[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

DE102009034268A1 - Energieversorgung von Arbeitsmaschinen - Google Patents

Energieversorgung von Arbeitsmaschinen Download PDF

Info

Publication number
DE102009034268A1
DE102009034268A1 DE200910034268 DE102009034268A DE102009034268A1 DE 102009034268 A1 DE102009034268 A1 DE 102009034268A1 DE 200910034268 DE200910034268 DE 200910034268 DE 102009034268 A DE102009034268 A DE 102009034268A DE 102009034268 A1 DE102009034268 A1 DE 102009034268A1
Authority
DE
Germany
Prior art keywords
energy
flywheel
power supply
supply according
hydraulic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE200910034268
Other languages
English (en)
Inventor
Franz Ehrenleitner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of DE102009034268A1 publication Critical patent/DE102009034268A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B15/00Details of, or accessories for, presses; Auxiliary measures in connection with pressing
    • B30B15/04Frames; Guides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B1/00Presses, using a press ram, characterised by the features of the drive therefor, pressure being transmitted directly, or through simple thrust or tension members only, to the press ram or platen
    • B30B1/32Presses, using a press ram, characterised by the features of the drive therefor, pressure being transmitted directly, or through simple thrust or tension members only, to the press ram or platen by plungers under fluid pressure
    • B30B1/34Presses, using a press ram, characterised by the features of the drive therefor, pressure being transmitted directly, or through simple thrust or tension members only, to the press ram or platen by plungers under fluid pressure involving a plurality of plungers acting on the platen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B15/00Details of, or accessories for, presses; Auxiliary measures in connection with pressing
    • B30B15/04Frames; Guides
    • B30B15/041Guides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B15/00Details of, or accessories for, presses; Auxiliary measures in connection with pressing
    • B30B15/04Frames; Guides
    • B30B15/044Means preventing deflection of the frame, especially for C-frames
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B21/00Common features of fluid actuator systems; Fluid-pressure actuator systems or details thereof, not covered by any other group of this subclass
    • F15B21/14Energy-recuperation means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/20507Type of prime mover
    • F15B2211/20515Electric motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/2053Type of pump
    • F15B2211/20561Type of pump reversible
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/2053Type of pump
    • F15B2211/20569Type of pump capable of working as pump and motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/50Pressure control
    • F15B2211/505Pressure control characterised by the type of pressure control means
    • F15B2211/50509Pressure control characterised by the type of pressure control means the pressure control means controlling a pressure upstream of the pressure control means
    • F15B2211/50518Pressure control characterised by the type of pressure control means the pressure control means controlling a pressure upstream of the pressure control means using pressure relief valves
    • F15B2211/50527Pressure control characterised by the type of pressure control means the pressure control means controlling a pressure upstream of the pressure control means using pressure relief valves using cross-pressure relief valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/61Secondary circuits
    • F15B2211/613Feeding circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/705Output members, e.g. hydraulic motors or cylinders or control therefor characterised by the type of output members or actuators
    • F15B2211/7051Linear output members
    • F15B2211/7053Double-acting output members
    • F15B2211/7054Having equal piston areas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/705Output members, e.g. hydraulic motors or cylinders or control therefor characterised by the type of output members or actuators
    • F15B2211/7058Rotary output members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/80Other types of control related to particular problems or conditions
    • F15B2211/88Control measures for saving energy

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Press Drives And Press Lines (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Fluid-Pressure Circuits (AREA)

Abstract

Die Erfindung betrifft die Energieversorgung von Arbeitsmaschinen wie Pressen, Hämmer, feststehenden und verfahrbaren Hebemaschinen, Greifarmroboter, Schweißroboter, Fördertriebe u.dgl., die im Zuge ihres Betriebes Arbeitstakte durchführen mit zumindest zwei Energieverbrauchern, die zeitlich schwankende Energieaufnahme aufweisen; oder auch die Energieversorgung von zumindest zwei Energieverbrauchern unterschiedlicher Arbeitsmaschinen, die jeweils zeitlich schwankende Energieaufnahme aufweisen. Die Erfindung ist dadurch gekennzeichnet, dass zumindest zwei Energieverbraucher (6, 7) hydraulisch und/oder mechanisch mit einer mittels eines Elektromotors (2) angetriebenen Schwungscheibe (3) verbunden sind, von der sie in den Zeitabschnitten ihres Betriebes, in denen sie Energie benötigen, angetrieben werden und die sie in den Zeitabschnitten ihres Betriebes, in denen sie Energie im Überschuss haben, antreiben. Beispiele für die Anwendung sind Knickarmroboter, Pressen, Pressenstraßen, fahrbare Hubroboter, fahrbare Elektrohängebahnen, etc.

Description

  • Die Erfindung betrifft die Energieversorgung von Arbeitsmaschinen wie Pressen, Hämmer, feststehenden und verfahrbaren Hebemaschinen, Greifarmroboter, Schweißroboter, Fördertriebe u. dgl, die im Zuge ihres Betriebes Arbeitstakte durchführen mit zumindest zwei Energieverbrauchern, die eine zeitlich schwankende Energieaufnahme aufweisen; und betrifft auch die Energieversorgung von zumindest zwei Arbeitsmaschinen, die jeweils eine zeitlich schwankende Energieaufnahme aufweisen.
  • Die moderne Serienfertigung erfolgt zum bei weitem überwiegenden Teil getaktet, d. h. dass ein Werkstück Schritt um Schritt an den einzelnen Bearbeitungsstationen vorbei geführt und jeweils der vorgesehenen Bearbeitung unterworfen wird. Dies bringt es mit sich, dass alle im Zuge einer solchen Fertigungsstraße angeordneten Bearbeitungs- oder Transportvorrichtungen ihre Tätigkeit, was immer nun das auch ist, periodisch wiederholen. Ebenso periodisch verläuft daher ihr Energieverbrauch, da ja so gut wie keine dieser Vorrichtungen unabhängig vom jeweiligen Betriebszustand innerhalb eines Arbeitszyklus immer gleich viel Energie benötigt.
  • Es soll nur der Vollständigkeit halber darauf verwiesen werden, dass natürlich geringe Abweichungen von der Periodizität oder auch der Taktung möglich sind, so gibt es bei der Herstellung von PKWs verschiedene Stationen, bei denen der Arbeitsverlauf vom jeweiligen Modell abhängt etc. Auch gibt es zwischen verschiedenen Abschnitten von solchen Fertigungsstraßen immer wieder Zwischenspeicher (Puffer), durch die eine gewisse Unabhängigkeit der einzelnen Abschnitte voneinander erreicht und so die Gefahr eines durchgehenden Stillstandes in Problemfällen gemildert werden soll. Dies ändert aber nichts daran, dass auch bei so aufgebauten bzw. arbeitenden Fertigungsstraßen die Energieaufnahme der einzelnen Vorrichtungen periodisch verläuft, wobei die Energiespitzen, das sind die Zeiten größter Energieaufnahme, meistens kurz im Vergleich zur Dauer einer solchen Periode sind, dass dafür aber in dieser kurzen Zeit eine sehr hohe Energieaufnahme erfolgt.
  • Es wird im Zuge der Beschreibung immer wieder von „Energieverbrauch” bzw. „Energiegewinn” gesprochen, was eine rein utilitaristische Bezeichnung vom Standpunkt des Betreibers der eingangs erwähnten Vorrichtungen aus ist, da selbstverständlich Energie nur umgewandelt, aber weder gewonnen noch verbraucht werden kann. Es ist diese Bezeichnung aber gut geeignet, die der Erfindung zugrunde liegenden Situationen kurz darzustellen; auch wenn dadurch ein „Energieverbraucher” zu anderen Zeiten Energie liefern kann!
  • Aus der DD 259 899 A ist für große Bagger ein rein hydraulisch ausgelegtes System bekannt, der große Massen hydraulisch hebt und senkt. Dabei wird beim Absenken der Last dem hydraulischen Medium Druckenergie „entnommen”, in einem Druckspeicher gespeichert und beim Anheben von Last wieder eingesetzt; de facto arbeitet dieses System wie das Gegengewicht eines Aufzuges und ist auch nur bei derartigen Anwendungen einzusetzen.
  • Vorrichtungen, bei denen die oben erläuterten Nachteile schon seit langer Zeit als besonders unangenehm erkannt ist, sind die Pressen, beispielsweise die Blechpressen für die Herstellung von Karosserieteilen. Bei sogenannten Pressenstraßen, bei denen die Umformung der Werkstücke in mehreren Pressen nacheinander mit immer anders ausgebildeten Matrizen und Gegenplatten erfolgt und die daher im Takt arbeiten, ist dies besonders unangenehm.
  • Es wurde daher bereits seit langem auf diesem technischen Gebiet versucht, diese Nachteile zu vermeiden, die US 4,707,988 A und die US 5,526,738 A stellen diesbezüglich relevanten Stand der Technik dar.
  • Bei beiden Druckschriften wird vorgeschlagen, zwischen den Motor und die Presse eine Schwungscheibe zu schalten, durch das die Spitzenlast des Motors deutlich verringert wird. Die jüngere Druckschrift sieht zwei Hydraulikpumpen unterschiedlicher Volumensleistung auf der Welle der Schwungscheibe vor, um auf einfache Weise unterschiedliche Geschwindigkeiten bzw. Pressdrücke realisieren zu können.
  • Mit dem Betrieb und insbesondere dem Energiehaushalt von Pressen und Pressenstraßen beschäftigt sich auch die noch nicht veröffentlichte österreichische Patentanmeldung A 1181/2008 vom 30. Juli 2008 des Anmelders und die deren inneren Priorität beanspruchende Folgeanmeldung A 1353/2008 vom 29. August 2008, ebenfalls vom Anmelder. Die Priorität dieser beiden Anmeldungen wird von der vorliegenden Anmeldung in Anspruch genommen und deren Inhalt wird durch Bezugnahme zum Inhalt der gegenständlichen Anmeldung gemacht.
  • Inhaltlich beschäftigen sich diese beiden Anmeldungen unter anderem damit, bei einer hydraulisch betriebenen Presse einerseits durch die möglichst vollständige Vermeidung von Reduzierventilen den erheblichen Drosselverlust zu reduzieren, andererseits damit, durch Betreiben der Pumpe als Motor während der Arbeitstakte, während der die eigentliche Presse in der Lage ist, Energie abzugeben, diese Energie der Schwungscheibe zuzuführen. Damit gelingt es, den tatsächlichen Energiebedarf auf das praktisch mögliche Minimum zu reduzieren und darüber hinaus den zuzuführenden Energiefluss bestmöglich zu vergleichmäßigen, da nur die tatsächliche Umwandlungsenergie, die Reibungsenergie der bewegten Teile und die Reibungsenergie der bewegten Flüssigkeit, hier aber deutlich reduziert durch das Fehlen von Drosseln, verbraucht wird und die üblicherweise beim Bremsen etc. anfallende Energie nicht in Wärme verwandelt, sondern durch die als Motor wirkende Pumpe wieder der Schwungscheibe zugeführt wird.
  • Dieses Prinzip lässt sich nun, wie der Anmelder festgestellt hat, vorteilhaft auf jede Vorrichtung oder Gruppe von Vorrichtungen anwenden, bei der bzw. denen im Zuge eines Arbeitszyklus verschiedene Energieverbraucher zu unterschiedlicher Zeit Energie benötigen oder zur Verfügung stellen. Bei all diesen Anwendungsfällen kann durch entsprechende Rückspeisung der Energie durch eine als Motor auf eine Schwungscheibe wirkende Pumpe das bisher übliche Umwandeln der Energie in Wärme vermieden werden, und es kann durch die Ausnutzung der zu unterschiedlichen Zeiten anfallenden bzw. benötigten Energieflüsse die Größe der Schwungscheibe und des notwendigen Antriebsmotors ganz besonders minimiert werden.
  • Unter „unterschiedliche Zeiten” ist im Sinne der Erfindung auch gemeint, dass es dabei zu Überschneidungen kommen kann, wesentlich ist aber, dass es Zeiten gibt, in denen einer oder mehrere der an der Schwungscheibe hängenden Verbraucher als Energieverbraucher arbeiten während einer oder mehrere andere der Verbraucher Energie liefern oder sich im neutralen Zustand befinden. Sobald über den Arbeitszyklus eine solche Situation zumindest zeitweise vorliegt, können die erfindungsgemäßen Vorteile lukriert werden. Es ist dabei festzuhalten, dass diese Vorteile merklich größer sind als beim Vorsehen je einer Schwungscheibe pro Antrieb bzw. Energieverbraucher, vom Vorteil gegenüber der aus dem Stand der Technik bekannten, nur der Vergleichmäßigung der Energieaufnahme dienenden Schwungscheibe nicht zu reden und schon gar nicht zu reden von der derzeit in der Praxis üblichen Auslegung eines elektromotorischen Antriebs nach der maximal benötigten Kraft und der anschließenden Zerstörung der nicht bestimmungsgemäß umgesetzten Energie in Wärme.
  • Im Gegensatz zu dem aus dem Stand der Technik Bekannten ist es durchaus möglich, die Verbindung zwischen der Schwungscheibe und dem Verbraucher nicht hydraulisch, sondern mechanisch herzustellen. Dazu eignen sich flexible Wellen, Kardanwellen, Ketten, Riemen udgl. mehr, abhängig von der jeweiligen maximal fließenden Energie und den auftretenden höchsten Geschwindigkeiten, je nachdem Drehzahl oder Bahngeschwindigkeit. Günstig ist in jedem Fall der Verzicht auf Getriebe, da diese kostspielig, voluminös, wartungsbedürftig vor allem aber mit einem im Vergleich zur direkten Übertragung schlechten Wirkungsgrad behaftet sind, sodass sie fast ebenso zu meiden sind wie Stellventile bei der hydraulischen Ausführung.
  • Selbstverständlich ist es möglich, von einer Schwungscheibe sowohl mechanische als auch hydraulische Verbindungen abgehen zu lassen, in Kenntnis der Erfindung und des jeweiligen Anwendungsgebietes stellt dies für den Fachmann auf dem Gebiete der Fertigungsstraßen kein großes Problem dar.
  • Die Erfindung wird im Folgenden anhand einiger Beispiele näher erläutert. Dabei zeigt bzw. zeigen
  • die 1 rein schematisch eine hydraulische Vorrichtung mit zwei doppelt wirkenden Zylinder-Kolben-Einheiten,
  • die 2 einen beispielhaften hydraulischen Schaltplan für die Verwendung mit einem Hydraulikzylinder,
  • die 3 einen analogen Schaltplan für die Verwendung mit einem Hydraulikmotor,
  • die 4 einen Knickarmroboter,
  • die 5 und 6 einen verfahrbaren Hubroboter und
  • die 7 einen verfahrbaren Lastträger.
  • Die 1 zeigt, rein schematisch, eine erfindungsgemäße, in den verschiedensten technischen Gebieten einsetzbare Vorrichtung mit zwei doppelt wirkenden hydraulischen Zylinder-Kolben-Einheiten.
  • Diese Vorrichtung 1 weist als wesentliche Bauteile einen Elektromotor 2, eine (verkleidete) Schwungscheibe 3, und zwei auf der Achse der Schwungscheibe sitzende hydraulische Regelpumpen 4, 5 auf. Diese Regelpumpen 4, 5 sind jeweils mit einer von zwei doppelt wirkenden hydraulischen Zylinder-Kolben-Einheit 6, 7 verbunden. Um deren im Sinne der Erfindung alternative Betätigung anzudeuten, ist die hydraulische Zylinder-Kolben-Einheit 6 mit der Kolbenstange in der eingefahrenen Position dargestellt und die hydraulische Zylinder-Kolben-Einheit 7 mit ausgefahrener Kolbenstange.
  • Es genügt nun bei einer Vorrichtung an einer industriellen Fertigungsstraße die mehrere, zeitlich versetzte Arbeitsschritte ausführt, die hydraulische Zylinder-Kolben-Einheit 6 so einzubauen, dass sie einen dieser Schritte bewirkt und die hydraulische Zylinder-Kolben-Einheit 7 so einzubauen, dass sie einen zeitlich versetzten Arbeitsschritt ausführt, um bei einer Ausgestaltung der Regelpumpen 4, 5, wonach sie auch als Hydraulikmotoren betrieben werden können, zum erfindungsgemäß erreichbaren Ziel, der Minimierung der insgesamt benötigten Energie, zu kommen.
  • Dazu folgende Darstellung der Betriebsweise: Im normalen Betrieb wird die Schwungscheibe 3 vom Elektromotor 2 in Drehung versetzt. Wenn nun die hydraulische Zylinder-Kolben-Einheit 6 ausgefahren wird (dabei wird ohne Beschränkung der Allgemeinheit angenommen, dass dies gegen einen Widerstand, beispielsweise die Schwerkraft, die Trägheit, die Biegefestigkeit, die Schnittfestigkeit, etc. geschieht) so nimmt sie über den Regelpumpe 4 Energie aus dem bewegten System Elektromotor/Schwungscheibe und bewirkt ein Zurückgehen der Drehzahl dieser Einheit.
  • Gleichzeitig oder zeitlich versetzt wird die hydraulische Zylinder-Kolben-Einheit 7 aus der dargestellten Stellung verkürzt (hier wiederum wird angenommen, dass dies unter der Wirkung der Schwerkraft, elastischer Rückstellkräfte, etc. geschieht) und führt die dabei aufgenommene Energie über die nunmehr als Motor arbeitende Regelpumpe 5 in die mechanische Einheit Motor/Schwungscheibe zurück, wodurch sich die Drehzahl erhöht.
  • Abhängig nun von den tatsächlich abzugebenden bzw. aufgenommenen Energieflüssen und deren zeitlichem Verlauf kommt es während dieses Abschnittes des Arbeitstaktes zu einer Erniedrigung oder Erhöhung der Drehzahl, jedenfalls wird die im geschilderten Zeitabschnitt des Arbeitszyklus über die hydraulische Zylinder-Kolben-Einheit 7 rückgespeiste Energie nicht wie bisher üblich durch Reibung in Wärme verbraten.
  • Durch den geschilderten Verlauf ist nun aber noch nicht der Arbeitszyklus abgeschlossen, dazu müssen die beiden hydraulischen Zylinder-Kolben-Einheiten 6, 7 wieder in die dargestellte Lage gelangen und es hängt natürlich von der betrachteten Vorrichtung bzw. Bearbeitungsstation oder, wenn die gesamte Vorrichtung 1 sich auf einer bewegten Plattform befindet, von der Vorgangsweise an der nächsten Station ab, wie die Energieflüsse bis zum Wiedererreichen der in 1 gezeigten Lage geartet sind.
  • Typischerweise wird bei feststehenden Arbeitsmaschinen bei diesem zweiten Schritt, somit beim Einfahren der hydraulischen Zylinder-Kolben-Einheit 6 und dem Ausfahren der hydraulischen Zylinder-Kolben-Einheit 7 von ersterer Energie an die Drehscheibe abgegeben und von letzterer Energie von der Drehscheibe entnommen. Der Arbeitszyklus ist vollständig abgeschlossen und stabil, wenn am Ende dieses zweiten Teilschrittes bei der vorbestimmtem Leistung des Motors 2 auch die Drehzahl der Schwungscheibe 3 wieder den Wert angenommen hat, den sie zu Beginn des Zyklus gehabt hat.
  • Selbstverständlich kann auch bei einem so einfachen System der Arbeitszyklus aus weit mehr als nur zwei Teilschritten bestehen, so viele sind aber zumindest notwendig, um von dem gezeigten Zustand zu einem anderen und wieder zurück zum gezeigten zu kommen.
  • In der 1 sind nur die wesentlichen Bestandteile des Systems dargestellt. Mechanisch sind die gesamten Befestigungselemente aus Gründen der Übersichtlichkeit weggelassen, hydraulisch wurde die Verbindung zu einem Ablasstank bzw. einem Vorratstank weggelassen. Es wurde auf die Darstellung der notwendigen Sicherheitsventile und der Ablassventile verzichtet, es ist allerdings richtig, dass keine Drosselventile vorgesehen sind, und dass die Zylindervolumina zu beiden Seiten des Kolbens möglichst gleiches Volumen aufweisen. Unter Umständen ist es hier notwendig, einen kleinvolumigen Ausgleichsbehälter vorzusehen, dieser kann auch direkt in die Pumpe integriert sein.
  • Da bei derartigen hydraulischen Zylinder-Kolben-Systemen stets nur die absolut notwendigen Volumina hin- bzw. herbewegt werden, ist es möglich, auch relativ lange Leitungen zu verwenden, ohne dass die Verluste überhaupt spürbar werden, besonders im Vergleich zu herkömmlichen Hydrauliksystemen.
  • Insbesondere durch diese verlustarme Bewegung ist es möglich, als Hydraulikflüssigkeit das in vielen Bereichen der industriellen Fertigung nur sehr ungern verwendete Öl durch weniger problematische Flüssigkeiten, beispielsweise Wasser oder wässerige Lösungen (Korrosionsinhibitoren, Frostschutzmittel, etc.) zu ersetzen.
  • Die 2 und 3 zeigen hydraulische Schaltungen für den Fall des Antriebes mittels eines hydraulischen Zylinders bzw. eines Hydraulikmotors, wobei aus Gründen der Übersichtlichkeit jeweils nur ein Energieverbraucher dargestellt ist; die hydraulischen Schaltungen sind im Wesentlichen bereits aus dem Stand der Technik bekannt, neu ist die Anordnung der Schwungscheibe 3: Es treibt ein Motor 2 über eine Schwungscheibe 3 eine Regelpumpe 4. Diese ist über zwei Leitungsäste 27, 28 mit den beiden Kammern 21, 22 einer doppelt wirkenden Zylinder-Kolben-Einheit 6 (2), bevorzugt ein sogenannter Gleichlaufzylinder, bzw. eines Hydraulikmotors 8 verbunden.
  • Sicherheitsventile 23, 24 verhindern den Aufbau unzulässiger Drücke und eine Ventilkombination 25 ermöglicht es, dass mittels einer Hilfspumpe 26 bei Bedarf die Hydraulikflüssigkeit durch den jeweils auf niedrigem Druck befindlichen Leitungsast 27, 28 gespült und durch neue bzw. regenerierte Hydraulikflüssigkeit ersetzt werden kann. Als Ablass- und Vorratsbehälter ist ein entsprechender Tank 27 angedeutet. In diesen Tank 27 mündet auch beim Kombinationsventil 25 abgehende Hydraulikflüssigkeit.
  • Die 4 zeigt einen industriellen Bearbeitungsroboter 100, der um eine Hochachse drehbar ist und dessen vertikaler, turmartiger Abschnitt mittels dreier Aktuatoren beweglich ist. Der daran angelenkte Arm 120 kann die Bearbeitungseinheit 130, die gegebenenfalls einen Energieverbraucher, nämlich ein Arbeitsmittel 131 (Bohrvorrichtung, Fräsvorrichtung, Schleifvorrichtung, etc.) aufweisen kann, wiederum mittels dreier Aktuatoren positionieren.
  • Es ist klar ersichtlich, dass hier im Verlauf der Zustellbewegung, der Bearbeitung und der Rückführbewegung eine ganze Reihe von Aktuatoren bewegt werden, deren Energiebedarf bzw. Energieüberschuss in Abhängigkeit von der Ausbildung dieser Bewegungen abwechselnd oder überschneidend während eines Arbeitszyklus abläuft.
  • Wenn diesbezüglich auf die anhand der 1 ausführlich dargelegten Maßnahmen Bezug genommen wird, so ist es für den Fachmann auf dem Gebiete der Fertigungsroboter ein Leichtes zu erkennen und zu bestimmen, ob er bei einem solchen Roboter alle Aktuatoren an eine Schwungscheibe ankoppeln will, ob er zwei oder drei Schwungscheiben vorsehen soll, ob er einzelne der Aktuatoren auf herkömmliche Weise direkt mit Energie versorgen soll und ob er unter Umständen auch das Arbeitsgerät, sofern dies aufgrund seiner Beschaffenheit dazu geeignet ist, mit in das Energiemanagement einbeziehen soll.
  • Als prinzipielle Erwägungen kann beispielsweise folgender, zumindest in seinem Gerüst häufig vorkommender Ablauf angegeben werden: Um das Zuführen eines neuen Werkstückes problemlos und vor allem gefahrlos zu ermöglichen, befindet sich der Roboter 100 zu Beginn eines Arbeitszyklus um seine Hochachse gedreht im Wesentlichen parallel zum Verlauf der Fertigungsstraße im Ruhezustand. In einem ersten Schritt wird er um die Hochachse verdreht, sodann wird sein Turm aus der im Wesentlichen vertikalen (oder sogar darüber hinaus zurückgezogenen) Lage in eine schräg zum Werkstück hin geneigte Lage gebracht und sodann, oder praktisch gleichzeitig damit, wird der Arm 120 an die erste Arbeitsstelle gebracht. Von dieser Arbeitsstelle aus können nach erfolgter Bearbeitung eine oder mehrere weitere Arbeitsstellen angefahren werden, wobei zumeist gleichzeitige Bewegungen so gut wie aller Aktuatoren über kurze Wege, dafür mit möglichst hoher Geschwindigkeit (und damit hoher Beschleunigung mit entsprechend hohem Energieverbrauch), da es sich dabei ja um Totzeiten handelt, angefahren. Nach Erledigung des letzten Arbeitspunktes wird der Roboter wieder in die ursprüngliche Lage zurückgefahren und das Werkstück entlang der Fertigungsstraße weiter bewegt, wodurch gleichzeitig das nächste Werkstück an seinen Platz gelangt, der Arbeitszyklus ist abgeschlossen.
  • Schon aus dieser kurzen Darstellung geht hervor, dass es in Kenntnis der genauen Arbeitsabfolge eine ganze Reihe von Möglichkeiten gibt, mehrere Aktuatoren von einer Schwungscheibe aus zu versorgen. Dabei kann beispielsweise für die Aktuatoren der Roberthand 120 eine eigene Motor/Schwungscheibeneinheit im Kopfbereich des Turmes vorgesehen sein, um eventuelle Justierprobleme durch die Elastizität der Hydraulikschläuche zu verhindern, die durch die erfindungsgemäße Ausgestaltung geringe notwendige Masse erlaubt es durchaus, den Motor samt Schwungscheibe am Kopf des Turmes 110 mit zu bewegen. Dies umso mehr, als ja die zu deren Beschleunigung notwendige Energie beim Bremsen wieder der Motor/Schwungscheibeneinheit zugute kommt, die die Aktuatoren am Turm mit Energie versorgt und bevorzugt auch für die Drehung des Turmes um seine Hochachse verantwortlich ist.
  • Selbstverständlich ist es aber auch möglich, eine größere derartige Motor/Schwungscheibeneinheit fest bezüglich des Fundamentes 101 vorzusehen und die Verbindung mit den beweglichen Teilen und den darauf befestigten Aktuatoren nur mittels biegsamer Hydraulikschläuche vorzunehmen. Damit wird die bewegte Masse bestmöglich reduziert und die rotierenden Schwungscheiben können keinerlei Kreiselmomente zufolge einer Bewegung gegenüber einem Initialsystem auf ihre Befestigung und damit den Roboter selbst ausüben.
  • Die 5 und 6 zeigen einen verfahrbaren Hubroboter, einmal in Seitenansicht mit angehobenem bzw. abgesenktem Arm; ein weiteres Mal in perspektivischer Ansicht nur mit angehobenem Arm.
  • 5, die perspektivische Darstellung zeigt den Hubroboter 200 von der Seite seines Rollschlittens 210. Am Rollschlitten sind zwei hydraulische Zylinder-Kolben-Einheiten 220, 230 angelenkt; die Einheit 220 wirkt über eine Zahnstange auf ein Ritzel 221, die Einheit 230 verdreht ein Hohlrohr 231, mit dem zwei Arme 240, an denen ein Objektträger 250 befestigt ist, mit verdreht werden. Im Hohlrohr befindet sich eine mit dem Ritzel 221 drehfest verbundene Welle, die über einen Riementrieb einen Schwenkhebel 241 bezüglich des Hohlrohres 231 und damit den Objektträger um seine Schwenkachse 251 verdreht. An denn dem Rollschlitten gegenüberliegenden Ende des Hohlrohrs bzw. der Welle befindet sich ein einfaches Laufrad, das sich nur am Untergrund abstützt.
  • Durch die Zylinder-Kolben-Einheit 220 wird der Objektträger somit zwischen den in 6 dargestellten oberen und unteren Positionen verschwenkt; dazu kommt noch das Verdrehen um die Achse 251 des Objektträgers 250 mittels der Zylinder-Kolben-Einheit 230. Derartige Hubroboter werden beispielsweise zum Transport von Fahrzeugkarosserien im Zuge der Herstellung von Fahrzeugen und insbesondere beim Eintauchen in Behandlungsbäder und während des Lackierens verwendet. Dabei wird der Hubroboter 200 mittels des Fahrmotors 215, der ein Hydraulikmotor, wie in 3 dargestellt und ebenfalls mit der Motor/Schwungscheibeneinheit 1 verbunden sein kann, entlang einer nicht dargestellten Bahn, die ihn auch führt, verfahren.
  • Die Bewegungen des Anfahrens und Abbremsens, des Absenkens, Verschwenkens, Anhebens erfolgen je nach Station in unterschiedlicher Weise, sodass der Arbeitszyklus dieses fahrbaren Hubroboters äußerst lang sein kann, unter Umständen begleitet er die Karosserie vorn Beginn Ihres Aufbaus bis zur Montage der Räder oder darüber hinaus, einschließlich des Lackierens und des Montierens des Antriebs, doch gibt es auch wesentlich kürzere Arbeitszyklen, beispielsweise bei der Verwendung derartiger fahrbarer Hubroboter zum Transport von Massenware (Spritzguss, etc.) in Körben, die am Objektträger montiert sind und die durch verschiedene Bearbeitungsbäder, Beregungs- und Besprühungsanlagen, Trocknungsanlagen udgl. geführt werden.
  • Es gibt jedenfalls bei allen derartigen Arbeitszyklen beachtenswerte Abschnitte, bei denen beispielsweise das Anfahren nach dem Absenken des Objektträgers erfolgt, um das zu behandelnde Objekt durch ein Tauchbad zu ziehen, oder bei dem nach dem Abbremsen des fahrbaren Hubroboters das Anheben des Objektträgers erfolgt, beispielsweise um überschüssige Behandlungsflüssigkeit abrinnen zu lassen.
  • In all diesen Fällen kann eine erfindungsgemäße Vorrichtung, wie sie am dargestellten Hubschlitten 210 mit 1 bezeichnet dargestellt ist, günstig verwendet werden. Im dargestellten Ausführungsbeispiel ist der Antrieb 215 extra für sich betrieben dargestellt, es ist selbstverständlich möglich, wie oben erläutert, auch ihn über die Motor/Schwungscheibeneinheit 1 zu betreiben. Bemerkt soll noch werden, dass die eigentliche Energiezufuhr für derartige Hubroboter 200 elektrisch über Schleifkontakte erfolgt, die aus Gründen der Übersichtlichkeit nicht dargestellt sind, wie überhaupt die Darstellungen in der Anmeldung sich auf die Teile der Anwendungsgebiete beschränken, die für die Erfindung wesentlich sind.
  • Aus der 7 ist ein verfahrbarer Lastenträger 300 für schwere Lasten, beispielsweise LKW-Rahmen etc. ersichtlich, von dem nur der Rahmen 310 ohne Rollen, das Hubwerk 320 und der Objektträger 330 dargestellt ist. Dieser Lastenträger ist, wie der Hubroboter der 5 entlang einer nicht dargestellten Bahn verfahrbar und kann seine Last absenken bzw. anheben, in den meisten Fällen noch um zumindest eine weitere Achse kippen. Im dargestellten Fall ist der Objektträger mittels Traggurten 321, die auf Trommeln 322 gewickelt sind, mit dem Rahmen 310 verbunden. Die Trommeln 322 können einzeln, paarweise, in Gruppen zu viert oder alle simultan angetrieben sein, um den Objektträger entweder stets parallel zum Rahmen oder bezüglich des Rahmens kippbar bewegen zu können. In Abhängigkeit von dieser Ausgestaltung ist das Stabilisatoren-Gestänge 323 auszubilden und am Objektträger anzulenken.
  • Ein Arbeitstakt eines solchen Lastenträgers weist zumeist das Anfahren mit gehobener Last; das Abbremsen bis zum Stillstand, das Absenken der Last, gegebenenfalls einige Kippbewegungen und das Anheben der Last auf, das erneute Anfahren erfolgt zwar an anderer Stelle, dieser Arbeitstakt gleicht aber dem zuvor in so gut wie allen Belangen. Es ist nun trotz dieser Abfolge:
    Energieverbrauch (Beschleunigung von Station A weg)
    Energiegewinn (Bremsung bei Station B)
    Energiegewinn (Last absenken)
    Neutrale Arbeitsphase (Arbeitsschritt)
    Energieverbrauch (Last anheben)
    Energieverbrauch (Beschleunigung von Station B weg)
    Energiegewinn (Bremsung bei Station C)
    Energiegewinn (Last absenken)
    Neutrale Arbeitsphase (Arbeitsschritt)
    Energieverbrauch (Last anheben)
    usw.
    mit jeweils „doppeltem” Energiebedarf und Energieüberhang vorteilhaft, eine gemeinsame Schwungscheibe für die beiden Energieverbraucher (Rollantrieb-Hebewerk) vorzusehen, da während der neutralen Phase die Schwungscheibe auf maximale Drehzahl gebracht werden kann und bei längeren Wegstrecken als üblich, beispielsweise beim Übergang von einer Halle zur anderen, ein größeres Energiereservoir zur Verfügung steht als bei einer Aufteilung nach Energieverbrauchern. Damit werden bessere Beschleunigungen ermöglicht, und auch die Geschwindigkeiten – sowohl des Hebens als auch des Fahrens – können angehoben werden, obwohl der Anschlusswert für den Elektromotor 2 gegenüber dem Stand der Technik um den Faktor 3 bis 10 gesenkt werden kann.
  • Es soll noch auf einige Aspekte der zu verwendenden Schwungscheiben die Rede kommen: Im Gegensatz zu den derzeit üblichen Bemühungen, Schwungscheiben als High-Tech Vorrichtungen auszulegen, sind bei den erfindungsgemäßen Anwendungen robuste und kostengünstige Ausführungen bevorzugt. Im Stand der Technik findet man luftdicht gekapselte Ausführungen mit Wasserstoff- oder Heliumatmosphäre, mit Drehzahlen, die zu Umfangsgeschwindigkeiten weit über der Schallgeschwindigkeit führen und mit magnetischen Lagerungen des Rotors; dies ist technisch sehr interessant, aber für die Erfindung nicht nur nicht notwendig, sondern glatt unbrauchbar. Schwungscheiben mit einer Umfangsgeschwindigkeit bis maximal etwa 80% der Schallgeschwindigkeit, billiges Scheibenmaterial, bevorzugt aus miteinander verschraubten, dünnen Scheiben, was auch die Bruchgefahr und vor allem die Gefährdung der Umgebung im Falle eines Bruches deutlich verkleinert, einfache Lager, werden bevorzugt und durch die geringe Drehzahl auch möglich.
  • Es darf dabei ja nicht außer Acht gelassen werden, dass bei der erfindungsgemäßen Anwendung nicht an den Betrieb eines Autobusses über längere Wegstrecken und ähnliches gedacht ist, sondern dass durch die im Sekundenbereich, maximal Minutenbereich liegenden Taktdauern (wie oben ausgeführt, ist auch bei verfahrbaren Vorrichtungen der Takt durch den zeitlichen Abstand zwischen den Stationen viel kürzer als eine ganze Rundfahrt durch die Fabrikhalle) die „Selbstentladung” kaum eine Rolle spielt.
  • Die Schwungscheibe als Energiespeicher hat im Gebiet der industriellen Fertigung auch den Vorteil, dass die Abgabe der gespeicherten Energie sehr rasche erfolgt und auch hochdynamische Vorgänge gut unterstützt; das Gleiche gilt für die Aufnahme von Energie.
  • Eine wesentlich größere Rolle als der Versuch, die Schwungscheibe selbst durch hohen Aufwand zu optimieren spielt aber die Strategie, auf Getriebe sowohl zwischen dem Elektromotor 2 und der Schwungscheibe 3 als auch – bei mechanischem Abtrieb – zwischen der Schwungscheibe und dem Energieverbraucher, möglichst zu verzichten, da dadurch eine wesentliche Erhöhung des Wirkungsgrades der Gesamtvorrichtung sowohl beim Zuführen als auch beim Rückführen der Energie erreicht wird. Auch dies wird durch die für Schwungscheiben niedrige Drehzahl erleichtert bzw. erst ermöglicht.
  • Das gilt auch für die hydraulischen Regelpumpen, die ja bei Förderung Null keine Drosselverluste, sondern nur geringe Reibungsverluste aufweisen. Es soll dazu auch auf den Einsatz von hydraulischen Zylinder-Kolben-Einheiten hingewiesen werden, durch die der Energieverbrauch beispielsweise eines Roboters, wie er in 4 dargestellt ist für den „Leerlauf” in dem er sich nicht bewegt, sondern nur seine Position hält, bei elektrischem Betrieb etwa 3–4 kW beträgt, bei hydraulischem Betrieb praktisch Null. Bei der notwendigen Anschlussleistung erreicht man durch die Erfindung eine Reduktion von 50 kW auf 12 kW, was sich nicht nur in geringeren Kosten, sondern auch in geringerer Erwärmung der Umgebung des Roboters – Klimaanlage! – bemerkbar macht.
  • Es soll noch zum Motor, der die Schwungscheibe laufend antreibt, etwas ausgeführt werden: Dieser wird in den meisten Fällen ein Elektromotor sein, es kann aber auch ein Verbrennungsmotor sein oder ein Antrieb von einer Turbine oder einem Windrad, es muss nur ein Antrieb sein, der bei Bedarf (= während des Betriebs) zur Verfügung steht. Natürlich ist eine gewisse Regelbarkeit vorteilhaft, um auf geänderte Arbeitsschritte reagieren zu können. Durch Messung der Drehzahl der Schwungscheibe und eventuelle Regelung des Motors kann das Auftreten von zu hohen Drehzahlen verhindert werden, bei unerwartetem Absinken der Drehzahl kann gegebenenfalls nachgeregelt werden, unter Umständen auch Alarm gegeben werden oder beides, je nach dem Anwendungsfall.
  • Die Dimensionierung der Drehscheibe und des Antriebsmotors kann durch Berechnung in Kenntnis der Arbeitsschritte leicht erfolgen, zu Beginn der In Betriebnahme kann durch einige Versuche die Feinabstimmung erfolgen.
  • Es ist aber die Erfindung nicht auf diese Beispiele beschränkt, sondern kann insbesondere auch bei nahe beieinander, bevorzugt benachbart, angeordneten, voneinander aber unter Umständen verschiedenen Bearbeitungsmaschinen angewandt werden. Es ist zur Erzielung der erfindungsgemäßen Vorteile notwendig und hinreichend, dass die Energieprofile, das heißt die Zeitabschnitte, in denen die einzelnen Energieverbraucher tatsächlich Energie verbrauchen, zeitlich nicht vollständig korrelieren. Es ist nach obigen Ausführungen klar, dass die erzielbaren Vorteile umso größer werden, je stärker diese Profile zeitlich differieren, am Besten ist es daher, wenn sie einer Spiegelung um die Zeitachse entsprechen, dann übernimmt die Schwungscheibe direkt die Übermittlung der an einem Verbraucher momentan anfallenden Energie an den die Energie momentan benötigenden Verbraucher.
  • ZITATE ENTHALTEN IN DER BESCHREIBUNG
  • Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.
  • Zitierte Patentliteratur
    • - DD 259899 A [0005]
    • - US 4707988 A [0007]
    • - US 5526738 A [0007]
    • - AT 1181/2008 A [0009]
    • - AT 1353/2008 A [0009]

Claims (10)

  1. Energieversorgung von Arbeitsmaschinen wie Pressen, Hämmer, feststehenden und verfahrbaren Hebemaschinen, Greifarmroboter, Schweißroboter, Fördertriebe u. dgl, die im Zuge ihres Betriebes Arbeitstakte durchführen mit zumindest zwei Energieverbrauchern, die zeitlich schwankende Energieaufnahme aufweisen; oder auch die Energieversorgung von zumindest zwei Energieverbrauchern unterschiedlicher Arbeitsmaschinen, die jeweils zeitlich schwankende Energieaufnahme aufweisen, dadurch gekennzeichnet, dass zumindest zwei Energieverbraucher hydraulisch und/oder mechanisch mit einer mittels eines Motors, bevorzugt Elektromotors (2) angetriebenen Schwungscheibe (3) verbunden sind, von der sie in den Zeitabschnitten ihres Betriebes, in denen sie Energie benötigen, angetrieben werden und die sie in den Zeitabschnitten ihres Betriebes, in denen sie Energie im Überschuss haben, antreiben.
  2. Energieversorgung nach Anspruch 1, dadurch gekennzeichnet, dass mit der Schwungscheibe (3) zumindest eine Regelpumpe (4, 5) verbunden ist, die hydraulisch mit einer Zylinder-Kolben-Einheit (6, 7) verbunden ist.
  3. Energieversorgung nach Anspruch 2, dadurch gekennzeichnet, dass die hydraulische Zylinder-Kolben-Einheit (6, 7) ein doppelt wirkender Gleichlaufzylinder ist.
  4. Energieversorgung nach Anspruch 1, dadurch gekennzeichnet, dass mit der Schwungscheibe (3) zumindest eine Regelpumpe (4, 5) verbunden ist, die hydraulisch mit einem Hydraulikmotor (8) verbunden ist.
  5. Energieversorgung nach einem der Ansprüche 1 bis 4, für einen, gegebenenfalls um seine Hochachse drehbaren und gegebenenfalls ein Arbeitsmittel (131) aufweisenden Knickarmroboter (100), dadurch gekennzeichnet, dass zumindest zwei, bevorzugt zumindest drei Aktuatoren mit einer ihnen gemeinsamen Schwungscheibe verbunden sind.
  6. Energieversorgung nach Anspruch 5, dadurch gekennzeichnet, dass alle Aktuatoren des Armes (120) mit einer ihnen gemeinsamen Schwungscheibe verbunden sind.
  7. Energieversorgung nach Anspruch 5, dadurch gekennzeichnet, dass alle Aktuatoren des Knickarmroboters (100) mit einer einzigen Schwungscheibe verbunden sind.
  8. Energieversorgung nach einem der Ansprüche 5 bis 7, dadurch gekennzeichnet, dass auch das Arbeitsmittel (131) des Knickarmroboters (100) mit der bzw. einer der Schwungscheiben verbunden ist.
  9. Energieversorgung nach einem der Ansprüche 1 bis 4, für einen Hubroboter (200), der entlang einer Bahn verfahrbar ist und einen Objektträger (25) heben, senken und um eine Objektträgerachse (251) verschwenken kann, dadurch gekennzeichnet, dass zumindest zwei der zugeordneten Antriebe: die hydraulischen Zylinder-Kolben-Einheiten (220, 230) und der gegebenenfalls hydraulische Fahrmotor (215) mit einer ihnen gemeinsamen Schwungscheibe verbunden sind.
  10. Energieversorgung nach einem der Ansprüche 1 bis 4, für einen entlang einer Bahn verfahrbaren Lastenträger (300), der einen Objektträger (330) heben, senken und um zumindest eine Achse verschwenken kann, dadurch gekennzeichnet, dass zumindest zwei der zugehörigen Antriebe (322) einschließlich des gegebenenfalls hydraulischen Fahrmotors mit einer ihnen gemeinsamen Schwungscheibe verbunden sind.
DE200910034268 2008-07-30 2009-07-21 Energieversorgung von Arbeitsmaschinen Withdrawn DE102009034268A1 (de)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
AT11812008 2008-07-30
AT1181/2008 2008-07-30
AT13532008A AT507110B1 (de) 2008-07-30 2008-08-29 Presse zum umformen von material
AT1353/2008 2008-08-29
AT0152708A AT507120A1 (de) 2008-07-30 2008-09-30 Energieversorgung von arbeitsmaschinen
AT1527/2008 2008-09-30

Publications (1)

Publication Number Publication Date
DE102009034268A1 true DE102009034268A1 (de) 2010-04-15

Family

ID=41664399

Family Applications (1)

Application Number Title Priority Date Filing Date
DE200910034268 Withdrawn DE102009034268A1 (de) 2008-07-30 2009-07-21 Energieversorgung von Arbeitsmaschinen

Country Status (2)

Country Link
AT (2) AT507110B1 (de)
DE (1) DE102009034268A1 (de)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010023789A1 (de) * 2010-06-15 2011-12-15 Eb-Invent Gmbh Knickarmroboter
DE102010023788A1 (de) * 2010-06-15 2011-12-15 Eb-Invent Gmbh Antrieb für einen Knickarmroboter
WO2012119817A1 (de) * 2011-03-10 2012-09-13 Zf Friedrichshafen Ag Antriebsanordnung zum ausführen von arbeitsbewegungen bei arbeitsmaschinen
WO2015040132A1 (fr) * 2013-09-20 2015-03-26 Commissariat à l'énergie atomique et aux énergies alternatives Dispositif a commande hydraulique a consommation energetique optimisee
EP4269810A1 (de) * 2022-04-29 2023-11-01 Robert Bosch GmbH Verfahren zum betreiben eines hydraulischen systems mit mindestens einem hydraulisch betätigbaren steller

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK177347B1 (da) * 2011-07-14 2013-02-04 Kiermar Technology Holding Aps Pressebord

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4707988A (en) 1983-02-03 1987-11-24 Palmers Goeran Device in hydraulically driven machines
DD259899A1 (de) 1987-04-03 1988-09-07 Schwermasch Nobas Veb Energieoekonomiches hydraulisches antriebssystem fuer zyklisch arbeitende maschinen
US5526738A (en) 1994-02-22 1996-06-18 Logan; Eugene T. Hydraulic press with flywheel

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1250781A (en) * 1985-11-12 1989-03-07 Hepburn (John T.) Limited Hydraulic press
DE19753949C2 (de) * 1997-12-05 1999-12-02 Doege Eckart Flexible Umformpresse mit steuerbarer nichtlinearer Stößelbewegung
KR101367661B1 (ko) * 2006-08-25 2014-02-27 엘아이지에이디피 주식회사 척의 평행도 및 평편도 조절유닛을 가진 기판 합착장치

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4707988A (en) 1983-02-03 1987-11-24 Palmers Goeran Device in hydraulically driven machines
DD259899A1 (de) 1987-04-03 1988-09-07 Schwermasch Nobas Veb Energieoekonomiches hydraulisches antriebssystem fuer zyklisch arbeitende maschinen
US5526738A (en) 1994-02-22 1996-06-18 Logan; Eugene T. Hydraulic press with flywheel

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010023789A1 (de) * 2010-06-15 2011-12-15 Eb-Invent Gmbh Knickarmroboter
DE102010023788A1 (de) * 2010-06-15 2011-12-15 Eb-Invent Gmbh Antrieb für einen Knickarmroboter
EP2397279A1 (de) 2010-06-15 2011-12-21 EB-invent GmbH Knickarmroboter mit Armantrieb
WO2011156826A1 (de) 2010-06-15 2011-12-22 Eb-Invent Gmbh Knickarmroboter
WO2012119817A1 (de) * 2011-03-10 2012-09-13 Zf Friedrichshafen Ag Antriebsanordnung zum ausführen von arbeitsbewegungen bei arbeitsmaschinen
WO2015040132A1 (fr) * 2013-09-20 2015-03-26 Commissariat à l'énergie atomique et aux énergies alternatives Dispositif a commande hydraulique a consommation energetique optimisee
FR3011047A1 (fr) * 2013-09-20 2015-03-27 Commissariat Energie Atomique Dispositif a commande hydraulique a consommation energetique optimisee
EP4269810A1 (de) * 2022-04-29 2023-11-01 Robert Bosch GmbH Verfahren zum betreiben eines hydraulischen systems mit mindestens einem hydraulisch betätigbaren steller

Also Published As

Publication number Publication date
AT507110B1 (de) 2012-11-15
AT507110A1 (de) 2010-02-15
AT507120A1 (de) 2010-02-15

Similar Documents

Publication Publication Date Title
EP2503160B1 (de) Hydraulisches Antriebssystem
DE102009034268A1 (de) Energieversorgung von Arbeitsmaschinen
DE102009056245B4 (de) Windenergieanlage mit Hebevorrichtung
EP2267317B1 (de) Hydrauliksystem
DE3540001C2 (de)
EP2838719B1 (de) Maschinenpresse
WO2012104384A1 (de) Pressmaschine und verfahren zum pressen von werkstücken
EP2418327A1 (de) Antrieb für einen Hydraulikbagger
DE102012104125A1 (de) Verfahren zum Betreiben einer hydraulischen Presse und eine hydraulische Presse
EP2846942B1 (de) Hydraulische strangpresse sowie verfahren zum betrieb einer hydraulischen strangpresse
WO2011157564A1 (de) Verfahren und vorrichtung zum betrieb einer angetriebenen achse bei einer werkzeugmaschine
DE102011119655A1 (de) Kran
EP2316639B1 (de) Verfahren und Einrichtung zur Regelung des Antriebes von Ballenpressen
WO2020156856A1 (de) Klemm- und hubvorrichtung
EP0154159B1 (de) Kranladegeschirr
EP3026271A1 (de) Bewegungsausgleichsvorrichtung
DE3313473C2 (de)
DE102011007663A1 (de) Hebezeug und Verfahren zum Betreiben des Hebezeuges
DE1527331A1 (de) Manipulator fuer automatisches Schmieden
DE102005041252B4 (de) Elektrohydraulischer Pressenantrieb
DE3333990A1 (de) Motorgreifer-antrieb
DE1153593B (de) Fahrbare Schmiedezange
DE10212091A1 (de) Verfahren zum Betreiben einer Maschine zum Formen von Hohlkörpern aus insbesondere Kunststoff sowie Maschine zum Formen solcher Hohlkörper
DE1032907B (de) Wippkran mit hydrostatischem Hubwerksantrieb
DE2226632C3 (de) Hydraulische Hubwerkbaugruppe

Legal Events

Date Code Title Description
R005 Application deemed withdrawn due to failure to request examination