-
Die Erfindung betrifft ein hochspannungsfestes Halbleiterbauelement mit vertikal leitenden Halbleiterkörperbereichen und einer Grabenstruktur sowie Verfahren zur Herstellung desselben.
-
Bei konventionellen vertikalen MOSFETs ist die maximale Donatorkonzentration [
ND ] in einem n
--Gebiet und somit auch die elektrische Leitfähigkeit des n
--Gebiets durch die geforderte Sperrfähigkeit bestimmt bzw. umgekehrt. Beim Avalanche-Durchbruch sind die ca. 1,5 × 10
12 cm
-2 Donatoren ionisiert, die ihre Gegenladung in der Akzeptorladung des p-leitenden Gebietes der MOSFET-Struktur finden. Soll eine höhere Donatorkonzentration ermöglicht werden, so müssen Gegenladungen für die Donatoratome des n
--Gebiets etwa in der gleichen Bauelement-Ebene gefunden werden. Bei MOS-Feldplattentransistoren mit Grabenstruktur, wie sie aus der Druckschrift
US 6 573 558 B2 bekannt sind, geschieht dies durch die Ladungsträger der Feldplatte. Bei Kompensationsbauelementen wie beim „CoolMOS“, die alternierend in Zellen angeordnete n
--Gebiete und p-Gebiete aufweisen, geschieht dies durch Akzeptoren der p-Gebiete als Gegenladungen.
-
In diesem Zusammenhang wird unter einem n
-- bzw. p
--Gebiet ein Bereich eines Halbleiterbauelementes verstanden, der schwachdotiert ist und eine Störstellenkonzentration [
ND ] bzw. [
NP ] unter
aufweist, mit [
ND ] als Donatorkonzentration bzw. [
Np] (oder
NA) als Akzeptorenkonzentration. In Kompensationsbauelementen und Bauelementen der vorliegenden Erfindung kann dieser Bereich auch bis zu 1 × 10
17 cm
-3 erweitert sein. Unter einem n- bzw. p-Gebiet wird ein Bereich eines Halbleiterbauelementes verstanden, der mitteldotiert ist und eine Störstellenkonzentration zwischen
aufweist. Unter einem n
+- bzw. einem p
+-Gebiet wird ein Bereich eines Halbleiterbauelementes verstanden, der hochdotiert ist und eine Störstellenkonzentration oberhalb von
aufweist.
-
Soll die elektrische Leitfähigkeit eines n
--Gebiets bei Kompensationsbauelementen wie z.B. „CoolMOS“ weiter verbessert werden, so muss der Kompensationsgrad immer genauer eingestellt werden. Dies stößt bereits heute an die Grenzen der technologischen Machbarkeit. Die aus
US 6 573 558 B2 bekannten MOS-Feldplattentransistoren mit Grabenstruktur besitzen dagegen den Nachteil, dass am drainseitigen Ende zum n
--Gebiet die volle Sperrspannung abfällt und somit sehr dicke Isolationsschichten erforderlich sind. Bei 600 V Dauerbelastung wäre ein etwa 4 - 6 µm dickes SiO
2 erforderlich, was zu einem relativ großen Strukturraster und erheblichen technologischen Problemen führt.
-
Halbleiterbauteile mit Grabenstruktur sind auch aus den Druckschriften
US 4 893 160 A und
US 5 282 018 A bekannt. Bei diesen Grabenstrukturen werden Avalanche-Durchbrüche im schwachdotierten Epitaxiebereich zwischen einer Gate-Anordnung in der Grabenstruktur und einem Drainbereich mit hochdotierten Substrat durch mittel- bis hochdotierte Zonen im Bereich der Grabenböden vermieden. Weitere Halbleiterbauteile mit Grabenstruktur sind aus der Druckschrift
US 6 608 350 B2 bekannt. Mit derartigen bekannten Grabenstrukturen kann ein Hochspannungstransistor mit niedrigem Durchlasswiderstand auf einem n
+-leitenden Halbleitersubstrat mit einem schwachdotierten Halbleiterkörperbereich auf dem n
+leitenden Halbleitersubstrat hergestellt werden, indem aus der Grabenstruktur Kompensationsgebiete in den schwachdotierten Halbleiterkörperbereich ausdiffundiert werden. Der Graben kann mit einem Dielektrikum oder einem hochresistiven Material gefüllt werden, wie es auch in der
DE 19848828 C2 beschrieben wird.
-
Der obige Durchlasswiderstand Ron·A und die Durchbruchspannung eines hochspannungsfesten Halbleiterbauelements für einen Leistungstransistor sind über die Dotierung und Länge bzw. die Dicke einer Driftstrecke, also des die Sperrspannung hauptsächlich aufnehmenden schwachdotierten n--Gebiets, verknüpft. Eine hohe Dotierung und eine kurze Driftstrecke bedeuten einen niedrigen Durchlasswiderstand, aber auch eine niedrige Durchbruchspannung. Umgekehrt sind für eine hohe Durchbruchspannung eine niedrige Dotierung und eine lange Driftstrecke erforderlich, was einen hohen Durchlasswiderstand Ron·A ergibt.
-
In der deutschen Patentanmeldung
DE 10 2004 007 197 A1 wird ein Halbleiterbauteil beschrieben, in dem mittels zur Driftstrecke parallel angeordneter Schichten aus einem Material mit hoher Dielektrizitätskonstante, das im weiteren high-k-Material (high dielectric constant material) genannt wird,eine bedeutend höhere Driftstreckendotierung ermöglicht und damit ein erheblich niedrigerer Durchlasswiderstand erreicht wird. Bei typischen Grabenbreiten und Breiten des n
--Gebietes im Bereich weniger µm lassen sich für 600 V-Bauelemente Durchlasswiderstandswerte R
on•A erreichen, die mindestens einen Faktor
3 besser als beim „CoolMOS“ heute sind. An der Unterseite der high-k-Materialschichten liegt ein Übergang von einem Material mit hoher Dielektrizitätskonstante zu einem Material mit niedriger Dielektrizitätskonstante, wie z.B. Silizium, vor. Damit verbunden ist ein entsprechender Sprung der Normalkomponente der elektrischen Feldstärke
E, weil für diese Feldkomponenten gilt:
mit
εhk hohe Dielektrizitätskonstante des Grabenmaterials bzw. des high-k-Materials,
Ehk Feldstärke an der Grenzfläche im Material mit hoher Dielektrizitätskonstanten,
εSi , Dielektrizitätskonstante des Siliziums und
ESi , Feldstärke im angrenzenden Silizium. Da die Feldstärke
Ehk in dem high-k-Gebiet typischerweise bereits die halbe Durchbruchfeldstärke des Halbleitermaterials beträgt, steigt die Feldstärke
ESi , im darunter liegenden Halbleiter auch bei einer relativen Dielektrizitätskonstanten des high-k-Gebiets von sogar nur 50 schon weit über die Durchbruchsfeldstärke des Siliziums als Halbleitermaterial an, sodass die gewünschte Sperrfähigkeit in den vorgeschlagenen Strukturen nicht erreicht werden kann, es sei denn, das mit einem high-k-Material gefüllte Gebiet bzw. der gefüllte Graben erreicht sehr genau den Übergang zu dem hochdotierten n
+-Gebiet des hochdotierten Substrats, was technologisch kaum realisiert werden kann, jedoch in der bisherigen Technologie nachteilig vorausgesetzt wird.
-
Ein anderer kritischer Fall derartiger hochspannungsfester Halbleiterbauelementstrukturen ergibt sich, wenn das high-k-Gebiet zu weit in das hochdotierte n+-Halbleitergebiet des Substrats hineinreicht. Dann entsteht am Übergang der n--dotierten Driftstrecke in das hochdotierte Gebiet eine Feldstärkespitze, die ebenfalls die Sperrfähigkeit herabsetzt. Somit besteht bei diesen hochspannungsfesten Halbleiterbauelementen das Problem darin, das high-k-Gebiet möglichst genau auf einem hochdotierten Gebiet des Halbleitersubstrats enden zu lassen, was technologisch eine schwierig zu erfüllende Aufgabe ist, zumal das Einbringen der Grabenstrukturen für die high-k-Gebiete mit Technologien wie Laserablation oder Plasmaätzen durchgeführt wird, die für einen Abtragstopp zwischen schwachdotierten Epitaxieschichtbereichen und hochdotierten Substratbereichen nicht geeignet sind.
-
Die
WO 02/067332 A2 beschreibt ein vertikales Leistungshalbleiterbauelement, das als MOSFET oder als Diode ausgebildet ist. Bei diesem Bauelement erstreckt sich ein Widerstandspfad von einer Sourceelektrode bzw. einer Anodenelektrode bis zu einem Draingebiet bzw. einem Kathodengebiet durch ein Driftgebiet und ist durch ein Dielektrikum gegenüber dem Driftgebiet isoliert.
-
Die
WO 00/68997 A1 beschreibt einen vertikalen MOSFET, der angrenzend an ein n-dotiertes Driftgebiet ein p-dotiertes Gebiet aufweist, das sich von einem Bodygebiet bis an ein Draingebiet erstreckt. Angrenzend an das p-dotierte Gebiet erstreckt sich ein dielektrisches Gebiet von einer Sourceelektrode bis zu dem Draingebiet.
-
Die
US 6 624 472 B2 beschreibt einen vertikalen MOSFET, der angrenzend an ein n-dotiertes Driftgebiet ein p-dotiertes Gebiet aufweist, das sich von einem Bodygebiet bis an ein Draingebiet erstreckt. Ein semiisolierendes Gebiet erstreckt sich von einer Sourceelektrode bis an das Draingebiet und ist durch ein Dielektrikum gegenüber dem p-dotierten Gebiet isoliert.
-
Aufgabe der Erfindung ist es, die Feldstärkespitzen am Grabenboden eines high-k-Gebietes, die nachteilig im Stand der Technik die Durchbruchsspannungsfestigkeit der Leistungshalbleiterbauteile herabsetzen, trotz ungenauer Einarbeitung der Grabenstrukturen in eine Halbleiterepitaxieschicht weitestgehend abzubauen. Gleichzeitig ist es Aufgabe der Erfindung, für derartige Halbleiterbauelemente die Durchbruchsspannungsfestigkeit zu verbessern.
-
Gelöst wird diese Aufgabe mit den unabhängigen Ansprüchen 1 und 12. Vorteilhafte Weiterbildungen der Erfindung ergeben sich aus den abhängigen Ansprüchen.
-
Erfindungsgemäß wird ein hochspannungsfestes Halbleiterbauelement mit vertikal leitenden schwachdotierten Halbleiterkörperbereichen als Driftstreckengebiete eines ersten Leitungstyps und mit einer Grabenstruktur auf seiner Oberseite angegeben. Dabei umgibt die Grabenstruktur die vertikal leitenden schwachdotierten Halbleiterkörperbereiche zumindest teilweise und weist einen Boden- und einen Wandbereich auf. Die Grabenstruktur ist von einem Material hoher relativer Dielektrizitätskonstante, einem sogenannten „high-k-Material“ aufgefüllt, wobei der Bodenbereich der Grabenstruktur ein hochdotiertes Halbleitermaterial gleichen Leitungstyps wie die schwachdotierten Halbleiterkörperbereiche und/oder ein metallisch leitendes Material aufweist.
-
Dieses Halbleiterbauelement hat den Vorteil, dass durch das hochdotierte Halbleitermaterial gleichen Leitungstyps wie die schwachdotierten Halbleiterkörperbereiche bzw. das metallisch leitende Material im Bodenbereich der Grabenstruktur Feldstärkespitzen, wie sie beim nicht Erreichen des hochdotierten n+-Halbleitergebietes des Substrates auftreten, innerhalb einer sehr kurzen Strecke von wenigen Nanometern in diesem n+leitenden Bodenbereich bzw. metallischen Bodenbereich abgebaut werden. Dazu wird das Einbringen der Grabenstrukturen noch vor dem Erreichen des hochdotierten Substrats abgebrochen und die erfindungsgemäße Schicht im Bodenbereich der Grabenstruktur eingebracht.
-
Diese hochspannungsfesten Halbleiterbauelemente haben darüber hinaus den Vorteil, dass der Ausschuss bei der Fertigung wesentlich herabgesetzt wird, zumal nun ein größerer Toleranzbereich für die Tiefe der Grabenstruktur in der schwachdotierten Epitaxieschicht der Halbleiterstruktur möglich ist. Auch die Streubreite der Tiefe über einer Halbleiterscheibe bzw. einem Wafer ist damit nicht mehr so kritisch wie bei den aus der Patentanmeldung
DE 10 2004 007 197.7 bekannten Halbleiterstrukturen.
-
In einer bevorzugten Ausführungsform der Erfindung sind die schwachdotierten Halbleiterkörperbereiche plattenförmig im Wechsel mit entsprechenden plattenförmigen Grabenstrukturen auf der Oberseite des Halbleiterbauelements angeordnet. Dabei weisen die plattenförmigen Grabenstrukturen das high-k-Material auf. Die Breite der plattenförmigen Grabenstrukturen bzw. Breite der schwachdotierten Halbleiterkörperbereiche ist für die Sperrfähigkeit der Halbleiterbauelemente maßgebend. Wird eine kritische Breite der plattenförmigen schwachdotierten Halbleiterkörperbereiche überschritten, so ist ein vollständiges Sperren der n--leitenden Driftzone nicht gewährleistet.
-
In einer weiteren Ausführungsform der Erfindung sind die schwachdotierten Halbleiterkörperbereiche säulenförmig mit rundem, quadratischem oder anderem polygonalen, vorzugsweise hexagonalem Querschnitt auf der Oberseite des Halbleiterbauelements angeordnet und von der Grabenstruktur umgeben. Bei einer derartigen säulenförmigen Anordnung mit umgebender Grabenstruktur wird die Grabenstruktur mittels Laserablation oder mittels Plasmaätzens eingebracht. Beide Verfahren können einen anisotropen Prozess bzw. ein anisotropes Ätzen bereitstellen, wobei die Abtragsrate bzw. die Ätzrate in Richtung der Tiefe der Grabenstruktur beträchtlich größer ist als der Abtrag der seitlichen Wandstrukturen der Gräben.
-
Der Wandbereich der Grabenstruktur weist in einer weiteren bevorzugten Ausführungsform der Erfindung eine Isolationsschicht als Schutzschicht auf, wobei die Isolationsschicht ein Oxid oder ein Nitrid der Gruppe isolierender Materialien wie SiO2, Si3N4, TiO2, HfO2, Ta2O5, Al2O3 oder AlN oder Mischungen derselben aufweist. Eine derartige isolierende Wandstruktur kann gleichzeitig während des Auffüllens der Grabenstruktur die Wände schützen, insbesondere bei der Einbringung von hochdotiertem Halbleitermaterial bzw. metallisch leitendem Material in den Bodenbereich der Grabenstruktur.
-
Beim Rückätzen derartiger im Boden des Grabens aufzubringender leitender Schichten von der Wandstruktur können die oben erwähnten Schutzschichten aus Oxiden oder Nitriden als Ätzstoppschichten wirken. Andererseits ist es auch möglich, den Wandbereich der Grabenstruktur mit einer Wandschicht aus Halbleitermaterial zu versehen, die einen dem ersten Leitungstyp des schwachdotierten Bereichs entgegengesetzten Leitungstyp aufweist. Damit wird eine Raumladungszone geschaffen, welche die Durchbruchsfestigkeit des Halbleiterbauteils verbessert.
-
In einer weiteren bevorzugten Ausführungsform der Erfindung weist der Bodenbereich der Grabenstruktur als hochdotiertes Halbleitermaterial ein Material auf, dessen Störstellenkonzentration
ist,
mit
εr relative Dielektrizitätskonstante, ε
0•absolute Dielektrizitätskonstante des Vakuums,
Ecrit kritische Feldstärke und Eg Bandabstand des Halbleitermaterials. Mit einer derart hochdotierten Schicht im Bodenbereich des Grabens wird die Feldstärkenspitze, die ohne eine derartige Schicht bei einem nicht ausreichend tiefen Graben, bzw. bei einem zu tief eingebrachten Graben auftritt, abgebaut. Die Spannungsfestigkeit des Leistungstransistors wird somit verbessert.
-
Vorzugsweise weist der Bodenbereich der Grabenstruktur als hochdotiertes Halbleitermaterial ein kristallines Silizium, Polysilizium oder Siliziumkarbid mit einer Störstellenkonzentration zwischen
auf. Diese hohe Dotierung ermöglicht es, die Spannungsspitzen abzubauen, die sonst im Bodenbereich auftreten würden und die Durchbruchsspannungsfestigkeit des Bauteils derart zu verbessern, dass kein Avalanche-Effekt auftreten kann.
-
Als metallisch leitende Materialien haben sich im Bodenbereich Silizide, vorzugsweise Wolfram- oder Kobaltsilizid bewährt. Derartige Silizide sind nicht nur metallisch leitend, sondern sind auch temperaturfest, sodass hohe Verlustleistungen die Funktionsfähigkeit der im Bodenbereich angeordneten metallisch leitenden Materialien nicht beeinträchtigen.
-
In einer weiteren bevorzugten Ausführungsform der Erfindung werden als metallisch leitende Materialien die Metalle mit Titan, Hafnium, Tantal oder Legierungen derselben eingesetzt. Diese Materialien können jedoch nicht beliebig hoch temperaturbelastet werden. Andererseits ist es auch möglich, Nitride von Titan, Hafnium oder Zirkonium als leitende Schichten im Bodenbereich der Grabenstruktur einzusetzen, die selbst elektrisch leitend sind und die ebenfalls eine hohe Temperaturfestigkeit aufweisen.
-
Auf der Oberseite der gefüllten Grabenstruktur kann ein hochleitender oder metallischer Kontakt angeordnet sein, der mit einer Source-Elektrode eines hochspannungsfesten MOS-Leistungstransistors oder einer Emitter-Diode eines hochspannungsfesten IGBT-Leistungstransistors elektrisch in Verbindung steht. Eine derartige Ausführungsform der Erfindung hat den Vorteil, dass die Oberseite der Grabenstruktur, insbesondere des high-k-Materials auf dem gleichen Potential liegt wie die Source-Elektrode bzw. die Emitter-Elektrode. Der Kontakt kann alternativ auch mit einem anderen festen Potential oder mit der Gate-Elektrode verbunden sein. Es ist möglich, dass die schwachdotierten Halbleiterkörperbereiche auf ihren Oberseiten unterschiedliche Gate-Strukturen aufweisen. Während eine Gate-Struktur planar und eben auf dem Halbleiterkörperbereich angeordnet ist, kann eine Gate-Struktur auch vertikal in die Oberseite des schwachdotierten Halbleiterkörperbereichs eingegraben sein, der zu einem vertikalen Gate-Kanal führt, der weniger Fläche benötigt, als diejenige, die mit einer planaren oder ebenen Gate-Struktur erreichbar ist. Das vertikale Gate kann im selben Graben angeordnet sein wie das high-k-Material.
-
Ein weiterer Aspekt der vorliegenden Erfindung betrifft ein Halbleiterbauteil mit einem Halbleiterbauelement gemäß der oben beschriebenen Struktur. In einer ersten Ausführungsform der Erfindung weist dieses Halbleiterbauteil eine Schottky-Diodenstruktur auf. Dabei umgibt die mit einem high-k-Material gefüllte Grabenstruktur Halbleiterkörperbereiche eines schwachdotierten Halbleiterkörperbereichs eines ersten Leitungstyps, der auf seiner Oberseite die Schottky-Diodenstruktur aufweist. Im Bodenbereich der Grabenstruktur ist eine Schicht aus hochdotiertem Halbleitermaterial oder eine Metallschicht angeordnet. Der schwachdotierte Halbleiterkörperbereich des ersten Leitungstyps ist auf einem hochdotierten Substrat gleichen Leitungstyps angeordnet. Die Oberseiten der Halbleiterkörperbereiche weisen eine Metallbeschichtung eines Schottky-Kontaktmaterials auf, das eine Einzelelektrode einer Schottky-Diode bildet. Die Einzelelektroden der Vielzahl von Halbleiterkörperbereichen sind parallel zu einer Gesamtelektrode elektrisch verbunden, während die Gegenelektrode von dem hochdotierten Substrat gleichen Leitungstyps wie der schwachdotierte Halbleiterkörperbereich ausgebildet ist. Dazu weist das hochdotierte Substrat auf seiner Rückseite eine Metallbeschichtung auf, welche die Gegenelektrode bildet.
-
In einer weiteren bevorzugten Ausführungsform des Halbleiterbauteils weist dieses Halbleiterbauteil eine hochspannungsfeste PIN- oder NIP-Diodenstruktur auf. Diese hochspannungsfeste Diodenstruktur weist eine mit einem high-k-Material gefüllte Grabenstruktur auf, die zur Sicherung der Hochspannungsfestigkeit im Bodenbereich der Grabenstruktur eine Schicht aus hochdotiertem Halbleitermaterial oder eine Metallschicht aufweist. Die Grabenstruktur umgibt einen schwachdotierten Halbleiterkörperbereich eines ersten Leitungstyps. Dieser Halbleiterkörperbereich ist auf einem hochdotierten Substrat gleichen Leitungstyps wie der schwachdotierte Halbleiterkörperbereich angeordnet.
-
Die gefüllte Grabenstruktur umgibt eine Vielzahl von Halbleiterkörperbereichen des schwachdotierten Halbleiterkörperbereichs und die Oberseitenbereiche der Halbleiterkörperbereiche weisen eine mittel- bis hochdotierte Diffusionszone eines entgegengesetzten Leitungstyps auf, die mit einer einzelnen Metallelektrode beschichtet ist. Die Vielzahl der einzelnen Metallelektroden der Halbleiterkörperbereiche sind parallel zu einer Gesamtelektrode elektrisch verbunden und stehen elektrisch mit der gefüllten Grabenstruktur auf der Oberseite des Halbleiterkörperbereichs in Verbindung. Die Gegenelektrode der hochspannungsfesten PIN- oder NIP-Diode wird von einem hochdotierten Substrat gleichen Leitungstyps wie der schwachdotierte Halbleiterkörperbereich gebildet. Dazu weist die Unterseite des Halbleiterbauteils eine Metallschicht auf, die mit dem hochdotierten Substrat ohmsch verbunden ist, und eine Gegenelektrode zu der Oberseite des Halbleiterbauteils bildet.
-
Weiterhin ist es vorgesehen, dass mit dem high-k-Material und dem hochdotierten Bodenbereich der Grabenstruktur bzw. der Metallschicht im Bodenbereich der Grabenstruktur eine hochspannungsfeste MOS-Leistungstransistorstruktur realisiert wird. Bei dieser MOS-Leistungstransistorstruktur weist die Grabenstruktur ein high-k-Material auf, das einen schwachdotierten Halbleiterkörperbereich eines ersten Leitungstyps umgibt. Dieser schwachdotierte Halbleiterkörperbereich ist auf einem hochdotierten Halbleitersubstrat angeordnet, das den gleichen Leitungstyp wie die schwachdotierte Epitaxieschicht mit der Grabenstruktur aufweist.
-
Die Oberseitenbereiche der Halbleiterkörperbereiche sind mit einer MOS-Struktur mit Source-Einzelelektroden und Gate-Einzelelektroden ausgestattet. Dazu ist im Oberflächenbereich eine mittel- bis hochdotierte Störstellenzone eines entgegengesetzten Leitungstyps für die Halbleiterkörperbereiche vorgesehen, die einen Gate-Kanalbereich zum Randbereich des Halbleiterkörperbereichs hin ausbildet. Die Störstellenzone weist eine Source-Elektrode auf und die Vielzahl der Source-Elektroden der Halbleiterkörperbereiche sind parallel zu einer gemeinsamen Source-Elektrode elektrisch verbunden und stehen mit der Grabenstruktur elektrisch in Verbindung. Der Gate-Kanalbereich des mittel- bis hochdotierten Gebietes im Randbereich der Halbleiterkörperbereiche ist von einem Gate-Oxid abgedeckt. Auf dem Gate-Oxid ist eine Gate-Elektrode angeordnet, wobei die Vielzahl der einzelnen Gate-Elektroden der Halbleiterkörperbereiche zu einer gemeinsamen Gate-Elektrode oberhalb der Oberseite des schwachdotierten Halbleiterkörperbereichs zusammengeschlossen sind. Das hochdotierte Substratmaterial, das den gleichen Leitungstyp wie der schwachdotierte Halbleiterkörperbereich aufweist, hat auf seiner Unterseite eine Metallbeschichtung, die als großflächige Drain-Elektrode genutzt wird.
-
Eine derartige MOS-Leistungsstruktur hat den Vorteil, wenn in der Grabenstruktur mit dem high-k-Material im Bodenbereich ein metallisch leitendes oder hochdotiertes Material angeordnet ist, dass die Spitzen der Feldstärken im schwachdotierten Halbleiterkörperbereich, benachbart zu dem Bodenbereich der mit dem high-k-Material gefüllten Grabenstruktur, abgebaut werden und die volle Durchbruchsspannungsfestigkeit für derartige Bauteile erreicht werden kann. Der Aufbau eines Halbleiterbauteils mit hochspannungsfestem IGBT (Insulated Gate Bipolar Transistor) ist ähnlich aufgebaut wie der MOS-Transistor, jedoch weist das hochdotierte Substrat einen entgegengesetzten Leitungstyp gegenüber dem schwachdotierten Halbleiterkörperbereich auf.
-
Dieser hochspannungsfeste IGBT ist ein bipolarer Transistor mit isoliertem Gate-Anschluss. Die Struktur dieses Leistungstransistors unterscheidet sich von der Struktur eines hochspannungsfesten MOS-Leistungstransistors lediglich dadurch, dass die Grabenstruktur mit einer leitenden Schicht am Grabenboden in einem schwachdotierten Halbleiterkörperbereich eines Leitungstyps eingebettet ist, der auf einem hochdotierten Substrat mit entgegengesetztem Leitungstyp angeordnet ist. Dadurch entsteht ein bipolarer Transistor je nach Leitungstyp und Kombination der Gebiete des PNP-Typs oder des NPN-Typs. Die Substrate der vorstehend beschriebenen Bauelemente wie der Schottky-, der PIN-Diode, des MOSFET oder des IGBT können nahezu beliebig dünn ausgeführt werden.
-
Ein Verfahren zur Herstellung mehrerer Halbleiterchips aus einem Halbleiterwafer, der in Zeilen und Spalten angeordnete Halbleiterchippositionen aufweist, wird durch die nachfolgenden Verfahrensschritte beschrieben. Zunächst wird ein schwachdotierter Halbleiterwafer eines ersten Leitungstyps oder eine mit dem ersten Leitungstyp schwachdotierte Epitaxieschicht, die auf einem mit dem ersten Leitungstyp hochdotierten Halbleiterwafer abschieden wird, hergestellt. Dann werden Grabenstrukturen mit einem Boden und einem Wandbereich in den schwachdotierten Oberflächenbereich der Halbleiterchippositionen des Halbleiterwafers eingebracht. Danach kann eine hohe Dotierung gleichen Leitungstyps, wie die schwachdotierten Bereiche, in dem Bodenbereich der Grabenstruktur eingebracht werden, oder es wird eine metallisch leitende Beschichtung auf dem Bodenbereich der Grabenstruktur untergebracht. Bei dem Einbringen einer Schicht im Bodenbereich wird darauf geachtet, dass die Wände der Grabenstruktur selber keine leitende Beschichtung aufweisen. Das kann vorzugsweise durch ein anisotropes Abscheiden der leitenden Schicht in der Grabenstruktur mit anschließendem isotropen Ätzen erfolgen, wobei eine metallische Beschichtung des Wandbereichs entfernt wird. Danach wird die Grabenstruktur mit einem high-k-Material aufgefüllt.
-
Der Vorteil dieses Verfahrens ist es, dass durch die Einbringung einer hohen Dotierung, bzw. einer metallisch leitenden Beschichtung auf dem Boden der Grabenstruktur die Feldstärkespitzen, die beim Übergang der Grabenstruktur auf ein schwachdotiertes Halbleitergebiet entweder seitlich oder unterhalb der Grabenstruktur auftreten, können, durch die metallisch leitende bzw. hochdotierte Schicht auf dem Boden des Grabens abgebaut werden, sodass die volle theoretisch erreichbare Durchbruchspannung über der Driftstrecke dann möglich wird.
-
Ein Dotieren des Bodenbereichs der Grabenstruktur kann durch eine gerichtete Ionenimplantationstechnik erfolgen. Dazu wird die Oberseite des Halbleiterbauelements bis auf die Grabenstruktur selbst durch eine Fotolackschicht geschützt, welche von den Ionenstrahlen nicht durchdrungen wird. Durch Ausrichten der Ionenstrahlen orthogonal zu der Oberfläche des Halbleiterwafers kann eine sehr präzise Dotierung des Bodenbereichs des Halbleiterwafers erreicht werden. Um die Gefahr der Dotierung der Seitenwände zu minimieren, können diese vorher mit einer Oxidschicht oder Nitridschicht von Silizium oder Aluminium bedeckt werden. Auch Tantaloxide und Hafniumoxide können die Seitenwände vor einem Eindringen der Dotierung schützen. Andererseits ist es möglich, wenn die Seitenwände dotierstoffbelastet werden, die dünne dotierstoffbelastete Schicht durch isotropes Ätzen abzutragen.
-
Für ein Auftragen einer metallisch leitenden Schicht im Bereich des Grabenbodens, vorzugsweise aus einem Silizid wie Wolframsilizid und/oder Kobaltsilizid, werden die physikalischen Verfahren wie Sputtertechnik, Aufdampftechnik oder die chemischen Verfahren wie chemische Gasphasenabscheidung oder elektrolytische Abscheidung in vorteilhafter Weise eingesetzt. Auch hier ist es vorteilhaft, vor dem Einbringen der metallischen Schichten auf den Grabenboden die Wandbereiche der Grabenstruktur durch eine effektive Schutzschicht zu schützen. Nach dem Herstellen der gefüllten Grabenstruktur, wofür die Grabenstruktur mit einem Material hoher relativer Dielektrizitätskonstante, einem so genannten high-k-Material aufgefüllt wird, erfolgen Fertigungsschritte zur Herstellung von funktionsfähigen Halbleiterchips auf dem Halbleiterwafer und anschließend wird der Halbleiterwafer in einzelne Halbleiterchips aufgetrennt. Nach der Fertigung der Halbleiterchips werden diese zu entsprechenden hochspannungsfesten Halbleiterbauteilen gemäß den oben beschriebenen Bauteilvarianten bearbeitet.
-
Zusammenfassend ist festzustellen, dass mit einem hochdotierten bzw. metallisch leitenden Gebiet im Bodenbereich der Grabenstruktur die hohen Feldstärkenspitzen am Übergang von dem high-k-Material zu einem schwachdotierten Halbleiterkörperbereich über eine sehr kurze Strecke abgebaut werden. Beispielsweise wird ein Feld von 106 V/cm in Silizium mit einer Dotierung von 1019 cm-3 über eine Strecke von lediglich 6 nm abgebaut. Über diese Strecke fällt dabei nur eine Spannung von gut 0,3 V an, sodass hier die Ladungsträger nicht genügend Energie aufnehmen können, um durch Stoßionisation neue Ladungsträger zu generieren. Es entsteht also keine Avalanche-Generation, daher bleibt die Durchbruchspannung von der hohen Feldstärkespitze, die in diesem Bereich anfällt, unbeeinflusst. Ist die Dotierung jedoch nur 1016 cm-3, dann würde die Durchbruchspannung dagegen von 600 V auf lediglich 200 V absinken, womit eine hohe Feldstärkenspitze im Übergangsbereich verbunden ist, was zu einem Avalanche-Durchbruch führen könnte.
-
Neben der hohen Dotierung des Halbleitermaterials im Übergangsbereich ist es auch möglich, unterhalb des high-k-Gebietes im Graben am Boden eine metallische Schicht aus einem Silizid einzubringen. Diese Schicht wirkt als untere Elektrode des high-k-Gebietes und verhindert ein Eindringen des hohen elektrischen Feldes in das darunter liegende schwachdotierte Halbleitermaterial. Somit wird mit der Erfindung vorteilhaft erreicht, dass das elektrische Feld unterhalb der high-k-Gebiete durch hochdotiertes oder durch metallisches Material auf kurze Strecken abgebaut wird. Außerdem wird mit der Erfindung vorteilhaft erreicht, dass die Grabenstruktur selbstjustierend ist, und dabei in der Tiefe des high-k-Gebietes auf einfachste Weise eine hochdotierte oder metallische Beschichtung einbringbar ist.
-
Die Erfindung wird nun anhand der beigefügten Figuren näher erläutert.
- 1 zeigt einen prinzipiellen Verlauf der elektrischen Feldstärke E eines hochspannungsfesten Halbleiterbauelements mit einer gefüllten Grabenstruktur in einem schwachdotierten Halbleiterkörperbereich ohne erfindungsgemäße vergrabene leitfähige Schichten im Grabenbodenbereich in Abhängigkeit von der vertikalen Ortskoordinate d.
- 2 zeigt einen prinzipiellen Verlauf der elektrischen Feldstärke E eines hochspannungsfesten Halbleiterbauelements mit einer gefüllten Grabenstruktur mit einem Grabenbodenbereich, der innerhalb eines hochdotierten Halbleitersubstratbereichs angeordnet ist, (ohne erfindungsgemäße leitfähige Schicht im Grabenbodenbereich) in Abhängigkeit von der vertikalen Ortskoordinate d.
- 3 zeigt einen schematischen Querschnitt durch ein hochspannungsfestes Halbleiterbauelement mit gefüllter Grabenstruktur einer ersten Ausführungsform der Erfindung.
- 4 zeigt einen schematischen Querschnitt eines hochspannungsfesten Halbleiterbauelements mit gefüllter Grabenstruktur einer zweiten Ausführungsform der Erfindung.
- 5 zeigt einen schematischen Querschnitt eines hochspannungsfesten Halbleiterbauelements mit gefüllter Grabenstruktur einer dritten Ausführungsform der Erfindung.
- 6 zeigt einen schematischen Querschnitt durch ein hochspannungsfestes Halbleiterbauelement mit vertikalem MOS-Kanalbereich und einer gefüllten Grabenstruktur gemäß einer vierten Ausführungsform der Erfindung.
-
1 zeigt einen prinzipiellen Verlauf der elektrischen Feldstärke E in Abhängigkeit von der vertikalen Ortskoordinate d in einem hochspannungsfesten Halbleiterbauelement 1 mit einer gefüllten Grabenstruktur 5, deren Grabenbodenbereich 7 in einem schwachdotierten Halbleiterkörperbereich 17 angeordnet ist. Die Grabenstruktur 5 ist mit einem Material 9 hoher relativer Dielektrizitätskonstante εr gefüllt. Diese Struktur weist noch nicht die erfindungsgemäße leitfähige vergrabene Schicht im Grabenbodenbereich 7 auf. Die Feldstärke E ist zunächst an der Oberseite 14 der Grabenstruktur 5 mit EO am höchsten und nimmt zum Bodenbereich 7 der Grabenstruktur 7 hin auf EB ab. Jedoch bildet sich am Übergang vom Bodenbereich 7 zu dem schwachdotierten Halbleiterkörperbereich 17 eine Feldstärkenspitze Es innerhalb der Pufferschicht 26 aus, bevor sie dann im hochdotierten Substratbereich 18 vollständig abgebaut wird.
-
Diese Feldstärkespitze Es in der Pufferschicht 26 kann zu Avalanche-Effekten führen, sodass die Durchbruchspannung des Halbleiterbauelements 1 und damit die Durchbruchspannungsfestigkeit des Halbleiterchips und damit auch des Leistungsbauteils vermindert wird. Diese Feldstärkespitze Es wird nur dann unterdrückt, wenn die Grabenstruktur mit ihrem Bodenbereich 7 bis an den Bereich des hochdotierten Substrats 18 reicht. Wird die Grabenstruktur jedoch tiefer als bis an den hochdotierten Substratbereich 18 herangeführt, so bilden sich auch dort die Durchbruchspannung mindernde Feldstärkespitzen aus. Dieses wird mit der nächsten 2 verdeutlicht.
-
2 zeigt einen prinzipiellen Verlauf der elektrischen Feldstärke E in Abhängigkeit von der vertikalen Ortskoordinate d in einem hochspannungsfesten Halbleiterbauelement 1 mit einer gefüllten Grabenstruktur 5, deren Grabenbodenbereich 7 innerhalb eines hochdotierten Substratbereichs 18 angeordnet ist, (ohne die erfindungsgemäße leitfähige vergrabene Schicht im Grabenbereich). Die hohe Feldstärke EO an der Oberseite 14 der Grabenstruktur 5 vermindert sich zunächst mit zunehmender Tiefe d der Grabenstruktur, jedoch bildet sich nun eine Feldstärkenspitze Es rund um die Grabenstruktur zu dem benachbarten schwachdotierten Halbleiterkörperbereich 17 am Übergang zur Substratdotierung aus. Somit ergibt sich die Forderung, dass das Einbringen der Grabenstruktur im Bezug auf die Grabentiefe dG äußerst kritisch ist, sowohl im Fall der 1, bei dem die Grabenstruktur nicht ausreichend tief eingebracht ist, und damit den hochdotierten Substratbereich 18 nicht erreicht, als auch in dem Fall der 2, bei dem die Grabentiefe dG zu tief geraten ist, und der mit einem Material mit hoher relativer Dielektrizitätskonstanten εr aufgefüllte Graben zu weit in den hochdotierten Substratbereich 18 hineinragt, ergeben sich in dem Übergangsbereich Feldstärkespitzen, welche die Durchbruchspannung des Halbleiterbauelements 1 beeinträchtigen.
-
3 zeigt einen schematischen Querschnitt eines Halbleiterbauelements 1 eines hochspannungsfesten Halbleiterbauteils 20 mit gefüllter Grabenstruktur 5 einer ersten Ausführungsform der Erfindung. Die Grabenstruktur 5 endet noch vor dem hochdotierten Substratbereich 18 und weist in ihrem Bodenbereich 7 eine hochdotierte Halbleitermaterialschicht 11 auf. Mit dieser hochdotierten Halbleitermaterialschicht 11 wird die in 1 noch vorhandene Feldstärkespitze innerhalb des hochdotierten Schichtbereichs 11 abgebaut, sodass ein Avalanche-Durchbruch verhindert wird.
-
Somit ist es möglich, mit diesem Halbleiterbauelement einen hochspannungsfesten MOS-Leistungstransistor mit planarer Gate-Anordnung zu realisieren, ohne dass die Grabenstruktur den hochdotierten Substratbereich 18 erreichen muss. Dadurch werden die bisher engen Fertigungstoleranzen in Bezug auf die Grabentiefe deutlich entschärft.
-
Dieses hochspannungsfeste Halbleiterbauelement 1, von dem lediglich zwei MOS-Halbleiterkörperbereiche 10 gezeigt werden, weist als Füllung in der Grabenstruktur ein high-k-Material auf. Dieses high-k-Material begrenzt einzelne MOS-Halbleiterkörperbereiche 10 einer Breite b eines schwachdotierten Halbleiterkörperbereichs 17.
-
In dieser Ausführungsform der Erfindung wird der schwachdotierte Halbleiterkörperbereich 17 von einem n--Gebiet gebildet. An der Oberseite 6 des Halbleiterbauelements und damit an der Oberseite 16 des Halbleiterkörperbereichs 10 ist eine MOS-Struktur angeordnet, die in dieser Ausführungsform zwei Kanalbereiche 21 ausbildet, wobei ein Gate-Oxid 23 zwischen Gate-Elektrode G1 und Oberseite 16 des Halbleiterkörperbereichs angeordnet ist. Der Kanalbereich mit seiner Kanallänge a wird von einem mitteldotierten p-Gebiet 21 gebildet, das von der Oberseite 16 des Halbleiterkörperbereichs 10 aus eindiffundiert wurde und einseitig von einem hochdotierten n+-Gebiet begrenzt ist. Die andere Grenze der Kanallänge a bildet der schwachdotierte Halbleiterkörperbereich 17.
-
Die einzelnen Source-Elektroden S1 kontaktieren gleichzeitig die Grabenstruktur über einen metallischen Kontakt 15 und sind über eine gemeinsame Source-Elektrode SG miteinander verbunden. Auch die einzelnen Gate-Elektroden G1 sind von einer in dieser Darstellung nicht gezeigten gemeinsamen Gate-Elektrode parallel zusammengeschaltet. Während das Kanalgebiet 21 durch Eindiffusion von Störstellen in den schwachdotierten Halbleiterkörperbereich 17 von der Oberseite 16 des Halbleiterkörperbereichs 10 aus hergestellt wird, wird das Source-Gebiet mit einer n+-Dotierung durch Ionenimplantation und nachfolgender Rekristallisation erreicht, wobei die Gate-Elektrode G1 aus Polysilizium die Maskierung bildet. Die Kanallänge a wird hier durch eine planare Technologie erreicht und kann somit nicht beliebig verkleinert werden.
-
Die gesamte Struktur der vergrabenen Schichten und des schwachdotierten Halbleiterkörperbereichs 17 wird in eine schwachdotierte Epitaxieschicht 25 eingearbeitet. Zur Herstellung der Grabenstruktur können verschiedenste Techniken wie Laserablation und/oder Plasmaätzen eingesetzt werden. Für die Strukturierung der Oberfläche jedes Halbleiterkörperbereichs 10 werden in diesem Fall Fotolacktechniken und Diffusions- sowie Implantationsverfahren eingesetzt. Das Füllen der Gräben mit einem high-k-Material kann auch dahingehend modifiziert werden, dass anstelle eines homogenen high-k-Materials ein Schichtkondensator in die Gräben eingebracht wird.
-
Entscheidend für die vorliegende Erfindung ist jedoch, dass im Bodenbereich 7 der Grabenstruktur 5 zur Verminderung von Feldstärkespitzen in dieser Ausführungsform ein hochdotierter Halbleiterbereich 11 eingebracht wird. Das Einbringen dieses hochdotierten Bodenbereichs in die Grabenstruktur kann ebenfalls durch Ionenimplantation erfolgen, und zwar gleichzeitig mit dem Dotieren der n+-Source-Gebiete, wenn vorher die Grabenstruktur eingebracht wurde. Um die Wandbereiche 8 vor einem Eindringen von Störstellen und vor dem Kontakt mit dem high-k-Material zu schützen, können die Wandseiten 8 vor dem Einbringen der hohen Dotierung in den Grabenbodenbereich 7 von einer Schutzschicht bedeckt werden. Andererseits ist es auch möglich, nach einem anisotropen Einbringen der hochdotierenden Schicht 11 in den Bodenbereich 7 und in die n+-Source-Bereiche durch ein isotropes Ätzen die Grabenwände 8 wieder frei von jeglicher Hochdotierung zu ätzen. Das hochdotierte n+-Substrat wird auf der Unterseite 24 von einer Metallbeschichtung 19 bedeckt, welche die Drain-Elektrode der MOS-Leistungstransistorstruktur 22 bildet.
-
4 zeigt einen schematischen Querschnitt eines hochspannungsfesten Halbleiterbauelements 2 einer zweiten Ausführungsform der Erfindung mit einer gefüllten Grabenstruktur 5, deren Grabenboden 7 in einem schwachdotierten Halbleiterbereich 17 angeordnet ist, und mit einer erfindungsgemäßen vergrabenen Schicht 11 im Grabenbodenbereich 7 versehen ist. Komponenten mit gleichen Funktionen wie in 3 werden mit gleichen Bezugszeichen gekennzeichnet und nicht extra erörtert.
-
Der Unterschied zur Ausführungsform der
3 besteht darin, dass die hochdotierte Schicht
11 im Grabenbodenbereich
7 derart tief eingebracht wurde, dass sie bis an den hochdotierten Substratbereich
18 heranreicht. Auch bei dieser Ausführungsform der Erfindung werden jegliche Feldstärkespitzen im Übergangsbereich vom Bodenbereich
7 zum hochdotierten Substratbereich
18 abgebaut, bzw. vermieden. Die Höhe der n
+-Dotierung unter dem high-k-Gebiet der Grabenstruktur
5 sollte für Silizium mindestens 10
18 cm
-3, vorzugsweise mindestens 10
19 cm
-3 betragen. Allgemein kann die Mindesthöhe der n
+-Dotierung aus den Halbleitereigenschaften bestimmt werden, mithilfe des Quotienten
-
Dabei ist Eg die Bandlücke des Halbleitermaterials, Ecrit die Durchbruchsfeldstärke bei einer Dotierung von 1016 cm-3, εR die relative Dielektrizitätskonstante des Halbleiters und ε0 die absolute Dielektrizitätskonstante des Vakuums. Für Silizium liegt Ecrit bei etwa 4•105 V/cm, Eg bei 1,1 eV und εr bei 11,7. Somit ergibt sich der oben bereits geforderte Wert von mindestens 1018 cm-3 für die Konzentration der Störstellen in dem hochdotierten n+-Gebiet im Bodenbereich 7 der Grabenstruktur 5.
-
Neben dem Halbleitermaterial Silizium sind für derartige Bauelemente auch Siliziumkarbid und andere, vorzugsweise III-V Halbleitermaterialien geeignet. Wie hier in 4 gezeigt, ist es durchaus möglich, dass diese hochdotierten Bereiche des Grabenbodens 7 bis an das hochdotierte Substratmaterial 18 heranreichen können. Andererseits werden die Feldstärkespitzen ebenfalls abgebaut, wenn das hochdotierte Material im Grabenbodenbereich 7 nicht das hochdotierte Substrat 18 erreicht. Somit ist die Herstellung derartiger hochspannungsfester Halbleiterbauteile einfacher und zuverlässiger durchführbar als mit der herkömmlichen Technik, bei der exakt der Grenzbereich zum hochdotierten Substrat 18 von den Grabenstrukturen erreicht werden muss.
-
Anstelle der hochdotierten n+-Gebiete im Grabenbodenbereich 7 kann auch eine metallische Schicht verwendet werden, wie es die 5 in einer dritten Ausführungsform der Erfindung zeigt.
-
5 zeigt einen schematischen Querschnitt durch ein hochspannungsfestes Halbleiterbauelement 3 mit gefüllter Grabenstruktur 5 einer dritten Ausführungsform der Erfindung. Der Grabenboden 7 ist in einem schwachdotierten Halbleiterkörperbereich 17 angeordnet, wobei der Grabenboden 7 eine metallische Beschichtung 12 aufweist. Diese metallische Beschichtung 12 ist in dieser Ausführungsform der Erfindung ein Silizid wie ein Wolframsilizid oder Kobaltsilizid, das unter dem high-k-Gebiet eingebracht ist, wobei diese Schicht 12 als untere Elektrode des high-k-Gebietes dient und ein Eindringen des elektrischen Feldes in den darunter liegenden schwachdotierten Halbleiterkörperbereich 17 verhindert. Die Schicht 12 kann auch in direktem Kontakt zum hochdotierten Substratmaterial 18 stehen.
-
6 zeigt einen schematischen Querschnitt durch ein hochspannungsfestes Halbleiterbauelement 4 einer vierten Ausführungsform der Erfindung mit vertikalem MOS-Kanalbereich 27 und einer Grabenstruktur 5 gemäß einer vierten Ausführungsform der Erfindung. Die Grabenstruktur umgibt einen schwachdotierten Halbleiterkörperbereich 17, wobei der Grabenbodenbereich 7 eine metallische Schicht 12 aufweist. Die MOS-Struktur auf der Oberseite 6 des Halbleiterbauelements bzw. auf der Oberseite 16 unterscheidet sich beträchtlich von der MOS-Struktur, wie sie aus den vorhergehenden Ausführungsformen bekannt sind. Soweit Komponenten des Halbleiterbauelements 4 die gleiche Funktion aufweisen wie in den vorhergehenden Figuren, werden sie mit gleichen Bezugszeichen gekennzeichnet und nicht extra erörtert.
-
Auf der Oberseite 6 des Halbleiterbauelements 4 sind nebeneinander im Wechsel Gate-Elektroden G1 und einzelne Source-Elektroden S1 angeordnet, wobei die Source-Elektroden S1 ein Source-Gebiet mit einer n+-Dotierung kontaktieren. In der Tiefe gestaffelt schließt sich dann eine hochdotierte p+-Zone an, welche die Source-Elektrode S1 umgibt. An dieses p+-Gebiet schließt sich eine mitteldotierte Kanalzone 21 mit dem Leitungstyp p an, die durch ein vertikal angeordnetes Gate G1 gesteuert wird. Die Kanallänge a ist in dieser Ausführungsform der Erfindung vertikal angeordnet und hat somit eine sehr geringe Größe, was die Schaltgeschwindigkeit der Bauteile gegenüber den planar angeordneten Gate-Strukturen erhöht. Die Kanallänge a entspricht nämlich der Diffusionstiefe der p-Gebiete.
-
Die Gate-Funktion mithilfe von Gate-Elektroden G1 und einem Gate-Oxid 23 in vertikaler Richtung wird zusammen mit der Grabenstruktur 5 für ein Material mit hoher relativer Dielektrizitätskonstante εr bereitgestellt, indem zunächst die Grabenstruktur erzeugt wird und dann bereits das Gate-Oxid 23 auf die Wände 8 der Grabenstruktur als Isolationsschicht 13 aufgebracht wird. Nachdem in dieser Weise die Grabenstruktur mit einem Gate-Oxid geschützt ist, kann im Bodenbereich 7 die metallische Schicht 12 aus Siliziden zur Herabsetzung von Feldstärkespitzen eingebracht werden. Über dieser metallischen Schicht 12 im Grabenbodenbereich 7 wird dann das high-k-Material eingebracht und ebenfalls von einer oberen Elektrode 28 auf der Oberseite 14 des high-k-Materials abgeschlossen.
-
Die seitliche Begrenzung durch das Gate-Oxid schützt gleichzeitig davor, dass metallische Kurzschlüsse im Wandbereich 8 entstehen. Diese obere Elektrode 28 wird von einem Oxid abgedeckt und der Rest bis zur Oberseite 6 des Halbleiterbauelements 4 wird mit einer Gate-Elektrode G1 aufgefüllt. Anstelle des Einbringens des Gate-Oxids 23 in vertikaler Richtung an den Grabenwänden 8 kann dieses Gate-Oxid 23 auch kurz vor dem Einbringen des Gate-Elektrodenmetalls in den oberen Bereich der Grabenstruktur 5 eingebracht werden.
-
Der Vorteil dieses Halbleiterbauteils ist es nicht allein, dass die Feldstärkespitzen durch die metallische Schicht 12 abgebaut werden, sondern auch, dass die Grabenstruktur 5 gleichzeitig zur Darstellung eines vertikalen Kanalgebietes genutzt wird. Dieses hat fertigungstechnisch erhebliche Vorteile und aufgrund der geringen Diffusionstiefe des Kanalgebietes p können auch geringe Kanallängen a erreicht werden.
-
Die Überlappung zwischen dem n+-Source-Gebiet und der metallischen Gate-Elektrode G1 ist gering und lediglich auf die Tiefe der n+-Source-Gebiete beschränkt, die nur einige 10 nm dick ist, was mit planarer Strukturierung von Kanallängen trotz Ionenimplantation und Selbstmaskierung durch das leitende Gate-Material, wie es die anderen Ausführungsformen zeigen, nicht erreicht werden kann. Insbesondere ist der Flächenbedarf für die Gate-Struktur sehr gering.
-
Das hochdotierte p+-Gebiet, welches das Sourcemetall der Source-Elektrode S1 umgibt, wird eingebracht, um einen Schottky-Effekt beim Metallübergang der Sourceelektrode S1 zu dem Kanalbereich 21 zu vermeiden und somit einen niedrigen Kontaktwiderstand sowie hohe Löcherleitfähigkeit zu gewährleisten. Die Drain-Elektrode dieses MOS-Leistungstransistors wird durch eine Metallisierung der Unterseite des Halbleiterbauelements erreicht, sodass das n+-Substrat 18 eine für alle MOS-Körperbereiche 10 gemeinsame Drain-Elektrode Dg bildet.
-
Bezugszeichenliste
-
- 1
- Halbleiterbauelement (erste Ausführung)
- 2
- Halbleiterbauelement (zweite Ausführung)
- 3
- Halbleiterbauelement (dritte Ausführung)
- 4
- Halbleiterbauelement (vierte Ausführung)
- 5
- Grabenstruktur
- 6
- Oberseite des Halbleiterchips
- 7
- Bodenbereich
- 8
- Wandbereich
- 9
- Material hoher relativer Dielektrizitätskonstanten εr
- 10
- Halbleiterkörperbereich
- 11
- hochdotiertes Halbleitermaterial bzw. -beschichtung
- 12
- metallisch leitendes Material
- 13
- Isolationsschicht
- 14
- Oberseite der Grabenstruktur
- 15
- metallischer Kontakt der Grabenstruktur (auf der Oberseite)
- 16
- Oberseite der Halbleiterzelle mit schwachdotiertem Bereich
- 17
- schwachdotierter Halbleiterkörperbereich
- 18
- hochdotiertes Substrat
- 19
- Metallbeschichtung
- 20
- Halbleiterbauteil
- 21
- Diffusionszone bzw. Störstellenzone
- 22
- MOS-Leistungstransistorstruktur
- 23
- Gate-Oxid
- 24
- Unterseite des Halbleiterchips
- 25
- Epitaxieschicht
- 26
- Pufferschicht
- 27
- vertikaler MOS-Kanalbereich
- 28
- obere Elektrode der Grabenstruktur
- εr
- relative Dielektrizitätskonstante
- ε0
- absolute Dielektrizitätskonstante des Vakuums
- S1
- Source-Elektrode
- Sg
- gemeinsame Source-Elektrode
- G1
- Gate-Elektrode einer Zelle
- Dg
- gemeinsame Drain-Elektrode
- d
- vertikale Ortskoordinate
- dG
- Grabentiefe
- b
- Breite der schwachdotierten Halbleiterzelle
- a
- Kanallänge
- E
- elektrische Feldstärke
- E0
- elektrische Feldstärke an der Oberseite
- EB
- elektrische Feldstärke im Bodenbereich
- Es
- Feldstärkenspitze