[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

CN1934129A - 分级装置和分级方法 - Google Patents

分级装置和分级方法 Download PDF

Info

Publication number
CN1934129A
CN1934129A CN200580008476.9A CN200580008476A CN1934129A CN 1934129 A CN1934129 A CN 1934129A CN 200580008476 A CN200580008476 A CN 200580008476A CN 1934129 A CN1934129 A CN 1934129A
Authority
CN
China
Prior art keywords
film
antibody
protein
stoste
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN200580008476.9A
Other languages
English (en)
Other versions
CN1934129B (zh
Inventor
棚桥一裕
云一郎
黑木信幸
菅谷博之
山田智子
和田茂久
郑基晚
黑田俊彦
关口修司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Publication of CN1934129A publication Critical patent/CN1934129A/zh
Application granted granted Critical
Publication of CN1934129B publication Critical patent/CN1934129B/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/02Hollow fibre modules
    • B01D63/04Hollow fibre modules comprising multiple hollow fibre assemblies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • B01D61/20Accessories; Auxiliary operations
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/14Extraction; Separation; Purification
    • C07K1/16Extraction; Separation; Purification by chromatography
    • C07K1/22Affinity chromatography or related techniques based upon selective absorption processes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/14Extraction; Separation; Purification
    • C07K1/34Extraction; Separation; Purification by filtration, ultrafiltration or reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/14Extraction; Separation; Purification
    • C07K1/36Extraction; Separation; Purification by a combination of two or more processes of different types
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/24Specific pressurizing or depressurizing means
    • B01D2313/243Pumps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2319/00Membrane assemblies within one housing
    • B01D2319/02Elements in series
    • B01D2319/022Reject series

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Biophysics (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Molecular Biology (AREA)
  • Genetics & Genomics (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Peptides Or Proteins (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

本发明中公开了以下的构成:1.一种使用了膜的分级装置,其具备过滤部、浓缩部、回收部和输液泵,连接过滤部、浓缩部和回收部的流路构成的回路是封闭回路。2.一种生物体成分的分离方法,其特征在于,是对下述抗体吸附膜分离体系供给生物体成分来源的样品、分离一部分生物体成分的生物体成分的分离方法,所述抗体吸附膜分离体系是在没有吸附蛋白质的抗体的状态下,在人α1微球蛋白与人清蛋白的透过比率为1.5~1000的膜分离体系的中间或后部,内藏有吸附特定的蛋白质的抗体的抗体吸附膜分离体系。3.一种蛋白质的分级方法,是使含有多种蛋白质和水的溶液与中空丝分离膜接触、来分级蛋白质的方法,其特征在于,分级的溶液含有有机溶剂。

Description

分级装置和分级方法
技术领域
本发明涉及一种从含有生物体成分的溶液、特别是从人类的血液、血浆、尿等的原液中分级蛋白质等生物分子,由原液获得组成变化了的样品的方法及用于该目的的装置。特别涉及以临床蛋白组学分析为目的,除去妨害检测微量成分的成分、特别是高分子量的蛋白质,来分级生物体成分的组成改变了的溶液的方法及用于该目的的装置。
背景技术
近年来,作为后基因组学研究,蛋白组学分析研究(蛋白组学)开始受到重视。作为基因产物的蛋白质被认为比基因更加直接与疾病的症状相关,因此期待对蛋白质进行系统研究的蛋白组学分析的研究成果可以在诊断和治疗中得到广泛的应用。而且,发现多种在基因组分析中未能找到病因的蛋白质或疾病相关因子的可能性很高。
蛋白组学分析之所以能够高速发展,与技术上可以采用质谱分析装置(mass spectrometer:MS)进行高速结构分析是密不可分的,由于MALDI-ToF-MS(matrix assisted laser desorption ionization time-of-flightmass spectrometry)等的实用化,使多肽的高通量超微量分析成为可能,已可检测出以前检测不到的微量蛋白质,成为探索疾病相关因子的强有力的工具。
蛋白组学分析的临床应用的首要目的是发现由疾病诱导或消失的生物标志物(bio-marker)蛋白质。由于生物标志物的活动与病症相关,所以除了可以作为诊断的标志物之外,作为药物开发靶点的可能性也很高。即,蛋白组学分析的成果,由于比特定基因更有可能作为诊断标志物和药物开发靶点,所以成为后基因组时代的诊断和治疗的关键(evidence)技术,而由于确认的生物标志物与患者的药物反应性评价或副作用的发现预测等的患者可以直接享受到的利益相关,因此可以说对Tailor-Made医疗(结合个人基因进行医疗)的推进起到了很大作用。
在临床研究中导入蛋白组学分析(临床蛋白组学)时,要求迅速、准确地分析大量检体,而且由于临床检体微量而贵重,所以必须迅速地进行高分辨率、高灵敏度和高机能的测定。对此情况起巨大推动作用的是质谱分析(mass spectrometry),质谱分析装置具有的超高灵敏度,高通量的特性具有很大贡献。但是,虽然此类方法和设备正在快速的改良之中,但还未达到能够使蛋白组学分析在临床现场简便且迅速地实施的状况。
其原因之一可列举出临床检体的前处理。作为质谱分析的前处理,有必要分级、精制临床检体的蛋白质,目前的状况是该处理仍需要数天时间,并且由于前处理的操作很繁杂、必须要有经验,这大大阻碍了其在临床中的应用。如果能通过少量的血液、体液进行全身疾病的诊断和病症监控,则其实用性将非常高,但由于血浆中含有的蛋白质的多样性,产生了很多问题。据推测,人类蛋白质有10万种以上,而仅血清中含有的蛋白质就达到约1万种,其总量在血清中的浓度约为60~80mg/mL。血清中的高含量蛋白质是清蛋白(分子量66kDa)、免疫球蛋白(150~190kDa)、运铁蛋白(80kDa)、触珠蛋白(>85kDa)、脂蛋白(几百kDa)等,任一种均大量(>mg/mL)存在。另一方面,被认为是病症的生物标志物或疾病相关因子的肽类激素、白细胞介素、细胞因子等生理活性蛋白质中的多数仅以极微量(<ng/mL)存在。其含量比与高分子的高含量成分相比,实际上是nano到pico的水平。就蛋白质的大小而言,蛋白质的全部种类的70%以下的分子量为60kDa以下,上述极微量的生物标志物蛋白质中的任一种基本都包含在该区域中(例如非专利文献1)。由于这些蛋白质通过肾脏、使一部分从尿中排出,所以不仅可以以血液,并且也可以以尿作为检体进行测定。
以一般的血清学检查进行蛋白组学分析时,重要的是(1)除去成为妨害检测疾病相关微量成分的分子量为6万以上的高分子量成分,(2)确实回收分离出的分子量小于6万的疾病相关微量成分。
作为该高分子量蛋白质的分离装置,目前使用高效液相色谱(liquidchromatography:LC)或二维电泳(2 dimensional-polyacrylamide gelelectrophoresis:2D-PAGE),但仅LC或2D-PAGE的操作就需要1~2天。该所需时间与MALDI-TOF-MS或ESI-MS(electrospray ionizationmass spectrometry)等数分钟的分析时间相比,非常长,MS所具有的高通量的巨大优势不能在临床蛋白组学分析中得到充分发挥。因此,不得不承认,为了实现在医疗现场进行诊断和治疗而在尽量短的时间内获得分析结果,MS在现阶段仍极其缺乏实用性,这成为难以在日常的临床检查中运用MS的很大原因。只要是上述问题被解决,则可以期待利用临床蛋白组学分析进行临床检查诊断的迅速性飞跃性提高。具体而言,只要是能代替LC或2D-PAGE的、能用微量的检体快速地分级·分离目标蛋白质组的设备·装置即可。
另外,由于LC或2D-PAGE只能处理微量的样品,因此,所获得的样品中含有的生物标志物的量也少,在迄今为止公开的样品的调节方法中,有时即使进行MS分析、2维电泳分析等的蛋白质分析,也不能检测出标志物。
作为以清蛋白为主要除去对象物质的已经实用化的制品或公开的技术,有固定了蓝色色素等亲和配体的载体、通过离心分离过滤来将高分子量成分进行分级的离心管形式的装置(非专利文献2、专利文献1)、依据电泳原理进行分级的方法、Cohn的乙醇沉淀等传统的沉淀方法或通过色谱进行分级的方法(例如非专利文献3)等。另外,同时除去了清蛋白和免疫球蛋白(IgG)的制品也有市售。但是,它们的任一个都存在下述问题:分离分级性能不充分,或不适合于微量的样品,或成为分析对象的蛋白质被稀释,或者混入对质谱分析等有障碍的试剂,或重现性差等。
2D-PAGE、液相色谱等具有高分离能力。但是,人们需求与复杂、费时的方法相比,简便、短时且具有高分离能力的设备。最近,作为有效的改良的清蛋白的除去方法,发表了使用Affi-Gel Blue凝胶的方法(非专利文献4)、使用Gradiflow体系的方法(非专利文献5)等,但是仍没有报道更简便、具有更高分离能力的方法。另外,Blue凝胶不是特异地除去清蛋白那样的高分子量的蛋白质的物质,不能否定同时除去成为蛋白组学分析对象的蛋白质的可能性。作为可以循环液体的过滤装置,公开了在箱体中装填有卷成螺旋状的平膜的过滤装置(专利文献2),但是仅是这样而不加以改变,则分离性能不充分。另外,为了精度良好地检测极微量的蛋白质,需要防止混入异物。作为异物,除了蛋白质以外的物质,当然还包括目标以外的细胞、微生物。进而,例如,在某位患者的血清中的蛋白质分析中,其他患者的血清中的蛋白质成为异物。目前还没有实施了针对混入异物的对策的装置。
关于使用分离膜从蛋白质溶液中分离·回收蛋白质的方法,例如在专利文献3、4中已公开。专利文献3仅公开了方法,没有公开具有蛋白质分离所必须的结构的具体的装置。另外,在专利文献4中,没有提及具备全部必须构成部分而形成的1台分离装置。
另外已知,如专利文献4所示那样,使用中空丝膜来分离·精制目标蛋白质的技术。在专利文献4中虽没有直接公开,但是这些分离技术中,一般采用下述方法:通过硅制管等将设置有膜的柱子或填充有凝胶的柱子与输液泵连接,通过输液泵来输送流动相,向该液体流中投入含有目标物质的原液,使其与膜或柱子接触,由此来分离目标物质。在处理多个不同样品的情况下,为了避免分析之间的污染,必须进行洗涤操作,结果导致费时,另外,万一在样品中含有病原体时,在处理操作中漏出病原体,有导致感染操作者的危险。
通过开发解决这些问题的方法、装置,可以期待在医学研究以及临床现场广泛地进行蛋白组学分析,有可能更快速地进行高精度的检查、诊断,对于无有效治疗方法的疑难杂症的病因查明、早期的诊断法的开发将成为强有力的工具。
非专利文献1:Anderson NL,Anderson NG著,“The human plasmaproteome:history,character,and diagnostic prospects”,Molecular &Cellular Proteomics,(美国),The American Society for Biochemistry andMolecular Biology,Inc.,2002年,第1卷,p845-p867
非专利文献2:Radhakrishna S.Tirumalai等著,“Characterization ofthe low molecular weight human serum proteome”,Molecular&CellularProtecomics,(美国),The American Society for Biochemistry andMolecular Biology,Inc.,2003年,第2卷,p1096-1103
非专利文献3:日本生化学会编,《新生化学实验讲座(第1卷)蛋白质(1)分离·纯化·性质》,东京化学同人,1990年
非专利文献4:N.Ahmed等著,An approach to remove albumin forthe proteomic analysis of low abundance biomarkers in human serum,Proteomics,2003年,第3卷,p1980-1987
非专利文献5:D.L.Rothemund等著,Depletion of the highlyabundant protein albumin from human plasma using the Gradiflow.,Proteomics,2003年,第3卷,p 279-287
专利文献1:特表2002-542163号公报
专利文献2:特开平04-330921号公报
专利文献3:特开昭59-116223号公报
专利文献4:特开平7-133289号公报
专利文献5:特开2003-130882号公报
专利文献6:特开昭58-40323号公报
专利文献7:日本专利第3297707号公报
发明内容
本发明包括多个发明,各发明要解决的课题如下。
1)提供一种分级装置,其以含有蛋白质等生物体成分的溶液为原液,可以向所获得的溶液中混入的异物少、且对系统外的污染少地、简便·迅速地从原液中分离目标溶质。
2)提供一种生物体成分的分离方法和分离装置,其可有效地除去在含有生物体成分的溶液中含有的高分子量的蛋白质。
用于解决上述课题的手段,大致分为3类,如下所述。
在本发明中,作为第1发明,公开如下。
(1)一种分级装置,是使用膜来分离原液中的溶质或其一部分的分级装置,其特征在于,该分级装置至少具备:
1)投入原液的供给部,和
2)将从供给部输送的原液中的溶质的一部分进行过滤的过滤部,和
3)将来自过滤部的滤液进行浓缩的浓缩部,和
4)在分级时用于将导入到装置内的流动相进行输液的输液泵,
该过滤部、该浓缩部和连接该过滤部与该浓缩部的流路所形成的回路是封闭回路。
(2)上述的分级装置,其特征在于,该分级装置进一步具备
5)将从浓缩部获得的浓缩液回收的回收部,
供给部、过滤部和连接供给部与过滤部的流路所形成的回路,以及浓缩部、回收部和连接浓缩部和回收部的流路所形成的回路,分别为封闭回路。
(3)上述任一项所述的分级装置,其特征在于,上述封闭回路的总内容积为50mL以下。
(4)上述分级装置,其特征在于,在过滤部和浓缩部中分别使用过滤器。
(5)上述分级装置,其特征在于,过滤器是内藏有中空丝膜的组件。
(6)上述任一项所述的分级装置,其特征在于,在供给部与过滤部之间的流路中,具备用于输送原液的泵。
(7)上述任一项所述的分级装置,其特征在于,回收部具有采集取样浓缩液的容器。
(8)上述任一项所述的分级装置,其特征在于,上述回路的任意的位置处,具有吸收投入原液时的体积变化的缓冲部。
(9)上述任一项所述的分级装置,其特征在于,是供给部、过滤部、浓缩部、回收部与连接上述各部分的流路所形成的回路的至少一部分组装在套盒内而形成的。
(10)上述分级装置,其特征在于,输液泵是具有可以旋转的转子和在转子的外周旋转自由地设置的辊子的管式泵,上述套盒的外壁的一部分是用于挤压回路的一部分流路的挤压部件。
(11)上述的分级装置,其特征在于,具备传送机构,该机构使上述套盒沿接近离开辊型管式泵的转子的方向移动、可以挤压输送管。
(12)上述任一项所述的分级装置,其特征在于,原液是体液或含有生物体成分的液体。
(13)一种分级装置,是具备套盒和辊型管式泵,并使用膜来分离原液中的溶质或其一部分的分级装置,其特征在于,
套盒内藏有下述回路的至少一部分,所述回路至少具有用于供给原液的供给部;通过流路与上述供给部连接的、通过膜来从原液中分离溶质的装置;通过流路与上述分离溶质的装置连接的、回收已分级的溶质的回收部,
上述回路是封闭回路,上述套盒的外壁的一部分是用于从辊型管式泵挤压管的挤压部件,作为上述回路的一部分的管设置在上述挤压部件的外壁的一部分上。
(14)一种分级装置用回路,是使用膜来分离原液中的溶质或其一部分的分级装置用回路,其特征在于,
套盒内藏有下述回路的至少一部分,所述回路具有用于供给原液的供给部;通过流路与上述供给部连接的、通过膜来从原液中分离溶质的装置;通过流路与上述分离溶质的装置连接的、回收已分级的溶质的回收部,
上述回路是封闭回路,上述套盒的外壁的一部分是挤压部件,作为上述回路的一部分的管设置在上述挤压部件的外壁的一部分上。
另外,在本发明中,作为第2发明,公开如下的发明。
(1)一种生物体成分的分离方法,其特征在于,是对下述抗体吸附膜分离体系供给生物体成分来源的样品、分离一部分生物体成分的生物体成分的分离方法,所述抗体吸附膜分离体系是在没有吸附蛋白质的抗体的状态下,在人α1微球蛋白与人清蛋白的透过比率(人α1微球蛋白透过率/人清蛋白的透过率)为1.5~1000的膜分离体系的中间或后部,内藏有吸附特定的蛋白质的抗体的抗体吸附膜分离体系,
通过分离而获得的该蛋白质的浓度是在没有抗体的状态下的膜分离体系中获得的浓度的10%以下。
(2)上述生物体成分的分离方法,其特征在于,特定的蛋白质是血清清蛋白、免疫球蛋白G、免疫球蛋白A、免疫球蛋白M、运铁蛋白、触珠蛋白、α1抗胰蛋白酶、α2微球蛋白、α1酸性糖蛋白、纤维蛋白原、补体C1q、补体C3、补体C4、补体C8、补体C9、补体因子B、脱脂载脂蛋白A、脱脂载脂蛋白B、Lp(a)、胶原蛋白、肌球蛋白、肌动蛋白、细胞角蛋白、角蛋白和纤连蛋白的任一种。
(3)上述任一项所述的生物体成分的分离方法,其特征在于,抗体是多克隆抗体或单克隆抗体、或含有抗原标识部位的多克隆抗体或单克隆抗体的片断。
(4)上述任一项所述的生物体成分的分离方法,其特征在于,抗体固定于膜分离体系的膜表面。
(5)上述任一项所述的生物体成分的分离方法,其特征在于,膜分离体系是多段串联组合了内藏有分离膜的柱子的体系,抗体被固定于第一段柱子的分离膜的原液侧的表面。
(6)如(17)所述的生物体成分的分离方法,其特征在于,膜分离体系是多段串联组合了内藏有分离膜的柱子的体系,抗体被固定于第一段柱子的分离膜的透过侧的表面。
(7)上述任一项所述的生物体成分的分离方法,其特征在于,膜分离体系是多段串联组合了内藏有分离膜的柱子的体系,抗体存在于前段柱子的膜与后段柱子的膜之间的流路中的流动相中。
(8)上述任一项所述的生物体成分的分离方法,其特征在于,膜分离体系是多段串联组合有多段分离膜的体系,抗体固定在前段膜与后段膜之间的流路中。
(9)一种生物体成分分离装置,具有膜分离装置和抗体处理装置,所述膜分离装置的人α1微球蛋白与分子量6万以上的人清蛋白的透过比率为2~1000,所述抗体处理装置在膜分离装置的流路的中间或后方内藏有抗体。
另外,在本发明中,作为第3发明,公开如下的发明。
(1)一种蛋白质的分级方法,是使含有多种蛋白质和水的溶液与中空丝分离膜接触、根据蛋白质的分子量的大小来分级蛋白质的方法,其特征在于,分级的溶液含有有机溶剂。
(2)上述蛋白质的分级方法,其特征在于,有机溶剂的含量为大于等于1容量%、且小于20容量%。
(3)上述任一项所述的蛋白质的分级方法,其特征在于,有机溶剂为乙腈。
(4)上述任一项所述的蛋白质的分级方法,其特征在于,分级在30℃以下进行。
在作为第1发明公开的分级装置中,通过使用封闭回路的装置,可以使所需要的时间很短,防止分析检体(分级装置回收液)的污染和生物毒害,并且可以简便且有效地从原液特别是以血浆为首的体液中分级清蛋白等的高分子量蛋白质。进而,在本发明的装置中,通过将装置的一部分组装到套盒中,可以简便地着手接下来的样品的分级操作。
根据第2发明,可以有效率地从含有不同分子量的多种蛋白质的溶液中除去高分子量的蛋白质,获得富含微量的低分子量蛋白质的溶液,可以在质谱分析中容易地检测出这些低分子量的蛋白质。
根据第3发明,可以有效率地从含有不同分子量的多种蛋白质的溶液中除去高分子量的蛋白质,高回收率地获得微量的低分子量蛋白质。
附图说明
[图1]实施例1(第1发明)中使用的装置的斜视图
[图2]实施例1(第1发明)中使用的装置的正视图和左侧视图
[图3]显示第2发明的生物体成分的分离方法的发明的一个形态的示意图
[图4]实施例2(第2发明)中获得的各分级的电泳(SDS-PAGE)照片
符号的说明
1注射器
2a 3向接头
2b 橡胶微型管柱(供给部)
2c 接头
5a、5b、5c 分离部中空丝膜组件
5d 浓缩部中空丝膜组件
6a、6b、6c、6d 下喷嘴
7a、7b、7c、7d 主体部分下喷嘴
8 挤压部件
8a 引导轴
8b 引导轴
9 多通道式旋转辊
9a 旋转辊
9b 旋转辊
9c 旋转辊
10 回收容器
11 回收容器盖
12 带有管的袋
14 套盒
M 分级装置全体
15  三向泵
16 溶液循环流路
17a、17b、17c 输液泵
18 透过液出口
19 膜分离组件
20 滤液出口
21 吸附组件
22 过滤液出口
23 浓缩组件
具体实施方式
首先对本发明中共同的事项进行说明。
本发明中所说的“分级”是指,分离溶液中的溶质,在含有多种溶质的情况下,是指分离其全部或一部分。在将体液成分调制成通过MS分析法来进行蛋白组学分析用的样品的情况下,分级是指分成目标回收蛋白质和目标废弃蛋白质。
作为生物体成分,作为化合物可以例示蛋白质、核酸、糖、脂质、维生素、无机盐类,作为生物体成分可以例示血液、血清、血浆、尿、淋巴液、脑脊髓液等的体液成分。
本发明中所说的“浓缩”,是指从溶液中除去溶剂。在本发明的目的中,通常以水为溶剂。这时,即使除去若干低分子量的成分也没问题。
作为清蛋白,可以例示人、牛和其他哺乳动物和鸟类来源的清蛋白。所谓比清蛋白分子量大(高分子量成分),主要是指大于清蛋白(分子量6~7万)的高分子量的蛋白质。是否是大于清蛋白的高分子量,可以通过SDS-PAGE(sodium dodecylsulphate-polyacrylamide gel electrophoresis:含有十二烷基硫酸钠的聚丙烯酰胺凝胶电泳)的方法来判别。在使用清蛋白来特定本发明时,优选通过人清蛋白来定义。
首先,对笫1发明组进行说明。
作为第1发明的分级装置的优选形态,具备
(1)投入原液的供给部,和
(2)将从供给部输送的原液中的溶质的一部分进行过滤的过滤部,和
(3)将来自过滤部的滤液进行浓缩的浓缩部,和
(4)在分级时用于将导入到装置内的流动相进行输液的输液泵,
该过滤部、该浓缩部和连接该过滤部与该浓缩部的流路所形成的回路是封闭回路的构成。
所谓封闭回路,意味着回路的内部不对装置外开放。通过形成封闭回路,可以防止污染和生物毒害。
作为上述装置的优选的形态,进一步优选具备
5)将从浓缩部获得的浓缩液回收的回收部,
供给部、过滤部和连接供给部与过滤部的流路所形成的回路,以及浓缩部、回收部和连接浓缩部和回收部的流路所形成的回路,分别为封闭回路。
通过形成上述构成,可以无污染地在回收部中获得目标溶液。
第1发明的装置具备用于从外部投入原液的供给部。作为供给部的结构,例示了橡胶微型管柱、三向活栓。从注射器泵、注射器、原液袋向橡胶微型管柱、三向活栓等的供给部中供给原液。这些供给装置从密封性高、可以控制投入速度的观点出发,是优选的。就投入原液的速度而言,如果投入速度过快,则会发生封闭回路的压力上升,从回路中漏出,或引起膜的破损。另外,如果过慢,则原液的处理需要很长时间。
在从封闭回路的外部向供给部中投入原液的情况下,在回路内产生与投入的原液的体积相等的体积变化。如果没有可吸收该变化的部分,则可能对回路、膜产生过剩的压力。因此,优选在回路的任意的位置设置吸收体积变化的缓冲部。优选使用通过T字连接体来气密性良好地连接的袋或带有活塞的注射器等的结构。
供给部与过滤部通过流路来连接。通常,优选在上述流路中设置输送用的输液泵。在过滤部中,溶质的一部分被过滤。
在本发明装置的过滤部中,优选使用过滤器,进而优选使用内藏有中空丝膜或平膜的过滤组件。关于膜的分子分级性能,可以考虑到想要回收的溶质的分子量和想要除去的溶质的分子量,适当选择具有分子分级性能(截止值)的膜。
另外,在过滤组件中,优选在膜的原液侧具有原液入口和原液出口,另外,在膜的过滤侧具有过滤成分出口。优选使原液入口和原液出口与管等构成流路,对该流路设置输液泵,形成通过泵使被处理液在组件内的膜的原液侧循环的结构。由此,被处理液被反复进行过滤操作。
为了提高分离效率,可以在过滤部中多段串联连接过滤组件。在多段的情况下,供给部附近的最初的过滤组件,在连接原液入口与原液出口的流路的中间、连接来自供给部的流路。来自最初的过滤组件的过滤成分出口的流路,与连接接下来的过滤组件的原液入口和原液出口的回路的中间连接。接下来的来自过滤组件的过滤成分出口的流路也同样进一步与其接下来的组件的原液侧流路连接。在最后的过滤组件中,过滤部的机能结束,来自过滤成分出口的流路与接下来的浓缩部连接。其结果,来自过滤部的滤液被输送到浓缩部。
在过滤组件为多段的情况下,过滤组件的原液入口与原液出口之间的流路中存在的泵,可以通过各自的驱动来运转,也可以用同一驱动进行同轴运转。为了没有滞留地输液来获得最大的分离效率,优选维持同一流量地进行运转。
在过滤组件中,通常根据溶质的分子量来区分溶质。过滤组件中使用的分离膜,可以通过使用含有选自纤维素、三乙酸纤维素等的乙酸纤维素类聚合物、聚碳酸酯、聚砜、聚醚砜等的聚砜类聚合物、聚甲基丙烯酸甲酯等的聚甲基丙烯酸酯、聚丙烯酸酯、聚酰胺尼龙、聚1,1-二氟乙烯、聚丙烯腈、聚酯、聚氨酯、聚苯乙烯、聚乙烯和聚丙烯中的1种以上的原材料的过滤膜或中空丝,来更有效率地分离目标溶质成分。可以使用平面滤膜、筒式过滤膜等的平膜型分离膜(filter)、中空丝等的中空状分离膜(中空丝)的任一种。可以通过在这些过滤膜或中空丝中,固定选自下述物质中的1种以上,来对过滤膜或中空丝赋予对溶质的亲和性,其中,所属物质为抗体或其片段、聚乙烯亚胺、氨基甲基吡啶、多酚、蓝色色素、2价金属离子(Zn2+、Ni2+、Co2+、Cu2+等)、疏水性化合物(甲基、苄基、苯基、氯甲基、辛基、十二烷基等)。在用于MS分析用的样品的前处理的情况下,可以赋予吸附除去以清蛋白为首的MS分析中不需要的蛋白质的机能。
作为本发明的过滤组件中使用的分离膜,特别优选使用中空丝膜,因为其单位处理液量的表面积大,操作上的损失少。作为具备中空丝膜的过滤器的中空丝膜组件,由于蛋白质的关系,一直以来大多用作人工肾脏(透析组件),但是任意一个都是按照保持清蛋白等蛋白质不使其漏出,而可使肌酸酐、尿素等低分子成分漏出的方式,以净化流过中空丝内腔侧的血液为目的来使用的。另一方面,在第1发明过滤部中使用的分离膜中,为了分析从原液侧过滤的成分,以收集为目的来使用。具体来说,优选在原液侧残存清蛋白等的高分子量成分,同时漏出低分子量例如分子量为5kDa以下的蛋白质成分。
然后,来自分离部的最后的过滤成分出口的流路与浓缩部连接。在浓缩部中,也优选使用过滤器。关于可以在过滤器中使用的分离膜的分子量分级性能,使用在生理食盐水中不能透过肽的程度的分子量分级性能(截止值:0.05~0.5kDa以下)的膜或超滤膜。在浓缩部中,优选具有浓缩组件,该浓缩组件具备中空丝膜或平膜等的分离膜。在过滤器中,也优选使用内藏有分离膜的组件。作为浓缩组件中使用的膜,更优选使用中空丝膜,与上述同样,因为这样使得处理量大,压力损失小。另外,在浓缩组件中,也优选为,在膜的原液侧具有原液入口和原液出口,另外,在膜的过滤侧具有过滤成分出口。优选形成下述结构,即,原液入口与原液出口通过管等来构成流路,在该流路中设置输液泵,通过泵来使被处理液在组件内的膜的原液侧循环的结构。由此,使得被处理液被反复进行过滤操作。从过滤成分出口,排出非分离目标的溶剂、极低分子量的成分。由于想要尽量避免装置内的体积变化,所以要将来自过滤成分出口的成分保持在分级装置内。因此,优选在过滤成分出口处连接流路,该流路的一方连接于供给部、供给部附近的回路。优选在该流路中也存在输液泵。
在连接分离部的分离组件的原液出口和原液入口的流路,以及连接浓缩部的浓缩组件的原液出口和原液入口的流路上,连接有来自前段组件的流路,但是优选配置输液泵以使在连接的液体合流之后,输液泵进行输液操作。其结果可以进一步提高分离·浓缩效率。
在第1发明的分级装置中,浓缩部通过流路,与回收部连接,所述回收部回收在浓缩部被浓缩液的液体。作为回收部,通常使用回收用的容器。在浓缩部使用浓缩组件,通过流路来连接原液出口和原液入口的情况下,在该流路中循环的液体成为回收的对象。优选在该流路中,也具备输液泵。进而,为了形成封闭回路,优选在回收部存在2个流路,优选配置为,其中的1个形成如上述那样的供给来自浓缩部的浓缩液的流路,通过另一根输送管将回收容器中的空气送到浓缩部的原液侧。
在本发明的分级装置中,根据需要在供给部与分离部之间、分离部、浓缩部、回收部或它们之间设置的输液泵,可以用各自的驱动来运转,也可以用同一驱动进行同轴运转。在通过同轴进行运转的情况下,可以根据膜的分离·浓缩效率,适当选择各部分的运转速度和顺序。
为了实现本发明的分级装置的目的,设置在回路中的流路可以分别单独安装,但是为了确保安装的便利性和稳定性,优选在套盒内组装至少一部分如供给部、过滤部和浓缩部那样的通过膜进行分级的装置、回收部和连接上述各部分的流路,来构成分级装置用回路。另外,优选使套盒的外侧的一部分形成针对辊型管式泵的挤压部件。套盒优选可以从输液泵的转子驱动部或支持其的部件装卸。另外,套盒和内容物更优选为用完即可丢弃的(disposable)。最优选为,使应该设置供给部、分离部、浓缩部、回收部内的输液泵的流路的一部分从套盒内露出到套盒外壁,通过辊型管式泵的旋转体来挤压作为露出流路的管。这时,过滤部、浓缩部中设置的各组件的原液侧入口与原液侧出口的位置关系,与在挤压部件上安装管的方向一致。作为与各组件的出入口(port)连接的流路的管,以挤压部件为中介来循环液体。为了维持挤压的精度,管优选位于辊驱动轴的根部附近。如果精度差,则不能挤压管,很难进行定量输送。为了将套盒简单且正确地安装在本体上,优选对套盒和泵分别设置用于使它们相互嵌合的装置。例如,使一方具备引导孔,对另一方设置引导轴,使引导孔贯通引导轴,由此容易地进行嵌合。接着,通过使挤压部件的位置固定,可以使多根管构成的流路与辊型管式泵的旋转辊保持适合的距离。通过运行辊型管式泵,多个组件内的原液被依次输送。如果预先使收纳多个组件的收纳箱与挤压部件一体化,准备在挤压部件上搭载有作为流路的一部分的管的装置,则可以更简便地向辊型泵部位进行安装和拆卸。
对套盒的原材料没有特别的限定,但是从容易操作,容易搬运,具有强度的观点出发,优选塑料制品。对形状没有特别的限定,但是特别优选在内部具有可以收纳柱子和输液回路那样的充足的空间,接受输液泵的驱动转子挤压的挤压部件的挤压面形成沿被挤压方向弯曲成弧状的曲面。通过形成曲面,可以增加与驱动转子的接触面积,结果可以确保稳定的流量。
通过套盒挤压部件的表面与辊型管式泵的驱动转子的外周旋转自由地设置的辊来夹持该管,完成输液机能,通过沿圆周方向旋转驱动转子,使在套盒内各部分存在的液体循环。虽然管被设置为相对于套盒外壳的挤压面被挤压,但是不一定与挤压面相接。在挤压时,为了防止管沿垂直于挤压方向的方向振动,特别优选将管设置为弧状,使其相应于套盒外壳的弯曲成弧状的挤压面。
套盒可以手动地压到驱动转子上,从对操作者的安全性的观点出发,优选具备下述机构,即,一旦设置套盒然后使套盒移动,可以将套盒搬送到直至旋转体能够挤压设置在套盒中的管的位置。
在使用本发明的分级装置进行分级时,其流动相优选为水或水溶液。特别是在原液为体液,溶质为蛋白质的情况下,优选使用pH缓冲液。进而,在将由本装置获得的样品用于MS分析装置的情况下,优选使用由不阻碍分析的挥发性物质构成的缓冲液,优选使用例如碳酸铵、醋酸铵、甲酸铵。通过在流动相的水溶液中含有选自表面活性剂、乳化剂、有机溶剂、醇、乙二醇、聚丙二醇、聚乙烯亚胺、氨基甲基吡啶、硫酸鱼精蛋白、硫酸铵、多酚、蓝色色素、离液盐和疏水性化合物中的1种以上的物质,可以促进高分子成分的蛋白质的凝聚引起的分子巨大化,促进吸附、抑制从分级膜的漏出,有效地截止高分子成分,提高最终的分离性能。表面活性剂(两性表面活性剂、阴离子性表面活性剂等)具有抑制蛋白质之间的相互作用的效果,可以有效地进行分子分级。
上述的配体的选择以及水溶液溶质的选择,可以在检测目标蛋白质组的分离的程度的同时进行。
作为连接本发明的分级装置的各构成要素的流路,优选使用管,进而优选由柔软的弹性体构成。例如,优选使用有机硅树脂、聚氯乙烯、聚氨酯、氟树脂、天然橡胶、合成橡胶,但是从目标生物体成分的吸附少的观点出发,特别优选有机硅树脂、氟树脂。
采集取样本发明的浓缩液的回收容器,优选由目标生物体成分的吸附少的材质构成,优选使用聚丙烯、有机硅树脂、氟树脂。另外,也可使用聚苯乙烯、玻璃等,但是为了抑制目标生物体成分的吸附,优选实施用于抑制在内表面的吸附的处理。所说的用于抑制吸附的处理,例如为亲水化处理,其相当于等离子处理、亲水性聚合物的涂层、表面接枝。
本发明的分级装置适合于含有生物体成分的原液、特别是来自人的血浆、血清、尿、唾液、泪液、脑脊髓液、腹水、胸水、羊水、淋巴液等的生物体分子的分离。上述的各过滤膜以及中空丝膜组件的尺寸以及回流液的流速,分别依赖于原料血浆、尿等的生物体材料的质和量来适当决定,但是一般来说,如果组件过大,则不容易操作,另外因为组件本身的表面积变大,所以成为微量成分的吸附损失的原因。如果组件小,则不能应对大量的检体。特别是在使用中空丝膜、在临床上处理实际的0.1~100mL的检体的情况下,优选使用直径0.2~5cm、长度3~20cm的圆筒形的组件。另外,封闭回路的总内容积优选为50mL以下。在所谓以实验室规模实施分级处理的情况下,作为使用的检体的量,在为血浆时,优选在1~400mL下实施、更优选在5~100mL下实施。另外,优选在流速为0.1~20mL/min下进行,进一步优选在0.2~10mL/min下进行。
通过对本发明的分级装置投入含有生物体成分的原液、并运转,使得最终在回收部中获得的样品可以用于液相色谱、电泳、MS等各种蛋白质分析,特别优选可以用于使用了电泳、MS的蛋白组学分析。
对可以适用本发明的分级装置中获得的样品的MS,没有特别的限定,但是作为离子化部分,电子喷雾离子化型、大气压离子化型、高速原子碰撞型、四极杆型、回旋共振型、扇形磁场型、基质辅助激光解吸附电离型型等,与离子捕捉型、飞行时间型、傅立叶转换型等的质谱分析部适当组合使用。在这种情况下,也可以用作MS/MS、MSn等的串联MS或FT-MS。在串联MS的情况下,所有类型的MS都可适用,特别地,离子捕捉型、四极杆-飞行时间(Q-TOF)型、FT-MS等的组合使用效率优良。
通过与本装置组合进行分析,可以收集各种微量的蛋白质成分的构造信息,这些不仅限于肽·质谱指纹(peptide-mass fingerprint:PMF),还包含各肽的一级结构信息(氨基酸序列)。
接下来对第2发明进行说明。
在第2发明中,包括下述内容,
1)一种膜分离体系,其在没有吸附蛋白质的抗体的状态下,人α1微球蛋白与人清蛋白的透过比率(人α1微球蛋白透过率/人清蛋白的透过率)为1.5~1000;
2)吸附蛋白质的抗体是必须的成分,由本发明的分离方法获得的特定的蛋白质的浓度必须为在没有抗体的状态下的膜分离体系中获得的浓度的10%以下。这里,人α1微球蛋白是分子量为3万以下的蛋白质,人清蛋白代表分子量6万以上的蛋白质。
例如在将血清用作检体的情况下,由于清蛋白、免疫球蛋白等的蛋白质在血清中高浓度存在,所以即使使用膜,这些蛋白质也不能完全分离,一部分漏出到膜外。另外,检体中也存在蛋白质分解生成的分子量低的片段肽,这样的肽不能用膜进行分离,因此期待用抗体来除去。漏出的蛋白质、其片段肽依然阻碍质谱分析时的微量成分的检测。通过本发明的分离,可以将漏出的蛋白质的量减少到十分之一以下,进一步提高质谱分析的灵敏度,可以检测微量成分。在第2发明中,使用膜分离体系。作为分离所使用的膜,通常使用多孔性的膜,可以使用平面滤膜、筒式滤膜等的平膜型分离膜(平膜)、中空丝等的中空状分离膜(中空丝膜)的任一种。一般来说,中空丝的单位处理液量的表面积大,压力损失也少,可以最有效率地应用。另外,平面滤器具有制膜容易、可以廉价地制造的优点。作为膜原材料,可以例示出选自纤维素、乙酸纤维素、聚碳酸酯、聚砜、聚甲基丙烯酸甲基酯等聚甲基丙烯酸酯、聚丙烯酸酯、聚酰胺、聚1,1-二氟乙烯、聚丙烯腈、聚酯、聚氨酯、聚苯乙烯、聚乙烯及聚丙烯中的1种以上的原材料。其中,近年来透析器等中经常使用的聚砜,由于分级特性良好,因而是优选的原材料。
本发明中使用的膜分离体系的分离性能为,在没有抗体的状态下,人α1微球蛋白与人清蛋白的透过比率(人α1微球蛋白透过率/人清蛋白的透过率)为1.5~1000。作为优选的比率,为大于等于2。所说的透过比率小于1.5,意味着膜孔径非常大,任何分子量的蛋白质都可以透过,或者膜孔径非常小,任何分子量的蛋白质都不能透过,在该范围内,实质上不能用作膜。透过系数越高越好,但是实际操作中透过系数只要为1000,就足够了。
本发明中的膜分离体系,是从含有蛋白质的样品、特别是血清等的来源于血液的样品中分级目标蛋白质的体系。特别是具有一段或连接的多段利用下述膜进行的分级工序的体系,所述膜是对以人α1微球蛋白为代表的分子量小于等于3万的蛋白质进行分级的膜。
本发明的膜分级体系特别优选使用中空丝膜组件。中空丝由于蛋白质的关系,一直以来多用作人工肾脏(透析组件),任意一个都按照保持清蛋白等蛋白质使其不漏出,而可使肌酸酐、尿素等低分子成分漏出的方式,以净化在中空丝内腔侧流动的血液为目的来使用的。另一方面,在本发明中,在要对从中空丝内腔侧漏出的分级成分进行分析的收集方法中使用中空丝,并以下述方式来使用:在中空丝内腔侧保持清蛋白等的高分子量成分,同时使主要以α1微球蛋白为代表的分子量小于等于3万的蛋白质成分漏出。
在本发明中,抗体所吸附的蛋白质,是在待处理的检体中至少以1μg/mL以上的高浓度存在的蛋白质,例如在检体为血液、血清或血浆的情况下,可以列举出,血清清蛋白、免疫球蛋白G、免疫球蛋白A、免疫球蛋白M、运铁蛋白、触珠蛋白、α1抗胰蛋白酶、α2微球蛋白、α1酸性糖蛋白、纤维蛋白原、补体C1q、补体C3、补体C4、补体C8、补体C9、补体因子B、脱脂载脂蛋白A、脱脂载脂蛋白B、Lp(a)、角蛋白、胶原蛋白等。在检体为细胞提取液的情况下,可以列举出,肌球蛋白、肌动蛋白、细胞角蛋白、角蛋白、纤连蛋白等。
使用的抗体,可以为单克隆抗体,也可以是多克隆抗体。另外,也可以只含有Fab、F(ab)’那样的抗体片段,并含有抗原标识部位,任何形态都可以。
本发明中的抗体,只要内藏在膜分离体系的流路的中间或后方,就可以以任何形态内藏。在膜分离体系的流路中,可以以溶解或分散在溶液中的形态存在,也可以固定在膜的内表面或/和外表面。可以固定在设置于流路中的球状珠、编织物或无纺布上。也可以在流路中设置填充有已固定了抗体的载体的柱子。
在膜分离体系为多段串联组合有内藏分离膜的柱子的情况下,可以将抗体固定在第一段柱子的分离膜的原液侧的表面或/和透过侧的表面、第二段柱子的分离膜的原液侧的表面或/和透过侧的表面等上。另外,抗体也可以内藏在前段柱子的膜与后段柱子的膜之间的流路中的流动相中,抗体也可以固定在前段膜与后段膜之间的流路中。
内藏的抗体的量是任意的,可以根据膜分离体系中从膜漏出的蛋白质的量来确定。漏出的蛋白质的量,由待处理的检体中含有的高浓度蛋白质的含量、对蛋白质膜的筛分系数和处理时间大致确定。如果抗体的量过少,则不能吸附除去蛋白质,相反,如果过多,则在抗体固定在膜的情况下,或抗体在膜的原液侧自由存在的情况下,膜发生堵塞,因此不能获得良好的分离性能。
在第2发明中,也包括用于进行本发明的分离方法的装置。即,具有膜分离装置和抗体处理装置的生物体成分分离装置,所述膜分离装置的人α1微球蛋白与分子量大于等于6万的人清蛋白的透过比率为1.5~1000;所述抗体处理装置在膜分离装置的流路的中间或后部,内藏有抗体。
在使用本发明的膜分离体系进行分离的方法中,优选的形态如下所述。膜分离体系的机能,是想使用膜来从样品中分离下述蛋白质,所述蛋白质是以废弃为目的的清蛋白代表的分子量大于等于6万的蛋白质,以回收为目的的α1微球蛋白代表的分子量小于等于3万的蛋白质。在本体系中,平面滤器或中空丝膜组件的膜使用具有分子筛效果的多孔性膜,利用分离筛进行分子分级。特别是使用中空丝,可以使分级膜表面积非常大,因此是有效的。
对本发明中使用的膜的原材料没有特别的限定,可以使用含有下述高分子的原材料,所述高分子为纤维素、乙酸纤维素、聚碳酸酯、聚砜、聚甲基丙烯酸甲基酯等聚甲基丙烯酸酯、聚丙烯酸酯、聚酰胺、聚1,1-二氟乙烯、聚丙烯腈、聚酯、聚氨酯、聚苯乙烯、聚乙烯、聚丙烯中的1种以上的高分子。关于膜结构,可以使用具有接近于均一结构的海绵状结构的膜、由致密层与空隙率高的维持膜强度的支持层的二层结构构成的膜中的任一种。膜的表面性质由待分离的蛋白质的性质决定,可以是亲水性的,也可以是疏水性的。
在亲水性膜中,可以列举出,亲水性单体与疏水性单体共聚成的膜;亲水性高分子与疏水性高分子混合制膜而形成的膜;或在由疏水性高分子构成的膜的表面结合、附着亲水性聚合物而形成的材料;对疏水性高分子构成的膜的表面进行了化学处理、等离子处理、放射线处理而形成的膜等,只要能进行亲水化处理,就对其方法没有特别的限定。对亲水性成分没有特别的限定,优选使用聚乙二醇等聚环氧烷、聚乙烯基吡咯烷酮、聚乙烯醇、聚甲基丙烯酸羟基乙酯、聚丙烯酰胺等亲水性高分子。这些亲水性膜具有抑制必须蛋白质的吸附,不浪费地回收的效果。
进而,还可以使用固定了下述物质中的至少任一种以上而形成的原材料,所述物质为聚乙烯亚胺、氨基甲基吡啶、多酚、蓝色色素、2价金属离子(Zn2+、Ni2+、Co2+、Cu2+等)、疏水性化合物(甲基、苄基、苯基、氯甲基、辛基、十二烷基等)等。
关于膜的分子分级性能,可以使用在生理盐水中不能透过50%以上的清蛋白的程度的分子分级性能(截止值:30~60kDa以下)的膜。
在本发明的膜分离体系中,除了对上述那样的低分子量的蛋白质进行过滤的装置之外,还包括浓缩工序用的装置。在该装置中,平面滤器或中空丝膜组件的膜使用具有分子筛效果的多孔性膜,通过分离筛来进行浓缩。在样品为少量时,可使用在离心管中贴付有平面滤器的浓缩装置,另一方面,在有大量样品时,使用中空丝是有效的。
在本工序中,平面滤器或中空丝膜组件的膜优选使用具有分子筛效果的多孔性膜,通过分离筛来进行浓缩。在样品为少量时,可使用在离心管中贴付有平面滤器的浓缩装置,另一方面,在有大量样品时,使用中空丝是有效的。
对可以以上述目的使用的膜的原材料并无特别限制,可以使用含有下述高分子的原材料,所述高分子选自纤维素、乙酸纤维素、聚碳酸酯、聚砜、聚甲基丙烯酸甲基酯等聚甲基丙烯酸酯、聚丙烯酸酯、聚酰胺、聚1,1-二氟乙烯、聚丙烯腈、聚酯、聚氨酯、聚苯乙烯、聚乙烯及聚丙烯中的1种以上。关于膜的结构,可以使用具有接近于均一结构的海绵状结构的膜、由致密层与空隙率高的维持膜强度的支持层的二层结构构成的膜中的任一种。
关于膜的分子分级性能,优选使用具有在生理盐水中不透过肽的程度的分子分级性能(截止值:10~1000以下)的膜或超滤膜。在上述膜分离体系的中间或后部赋予吸附特定蛋白质的抗体的情况下,抗体可以在膜分级工序的过程中进行处理,也可以是在接触膜分离工序中获得的液体的部位进行处理,没有特别的限定。优选在回路的一部分或全体中填充固定在珠子或凝胶上的抗体来使用,例如一般采用在回路的一部分中设置填充有已固定了抗体的凝胶的柱子的方法。另外,也优选在平面滤器、或中空丝膜组件的膜上固定抗体。
作为向支持体上赋予抗体的方法,没有特别的限定,使用抗体的-NH2末端、通过化学反应固定在基体材料上的方法,固定氧化糖的方法,固定在蛋白质A、蛋白质G等配体上的方法效率高,可以作为固定抗体的方法使用。使用的抗体可以使用多克隆抗体,也可以使用单克隆抗体,对其没有限定。另外,构成抗体的蛋白质优选免疫球蛋白类,进一步优选免疫球蛋白G。
在将抗体特意附着在支持体上、与该支持体一起投入到体系中的情况下,对支持体的原材料并无特别限制,可以使用含有下述高分子的原材料,所述高分子选自纤维素、乙酸纤维素、聚碳酸酯、聚砜、聚甲基丙烯酸酯、聚丙烯酸酯、聚酰胺、聚1,1-二氟乙烯、聚丙烯腈、聚酯、聚氨酯、聚苯乙烯、聚乙烯及聚丙烯中的1种以上。关于膜的结构,可以使用具有接近于均一结构的海绵状结构的膜、由致密层与空隙率高的维持膜强度的支持层的二层结构构成的膜中的任一种。
另外,作为原材料的形状,可列举出,球状珠子或纤维等形态;使用了纤维的编织物、无纺布、短纤维(staple)的平面状的形态;中空丝的形态等,在各种形态中,表面凹凸大的多孔体形状由于具有增大吸附表面积的效果,因此是优选的。另外,如果为平膜或中空丝膜等分离膜的形态,则由于可以同时实现分离和吸附,因此是特别优选的。
在将抗体附着在膜上使用的情况下,作为膜基体材料自身的特性,根据分级和吸附的各工序,可以适当选择使用为了抑制非特异的蛋白质的吸附而进行了亲水化的材料;或为了选择性吸附清蛋白等高分子量蛋白质而进行了疏水化的材料。
由进行了亲水化的基体材料构成的膜,可以列举出,亲水性单体与疏水性单体共聚成的膜;亲水性高分子与疏水性高分子混炼制成的膜;或在由疏水性高分子构成的膜的表面结合、附着亲水性聚合物而形成的膜;对疏水性高分子构成的膜的表面进行了化学处理、等离子处理、放射线处理的膜等。对亲水性成分没有特别的限定,优选聚乙二醇等聚环氧烷、聚乙烯基吡咯烷酮、聚乙烯醇、聚甲基丙烯酸羟基乙酯等亲水性高分子。在疏水性膜中,可以使用混入了疏水性成分或者在膜表面导入有疏水性配体的膜。作为疏水性成分,可列举出例如,甲基丙烯酸酯、丙烯酸酯、乙烯、丙烯等烯烃;丙烯腈、甲基丙烯腈等具有碳-碳双键的加成聚合性化合物构成的聚合物;聚砜、纤维素等聚合物,但是只要是可以用作膜原材料的物质,就没有特别的限定。
进而,还可以使用固定了下述物质中的至少任一种以上而形成的原材料,所述物质为聚乙烯亚胺、氨基甲基吡啶、多酚、蓝色色素、2价金属离子、疏水性芳香族化合物等。
在本发明的生物体成分的分离方法中,作为在体系中展开的液体,优选使用缓冲液。进而,加入各种试剂,可提高吸附或分级性能。具体而言,其特征在于,在工序中使用的水溶液中,含有选自表面活性剂、乳化剂、有机溶剂、醇、乙二醇、聚丙二醇、聚乙烯亚胺、氨基甲基吡啶、硫酸鱼精蛋白、硫酸铵、多酚、蓝色色素、离液盐、疏水性化合物中的至少1种以上物质。
例如,通过适当加入可以促进清蛋白凝集的硫酸铵、聚乙二醇、聚乙烯亚胺、离液盐等,可以使高分子成分的蛋白质发生凝集,促进分子巨大化,并促进吸附,抑制从分离膜的漏出,有效地截止高分子成分的透过。相反,在分级工序中,通过适当添加表面活性剂(两性表面活性剂、阴离子性表面活性剂等),可抑制蛋白质之间的相互作用,有效地进行分子量分级。
该工序中获得的过滤分级成分,被供给到接下来的浓缩工序中。在通过吸附工序、膜再分离工序可以充分分离溶液的情况下,可以省略该工序。
在本发明的生物体成分的分离方法包括多个工序的情况下,如果用于进行工序的各装置通过流路直接连接、连续运转,则可能够简便且自动地连续运转。当然,各工序也可以独立进行。可通过在管上安装泵,通过泵来进行液体输送,但在小规模的情况下,也可使用注射器进行液体输送,在浓缩工序中,可以利用离心管型装置来进行浓缩。本方法也可以用下述装置实施,即进行多个工序的装置部件通过流路连接成的多个装置。优选的情况还包括将下述中空丝膜组件通过水溶液流路直接连接那样的形态,所述中空丝膜组件包括:通过过滤而有效地获得α1微球蛋白等的分子量3万以下的蛋白质的中空丝膜组件,和同时进行吸附特定的蛋白质的工序和浓缩蛋白质溶液的工序的第二中空丝膜组件。
通过导入浓缩工序,可以获得更优异的效果。另外,可以通过分离膜使较低分子量的蛋白质透过,重复进行分级工序;可以在通过分离膜分级的工序与吸附工序之间插入浓缩工序;可以在吸附工序后,再次通过分离膜使蛋白质透过。
本发明的生物体成分的分离方法,适合于从来源于血液的样品中,特别是从人的血浆、血清等中分离生物体分子。上述的各过滤器和中空丝组件的尺寸及回流液的流速,可根据样品的质和量进行适当的决定,但是在以所谓实验室规模来实施分级处理的情况下,作为使用的检体的量,以血浆计,以1~400mL,优选以5~100mL进行实施。另外,流速优选以0.1~20mL/min,更优选以0.2~10mL/min进行。
另外,根据第2发明的方法,膜分离体系可以进行高速处理,作为所需时间,1次处理的时间在1~6小时以内,从防止检体的污染和生物毒害的观点出发,可将一系列的装置制成用完即可丢弃的装置。在使用电泳体系、液相色谱的分析中,由于重复使用设备,所以存在检体导致的污染的危险性、再生的分析柱对重现性的影响等问题,也包括操作烦杂,不一定适合多数检体的频繁处理。
通过本发明的生物体成分的分离方法获得的分析检体,适用于液相色谱、电泳、MS等各种蛋白质分析、特别优选用于使用MS、电泳的蛋白组学分析。对可以直接或间接连接本装置的MS没有特别的限定,优选电子喷雾离子化型、大气压离子化型、四极杆(QQQ)型、扇形磁场型、飞行时间型、MS/MS、MSn、FT-MS型、离子捕捉型和它们的组合型。另外,还包含MS/MS或MSn(例如MS3)那样的串联MS。在串联MS的情况下,所有类型的MS都可适用,特别地,使用离子捕捉、四极杆-飞行时间(Q-TOF)、FT-MS、及四极杆与离子捕捉的扇形器件的组合,效率优良。由此,可选择性的检测出MS/MS和/或MSn测定中产生的峰。
通过与本装置组合进行分析,可以收集各种微量蛋白质成分的结构信息,这些不仅限于肽·质谱指纹(peptide-mass fingerprint:PMF),还包含各肽的一级结构信息(氨基酸序列)。
下面,使用图来对第2发明的生物体成分的分离方法的一个形态进行说明。
图3是本发明的抗体成分吸附膜分离体系的示意图,包括膜分离要素、吸附要素、浓缩要素。液体的流向如箭头所示。血清等材料的检体经过三向阀门15注入到作为第一要素的膜分离组件19中,通过输液泵17a输液至管构成的溶液循环回路16中,进行循环。在该工序中生成的滤液,在透过液出口18处获得。从该滤液出口18处获得的透过液通过输液泵17b,投入到在内表面内藏有固定有抗体的分离膜的吸附组件中,进行循环。透过吸附组件中内藏的分离膜的透过液,在滤液出口20处获得。该透过液进一步通过输液泵17c在内藏有浓缩用膜的浓缩组件23中循环,水和分子量极低的蛋白质透过膜,从透过液出口排出。通过取出浓缩组件23和其循环回路中残存的溶液,而获得期望的样品。
最后,对第3发明进行说明。
本发明是一种蛋白质的分级方法,是使含有多种蛋白质和水的溶液与分离膜接触、根据蛋白质的分子量的大小进行分级的方法,其特征在于,分级的溶液含有有机溶剂。蛋白质通过疏水性的相互作用,不仅与其他蛋白质结合,而且也吸附到材料表面。通过使溶液含有有机溶剂,可以阻碍该疏水性相互作用,使高分子量的蛋白质残留在原液侧,有效率地透过低分子量的蛋白质。
在本发明的分离方法中,必须添加有机溶剂。通过添加有机溶剂,可以显著抑制蛋白质向分离膜、管等的回路或回收分级的溶液的容器的吸附的现象。本发明中有机溶剂的浓度优选大于等于1容量%、且小于20容量%,更优选大于等于3容量%、且小于19容量%。进一步优选为大于等于5容量%、且小于18容量%。在用添加了有机溶剂的缓冲液进来稀释浓的蛋白质溶液的情况下,如果缓冲液中混入过量的有机溶剂,则在其影响下、蛋白质溶液凝聚,进而,在血清蛋白质的蛋白组学分析的前处理用途中,在用本发明的分离方法、用中空丝膜进行蛋白质分级的情况下,如果过量混入有机溶剂,则有时蛋白质凝聚,凝聚的蛋白质不能被滤过,其结果有可能大幅度减少分级处理液中含有的蛋白质的数量。
因此,需要添加有机溶剂至蛋白质不凝聚的程度,由此可以抑制蛋白质向中空丝膜、回路、回收容器等的吸附,同时可以显著提高蛋白质的回收率。
作为本发明中使用的有机溶剂,需要能够溶解在水系缓冲液中,可以利用例如,乙腈、吡啶等的含氮化合物;1,4-二_唑、环氧丙烷等的环状醚化合物;丙酮、乙基甲基酮等的酮化合物;N,N-二甲基甲酰胺、N,N-二甲基乙酰胺、N,N’-二甲基-2-咪唑啉酮、N-甲基-2-吡咯啉酮等酰胺类;环丁砜、二甲基亚砜等的含硫化合物;甲醇、乙醇、2-丙醇等的一元醇类;2-甲氧基乙醇(甲基溶纤剂)、2-乙氧基乙醇(乙基溶纤剂)等的溶纤剂类;2-氨基乙醇(单乙醇胺)、二乙醇胺、三乙醇胺等的乙醇胺类;乙二醇、丙二醇、二甘醇、甘油等的多元醇类,其中,更优选使用非醇类有机溶剂。另外,缓冲液中含有的有机溶剂可以为1种,也可以为2种以上。
本发明中的有机溶剂的沸点优选为100℃以下,更优选为80℃以下。进一步优选为60℃以下。沸点越低,越容易通过冷冻干燥、蒸发来除去溶剂,进而,在除去溶剂时,如果可以在低温下操作,则可以将蛋白质的变性抑制到最小限度,因此是优选的。
在本发明中,最优选在缓冲液中添加有水溶性有机溶剂的缓冲液。这里,所谓缓冲液,是指具有缓冲作用、即在与蛋白质溶液混合时不发生急剧的pH变化的性质的溶液。因此,单纯的水不具有缓冲作用,因此不能称作缓冲液。本发明中的缓冲液的组成,适合使用碳酸盐缓冲液、碳酸氢盐缓冲液、磷酸盐缓冲液、醋酸盐缓冲液等。在分级蛋白质之后,用质谱分析进行分析的情况下,如果考虑通过使用冻干机、蒸发仪来除去溶剂成分,对样品进行浓缩的情况,则从在样品中不残留盐类的观点出发,本发明的缓冲液优选为挥发性的。作为满足该条件的缓冲液,可以列举出使用铵盐来调制出的缓冲液,其组成可以列举出例如,碳酸氢铵-碳酸铵、醋酸-醋酸铵、甲酸-甲酸铵等。如果使用例如碳酸氢铵缓冲液进行分级,并对获得的样品进行冷冻干燥,则铵盐变成氨、二氧化碳、水而挥发。
对本发明中的蛋白质分级设备用缓冲液的盐浓度,没有特别的限定,优选为1mM~1M,更优选为10mM~100mM。另外,本发明的蛋白质分级设备用缓冲液的氢离子浓度(pH)优选为4.0~8.0。如果pH小于4.0,或大于8.0,则蛋白质的改性作用变强,因此不优选。
在本发明的方法中使用分离膜,优选使用中空丝膜。对中空丝膜的原材料没有特别的限定,可以使用含有下述高分子的原材料,所述高分子为纤维素、乙酸纤维素、聚碳酸酯、聚砜、聚甲基丙烯酸甲基酯等聚甲基丙烯酸酯、聚丙烯酸酯、聚酰胺、聚1,1-二氟乙烯、聚丙烯腈、聚酯、聚氨酯、聚苯乙烯、聚乙烯、聚丙烯中的1种以上的高分子。关于膜结构,可以使用具有接近于均一结构的海绵状结构的膜、由致密层与空隙率高的维持膜强度的支持层的二层结构构成的膜中的任一种。膜的表面性质由待分离的蛋白质的性质决定,可以是亲水性的,也可以是疏水性的。
在亲水性膜中,可以列举出,亲水性单体与疏水性单体共聚成的膜;亲水性高分子与疏水性高分子混合制膜而形成的膜;或在由疏水性高分子构成的膜的表面结合、附着亲水性聚合物而形成的膜;对疏水性高分子构成的膜的表面进行了化学处理、等离子处理、放射线处理而形成的膜等,只要能进行亲水化处理,就对其方法没有特别的限定。对亲水性成分没有特别的限定,优选使用聚乙二醇等聚环氧烷、聚乙烯基吡咯烷酮、聚乙烯醇、聚甲基丙烯酸羟基乙酯、聚丙烯酰胺等亲水性高分子。这些亲水性膜具有抑制必须蛋白质的吸附,不浪费地回收的效果。
进而,还可以使用固定了下述物质中的至少任一种以上而形成的原材料,所述物质为聚乙烯亚胺、氨基甲基吡啶、多酚、蓝色色素、2价金属离子(Zn2+、Ni2+、Co2+、Cu2+等)、疏水性化合物(甲基、苄基、苯基、氯甲基、辛基、十二烷基等)、抗体及其片断等。
关于膜的分子分级性能,可以使用在生理盐水中不能透过50%以上的清蛋白的程度的分子分级性能(截止值:30~60kDa以下)的膜。
在本发明中,优选使用填充有上述中空丝膜的组件,优选在组件中具备:要分离的溶液流入的入口、流出的出口、以及已分离的溶液流出的分离液流出口。
这里,填充在组件的容器中的膜,也优选在填充时不发生脱离,并且没有来源于填充物的溶出物。
在用本发明的方法处理蛋白质溶液的情况下,也优选组合使用多段组件。由此,可以将用1根组件没有完全除去的高分子量蛋白质通过下段的组件来除去,可以提高在分级处理后由样品获得的分析数据的S/N比。这些组件可以串联连接,也可以并联连接。
也优选在用本发明的方法分级后,对前一工序中获得的蛋白质溶液进行浓缩。此时,可以使用膜进行浓缩。膜的分级分子量优选根据回收对象蛋白质的分子量进行选择。这里所说的分级分子量,是用于评价过滤膜的性能的指标,用在使用该膜进行过滤时,表观的阻止率达到0.9的溶液中的溶质的分子量表示。在膜中有孔径分布,实际上经常可以透过比分级分子量大的分子,因此使用的膜的分级分子量,优选为回收对象蛋白质组中的最小分子量的1/2~1/4。如果膜的分级分子量过大,则有时作为回收对象的蛋白质泄漏,成为回收率降低的原因,相反,如果膜的分级分子量过小,则有时成为透过性能降低、压力上升、处理速度下降的原因。对浓缩膜的形态没有特别的限定,优选使用中空丝膜,因为其与平膜相比,孔径分布尖锐,浓缩效率高。
在用本发明的方法对蛋白质溶液进行分级的情况下,优选在低温下进行处理。通过在低温下进行处理,蛋白质溶液中的蛋白酶的活性降低,可以获得很好的效果。分级时的处理温度,优选小于30℃,进一步优选为0~20℃,另外,更进一步优选为2~10℃。通过在低温下进行处理,不仅可以抑制血清、血浆中含有的蛋白酶的活性,防止蛋白质的分解,还可以极力抑制有机溶剂的挥发。特别地,在如本发明那样使用中空丝膜进行分级处理的情况下,优选在低温下处理,因为这样可以防止有机溶剂挥发所生成的气泡对膜分离性能的坏影响。
实施例
首先,说明第1发明的实施例。
(实施例A)(第1发明)
图1、2是说明本发明的分级装置的图。图1显示分离部由3个组件构成。
参照图1。三向接头2a与接头2c连接于相当于供给部的橡胶微型管柱2b。柔软的管3沿着多通道式挤压部件8的曲面,将接头2c与过滤部中空丝膜组件5a的下喷嘴6a连接。进而,三向接头2a处连接有带有管的袋子12。在挤压部件各过滤部中空丝膜组件5a、5b、5c和浓缩部5d的各上端具备的各上喷嘴4a、4b、4c、4d处,连接有柔软的管。这些管按照沿着多通道式的挤压部件8的曲面的方式配设,并分别与下喷嘴6a、6b、6c、6d连接。在分离部中空丝膜组件5a的主体部分的下喷嘴7a与中空丝膜组件5b的下喷嘴6b之间,在中空丝膜组件5b的主体部分的下喷嘴7b与中空丝膜组件5c的下喷嘴6c之间,以及在中空丝膜组件5c的主体部分的下喷嘴7c与中空丝膜组件5d的下喷嘴6d之间,分别连接有管。中空丝膜组件5d的主体部分的下喷嘴7d与三向接头2a,通过管来连接。进而,中空丝膜组件5d的下喷嘴6d与回收容器10的上部处的回收容器盖11,通过管来连接。中空丝膜组件5d的上喷嘴4d与回收容器盖11也是连接的。上述的全部中空丝膜组件、喷嘴、管、接头、带有管的袋子、回收容器、回收容器盖,形成封闭回路。
在分级时,该封闭回路内填充有水系的缓冲液作为流动相。上述回路收纳在套盒中。
图2是本发明的分级装置的整体图,(A)为正视图,(B)为左侧视图。在装置14中装备有多通道式的旋转辊9。将在套盒14上存在的设置在挤压部件8的侧面上的引导孔相对于在装置本体侧设置的引导轴8a、8b贯通的同时,压入套盒14,由此将其固定在装置上。固定的套盒14向多通道式旋转辊9的侧面平行移动,由多通道式旋转辊9和转子和挤压部件8和设置在挤压部件8的曲面上的7根管,来形成输液体系。
另外,安装注射器1。在多通道式旋转辊9的各个的旋转转子上,分别安装驱动器形成的驱动机构。
参照图1进行说明。用箭头表示液体的流向。在将封入有血清等的原液的注射器1的针,刺入供给部的橡胶微型管柱2b后,由注射器泵、以规定的速度投入检体。在投入后,将注射器1从橡胶微型管柱2b取下。投入的原液在与流动相混合的同时,利用驱动器驱动的旋转辊9a的旋转而被搬送,同时被输液至分离部中空丝膜组件5a中。利用驱动器驱动的旋转辊9b的旋转、在中空丝膜组件5a中循环的期间所生成的滤液,从主体部分下喷嘴7a排出,利用旋转辊9b的旋转而被搬送至后段的分离部中空丝膜组件5b中。分离部中空丝膜组件5b的滤液,进而被搬送到后段的分离部中空丝膜组件5c中。
这样,原液的溶质,由构成分离部的中空丝膜组件5a、5b、5c分级。来自中空丝膜组件7c的滤液,被搬送至浓缩部中空丝膜组件7d中。在中空丝膜组件7d中循环的期间所生成的滤液,由主体部分喷嘴7a排出,经过接头2a,返送到供给部。中空丝膜组件7c的滤液,被搬送到浓缩部的中空丝膜7d中。分离部和浓缩部中的液体的循环和输液,由旋转辊9b来进行。经过指定的时间后,旋转辊9a、9b停止,驱动器所驱动的旋转辊9c启动。由此使得回收容器10中的空气压出浓缩部内的回路中的浓缩液,浓缩液通过下喷嘴6d,被回收到回收容器10中。
下面,对第2发明涉及的实施例进行说明。
(实施例1)
捆扎100根聚砜中空丝,按照不闭塞中空丝的中空部那样,用环氧类封装剂将两末端固定在玻璃管组件壳体中,制成微型组件。该微型组件,内直径约为7mm,长约17cm,与一般的中空丝膜型透析器同样,具有2个透析液出入口(port)。用蒸馏水来洗涤该微型组件的中空丝和组件内部。
然后,填充PBS(日水制药社ダルベツコPBS(-))水溶液,获得中空丝膜微型组件(以后,简记为“微型组件1”)。对人血清(SIGMA社H1388、Lot 28H8550),在3000rpm、15分钟的条件下,进行离心处理,除去沉淀物,然后进行0.45μm的过滤器处理。盖上微型组件1的透析液侧的一方,一方连接硅制管,与作为旋转型管式泵的蠕动泵连接。中空丝膜内侧的液体对应的微型组件入口与微型组件出口通过硅制管连接,使得可以使用蠕动泵来循环含有血清的液体。以循环流量5mL/min、过滤流量0.2mL/min的流速,在20℃对4mL血清进行4小时的过滤。(本工序相当于分离目标废弃的高分子量的蛋白质和目标回收的低分子量的蛋白质的工序)。
通过添加由于过滤而从循环回路中减少的容量份的PBS,来使循环液体量保持恒定。
另一方面,准备配体固化用偶联柱HiTrap NHS-activated(アマシヤムバイオサイエンス制),形成不附着抗体的柱子。供给0.2mL滤液,使其流过柱子。
用Human Albumin ELISA Quantitation Kit(BETHYL社制),来测定最初投入的血清中的清蛋白的浓度,结果为27800μg/mL,过滤4小时、并通过柱子而获得的液体中的清蛋白的浓度为61μg/mL。委托エスア一ルエル(株),对分级前的血清中的α1微球蛋白浓度进行测定,结果为8.9μg/mL,经过4小时的过滤而获得的滤液中的α1微球蛋白浓度为0.45μg/mL。因此,α1微球蛋白透过比率/清蛋白透过比率约等于23,在1.5~1000的范围内。
(实施例2)
将抗人清蛋白抗体固定在配体固化用偶联柱HiTrap NHS-activated(アマシヤムバイオサイエンス制)上,制成抗体柱。使用的抗体的种类和量如表1所示,各抗人清蛋白抗体固定化而制成的柱子的序号,直接使用各抗人清蛋白抗体上附着的序号。
表1抗体的种类和量
   No.     抗人清蛋白抗体    抗体使用量
    1     山羊抗人清蛋白多克隆抗体;亲和纯化(Academy Bio-Medical Company,Inc.制)    0.5mg
    2     小鼠抗人血清清蛋白单克隆抗体,Clone:ZMHSA1(ZYMED Laboratories Inc.制)    0.5mg
    3     IgG部分兔抗人清蛋白(INTRE-CELL TECHNOLGIES,INC.制)    6.95mg
    4     抗人血清清蛋白单克隆抗体,Clone:12D12(Seradym制)    1mg
    5     抗人清蛋白单克隆抗体,Clone:HSA1/25.1.3(CEDARLANE Laboratories Limited制)    0.5ml(浓度不明)
向该5种抗体柱中供给实施例1中获得的滤液各0.2mL,将流过柱子的溶液作为流过级分(passed fraction)的样品。用Human Albumin ELISAQuantitation Kit来测定流过级分的清蛋白量。结果如表2所示。表2的柱子的序号对应表1中使用的抗体的序号。
表2各抗体柱子上吸附的清蛋白的量
    No.     供给量     流过量     吸附量
    1     12.2μg     <0.001μg     12.2μg
    2     12.2μg     0.016μg     12.2μg
    3     12.2μg     0.099μg     12.1μg
    4     12.2μg     0.251μg     11.9μg
    5     12.2μg     <0.001μg     12.2μg
使用0.1M甘氨酸盐酸缓冲液(pH2.7),使吸附在各柱子上的清蛋白溶出,形成吸附级分。用离心分离型分离膜(ザルトリウス社制vivaspin,3000MWCO型),将流过级分、吸附级分分别浓缩至0.2mL,制成样品,利用SDS-PAGE来对其各5μL进行分析。
分析结果如图4所示。
图4是实施例2所获得的各级分的电泳(SDS-PAGE)照片。图4中的各电泳道如下所述。
电泳道1:电泳用分子量标志物rainbow marker(アムシヤム制RPN756)
电泳道2:  实施例1中获得的滤液
电泳道3:  柱子No.1流过级分
电泳道4:  柱子No.2流过级分
电泳道5:  柱子No.3流过级分
电泳道6:  柱子No.4流过级分
电泳道7:  柱子No.5流过级分
电泳道8:  柱子No.1吸附级分
电泳道9:  柱子No.2吸附级分
电泳道10: 柱子No.3吸附级分
电泳道11: 柱子No.4吸附级分
电泳道12: 柱子No.5吸附级分
电泳道13: 电泳用分子量标志物MultiMark(インビドロジエン制LC5725)
由图4可知,抗体柱处理前的样品中大量存在的清蛋白在抗体柱流过级分中基本消失。因此确认了,由于流过级分中存在清蛋白抗体,使得蛋白质为10%以下,进而基本不存在。
(实施例3)
使用离心分离型分离膜(ザルトリウス社制vivaspin,3000MWCO)将实施例1的操作所获得的滤液的一半量浓缩至1mL,进而混合4mL柱子专用缓冲液(アジレント制Buffer A No.5185-5987)后,用0.22μm的离心过滤器进行过滤,使用组合有6种抗体的亲和柱Multiple AffinityRemoval Column(アジレント制No.5185-5985),进行分离。
在供给样品后,流通5mL以上的BufferA,流过含有对柱子亲和性弱的成分的溶液,形成流过级分。然后,将吸附在柱子上的蛋白质利用柱子专用的溶出用缓冲液(アジレント制BufferB N0.5185-5988)来溶出,形成吸附级分。使用离心分离型分离膜(ザルトリウス社制vivaspin,3000MWCO),分别将流过级分、吸附级分浓缩至1mL,利用SDS-PAGE来对其各10μL进行分析。由流过级分分离的带与由吸附级分分离的带的位置重合,基本无法确认,由于存在抗体,使得蛋白质为10%以下,进而确认基本不存在。
(比较例1)
利用实施例3中使用的抗体柱专用缓冲液,将40μL与实施例1中使用的相同批次的人血清(SIGMA社H1388,Lot 28H8550)稀释至5倍,进行分离。使用离心分离型分离膜(ザルトリウス社制vivaspin,3000MWCO),分别将流过级分、吸附级分浓缩至1mL,利用SDS-PAGE来对其各5μL进行分析。分析结果为,由于抗体而使以清蛋白为首的若干个带消失,但是在从高分子量物质到低分子量物质的宽范围内,存在带。
下面对第3发明涉及的实施例进行说明。
(实施例4)
切下东丽株式会社制透析器(TS1.6ML)的两端的树脂粘结部分,得到聚砜制的中空丝膜。得到的中空丝膜的尺寸为内直径200μm、膜厚40μm,观察液体透过时的剖面,结果为具有非对称结构。将该中空丝膜捆100根,在不闭塞中空丝膜中空部的情况下,用环氧类的封装剂将两末端固定于玻璃管组件壳体上,制成微型组件。微型组件的直径约为7mm,长度约为17cm,与一般的中空丝膜型透析器同样各具有2个用于在中空丝内循环液体的出入口(循环出入口)和透析液出入口。用蒸馏水洗涤所制作的微型组件的中空丝膜和组件内部。
将碳酸氢铵(シグマアルドリツチジヤパン制)和碳酸铵(シグマ制)分别溶解到milli-Q级水中,将两者混合,将pH调节至8.0,调制50mM碳酸氢铵缓冲液(pH8.0)(以下简称缓冲液A)。向该溶液中添加乙腈(シグマアルドリツチジヤパン制、高效液相色谱用),使得乙腈浓度达到10%(v/v),并充分混合,用作本发明的蛋白质分级用缓冲液(以下称作添加了10%的乙腈的缓冲液A)。
下面的操作在设定为4℃的低温室中进行。在全长65cm的1根硅制管(アズワン制、内径2mm、外径4mm)(硅制管A)的2处,组装T字管,在第1个T字管的不与硅制管A连接的开口部,通过硅制管(硅制管B),连接压力计。在第2个T字管的不与硅制管A连接的开口部,通过硅制管(全长15cm、内径2mm、外径4mm)(硅制管C),设置注射器,作为液体的注入口。在注射器中填充添加了10%乙腈的缓冲液A,将注射器设置在微型注射器泵(KD Scientific制、以下记做注射器泵)中,在2个T字管之间的硅制管的中间设置旋转型微型管式泵(东京理化器械(株)制、以下记做输液泵)。用钳子夹住连接于压力计的硅制管B和连接于注射器的硅制管C,然后将硅制管A的一端接到加入了添加了10%乙腈的缓冲液A的容器中,运转输液泵,用添加了10%乙腈的缓冲液A将硅制管A内部充满,将流速调节为5mL/min。
将微型组件的循环出入口的一端与上述硅制管A的一端连接,运转输液泵,将添加了10%乙腈的缓冲液A输液到中空丝膜内侧,除去中空部分的气泡。停止输液泵,然后将另一方的硅制管A的端部与组件的端部连接。这样形成组件、注射器、压力计连接而形成的循环回路。将4.5mL用添加了10%乙腈的缓冲液A稀释4倍的人血清(シグマ制)(以下记做稀释血清A)取至注射器(テルモ(株)制)中,在注射器的前端安装带有翼的静注针(テルモ(株)制),设置在微型注射器泵中。将稀释血清A填充至针的前端为止,在确认没有气泡之后,用该静脉注射针的针尖穿刺回路上的配置有硅制管B的T字管附近处设置的液体的注入口,与回路连接,完成蛋白质的分级设备。
运行输液泵,以5mL/min的速度在循环回路中循环添加了10%乙腈的缓冲液A,然后运行注射器泵,以0.2mL/min的速度压出稀释血清A,开始分级处理。此时,将从组件过滤出的处理液回收至50mL的聚丙烯制离心沉淀管中。在20分钟后,在压出4mL稀释血清的时刻,停止注射器泵,立即以0.2mL/min的速度运行注射器泵,所述注射器泵安装有填充了添加了10%乙腈的缓冲液A的注射器,继续处理。从分级开始120分钟后,使注射器泵、输液泵一起停止。此时,透过膜回收得到的回收液的容量约为24mL。对回收液进行冷冻干燥,再溶解到缓冲液A中。用酶免疫测定法(ELISA)来定量该溶液的人血清清蛋白(HSA)、β2微球蛋白(β2MG)、白细胞介素-8(IL-8)的各浓度。其结果如表3所示,作为除去对象的HSA的回收率非常低,为稀释血清A中含有量的0.009%,与此相对,回收对象β2MG、IL-8分别以51.2%、17.4%回收。
表3回收率(%)
    HSA     β2MG     IL-8
实施例4实施例5实施例6实施例7实施例8实施例9实施例10实施例11实施例12实施例13实施例14比较例2比较例3     0.0090.0120.0280.0390.0080.0070.0040.0350.0220.0370.023N.D.N.D.     51.252.354.355.941.934.120.59.458.757.546.85.90N.D.     17.419.724.325.117.116.211.713.220.521.218.9N.D.1.83
N.D.:测定结果在检测灵敏度以下
(实施例5)
向缓冲液A中添加乙腈(シグマアルドリツチジヤパン制、高效液相色谱用)使得乙腈浓度达到12.5%(v/v),充分混合后,脱气,用作本发明的蛋白质分级设备用缓冲液(以下记做添加有12.5%的乙腈的缓冲液A)。将4mL用添加有12.5%的乙腈的缓冲液A稀释4倍的人血清(シグマ制)(以下记做稀释血清B)用与实施例4同样的方法、用组件来处理。其结果如表3所示,作为除去对象的HSA的回收率非常低,为稀释血清B中含有量的0.012%,与此相对,回收对象β2MG、IL-8分别以52.3%、19.7%回收。
(实施例6)
向缓冲液A中添加乙腈(シグマアルドリツチジヤパン制、高效液相色谱用)使得乙腈浓度达到15%(v/v),充分混合后,脱气,用作本发明的蛋白质分级设备用缓冲液(以下记做添加有15%的乙腈的缓冲液A)。将4mL用添加有15%的乙腈的缓冲液A稀释4倍的人血清(シグマ制)(以下记做稀释血清C)用与实施例4同样的方法进行处理。其结果如表3所示,作为除去对象的HSA的回收率非常低,为稀释血清C中含有的量的0.028%,与此相对,回收对象β2MG、IL-8分别以54.3%、24.3%回收。
(实施例7)
向缓冲液A中添加乙腈(シグマアルドリツチジヤパン制、高效液相色谱用)使得乙腈浓度达到17.5%(v/v),充分混合后,脱气,用作本发明的蛋白质分级设备用缓冲液(以下记做添加有17.5%的乙腈的缓冲液A)。将4mL用添加有17.5%的乙腈的缓冲液A稀释4倍的人血清(シグマ制)(以下记做稀释血清D)用与实施例4同样的方法进行处理。
其结果如表3所示,作为除去对象的HSA的回收率非常低,为稀释血清D中含有的量的0.039%,与此相对,回收对象β2MG、IL-8分别以55.9%、25.1%回收。
(实施例8)
向缓冲液A中添加乙腈(シグマアルドリツチジヤパン制、高效液相色谱用)使得乙腈浓度达到7.5%(v/v),充分混合后,脱气,用作本发明的蛋白质分级设备用缓冲液(以下记做添加有7.5%的乙腈的缓冲液A)。将4mL用添加有7.5%的乙腈的缓冲液A稀释4倍的人血清(シグマ制)(以下记做稀释血清E)用与实施例4同样的方法进行处理。其结果如表3所示,作为除去对象的HSA的回收率非常低,为稀释血清E中含有的量的0.008%,与此相对,回收对象β2MG、IL-8分别以41.9%、17.1%回收。
(实施例9)
向缓冲液A中添加乙腈(シグマアルドリツチジヤパン制、高效液相色谱用)使得乙腈浓度达到5.0%(v/v),充分混合后,脱气,用作本发明的蛋白质分级设备用缓冲液(以下记做添加有5.0%的乙腈的缓冲液A)。将4mL用添加有5.0%的乙腈的缓冲液A稀释4倍的人血清(シグマ制)(以下记做稀释血清F)用与实施例4同样的方法进行处理。其结果如表3所示,作为除去对象的HSA的回收率非常低,为稀释血清F中含有的量的0.007%,与此相对,回收对象β2MG、IL-8分别以34.1%、16.2%回收。
(实施例10)
向缓冲液A中添加乙腈(シグマアルドリツチジヤパン制、高效液相色谱用)使得乙腈浓度达到2.5%(v/v),充分混合后,脱气,用作本发明的蛋白质分级设备用缓冲液(以下记做添加有2.5%的乙腈的缓冲液A)。将4mL用添加有2.5%的乙腈的缓冲液A稀释4倍的人血清(シグマ制)(以下记做稀释血清G)用与实施例4同样的方法进行处理。其结果如表3所示,作为除去对象的HSA的回收率非常低,为稀释血清G中含有的量的0.004%,与此相对,回收对象β2MG、IL-8分别以20.5%、11.7%回收。
(实施例11)
调制50mM乙酸铵缓冲液(pH5.0)(以下记做缓冲液B),添加乙腈(シグマアルドリツチジヤパン制、高效液相色谱用)使得乙腈浓度达到10%(v/v),充分混合后,脱气,用作本发明的蛋白质分级设备用缓冲液(以下记做添加有乙腈的缓冲液B)。将4mL用添加有乙腈的缓冲液B稀释4倍的人血清(シグマ制)(以下记做稀释血清H)用与实施例4同样的方法进行处理。其结果如表3所示,作为除去对象的HSA的回收率非常低,为稀释血清H中含有的量的0.035%,与此相对,回收对象β2MG、IL-8分别以9.4%、13.2%回收。
(实施例12)
向缓冲液A中添加1,4-二_烷(シグマアルドリツチジヤパン制)使得浓度达到10.0%(v/v),充分混合(以下称作添加有二_烷的缓冲液A)。将4mL用添加有二_烷的缓冲液A稀释4倍的人血清(シグマ制)(以下记做稀释血清I)用与实施例4同样的方法进行处理。其结果如表3所示,作为除去对象的HSA的回收率非常低,为稀释血清I中含有的量的0.022%,与此相对,回收对象β2MG、IL-8分别以58.7%、20.5%回收。
(实施例13)
向缓冲液A中添加丙酮(シグマアルドリツチジヤパン制)使得浓度达到10.0%(v/v),充分混合(以下称作添加有丙酮的缓冲液A)。将4mL用添加有丙酮的缓冲液A稀释4倍的人血清(シグマ制)(以下记做稀释血清J)用与实施例4同样的方法进行处理。其结果如表3所示,作为除去对象的HSA的回收率非常低,为稀释血清J中含有的量的0.037%,与此相对,回收对象β2MG、IL-8分别以57.5%、21.2%回收。
(实施例14)
向缓冲液A中添加乙醇(シグマアルドリツチジヤパン制)使得浓度达到10.0%(v/v),充分混合(以下称作添加有乙醇的缓冲液A)。将4mL用添加有乙醇的缓冲液A稀释4倍的人血清(シグマ制)(以下记做稀释血清K)用与实施例4同样的方法进行处理。其结果如表3所示,作为除去对象的HSA的回收率非常低,为稀释血清K中含有的量的0.023%,与此相对,回收对象β2MG、IL-8分别以46.8%、18.9%回收。
(比较例2)
向回路中填充缓冲液A,以0.2mL/min向回路中注入4mL用缓冲液A稀释4倍的人血清(シグマ制)(以下记做稀释血清L),用与实施例4同样的方法进行处理。其结果如表3所示,作为除去对象的HSA的回收率相对于稀释血清L中含有的量,非常低,在检测灵敏度以下,回收对象β2MG、IL-8分别为5.90%、在检测灵敏度以下,都为低回收率。
(比较例3)
向回路中填充缓冲液B,以0.2mL/min向回路中注入4mL用缓冲液B稀释4倍的人血清(シグマ制)(以下记做稀释血清M),用与实施例4同样的方法进行分级处理。其结果如表3所示,作为除去对象的HSA的回收率相对于稀释血清M中含有的量,非常低,在检测灵敏度以下,回收对象β2MG、IL-8分别为检测灵敏度以下、1.83%,都为低回收率。
(比较例4)
向回路中填充缓冲液A,以0.2mL/min向回路中注入4mL用缓冲液A稀释4倍的人血清(シグマ制)(以下记做稀释血清N),将处理中的温度设定为30℃,除此之外,用与实施例4同样的方法进行分级处理。其结果为,在处理中发生气泡,不能进行评价。
工业可利用性
这些发明对于进行蛋白组学分析时的样品的制作是非常有用的,在医学、特别是人的疾病的发现方面具有很大的可利用性。

Claims (27)

1.一种分级装置,是使用膜来分离原液中的溶质或其一部分的分级装置,其特征在于,该分级装置至少具备:
1)用于投入原液的供给部,和
2)将从供给部输送的原液中的溶质的一部分进行过滤的过滤部,和
3)将来自过滤部的滤液进行浓缩的浓缩部,和
4)在分级时用于将导入到装置内的流动相进行输液的输液泵,
该过滤部、该浓缩部和连接该过滤部与该浓缩部的流路所形成的回路是封闭回路。
2.如权利要求1所述的分级装置,其特征在于,该分级装置进一步具备
5)将从浓缩部获得的浓缩液回收的回收部,
供给部、过滤部和连接供给部与过滤部的流路所形成的回路,以及浓缩部、回收部和连接浓缩部和回收部的流路所形成的回路,分别为封闭回路。
3.如权利要求2所述的分级装置,其特征在于,上述封闭回路的总内容积为50mL以下。
4.如权利要求2所述的分级装置,其特征在于,在过滤部和浓缩部中分别使用过滤器。
5.如权利要求4所述的分级装置,其特征在于,过滤器是内藏有中空丝膜的组件。
6.如权利要求5所述的分级装置,其特征在于,在供给部与过滤部之间的流路中,具备用于输送原液的输液泵。
7.如权利要求6所述的分级装置,其特征在于,回收部具有采集取样浓缩液的容器。
8.如权利要求7所述的分级装置,其特征在于,上述回路的任意的位置处,具有吸收投入原液时的体积变化的缓冲部。
9.如权利要求7所述的分级装置,其特征在于,是供给部、过滤部、浓缩部、回收部与连接上述各部分的流路所形成的回路的至少一部分组装在套盒内而形成的。
10.如权利要求8所述的分级装置,其特征在于,输液泵是具有可以旋转的转子和在转子的外周旋转自由地设置的辊子的辊型管式泵,上述套盒的外壁的一部分是用于挤压回路的一部分流路的挤压部件。
11.如权利要求10所述的分级装置,其特征在于,具备传送机构,该机构使上述套盒在靠近离开辊型管式泵的转子的方向移动、可以挤压输送管。
12.如权利要求1~11的任一项所述的分级装置,其特征在于,原液是体液或含有生物体成分的液体。
13.一种分级装置,是具备套盒和辊型管式泵、使用膜来分离原液中的溶质或其一部分的分级装置,其特征在于,
套盒内藏有下述回路的至少一部分,所述回路至少具有用于供给原液的供给部;通过流路与上述供给部连接的、通过膜来从原液中分离溶质的装置;通过流路与上述分离溶质的装置连接的、回收已分级的溶质的回收部,
上述回路是封闭回路,上述套盒的外壁的一部分是用于从辊型管式泵挤压管的挤压部件,作为上述回路的一部分的管设置在上述挤压部件的外壁的一部分上。
14.一种分级装置用回路,是使用膜来分离原液中的溶质或其一部分的分级装置用回路,其特征在于,
套盒内藏有下述回路的至少一部分,所述回路具有用于供给原液的供给部;通过流路与上述供给部连接的、通过膜来从原液中分离溶质的装置;通过流路与上述分离溶质的装置连接的、回收已分级的溶质的回收部,
上述回路是封闭回路,上述套盒的外壁的一部分是挤压部件,作为上述回路的一部分的管设置在上述挤压部件的外壁的一部分上。
15.一种生物体成分的分离方法,其特征在于,是对下述抗体吸附膜分离体系供给生物体成分来源的样品、分离一部分生物体成分的生物体成分的分离方法,所述抗体吸附膜分离体系是在没有吸附蛋白质的抗体的状态下,在人α1微球蛋白与人清蛋白的透过比率(人α1微球蛋白透过率/人清蛋白的透过率)为1.5~1000的膜分离体系的中间或后部,内藏有吸附特定的蛋白质的抗体的抗体吸附膜分离体系,
通过分离而获得的特定的蛋白质的浓度是在没有抗体的状态下的膜分离体系中获得的浓度的10%以下。
16.如权利要求15所述的生物体成分的分离方法,其特征在于,特定的蛋白质是血清清蛋白、免疫球蛋白G、免疫球蛋白A、免疫球蛋白M、运铁蛋白、触珠蛋白、α1抗胰蛋白酶、α2微球蛋白、α1酸性糖蛋白、纤维蛋白原、补体C1q、补体C3、补体C4、补体C8、补体C9、补体因子B、脱脂载脂蛋白A、脱脂载脂蛋白B、Lp(a)、胶原蛋白、肌球蛋白、肌动蛋白、细胞角蛋白、角蛋白和纤连蛋白的任一种。
17.如权利要求16所述的生物体成分的分离方法,其特征在于,抗体是多克隆抗体或单克隆抗体、或含有抗原标识部位的多克隆抗体或单克隆抗体的片断。
18.如权利要求17所述的生物体成分的分离方法,其特征在于,抗体被固定于膜分离体系的膜表面。
19.如权利要求18所述的生物体成分的分离方法,其特征在于,膜分离体系是多段串联组合了内藏有分离膜的柱子的体系,抗体被固定于第一段柱子的分离膜的原液侧的表面。
20.如权利要求19所述的生物体成分的分离方法,其特征在于,膜分离体系是多段串联组合了内藏有分离膜的柱子的体系,抗体被固定于第一段柱子的分离膜的透过侧的表面。
21.如权利要求18~20的任一项所述的生物体成分的分离方法,其特征在于,膜分离体系是多段串联组合了内藏有分离膜的柱子的体系,抗体存在于前段柱子的膜与后段柱子的膜之间的流路中的流动相中。
22.如权利要求21所述的生物体成分的分离方法,其特征在于,膜分离体系是多段串联组合有多段分离膜的体系,抗体被固定在前段膜与后段膜之间的流路中。
23.一种生物体成分分离装置,具有膜分离装置和抗体处理装置,所述膜分离装置的人α1微球蛋白与分子量6万以上的人清蛋白的透过比率为2~1000,所述抗体处理装置在膜分离装置的流路的中间或后方内藏有抗体。
24.一种蛋白质的分级方法,是使含有多种蛋白质和水的溶液与分离膜接触、来分级蛋白质的方法,其特征在于,分级的溶液含有有机溶剂。
25.如权利要求24所述的蛋白质的分级方法,其特征在于,有机溶剂的含量为大于等于1容量%、且小于20容量%。
26.如权利要求25所述的蛋白质的分级方法,其特征在于,有机溶剂为乙腈。
27.如权利要求24~26的任一项所述的蛋白质的分级方法,其特征在于,分级在30℃以下进行。
CN2005800084769A 2004-01-21 2005-01-20 分级装置和分级方法 Expired - Fee Related CN1934129B (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP013253/2004 2004-01-21
JP2004013253 2004-01-21
JP023080/2004 2004-01-30
JP2004023080 2004-01-30
PCT/JP2005/000638 WO2005070954A1 (ja) 2004-01-21 2005-01-20 分画装置および分画方法

Publications (2)

Publication Number Publication Date
CN1934129A true CN1934129A (zh) 2007-03-21
CN1934129B CN1934129B (zh) 2010-07-14

Family

ID=34810122

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2005800084769A Expired - Fee Related CN1934129B (zh) 2004-01-21 2005-01-20 分级装置和分级方法

Country Status (8)

Country Link
US (1) US7795010B2 (zh)
EP (1) EP1707573B1 (zh)
JP (2) JP4655938B2 (zh)
KR (1) KR20070001927A (zh)
CN (1) CN1934129B (zh)
CA (1) CA2553234C (zh)
ES (1) ES2605406T3 (zh)
WO (1) WO2005070954A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102043051A (zh) * 2009-10-15 2011-05-04 中国辐射防护研究院 一种筛选不同亚型单克隆抗体的方法
CN109070015A (zh) * 2016-03-16 2018-12-21 弗劳恩霍弗应用研究促进协会 多孔薄膜、其制备方法以及可能的应用
CN110575896A (zh) * 2018-06-11 2019-12-17 陕西安康三航纳米科技股份有限公司 一种纳米粉体的湿法陶瓷膜分级装置
CN113951941A (zh) * 2021-11-15 2022-01-21 河南省人民医院 一种妇产科羊水穿刺取样装置
CN113974693A (zh) * 2021-11-15 2022-01-28 河南省人民医院 一种产前羊水抽样检测装置
WO2022036738A1 (zh) * 2020-08-19 2022-02-24 上海心光生物医药有限责任公司 流体处理方法及流体处理装置
US12011691B2 (en) 2020-08-19 2024-06-18 Shanghai Xinguang Bio-Pharmaceutical Ltd. Fluid treatment method, cycle treatment device and system

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8110112B2 (en) 2007-05-30 2012-02-07 Innova Prep LLC Liquid to liquid biological particle concentrator
JP2013544524A (ja) * 2010-12-06 2013-12-19 ターポン バイオシステムズ,インコーポレイテッド 生物学的生成物の連続プロセス法
KR101298527B1 (ko) * 2011-09-19 2013-08-22 한국표준과학연구원 중공사막을 이용한 단백질의 효소 처리장치 및 이를 이용한 온-라인 프로테오믹스 방법
WO2013126587A1 (en) 2012-02-21 2013-08-29 Cytonics Corporation Systems, compositions, and methods for transplantation
US9534029B2 (en) 2012-10-03 2017-01-03 Csl Behring Ag Method of purifying proteins
US9605240B2 (en) 2013-09-03 2017-03-28 Medinet Co., Ltd. Fluid delivery system
SI3152317T1 (sl) * 2014-06-04 2019-03-29 Amgen Inc. Postopki za pridobivanje sesalskih celičnih kultur
CN104155227A (zh) * 2014-07-28 2014-11-19 重庆大学 基于中空纤维膜的油气渗透的试验装置以及油气渗透实验方法
US10183108B2 (en) 2016-02-04 2019-01-22 Pall Corporation Inline diafiltration with multi-channel pump
CN110272467A (zh) * 2019-07-23 2019-09-24 周口师范学院 一种抗菌肽的浓缩提纯装置
WO2024143357A1 (ja) * 2022-12-27 2024-07-04 東レ株式会社 原液の濃縮液の製造方法

Family Cites Families (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5840323A (ja) 1981-09-03 1983-03-09 Idemitsu Petrochem Co Ltd 潤滑特性のすぐれたグラフト共重合物の製造方法
JPS5894858A (ja) * 1981-11-30 1983-06-06 旭メデイカル株式会社 血漿を処理すべき装置
DE3245591C2 (de) 1982-12-09 1986-11-06 Schott Glaswerke, 6500 Mainz Verfahren zur fraktionierten Auftrennung von Stoffgemischen mit Membranen
EP0255011A3 (en) * 1986-07-29 1988-11-23 Miles Inc. Human inter-alpha-trypsin inhibitor gene
US4761230A (en) * 1987-06-11 1988-08-02 Millipore Corporation Small volume tangential flow filtration apparatus
ATE133341T1 (de) * 1989-06-20 1996-02-15 Univ Washington Hemodialysesystem
US5017292A (en) * 1990-05-10 1991-05-21 Millipore Corporation Membrane, process and system for isolating virus from solution
US5256294A (en) * 1990-09-17 1993-10-26 Genentech, Inc. Tangential flow filtration process and apparatus
US5128037A (en) 1990-12-27 1992-07-07 Millipore Corporation Spiral wound filtration membrane cartridge
US5186824A (en) * 1991-09-04 1993-02-16 Large Scale Biology Corporation System for solid phase reactions
DE69319471T2 (de) * 1992-03-17 1999-04-15 Asahi Medical Co. Ltd., Tokio/Tokyo Filtermedium mit begrenzter negativer Oberflächenladung für die Behandlung von Blutmaterial
JP3297707B2 (ja) 1993-02-01 2002-07-02 旭メディカル株式会社 改質中空糸およびその製造方法
JP3439503B2 (ja) 1993-06-28 2003-08-25 旭化成株式会社 蛋白質分離精製方法
US5492834A (en) * 1993-07-09 1996-02-20 Beckman Instruments, Inc. Method of sample preparation for urine protein analysis with capillary electrophoresis
US5468847A (en) * 1994-03-10 1995-11-21 Minnesota Mining And Manufacturing Company Method of isolating and purifying a biomacromolecule
JP3261875B2 (ja) * 1994-06-28 2002-03-04 日立プラント建設株式会社 蛋白質の回収方法
TW311947B (zh) * 1995-06-05 1997-08-01 Kuraray Co
US5858238A (en) * 1996-03-08 1999-01-12 Baxter Research Medical, Inc. Salvage of autologous blood via selective membrane/sorption technologies
US6193864B1 (en) * 1996-05-16 2001-02-27 Sendx Medical, Inc. Locking sensor cartridge with integral fluid ports, electrical connections, and pump tube
JPH1057476A (ja) * 1996-08-26 1998-03-03 Toray Ind Inc 膜分離装置
AUPP971399A0 (en) 1999-04-12 1999-05-06 Life Therapeutics Limited Separation of plasma components
JP4237884B2 (ja) * 1999-07-29 2009-03-11 株式会社ジェイ・エム・エス 輸液用ポンプの流量制御装置
US6348156B1 (en) * 1999-09-03 2002-02-19 Baxter International Inc. Blood processing systems and methods with sensors to detect contamination due to presence of cellular components or dilution due to presence of plasma
JP3532817B2 (ja) * 2000-01-24 2004-05-31 エア・ウォーター株式会社 海洋生物由来コラーゲンの製造方法
US7018847B2 (en) * 2000-05-05 2006-03-28 Pharmacia Diagnostics Ab Assay device with timer function
JP2002001068A (ja) * 2000-06-21 2002-01-08 Kurita Water Ind Ltd 膜分離方法および装置
US6365395B1 (en) * 2000-11-03 2002-04-02 Millipore Corporation Process for removing protein aggregates and virus from a protein solution
US6649419B1 (en) * 2000-11-28 2003-11-18 Large Scale Proteomics Corp. Method and apparatus for protein manipulation
US6629820B2 (en) * 2001-06-26 2003-10-07 Micralyne Inc. Microfluidic flow control device
JP4800520B2 (ja) * 2001-08-22 2011-10-26 エイブル株式会社 水生生物の捕獲装置
JP3865614B2 (ja) 2001-10-25 2007-01-10 住友ベークライト株式会社 蛋白質分析用微小回路
US7514075B2 (en) * 2001-12-07 2009-04-07 Cytori Therapeutics, Inc. Systems and methods for separating and concentrating adipose derived stem cells from tissue
US7806845B2 (en) * 2002-04-24 2010-10-05 Biomet Biologics, Llc Blood separation and concentration system
ES2755552T3 (es) * 2002-06-19 2020-04-22 Northwest Biotherapeutics Inc Dispositivos de filtración de flujo tangencial y métodos para el enriquecimiento de leucocitos
WO2004101151A1 (en) * 2003-05-08 2004-11-25 Nanostream, Inc. Sample preparation for parallel chromatography
US7682833B2 (en) * 2003-09-10 2010-03-23 Abbott Point Of Care Inc. Immunoassay device with improved sample closure

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102043051A (zh) * 2009-10-15 2011-05-04 中国辐射防护研究院 一种筛选不同亚型单克隆抗体的方法
CN102043051B (zh) * 2009-10-15 2013-11-20 中国辐射防护研究院 一种筛选不同亚型单克隆抗体的方法
CN109070015A (zh) * 2016-03-16 2018-12-21 弗劳恩霍弗应用研究促进协会 多孔薄膜、其制备方法以及可能的应用
CN110575896A (zh) * 2018-06-11 2019-12-17 陕西安康三航纳米科技股份有限公司 一种纳米粉体的湿法陶瓷膜分级装置
WO2022036738A1 (zh) * 2020-08-19 2022-02-24 上海心光生物医药有限责任公司 流体处理方法及流体处理装置
CN115697430A (zh) * 2020-08-19 2023-02-03 上海心光生物医药有限责任公司 流体处理方法及流体处理装置
CN115697430B (zh) * 2020-08-19 2023-10-03 上海心光生物医药有限责任公司 流体处理方法及流体处理装置
US12011691B2 (en) 2020-08-19 2024-06-18 Shanghai Xinguang Bio-Pharmaceutical Ltd. Fluid treatment method, cycle treatment device and system
CN113951941A (zh) * 2021-11-15 2022-01-21 河南省人民医院 一种妇产科羊水穿刺取样装置
CN113974693A (zh) * 2021-11-15 2022-01-28 河南省人民医院 一种产前羊水抽样检测装置

Also Published As

Publication number Publication date
ES2605406T3 (es) 2017-03-14
JP2011006466A (ja) 2011-01-13
CN1934129B (zh) 2010-07-14
EP1707573A4 (en) 2010-07-07
US7795010B2 (en) 2010-09-14
EP1707573B1 (en) 2016-09-14
WO2005070954A1 (ja) 2005-08-04
CA2553234C (en) 2012-07-24
EP1707573A1 (en) 2006-10-04
US20070244306A1 (en) 2007-10-18
CA2553234A1 (en) 2005-08-04
JP4655938B2 (ja) 2011-03-23
KR20070001927A (ko) 2007-01-04
JPWO2005070954A1 (ja) 2008-01-10

Similar Documents

Publication Publication Date Title
CN1934129A (zh) 分级装置和分级方法
WO2008100578A2 (en) Method of isolating antibodies by precipitation
CN1759189A (zh) 切向流过滤方法及其装置
CN1511191A (zh) 核酸精制装置以及核酸精制方法
CN1473067A (zh) 综合分离方法
CN101052449A (zh) 从液体混合物中分离靶分子的方法和装置
US20110009503A1 (en) Fractionation apparatus
EP2600135A1 (en) Method for preparing sugar chains from antibodies
JP2008082728A (ja) 生体成分分画方法および分画装置
CN1845935A (zh) 生物体成分组成改变了的溶液的调制方法
JP2007240304A (ja) 分画装置
CN111318077A (zh) 一种复用对流色谱系统及其用于纯化蛋白的方法
WO2013047798A1 (ja) 糖鎖の精製方法
CN1834657A (zh) 一种分析装置及制备方法和其应用
CN1260569C (zh) 一种体外血型血清学实验检定使用的试剂盒
JP2007139759A (ja) タンパク質分画デバイスおよびタンパク質の分画・濃縮方法
JP2005320322A (ja) 分画装置
CN1482939A (zh) 用于分离分子和流体运动的设备和方法
JP2005232156A (ja) 生体成分精製溶液、生体成分分離方法および生体成分分離装置
EP1661906B1 (en) Method of preparing solution for proteomic analysis
JP2005156249A (ja) 生体成分分離溶液
JP2006343220A (ja) 生体成分含有溶液の前処理方法および分析溶液精製方法
US11472836B2 (en) Selective removal of a protein from a mixture of proteins using activated carbon by adjusting solution conditions
JP2005126376A (ja) 生体成分精製溶液
CN1056261A (zh) 多功能自由电泳技术

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20100714

Termination date: 20200120