[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP0062248B1 - Verfahren zur Herstellung von Trimetallkontaktnieten - Google Patents

Verfahren zur Herstellung von Trimetallkontaktnieten Download PDF

Info

Publication number
EP0062248B1
EP0062248B1 EP82102496A EP82102496A EP0062248B1 EP 0062248 B1 EP0062248 B1 EP 0062248B1 EP 82102496 A EP82102496 A EP 82102496A EP 82102496 A EP82102496 A EP 82102496A EP 0062248 B1 EP0062248 B1 EP 0062248B1
Authority
EP
European Patent Office
Prior art keywords
upsetting
wire
abutment
needle
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP82102496A
Other languages
English (en)
French (fr)
Other versions
EP0062248B2 (de
EP0062248A1 (de
Inventor
Erwin Bollian
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Doduco Solutions GmbH
Original Assignee
Doduco GmbH and Co KG Dr Eugen Duerrwaechter
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=6128657&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0062248(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Doduco GmbH and Co KG Dr Eugen Duerrwaechter filed Critical Doduco GmbH and Co KG Dr Eugen Duerrwaechter
Publication of EP0062248A1 publication Critical patent/EP0062248A1/de
Publication of EP0062248B1 publication Critical patent/EP0062248B1/de
Application granted granted Critical
Publication of EP0062248B2 publication Critical patent/EP0062248B2/de
Expired legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H11/00Apparatus or processes specially adapted for the manufacture of electric switches
    • H01H11/04Apparatus or processes specially adapted for the manufacture of electric switches of switch contacts
    • H01H11/041Apparatus or processes specially adapted for the manufacture of electric switches of switch contacts by bonding of a contact marking face to a contact body portion
    • H01H11/042Apparatus or processes specially adapted for the manufacture of electric switches of switch contacts by bonding of a contact marking face to a contact body portion by mechanical deformation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21KMAKING FORGED OR PRESSED METAL PRODUCTS, e.g. HORSE-SHOES, RIVETS, BOLTS OR WHEELS
    • B21K1/00Making machine elements
    • B21K1/58Making machine elements rivets
    • B21K1/62Making machine elements rivets special rivets, e.g. with electrical contacts

Definitions

  • the starting point of the invention is a method for producing tri-metal contact rivets by cold welding with the features specified in the preamble of claim 1. Such a method is known from US-A-4 073 425.
  • three differently composed wire sections with matching cross sections are separated from a wire supply and are aligned in succession in a transversely displaceable guide bush between a compression needle displaceable in the guide bush and an abutment arranged outside the guide bush.
  • the middle wire section is usually made of copper, whereas the two outer, mostly shorter wire sections usually consist of silver.
  • the annular bead formed by the cold welding is pressed flat and then sheared off by pushing the three wire sections out of the one guide bushing through the upsetting needle and pushing them into an opposite guide bushing in which a further upsetting needle is arranged to be advanced.
  • the wire sections are compressed again in a subsequent deformation cut, the two abutting surfaces of the wire sections which were in the guide bush during the first deformation process now lying in the free space and experiencing an increase in cross-section leading to cold welding, while the two abutment surfaces welded together in the first deformation cut now lie in the guide bush in question and are not deformed again.
  • the rivet head of the tri-metal rivet is preformed at the same time. In a further step, it is finally shaped into its final shape using a special headmaking tool.
  • a major disadvantage of the known method is that in addition to the steps of cutting and positioning the three wire sections, a total of four steps for plastic deformation are required to produce the tri-metal rivet, with new deformation tools sometimes having to be brought into position between these four deformation steps.
  • the invention is based on the object of making available a process which is particularly suitable for mass production and which manages with fewer deformation steps than the known process.
  • the increase in diameter that occurs during upsetting should be selected so that perfect cold welding is guaranteed.
  • v W / vg ⁇ 0; 25 there is only a progressively inadequate welding in the outer area of the abutting surfaces of the wire sections, while with a value of v w / v s above 0.5 the cross-sectional increase becomes too small for a perfect cold welding.
  • the abutment lies against the end of the guide bush.
  • the upsetting needle which protrudes from the other end into the guide bushing, there are the three wire sections, which face each other in pairs with their mutually facing ends and rest with the two outer ends on the abutment or on the upsetting needle.
  • the compression needle is then advanced into the guide bushing at the speed Vs and the abutment is moved back from the bushing at the lower speed Vw in synchronism therewith.
  • a compression cannot take place in the interior of the guide bush, since the wall of the guide bush prevents the cross-section of the wire sections from increasing.
  • the upset portion of the wires does not necessarily require lateral guidance.
  • a further guide bushing is preferably used for this purpose, the clear cross section of which is just F 2 or slightly larger.
  • the abutment is then displaceably mounted in this second guide bush.
  • the second guide bushing can also advantageously be used to hold the blank while it is being transferred to a headmaking tool, and possibly also during the head molding process itself.
  • the rivet head can be formed on the blank in a known manner by one or two deformation shocks.
  • the end of the blank in a bushing covered with precious metal is first pre-compressed so far in the free space in front of the bushing that it can no longer buckle during the subsequent second deformation shock.
  • the second deformation blow is carried out with a press ram (headmaker), which has a recess whose contour matches the contour of the contact rivet head. If only one deformation blow is carried out, it is carried out with the headmaker and pre-upsetting is not necessary.
  • the method according to the invention requires only one deformation step instead of four deformation steps before forming the rivet head. This means that machines that work according to the method according to the invention can produce much more cost-effectively than those that produce according to the known method.
  • Another advantage of the invention is that the substantially cylindrical blank is produced by a continuous .flowing process of the material, whereby the metallurgical structure is much cheaper and more homogeneous than with a tri-metal contact rivet produced by the known method.
  • trimetal contact rivets with a particularly thin noble metal layer can be produced.
  • the invention starts from thinner and correspondingly longer wire sections than the shaft of the finished tri-metal contact rivet because of the formation of the cylindrical blank with an enlarged diameter due to upsetting. If one assumes thinner wire sections than the shaft diameter of the finished tri-metal contact rivet, the volume fraction of the noble metal used per contact rivet can be reduced. It is not possible to cut pieces of wire of any length; therefore, if the length of the noble metal-containing wire section can be chosen to be thinner than before, then the saving of noble metals results from the reduction in cross-section.
  • silver wire with a diameter D requires a minimum length of the wire sections of approximately 0.5 D to 0.8 D, the lower value 0.5 D for very thick and the upper value 0.8 D for very thin wires. Shorter wire sections can hardly be handled anymore and no longer have a sufficiently smooth cutting surface suitable for cold welding.
  • the required larger shaft diameter of the tri-metal contact rivet is obtained by compressing the wire sections, which also weld them cold together.
  • the length of the wire sections is shortened to the same extent as the cross section of the wires increases.
  • the length of the noble metal sections of the blank formed by compression and consequently the thickness of the noble metal layer on the fully formed contact rivet head can therefore be smaller than would be possible if one started out with wire sections for the production of a tri-metal contact rivet with the same external dimensions that were already in diameter with the Match the diameter of the shaft of the tri-metal contact rivet.
  • a tri-metal contact rivet can be produced from a copper wire section of 9 mm length and 3 mm diameter and from two silver wire sections of 2 mm length and 3 mm diameter using a state of the art cold welding process (e.g. DE-A-2 555 697), which has the following typical dimensions;
  • a tri-metal contact rivet with substantially identical external dimensions can be produced from a copper wire section 30 mm long and 1.64 mm long Diameter and two silver wire sections, each 1.5 mm long and 1.64 mm in diameter. By compression, it becomes a blank of 3 mm in diameter and 9.90 mm in length, of which 2 x 0.45 mm are silver.
  • FIGS. 1 to 10 schematically show an example of the sequence of the method according to the invention, showing the most important device elements which are required to carry out the method.
  • a carrier 1 there are two cutting bushes 2 and 3 parallel to each other with the same internal width, to which a copper wire 5 and a silver wire 6 are fed from a wire supply in the direction of arrow 4 by a loading device (not shown).
  • the two wires have matching diameters (Fig. 1).
  • the free ends of the two cutting bushings 2 and 3 lie in alignment with a flat surface 10 of the carrier 1, on which a slide 7 can be moved.
  • the slide 7 has, parallel to the cutting bushes 2 and 3, a continuous guide bushing 8 with the same inner diameter as that of the cutting bushings 2 and 3.
  • a compression needle 9 is arranged displaceably in the guide bushing 8.
  • the manufacturing process begins with the slide 7 being moved so that the guide bush 8 is aligned with the cutting bush 3 (FIG. 1); the upsetting needle 9 is positioned so that its front end 9a is at a distance from the surface 10 which corresponds to the length of the first silver wire section 6a to be cut off.
  • the silver wire 6 is advanced until it abuts the end 9a of the upsetting needle, and then the slide 7 is moved in the direction of the arrow 11 (FIG. 1), as a result of which the silver wire section 6a inserted in the guide bushing 8 is sheared off.
  • the slide 7 is now moved until the guide bush 8 is aligned with the cutting bush 2; at the same time the upsetting needle 9 is withdrawn by a distance which corresponds to the length of the copper wire section 5a to be cut off (FIG. 2).
  • the copper wire 5 is advanced in the direction of arrow 4 until it abuts the silver wire section 6a.
  • the slide 7 is then moved in the direction of the arrow 12 (FIG. 2), as a result of which the copper wire section 5a is sheared off.
  • the slide 7 is now moved further in the direction of the arrow 12 until the guide bush 8 is aligned with a second guide bush 13, which is arranged continuously in a second slide 14, which is parallel to the first slide 7 between the first slide 7 and the carrier 1 in a step-shaped recess 15 of the carrier 1 is displaceable (FIG. 4).
  • the second guide bush 13 has a clear cross section, which, for. B. is larger by a factor of 3.5 than the clear cross-section of the first guide bushing 8.
  • a plunger 16 mounted in the carrier 1 with a flat end surface is displaceably guided. This plunger 16 is initially at the end of the guide bush 8, so that the three wire sections 5a, 5b and 6a between the compression needle 9 and the plunger 16 are kept largely free of play. are.
  • the upsetting needle 9 is pushed into the guide bushing 8 in the direction of the arrow 17 and pulled back in synchronism with it, but at a reduced speed of the tappet 16 in the direction of the arrow 17 by a factor of 3.5 (see above).
  • the upsetting needle 9 thus presses the wire sections 5a, 5b and 6a against the slower plunger 16, which serves as an abutment.
  • the consequence of this is that the cross section of the wire sections 5a, 5b and 6a widens by a factor of 3.5; the compression occurs when the material enters from the first guide bush 8 into the second guide bush 13.
  • the two wire sections 5a and 6a and 5a and 6b weld together and form a cylindrical blank 18.
  • the guide bush 20 and the needle 22 are then moved back by a certain preselectable distance L in the direction of the arrow 23. Synchronously with this, the needle 21 is moved in the same direction 23 (FIG. 7). In this way, a free space 24 is created between the slider 14 and the guide bushing 20, in which the rivet head is pre-compressed. This is done by feeding the Needle 21 in the direction of arrow 23 against the stationary needle 22 as an abutment (Fig. 7). By upsetting the head, the end of the blank 18 protruding from the guide bushing 20 does not bend in the subsequent shaping process by which the head is finally shaped.
  • FIG. 8 also shows the moment of pre-upsetting, namely in a viewing direction rotated by 90 ° (direction of arrow 29 in FIG. 7).
  • the pre-upsetting needle 21 is withdrawn and the slide 14 is moved in the direction of arrow 29.
  • a tool slide 25 is moved in the direction of arrow 31, which is arranged parallel to the slide 14.
  • the pre-compression needle 21 and a plunger 26 serving as a headmaker are mounted parallel to one another in the tool slide 25.
  • the headmaker 26 has in its end face, which is normally at the level of the end face of the guide bush 20 in its starting position (FIGS. 6 and 7), a recess 27 which has the contour of the contact rivet head to be formed.
  • the guide bush 20 is now pushed together with the needle 22 inserted therein in the direction of the arrow 28 and strikes the pre-compressed blank 18 against the resting headmaker 26, as a result of which the head 32 obtains its final shape (FIG. 9).
  • the tool slide 25 is then moved in the direction of the arrow 28; it moves away from the carrier 1 and takes the headmaker 26 and the pre-compression needle 21 with it, so that the finished tri-metal contact rivet 33 is released.
  • the needle 22 is advanced in the direction of the arrow 28 and throws the finished tri-metal contact rivet 33, which until then was still with its shaft 34 in the guide bush 20, out of this (FIG. 10).

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Manufacture Of Switches (AREA)
  • Forging (AREA)

Description

  • Ausgangspunkt der Erfindung ist ein Verfahren zur Herstellung von Trimetallkontaktnieten durch Kaltverschweißung mit den im Oberbegriff des Anspruchs 1 angegebenen Merkmalen. Ein solches Verfahren ist aus der US-A-4 073 425 bekannt geworden.
  • In Ausführung des bekannten Verfahrens werden von einem Drahtvorrat drei unterschiedlich zusammengesetzte Drahtabschnitte mit übereinstimmenden Querschnitten abgetrennt und in einer quer verschieblichen Führungsbuchse hintereinander fluchtend zwischen einer in der Führungsbuchse verschiebbaren Stauchnadel und einem außerhalb der Führungsbuchseangeordneten Widerlager angeordnet. Üblicherweise besteht der mittlere Drahtabschnitt aus Kupfer, wohingegen die beiden äußeren zumeist kürzeren Drahtabschnitte üblicherweise aus Silber bestehen.
  • In einem ersten Verformungsschritt werden bei dem bekannten Verfahren zunächst nur zwei der Drahtabschnitte kalt miteinander verschweißt, indem die Stauchnadel gegen das festgehaltene Widerlager vorgeschoben wird, wobei in einem freien Raum vor der Führungsbuchse im Bereich der Anstoßflächen zweier Drahtabschnitte eine zur Kaltverschweißung führende Durchmesservergrößerung eintritt, während die beiden übrigen Anstoßflächen sich noch innerhalb der Führungsbuchse befinden.
  • Im nächsten Verfahrensschritt wird der durch die Kaltverschweißung entstandene ringförmige Wulst flach gepreßt und anschließend abgeschert, indem die drei Drahtabschnitte durch die Stauchnadel aus der einen Führungsbuchse ausgeschoben und in eine gegenüberliegende Führungsbuchse eingeschoben werden, in welcher eine weitere Stauchnadel vorschiebbar angeordnet ist. Zwischen dieser Stauchnadel und einem weiteren ihr gegenüberliegenden Widerlager werden die Drahtabschnitte in einem nachfolgenden Verformungsschnitt erneut gestaucht, wobei nun jene beiden aneinanderliegenden Anstoßflächen der Drahtabschnitte, welche sich beim ersten Verformungsvorgang in der Führungsbuchse befanden, im freien Raum liegen und eine zur Kaltverschweißung führende Querschnittsvergrößerung erfahren, während die beiden im ersten Verformungsschnitt miteinander verschweißten Anstoßflächen jetzt in der betreffenden Führungsbuchse liegen und nicht erneut verformt werden.
  • Mit dem zweiten zur Kaltverschweißung führenden Verformungsvorgang wird zugleich der Nietkopf des Trimetallniets vorgeformt, er wird in einem weiteren Arbeitsschritt schließlich mit einem besonderen Kopfmacherwerkzeug in seine endgültige Gestalt umgeformt.
  • Ein wesentlicher Nachteil des bekannten Verfahrens liegt darin, daß zur Herstellung des Trimetallniets außer den Schritten des Abschneidens und Positionierens der drei Drahtabschnitte noch insgesamt vier Schritte zur plastischen Verformung nötig sind, wobei zwischen diesen vier Verformungsschritten zum Teil noch neue Verformungswerkzeuge in Position gebracht werden müssen.
  • Der Erfindung liegt die Aufgabe zugrunde, ein für die Massenproduktion besonders geeignetes Verfahren verfügbar zu machen, welches mit weniger Verformungsschritten auskommt als das bekannte Verfahren.
  • Diese Aufgabe wird gelöst durch ein Verfahren mit den im Anspruch 1 angegebenen Merkmalen. Wesentlich ist hierbei, daß zunächst aus den drei Drahtabschnitten durch Kaltverschweißung ein im wesentlichen zylindrischer Rohling mit vergrößertem Durchmesser hergestellt wird und daß danach an einem Ende dieses Rohlings, wo sich das Edelmetall befindet, durch Umformung der Nietkopf gebildet wird. Bei dem Stauchvorgang werden zum Zweck der Bildung des im wesentlichen zylindrischen Rohlings die drei Drahtabschnitte vollständig aus der Führungsbuchse herausgeschoben.
  • Die beim Stauchen auftretende Durchmesservergrößerung soll so gewählt werden, daß eine einwandfreie Kaltverschweißung gewährleistet ist. Für die Metallpaarung Silber/Kupfer/Silber wählt man deshalb zweckmäßigerweise die im Anspruch 3 angegebenen Geschwindigkeitsverhältnisse von Widerlager zu Stauchnadel. Bei einem Wert vW/vg < 0;25 findet im Außenbereich der Anstoßflächen der Drahtabschnitte nur noch eine fortschreitend unzureichende Verschweißung statt, während bei einem Wert von vw/vs oberhalb 0,5 die Querschnittszunahme für eine einwandfreie Kaltverschweißung zu gering wird.
  • Beim Beginn des Stauchvorgangs liegt das Widerlager am Ende der Führungsbuchse an. Zwischen dem Widerlager und der Stauchnadel, welche vom anderen Ende her in die Führungsbuchse hineinragt, befinden sich die drei Drahtabschnitte, welche mit ihren einander zugewandten Enden paarweise aneinanderliegen und mit den beiden äußeren Enden am Widerlager bzw. an der Stauchnadel anliegen. Anschließend wird die Stauchnadel mit der Geschwindigkeit Vs in die Führungsbuchse hinein vorgeschoben und synchron dazu das Widerlager mit der kleineren Geschwindigkeit Vw von der Buchse zurückbewegt. Im Innern der Führungsbuchse kann eine Stauchung nicht stattfinden, da die Wandung der Führungsbuchse einer Querschnittsvergrößerung der Drahtabschnitte entgegensteht. Die Stauchung erfolgt vielmehr im Raum zwischen dem Ende der Führungsbuchse und dem Widerlager, welches diesem Ende zugewandt ist. Die Durchmesserzunahme erfolgt kontinuierlich entlang den Drahtabschnitten fortschreitend während des Ausschiebens der Drahtabschnitte aus der Führungsbuchse. Die Querschnittszunahme erfolgt nach der Beziehung
    Figure imgb0001
    worin F, die Querschnittsfläche der Drahtabschnitte vor dem Stauchen und F2 jene nach dem Stauchen bedeutet.
  • Dabei ist es unerheblich, ob beim Stauchen die Stauchnadel gegen das Widerlager oder das Widerlager gegen die Stauchnadel bewegt wird. Wichtig ist, daß während des Stauchens ein außerhalb der Führungsbuchse liegender Raum vorhanden ist, in welchen hinein die beim Stauchen eintretende Querschnittsvergrößerung erfolgen kann.
  • Während des Stauchens bedarf der gestauchte Abschnitt der Drähte nicht unbedingt einer seitlichen Führung. Vorzugsweise wird jedoch dazu eine weitere Führungsbuchse verwendet, deren lichter Querschnitt gerade F2 oder geringfügig größer ist. In dieser zweiten Führungsbuchse ist dann das Widerlager verschieblich gelagert. Die zweite Führungsbuchse kann ferner in vorteilhafter Weise dazu verwendet werden, den Rohling zu halten, während dieser zu einem Kopfmacherwerkzeug überführt wird sowie ggfs. auch während des Kopfformvorgangs selbst.
  • Das Bilden des Nietkopfes an dem Rohling kann in bekannter Weise durch einen oder zwei Verformungsschläge erfolgen. Bei Ausüben von zwei Verformungsschlägen wird das mit Edelmetall belegte Ende des in einer Buchse steckenden Rohlings im freien Raum vor der Buchse zunächst soweit vorgestaucht, daß es beim nachfolgenden zweiten Verformungsschlag nicht mehr umknicken kann. Der zweite Verformungsschlag wird mit einem Preßstempel (Kopfmacher) durchgeführt, der eine Ausnehmung besitzt, deren Kontur mit der Kontur des Kontaktnietkopfs übereinstimmt. Falls nur ein Verformungsschlag ausgeführt wird, so wird er mit dem Kopfmacher ausgeführt und das Vorstauchen entfällt.
  • Im Gegensatz zu dem eingangs erläuterten bekannten Verfahren benötigt das erfindungsgemäße Verfahren vor dem Formen des Nietkopfes statt bisher vier Verformungsschritten nur noch einen Verformungsschritt. Damit können Maschinen, welche nach dem erfindungsgemäßen Verfahren arbeiten, wesentlich kostengünstiger produzieren als solche, die nach dem bekannten Verfahren produzieren. Ein weiterer Vorteil der Erfindung liegt darin, daß der im wesentlichen zylindrische Rohling durch einen kontinuierlichen .Fließvorgang des Werkstoffs erzeugt wird, wodurch die metallurgische Struktur sehr viel günstiger und homogener wird als bei einem nach dem bekannten Verfahren hergestellten Trimetallkontaktniet.
  • Vorteilhaft ist schließlich auch, daß erfindungsgemäß Trimetallkontaktniete mit besonders dünner Edelmetallauflage hergestellt werden können. Bei vorgegebenen Abmessungen des fertigen Kontaktniets geht die Erfindung wegen der Bildung des zylindrischen Rohlings mit durch Stauchen vergrößertem Durchmesser von dünneren und entsprechend längeren Drahtabschnitten aus als sie der Schaft des fertigen Trimetallkontaktniets aufweist. Wenn man von dünneren Drahtabschnitten ausgeht, als dem Schaftdurchmesser des fertigen Trimetallkontaktniets entspricht, dann kann der Volumenanteil des eingesetzten Edelmetalls je Kontaktniet verringet werden. Es können nämlich nicht beliebig kurze Drahtstücke abgeschnitten werden ; wenn deshalb bei gleichbleibender Länge des edelmetallhaltigen Drahtabschnittes dieses dünner gewählt werden kann als bisher, dann folgt die Edelmetalleinsparung aus der Querschnittsverminderung. Erfahrungsgemäß benötigt man bei Silberdraht mit dem Durchmesser D eine Mindestlänge der Drahtabschnitte von etwa 0,5 D bis 0,8 D, wobei der untere Wert 0,5 D für sehr dicke und der obere Wert 0,8 D für sehr dünne Drähte gilt. Kürzere Drahtabschnitte lassen sich kaum noch handhaben und weisen keine hinreichend glatte, für das Kaltverschweißen geeignete Schnittfläche mehr auf.
  • Den geforderten größeren Schaftdurchmesser des Trimetallkontaktniets erhält man durch die Stauchung der Drahtabschnitte, bei der diese zugleich kalt miteinander verschweißen. Die Länge der Drahtabschnitte wird durch die Stauchung im selben Ausmaß verkürzt wie der Querschnitt der Drähte zunimmt. Die Länge der Edelmetallabschnitte des durch Stauchung gebildeten Rohlings und folglich die Dicke der Edelmetallauflage auf dem fertig geformten Kontaktnietkopf kann daher kleiner sein, als dies möglich wäre, wenn man zur Herstellung eines Trimetallkontakniets mit denselben Außenmaßen von Drahtabschnitten ausgehen würde, die bereits im Durchmesser mit dem Durchmesser des Schaftes des Trimetallkontaktniets übereinstimmen.
  • Zur Illustration der möglichen Edelmetalleinsparung wird noch ein Zahlenbeispiel angegeben :
  • Aus einem Kupferdrahtabschnitt von 9 mm Länge und 3 mm Durchmesser und aus zwei Silberdrahtabschnitten von 2 mm Länge und 3 mm Durchmesser läßt sich nach einem Kaltschweißverfahren aus dem Stand der Technik (z. B. DE-A-2 555 697) ein Trimetallkontaktniet herstellen, welches folgende typische Abmessungen aufweist ;
  • Figure imgb0002
  • Nach dem Verfahren der Erfindung läßt sich ein Trimetallkontaktniet mit im wesentlichen übereinstimmenden Außenmaßen herstellen aus einem Kupferdrahtabschnitt von 30 mm Länge und 1,64 mm Durchmesser sowie aus zwei Silberdrahtabschnitten von je 1,5 mm Länge und 1,64 mm Durchmesser. Durch Stauchung wird daraus ein Rohling von 3 mm Durchmesser und 9,90 mm Länge, wovon 2 x 0,45 mm auf Silber entfallen. Nach Bildung des kopfes von 6 mm Durchmesser bei verbleibender Schaftlänge von 3,45 mm ergibt sich auf dem Kopf eine Silberauflage mit einer durchschnittlichen Dicke von nur ca. 0,11 mm ; dieselbe Einsparung ergibt sich am Schaftende des Kontakniets, wo beim Aufnieten ein weiterer Nietkopf mit Silberauflage entsteht ; die eingesetzte Silbermenge beträgt somit verglichen mit dem zuvor beschriebenen Trimetallkontaktniet nur noch rund 20 %. Durch die Silbereinsparung ist bei gleichgebliebenem Kupfereinsatz die Höhe des Nietkopfes um 0,39 mm reduziert worden. Falls nötig, kann dies durch einen erhöhten Kupfereinsatz ausgeglichen werden.
  • Die beigefügten Zeichnungen (Fig. 1 bis Fig. 10) zeigen schematisch ein Beispiel für den Ablauf des erfindungsgemäßen Verfahrens unter Darstellung der wichtigsten Vorrichtungselemente, welche zur Durchführung des Verfahrens benötigt werden.
  • In einem Träger 1 befinden sich parallel zueinander zwei Schneidbuchsen 2 und 3 mit übereinstimmender lichter Weite, welchen durch eine nicht dargestellte Beschickungseinrichtung von einem Drahtvorrat in Richtung des Pfeils 4 ein Kupferdraht 5 und ein Silberdraht 6 zugeführt werden. Die beiden Drähte haben übereinstimmende Durchmesser (Fig. 1). Die freien Enden der beiden Schneidbuchsen 2 und 3 liegen in einer Flucht mit einer ebenen Oberfläche 10 des Trägers 1, an welcher entlang ein Schieber 7 verschieblich ist. Der Schieber 7 besitzt parallel zu den Schneidbuchsen 2 und 3 eine durchgehende Führungsbuchse 8 mit demselben Innendurchmesser, den auch die Schneidbuchsen 2 und 3 aufweisen. In der Führungsbuchse 8 ist eine Stauchnadel 9 verschieblich angeordnet.
  • Das Herstellungsverfahren beginnt damit, daß der Schieber 7 so verschoben wird, daß die Führungsbuchse 8 mit der Schneidbuchse 3 fluchtet (Fig. 1); dabei wird die Stauchnadel 9 so positioniert, daß ihr vorderes Ende 9a einen Abstand von der Oberfläche 10 einnimmt, der mit der Länge des ersten abzuschneidenden Silberdrahtabschnittes 6a übereinstimmt. Der Silberdraht 6 wird vorgeschoben, bis er am Ende 9a der Stauchnadel anstößt, und dann wird der Schieber 7 in Richtung des Pfeils 11 (Fig. 1) bewegt, wodurch der in der Führungsbuchse 8 steckende Silberdrahtabschnitt 6a abgeschert wird.
  • Der Schieber 7 wird nun verfahren, bis die Führungsbuchse 8 mit der Schneidbuchse 2 fluchtet ; gleichzeitig wird die Stauchnadel 9 um einen Weg zurückgezogen, der mit der Länge des abzuschneidenden Kupferdrahtabschnittes 5a übereinstimmt (Fig. 2). Nun wird der Kupferdraht 5 vorgeschoben in Richtung des Pfeils 4, bis er am Silberdrahtabschnitt 6a anstößt. Anschließend wird der Schieber 7 in Richtung des Pfeils 12 (Fig. 2) bewegt, wodurch der Kupferdrahtabschnitt 5a abgeschert wird.
  • Durch das Verschieben des Schiebers 7 in Richtung des Pfeils 12 wird dieser zugleich in die Flucht der Schneidbuchse 3 gebracht, in welcher der Silberdraht 6 steckt. Die Stauchnadel 9 wird erneut ein kurzes Stück zurückgezogen, der Silberdraht 6 um dasselbe Stück vorgeschoben und der aus der Schneidbuchse 3 vorstehende Silberdrahtabschnitt 6b abgeschert (Fig. 3). In der Führungsbuchse 9 befinden sich nun hintereinander und mit ihren Stirnflächen aneinanderstoßend ein erster Silberdrahtabschnitt 6a, ein zweiter Silberdrahtabschnitt 6b und dazwischen ein längerer Kupferdrahtabschnitt 5a.
  • Der Schieber 7 wird nun in Richtung des Pfeils 12 weiter verschoben, bis die Führungsbuchse 8 mit einer zweiten Führungsbuchse 13 fluchtet, welche durchgehend in einem zweiten Schieber 14 angeordnet ist, welcher parallel zum ersten Schieber 7 zwischen dem ersten Schieber 7 und dem Träger 1 in einer stufenförmigen Ausnehmung 15 des Trägers 1 verschiebbar ist (Fig. 4). Die zweite Führungsbuchse 13 hat einen lichten Querschnitt, welcher z. B. um den Faktor 3,5 größer ist als der lichte Querschnitt der ersten Führungsbuchse 8. In der Führungsbuchse 13 ist ein im Träger 1 gelagerter Stößel 16 mit planer Endlfäche verschieblich geführt. Dieser Stößel 16 steht zunächst am Ende der Führungsbuchse 8 an, sodaß die drei Drahtabschnitte 5a, 5b und 6a zwischen der Stauchnadel 9 und dem Stößel 16 weitgehend spielfrei gehalten. sind.
  • Nun wird die Stauchnadel 9 in Richtung des Pfeils 17 in die Führungsbuchse 8 hineingeschoben und synchron dazu, aber mit um den Faktor 3,5 (siehe oben) verminderter Geschwindigkeit der Stößel 16 in Richtung des Pfeils 17 zurückgezogen. Die Stauchnadel 9 preßt also die Drahtabschnitte 5a, 5b und 6a gegen den langsameren Stößel 16, welcher als Widerlager dient. Die Folge davon ist, daß sich der Querschnitt der Drahtabschnitte 5a, 5b und 6a um den Faktor 3,5 erweitert ; die Stauchung erfolgt beim Eintritt des Materials von der ersten Führungsbuchse 8 in die zweite Führungsbuchse 13. Dabei verschweißen die beiden Drahtabschnitte 5a und 6a sowie 5a und 6b miteinander und bilden einen zylindrischen Rohling 18. Sobald das vordere Ende der Stauchnadel 9 die Oberfläche 10 erreicht hat, wird ihr Vorschub beendet und der Stößel 16 vollends aus der zweiten Führungsbuchse 13 zurückgezogen. Der Schieber 14 wird nun in Richtung des Pfeils 19 (Fig. 5) verschoben, bis die Führungsbuchse 13 mit einer gleich weiten Führungsbuchse 20 im Träger 1 fluchtet. Zwischen zwei in diesen beiden Führungsbuchsen 13 und 20 geführten, verschieblichen Nadeln 21 bzw. 22 wird der Rohling 18 derart positioniert, daß er auf eine Länge, welche mit der Schaftlänge des fertigen Trimetallkontaktniets übereinstimmt, in die Führungsbuchse 20 hineinragt (Fig. 6).
  • Anschließend werden die Führungsbuchse 20 und die Nadel 22 um eine gewisse vorwählbare Strecke L in Richtung des Pfeils 23 zurückbewegt. Synchron dazu wird die Nadel 21 in dieselbe Richtung 23 bewegt (Fig. 7). Auf diese Weise entsteht zwischen dem Schieber 14 und der Führungsbuchse 20 ein freier Raum 24, in welchem der spätere Nietkopf vorgestaucht wird. Dies geschieht durch Vorschub der Nadel 21 in Richtung des Pfeils 23 gegen die ruhende Nadel 22 als Widerlager (Fig. 7). Durch das Vorstauchen des Kopfes wird erreicht, daß beim folgenden Umformvorgang, durch den der Kopf fertig geformt wird, das aus der Führungsbuchse 20 vorstehende Ende des Rohlings 18 nicht knickt.
  • Den Augenblick des Vorstauchens zeigt auch die Fig. 8, und zwar in einer um 90° gedrehten Blickrichtung (Richtung des Pfeils 29 in Fig. 7). Nach dem Vorstauchen des Nietkopfes wird die Vorstauchnadel 21 zurückgezogen und der Schieber 14 in Richtung des Pfeils 29 verschoben. Gleichzeitig wird ein Werkzeugschlitten 25 in Richtung des Pfeils 31 verschoben, welcher parallel zum Schieber 14 angeordnet ist. Im Werkzeugschlitten 25 sind die Vorstauchnadel 21 und ein als Kopfmacher dienender Stößel 26 parallel zueinander gelagert. Durch das Verschieben gelangen der Kopfmacher 26 und eine zwischen dem Kopfmacher 26 und dem Träger 1 liegende Öffnung 30 im Schieber 14 vor die Führungsbuchse 20 mit dem Rohling 18 darin. Der Kopfmacher 26 besitzt in seiner Stirnfläche, welche sich normalerweise in Höhe der Stirnfläche der Führungsbuchse 20 in deren Ausgangslage (Fig. 6 und 7) befindet, eine Ausnehmung 27, welche die Kontur des zu formenden Kontaktnietkopfes aufweist.
  • Die Führungsbuchse 20 wird nun gemeinsam mit der darin steckenden Nadel 22 in Richtung des Pfeils 28 geschoben und schlägt den vorgestauchten Rohling 18 gegen den ruhenden Kopfmacher 26, wodurch der Kopf 32 seine endgültige Form erhält (Fig. 9). Anschließend wird der Werkzeugschlitten 25 in Richtung des Pfeils 28 bewegt ; er entfernt sich vom Träger 1 und nimmt den Kopfmacher 26 und die Vorstauchnadel 21 mit, sodaß das fertige Trimetallkontaktniet 33 freigegeben wird. Anschließend wird die Nadel 22 in Richtung des Pfeils 28 vorgeschoben und wirft das fertige Trimetallkontakniet 33, welches bis dahin mit seinem Schaft 34 noch in der Führungsbuchse 20 steckte, aus dieser hinaus (Fig. 10).
  • Auf der dargestellten Vorrichtung können zur Erhöhung des Ausstoßes zwei Bearbeitungszyklen parallel, aber zeitlich versetzt ablaufen. Dies ist in Fig. 5 angedeutet, wo gleichzeitig mit dem Stauchen der Drahtabschnitte 5a, 6a und 6b zur Bildung eines Rohlings 18 dem zuvor gefertigten Rohling 18 mit dem Kopfmacher 26 der Kopf angeformt wird.

Claims (4)

1. Verfahren zur Herstellung von Trimetallkontaktnieten durch Kaltverschweißung mit den folgenden Schritten :
- Anordnen von drei unterschiedlich langen Abschnitten (5a, 6a, 6b) von Draht unterschiedlicher Zusammensetzung, aber von übereinstimmenden Querschnitt fluchtend hintereinander in einer Führungsbuchse (8), deren lichter Querschnitt mit dem Querschnitt der Drahtabschnitte übereinstimmt, zwischen einer in der Führungsbuchse (8) längsverschieblichen Stauchnadel (9) und einem außerhalb der Führungsbuchse (8) koaxial zur Stauchnadel (9) angeordneten Widerlager (16) mit einer wirksamen Querschnittsfläche, welche größer ist als die Querschnittsfläche der Drahtabschnitte ;
- Stauchen der Drahtabschnitte unter gleichzeitiger Querschnittsvergrößerung und Kaltverschweißung der Drahtabschnitte ;
- Formung des Nietkopfs an einem Ende der Anordnung aus den drei Drahtabschnitten, dadurch gekennzeichnet, daß die drei Drahtabschnitte (5a, 6a, 6b) in einem Verformungsschritt kontinuierlich fortschreitend gestaucht werden, indem - während die Stauchnadel (9) unter Ausstoß der drei Drahtabschnitte in der Führungsbuchse (8) bis zu deren Ende in auf das Widerlager (16) zu weisender Richtung bewegt wird - sich das Widerlager (16) in von der Stauchnadel (9) wegweisender Richtung bewegt, daß hierbei die Geschwindigkeit des Widerlagers (16) kleiner ist als die Geschwindigkeit der Stauchnadel (9) und daß beide Geschwindigkeiten in einem konstanten Verhältnis zueinander stehen.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß das Verhältnis der Geschwindigkeiten der Stauchnadel (9) und des Widerlagers (16) eintellbar ist.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß das Verhältnis der Geschwindigkeit (vs) der Stauchnadel (9) und der Geschwindigkeit (vw) des Widerlagers (16) bei Verwendung von Drahtabschnitten aus Kupfer einerseits und aus Silber andererseits zwischen
Figure imgb0003
vorzugsweise zwischen
Figure imgb0004
gewählt wird.
4. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß während des Stauchens der gestauchte Abschnitt der drei Drahtabschnitte in einer zweiten Führungsbuchse (13) geführt wird, in welcher das Widerlager (16) verschieblich ist und deren lichter Querschnitt sich zum lichten Querschnitt der ersten Führungsbuchse (3) verhält wie die Geschwindigkeit der Stauchnadel "9) zur Geschwindigkeit des Widerlagers (16).
EP82102496A 1981-03-28 1982-03-25 Verfahren zur Herstellung von Trimetallkontaktnieten Expired EP0062248B2 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3112452A DE3112452C2 (de) 1981-03-28 1981-03-28 Verfahren zum Herstellen von Doppelkontaktnieten
DE3112452 1981-03-28

Publications (3)

Publication Number Publication Date
EP0062248A1 EP0062248A1 (de) 1982-10-13
EP0062248B1 true EP0062248B1 (de) 1985-01-30
EP0062248B2 EP0062248B2 (de) 1989-01-18

Family

ID=6128657

Family Applications (1)

Application Number Title Priority Date Filing Date
EP82102496A Expired EP0062248B2 (de) 1981-03-28 1982-03-25 Verfahren zur Herstellung von Trimetallkontaktnieten

Country Status (5)

Country Link
US (1) US4744502A (de)
EP (1) EP0062248B2 (de)
DE (2) DE3112452C2 (de)
ES (1) ES8301704A1 (de)
YU (1) YU67682A (de)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3112452C2 (de) * 1981-03-28 1985-04-25 Doduco KG Dr. Eugen Dürrwächter, 7530 Pforzheim Verfahren zum Herstellen von Doppelkontaktnieten
DE3521670A1 (de) * 1985-06-18 1986-12-18 Gesenkschmiede Schneider Gmbh, 7080 Aalen Verfahren und vorrichtung zum anstauchen von stabstahl
DE4126220A1 (de) * 1991-08-08 1993-02-11 Duerrwaechter E Dr Doduco Verfahren zum herstellen von elektrischen kontaktnieten
CN102842448A (zh) * 2011-06-24 2012-12-26 三菱综合材料C.M.I.株式会社 复合触点的制造方法
WO2013026315A1 (zh) * 2011-08-19 2013-02-28 桂林市森工机械技术开发有限公司 一种反向器及具有该反向器的三复合电触头铆钉机
CN113909750A (zh) * 2021-11-04 2022-01-11 温州亚美合金科技有限公司 一种用于三层复合银触点的冷焊机床

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2739369A (en) * 1952-03-28 1956-03-27 Metals & Controls Corp Method of making electrical contacts
US3311965A (en) * 1965-02-09 1967-04-04 Talon Inc Apparatus for forming composite electrical contact elements
ES326719A1 (es) * 1965-05-15 1967-03-01 Duerrwaechter E Dr Doduco Maquina para la fabricacion automatica de remaches de contactos bimetalicos a base de alambre por medio de soldadura en frio.
GB1198803A (en) * 1966-07-26 1970-07-15 Johnson Matthey Co Ltd Improvements in and relating to Methods of Making Bimetallic Rivet-Type Electrical Contacts
US3634934A (en) * 1968-12-26 1972-01-18 Johnson Matthey & Mallory Ltd Manufacture of composite materials
DE2555697B2 (de) * 1975-12-11 1978-08-03 Dr. Eugen Duerrwaechter Doduco, 7530 Pforzheim Verfahren zum Herstellen von Doppelkontaktnieten
JPS6038217B2 (ja) * 1977-07-25 1985-08-30 中外電気工業株式会社 複合電気接点の製造装置
JPS5673826A (en) * 1979-11-22 1981-06-18 Chugai Electric Ind Co Ltd Method of manufacturing composite electric contact by cold solderless bonding
DE3112452C2 (de) * 1981-03-28 1985-04-25 Doduco KG Dr. Eugen Dürrwächter, 7530 Pforzheim Verfahren zum Herstellen von Doppelkontaktnieten

Also Published As

Publication number Publication date
DE3262098D1 (en) 1985-03-14
YU67682A (en) 1987-06-30
ES510766A0 (es) 1983-02-01
ES8301704A1 (es) 1983-02-01
DE3112452C2 (de) 1985-04-25
US4744502A (en) 1988-05-17
DE3112452A1 (de) 1983-04-28
EP0062248B2 (de) 1989-01-18
EP0062248A1 (de) 1982-10-13

Similar Documents

Publication Publication Date Title
EP0223909B1 (de) Strangpresswerkzeug zur Herstellung eines Hartmetall- oder Keramik-Bohrerrohlings
DE2747382C2 (de) Verfahren zur Herstellung eines einen hohlzylindrischen Teil aufweisenden Flanschstückes und Vorrichtung zur Durchführung des Verfahrens
EP0431681A2 (de) Verfahren und Strangpresswerkzeug zur Herstellung eines Rohlings mit innenliegenden Bohrungen
WO2013127425A1 (de) Antriebs-hohlwelle mit flansch und herstellungsverfahren dafür
DE2832063C2 (de) Vorrichtung zur Herstellung eines drei Metalle umfassenden elektrischen Kontaktes
DE1552002A1 (de) Vorrichtung zum Herstellen von Platinen
DE19634723C2 (de) Verfahren zum Herstellen und Schichten von Bauteilen, sowie eine Vorrichtung dafür
DE1299275B (de) Mehrstufenpresse zur Herstellung von Vielkantkopfbolzen
EP0062248B1 (de) Verfahren zur Herstellung von Trimetallkontaktnieten
EP2263812A1 (de) Verfahren zur Herstellung von Stanzteilen, insbesondere von Synchronringen, Kupplungskörpern oder Kupplunggsscheiben
EP0062243B2 (de) Verfahren zur Herstellung von Bimetallkontaktnieten
DE69305629T2 (de) Verfahren und vorrichtung zur herstellung eines kopfes auf einem länglichen werkstück
EP0682999B1 (de) Pressteil aus Metallpulver, Verfahren und Vorrichtung zu seiner Herstellung
DE2555697B2 (de) Verfahren zum Herstellen von Doppelkontaktnieten
DE69305630T2 (de) Verfahren und vorrichtung zur herstellung von schrauben, nieten oder dergleichen
DE3020144C2 (de) Vorrichtung zum Herstellen von Bimetallkontakten insbesondere Bimetall-Aufschweißkontakten, aus Drähten
DE1303557B (de) Verfahren und Vorrichtung zum Herstel len eines elektrischen Kontaktelements
EP0103044B1 (de) Verfahren zur Herstellung von Ringformkörpern, insbesondere Synchronringrohlingen
DE69305732T2 (de) Verfahren und vorrichtung zur herstellung eines länglichen gegenstandes
DE2357309B2 (de) Preßform zur pulvermetallurgischen Herstellung von Kontaktdüsen für Schweißmaschinen
AT246537B (de) Vorrichtung zum Herstellen von Hohlkörpern, insbesondere von Hohlnieten
DE2839625A1 (de) Verfahren zum herstellen eines gehaeuseteiles mit einem radialen einlassrohr
DE2618908A1 (de) Verfahren und vorrichtung zur herstellung von scharnierstiften
DE1627696B2 (de) Verfahren zur Herstellung von stumpfgeschweißten Bimetallteilen aus Drähten verschiedenen Metalls, insbesondere von Bimetallkontakten
DE2248251A1 (de) Vorrichtung zur herstellung von fliessgepressten hohlkoerpern

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): DE FR GB IT

17P Request for examination filed

Effective date: 19820821

ITF It: translation for a ep patent filed
GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): DE FR GB IT

REF Corresponds to:

Ref document number: 3262098

Country of ref document: DE

Date of ref document: 19850314

ET Fr: translation filed
PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: RENZ, WACKER GMBH & CO., MASCHINENFABRIK

Effective date: 19850903

PUAH Patent maintained in amended form

Free format text: ORIGINAL CODE: 0009272

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT MAINTAINED AS AMENDED

27A Patent maintained in amended form

Effective date: 19890118

AK Designated contracting states

Kind code of ref document: B2

Designated state(s): DE FR GB IT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19890325

EN3 Fr: translation not filed ** decision concerning opposition
GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19891130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19891201

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST