACTURE OF HOLLOW BODIES, BY THERMAL PROJECTION, FOR EXAMPLE BY PLASMA TORCH OR TORCH, OF METAL ALLOYS AND / OR CERAMIC MATERIALS
FR2727635A1 (en) PROCESS FOR THE MANUFACTURE OF FINE OR ULTRAFINE PARTICLES AND REACTOR FOR THE PRODUCTION OF SUCH PARTICLES
CH627715A5 (en) Process for the production of aluminium chloride of high purity
EP0580912A1 (en) Process for making metal alloys for obtaining a homogenous powder of oxides of said metals and their applications for obtaining semi-conductors and super-conductors
EP0457674B1 (en) Process and apparatus for preparing powder alloys by rapid solidification
CH631138A5 (en) PROCESS FOR PRODUCING ALUMINUM CHLORIDE.
BE411279A (en)
FR3101793A1 (en) Installation and process for obtaining a product from a molten composition
FR2997965B1 (en) ENCLOSURE FOR THERMAL TREATMENT OF A REACTIVE MATERIAL, IN PARTICULAR FOR MAKING LAYER DEPOSITION ON A SUBSTRATE, AND THERMAL TREATMENT METHOD IN SUCH AN ENCLOSURE
FR2606395A1 (en) Process for the preparation of submicronic oxide powders and apparatus for carrying it out
BE380026A (en)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LU NL SE

17P Request for examination filed
ITF It: translation for a ep patent filed
GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LU NL SE

REF Corresponds to:

Ref document number: 193

Country of ref document: AT

Date of ref document: 19810915

Kind code of ref document: T

REF Corresponds to:

Ref document number: 2960783

Country of ref document: DE

Date of ref document: 19811126

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19820930

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19900808

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19900815

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19900828

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19900930

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19910812

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19910814

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19910816

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19910828

Year of fee payment: 13

Ref country code: BE

Payment date: 19910828

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19910906

ITTA It: last paid annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Effective date: 19910930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19920401

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19920906

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19920907

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19920930

BERE Be: lapsed

Owner name: L' AIR LIQUIDE S.A. POUR L'ETUDE ET L'EXPLOITATION

Effective date: 19920930

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19920906

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19930528

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19930602

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

EUG Se: european patent has lapsed

Ref document number: 79400619.7

Effective date: 19930406

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT