[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

CN1841598B - 叠层陶瓷电子部件及其制造方法 - Google Patents

叠层陶瓷电子部件及其制造方法 Download PDF

Info

Publication number
CN1841598B
CN1841598B CN2006100793795A CN200610079379A CN1841598B CN 1841598 B CN1841598 B CN 1841598B CN 2006100793795 A CN2006100793795 A CN 2006100793795A CN 200610079379 A CN200610079379 A CN 200610079379A CN 1841598 B CN1841598 B CN 1841598B
Authority
CN
China
Prior art keywords
component
powder
multilayer ceramic
internal electrode
average particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN2006100793795A
Other languages
English (en)
Other versions
CN1841598A (zh
Inventor
三浦秀一
小田和彦
丸野哲司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Publication of CN1841598A publication Critical patent/CN1841598A/zh
Application granted granted Critical
Publication of CN1841598B publication Critical patent/CN1841598B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47GHOUSEHOLD OR TABLE EQUIPMENT
    • A47G25/00Household implements used in connection with wearing apparel; Dress, hat or umbrella holders
    • A47G25/12Cane or umbrella stands or holders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/30Stacked capacitors
    • AHUMAN NECESSITIES
    • A45HAND OR TRAVELLING ARTICLES
    • A45BWALKING STICKS; UMBRELLAS; LADIES' OR LIKE FANS
    • A45B25/00Details of umbrellas
    • A45B25/28Drip receptacles for umbrellas; Attaching devices therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65BMACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
    • B65B67/00Apparatus or devices facilitating manual packaging operations; Sack holders
    • B65B67/02Packaging of articles or materials in containers
    • B65B67/04Devices facilitating the insertion of articles or materials into bags, e.g. guides or chutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/005Electrodes
    • H01G4/008Selection of materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/43Electric condenser making
    • Y10T29/435Solid dielectric type

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Ceramic Capacitors (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

一种叠层陶瓷电容器(1),具有电介质层(2)和使用导电糊料所形成的内部电极层(3)。上述导电糊料中含有导电材料,上述导电材料由第1成分和第2成分构成,上述第1成分中含有以Ni为主成分的金属元素,上述第2成分含有固溶在上述第1成分中、熔点为1490℃或以上的金属元素。

Description

叠层陶瓷电子部件及其制造方法
技术领域
本发明涉及具使用特定组成的导电糊料形成的内部电极层的叠层陶瓷电容器等叠层陶瓷电子部件和该部件的制造方法。
背景技术
叠层陶瓷电容器作为叠层陶瓷电子部件的一例,是由电介质层与内部电极层交替多层叠层构成的元件主体和在该元件主体的两端形成的一对外部端子电极所构成。制造该叠层陶瓷电容器时,首先将烧结前电介质层(陶瓷生片)和烧结前内部电极层(规定图案的电极层用导电糊料)只按所需要的片数交替重叠,制成烧结前的元件主体,然后将其烧结后,在烧结后元件主体的两端形成一对外部端子电极。
在制造叠层陶瓷电容器时,由于将烧结前电介质层和烧结前内部电极层同时烧结,因此要求烧结前内部电极层中所含有的导电材料具有比烧结前电介质层中所含有的电介质原料粉末的烧结温度高的熔点,并不与电介质原料粉末产生反应,而且不扩散到烧结后的电介质层中。
近年来,为了满足这些要求,在烧结前内部电极层所含有的导电材料中,替代现使用的Pt或Pd等贵金属,正在开发使用降低电介质原料粉末的烧结温度,在烧结前内部电极层所含有的导电材料中使用Ag-Pd合金,使电介质材料具有耐还原性,并可在还原气氛中烧结的Ni等廉价的贱金属导电材料。
举例说明在烧结前内部电极层中所含有的导电材料中使用Ni的情况。Ni与烧结前电介质层中所含有的电介质原料粉末相比,熔点低。为此,在将烧结前电介质层与含有Ni作为导电材料的烧结前内部电极层同时烧结的情况下,由于电介质原料粉末与Ni的烧结开始温度有差异,随着电介质原料粉末烧结的进行,Ni颗粒生长,不久就出现间断倾向,其结果,使内部电极的被覆率趋于下降。
因此,为了抑制烧结时的Ni颗粒生长,即,赋予Ni烧结抑制效果,从而可提高内部电极的被覆率,进而提高Ni内部电极和电介质层的密合性,作为共用材料,在用于形成内部电极层的导电糊料中,添加电介质层中所含有的电介质原料(例如:钛酸钡粉末)。
不过,假如导电糊料中共用材料的添加量过多,虽然提高了烧结抑制效果或Ni内部电极与电介质层的密合性,但是,隔着电介质层相对的Ni内部电极的连续性趋于劣化。其结果,所产生的问题是使Ni的缩颈生长(ネツクグロ一ス),Ni按条纹状集合,内部电极的导体组织变得稀疏,内部电极的被覆率下降,由此不能获得大的静电容量。
另一方面,导电糊料中的共用材料(共材)的添加量过少的情况下,虽然因内部电极的被覆率没有下降而容易获得大的静电容量,但是,不能充分获得烧结抑制效果和Ni内部电极与电介质层的密合性,这也是产生裂纹的主要原因。
为了获得体积小、静电容量更大的叠层陶瓷电容器,虽然必须尽可能将内部电极与电介质层都作得很薄(薄层化),而且尽可能的将其层叠成多层(多层化)。不过,假如单纯地进行内部电极与电介质层双方的薄层化和多层化,在烧结前元件主体的内部中,内部电极所占的比率就会增加,导致必须在导电糊料中添加更多的共用材料。不过,正如上面所述的原因,假如在导电糊料中添加的共用材料的量变多,也不能获得所需的静电容量。
因此,近年来,提出了不大量添加共用材料就可以获得所需的静电容量的方案(参照特开2000-269073号公报)。
在特开2000-269073号公报中,提出了以下技术:通过在用于形成内部电极的导电糊料中添加具有Ni烧结抑制效果的添加物,即La和Cr中的至少一种的氧化物(La2O3、Cr2O3),即使共用材料添加量少,也不会影响内部电极的连续性,其结果也不会降低静电容量。另外,在特开2000-269073号公报中提出了上述添加物的平均粒径为0.5μm或以上的宗旨。此外,相对于Ni粉末100重量%,添加0.5重量%或以上的该粒径的上述添加物。
但是,在特开2000-269073号公报的技术中,由于相对于Ni粉末所添加的添加物的平均粒径大,而且添加量也多,故Ni内部电极的连续性变差。其结果,由于内部电极的被覆率下降,不能获得大的静电容量。
发明内容
本发明的目的是提供一种具有连续性提高、从而被覆率提高的内部电极层的叠层陶瓷电容器等叠层陶瓷电子部件及该部件的制造方法。
以往,形成叠层陶瓷电子部件的内部电极所用的导电糊料中,为了提高被覆率,要求抑制Ni的颗粒生长,即,具有Ni的烧结抑制效果。本发明人发现,与通过一般评价时所用的TMA解析进行的Ni烧结抑制效果的评价无关,通过使用相对于Ni(第1成分)添加了特定量的小粒径的特定第2成分(或对Ni涂覆特定的第2成分)的导电糊料,能够提高烧结后的内部电极层的连续性,其结果可以提高被覆率。
根据本发明,提供一种叠层陶瓷电子部件,其具有电介质层和使用导电糊料所形成的内部电极层,
上述导电糊料中含有导电材料,
上述导电材料由第1成分和第2成分构成,
上述第1成分中含有以Ni为主成分的金属元素,
上述第2成分含有固溶在上述第1成分中、熔点为1490℃或以上的金属元素。
根据本发明,提供一种叠层陶瓷电子部件的制造方法,其是将生陶瓷叠层体进行烧结的叠层陶瓷电子部件的制造方法,所述生陶瓷叠层体是将导电糊料按规定的图案与陶瓷生片(グリ一ンシ一ト)一起多次交替层叠得到的,其中作为上述的导电糊料,含有导电材料,
上述导电材料由第1成分和第2成分构成,
上述第1成分含有以Ni为主成分的金属元素,
上述第2成分使用含有固溶在上述第1成分中、熔点为1490℃或以上的金属元素的材料。
“固溶在第1成分中、熔点为1490℃或以上的金属元素”优选含有选自Cr、Mo、W、Fe、Ru、Co、Rh、Zr、Pd和Pt中的一种或一种以上金属元素。另外,上述第2成分,除了这些金属元素外,还包括这些金属元素的氧化物。作为氧化物,可列举例如Cr2O3、Co3O4、ZrO2、Fe2O3等。
优选上述第2成分的平均粒径小于0.5μm。
优选上述第2成分的平均粒径小于0.5μm,而且是上述第1成分的平均粒径的0.25倍或0.25倍以下。
优选上述第2成分的平均粒径为0.01μm或以上。
相对于上述第1成分100重量%,上述第2成分的添加量优选为10重量%或以下。
相对于上述第1成分100重量%,上述第2成分的添加量优选为0.05重量%或以上。
作为叠层陶瓷电子部件,没有特殊限制,可列举出叠层陶瓷电容器、叠层陶瓷电感器、叠层陶瓷LC部件和多层陶瓷基板等。
根据本发明,通过使用相对于以Ni为主成分的第1成分添加特定量的小粒径的特定第2成分的导电糊料,即使在使内部电极层薄层化(例如为1.5μm或以下)时,也可提高烧结后的内部电极层的连续性,其结果可提高被覆率。采用该技术,可获得实现内部电极进一步薄层化的叠层陶瓷电子部件。
另外,通过对上述第1成分涂覆上述特定的第2成分,也可期望能获得同样的效果。
附图说明
图1是本发明的一个实施方式的叠层陶瓷电容器的截面图;
图2是用于计算本发明代表性实施例试样(试样9)内部电极层的被覆率的照片;
图3是用于计算本发明代表性比较例试样(试样6)内部电极层的被覆率的照片。
具体实施方式
下面,根据附图详细说明本发明的实施方式。
首先,作为本发明的叠层陶瓷电子部件的一个实施方式,说明叠层陶瓷电容器的整体结构。
如图1所示,本发明的一个实施方式的叠层陶瓷电容器1,具有交替层叠电介质层2和内部电极层3构成的电容器主体(素体)10。在该电容器主体10的两侧端部,形成有与在主体10内部交替配置的内部电极层3分别接通的一对外部电极4、4。内部电极层3以各侧端面在电容器主体10的相对的两个端部表面交替露出的方式层叠。在电容器主体10的两端部形成一对外部电极4、4,并与交替配置的内部电极层3的露出端面连接,构成电容器电路。
电容器主体10的外形和尺寸没有特殊的限制,可以根据用途适当设定,通常外形为大致长方体形状,尺寸通常可以为长(0.4~5.6mm)×宽(0.2~5.0mm)×高(0.2~1.9mm)左右。
电介质层2是将后述陶瓷生片进行烧结而形成的,对其材质没有特殊限制,例如,用钛酸钙、钛酸锶和/或钛酸钡等电介质材料来构成。在本实施方式中,电介质层2的厚度进行薄层化,厚度优选为3μm或以下,更优选为2μm或以下。
内部电极层3通过烧结后述规定图案的导电糊料而形成。对内部电极层3的厚度进行薄层化,优选厚度为1.5μm或以下,更优选为1μm或以下。一般情况下,电极层的厚度过厚时,就不得不减少叠层数,容量下降,很难实现高容量。另一方面,厚度过薄,则很难形成均匀的厚度,容易产生电极断裂,不过,在本发明中,由于使用后述的特定导电糊料形成内部电极层3,所以即使厚度薄至1.5μm或以下,也能维持连续性,结果提高了内部电极层3的被覆率。具体地说,内部电极层3的被覆率为80%或以上。过去内部电极层3薄层化到1.5μm以下时,被覆率的界限是75%。
外部电极4的材料通常使用铜或铜合金、镍或镍合金等,但也可使用银或银与钯的合金等。外部电极4的厚度也没有特殊的限制,一般在10~50μm左右。
下面,说明本实施方式的叠层陶瓷电容器1的制造方法的一个例子。
准备电介质糊料
(1)首先,为制备在烧结后构成图1所示的电介质层2的陶瓷生片,准备电介质糊料。
电介质糊料通常由将陶瓷粉末(电介质原料)和有机载体(有機ビヒクル)混练得到的有机溶剂系糊料或水系糊料构成。
作为陶瓷粉末,可从变成复合氧化物或氧化物的各种化合物例如碳酸盐、硝酸盐、氢氧化物和有机金属化合物等中适当选择,混合后使用。陶瓷粉末通常可使用平均粒径为0.4μm或以下,优选0.1~3.0μm左右的粉末。另外,为了形成极薄的陶瓷生片,优选使用比陶瓷生片的厚度更细的粉末。
有机载体是将粘合剂溶解到有机溶剂中得到的物质。作为有机载体中所用的粘合剂,没有特殊的限制,通常可使用乙基纤维素、聚乙烯醇缩丁醛、丙烯酸类树脂等常规的各种粘合剂,不过优选使用聚乙烯醇缩丁醛等丁醛系树脂。
另外,有机载体中所用的有机溶剂也没有特殊的限制,可使用萜品醇、丁基卡必醇、丙酮和甲苯等有机溶剂。另外,水系糊料中的载体,是将水溶性粘合剂溶解到水中得到的物质。作为水溶性粘合剂没有特殊的限制,可使用聚乙烯醇、甲基纤维素、羟基乙基纤维素、水溶性丙烯酸类树脂和乳胶等。电介质糊料中各成分的含量没有特殊限制,通常含量例如粘合剂可以在1~5重量%左右,溶剂(或水)可以在10~50重量%左右。
根据需要,在电介质糊料中,可以含有选自各种分散剂、增塑剂、电介质、玻璃料(ガラスフリツト)和绝缘体等中的添加物。不过,这些添加物的总含量优选为10重量%或以下。当使用丁醛系树脂作为粘合剂树脂时,相对于100重量份的粘合剂树脂,增塑剂的含量优选为25~100重量份。如果增塑剂含量过低,生片有变脆的趋势,含量过高,增塑剂就会渗出,处理就非常困难。
陶瓷生片的形成
(2)接着,使用上述电介质糊料,通过刮板法等,在载片上形成厚度优选为0.5~30μm、更优选为0.5~10μm、进一步优选为0.5~5μm左右的陶瓷生片。陶瓷生片在烧结后成为图1所示的电介质层2。
作为载片,使用例如PET膜等。为了改善剥离性,优选涂敷了硅氧烷等的载片。载片的厚度没有特殊的限制,优选5~100μm的范围。
陶瓷生片在载片上形成后干燥。陶瓷生片的干燥温度优选为50~100℃,干燥时间优选为1~20分钟。
干燥后的陶瓷生片厚度与干燥前比较,厚度收缩至5~25%。在本实施方式中,干燥后的陶瓷生片厚度为5μm或以下,优选3μm或以下。这是为了满足近年来所希望的薄层化的要求。
电极层的形成
(3)接着,在载片上形成的陶瓷生片表面上形成烧结后成为图1所示的内部电极层3的规定图案的电极层(内部电极图案)。
形成电极层时,烧结后的厚度优选为1.5μm或以下,更优选1μm或以下。
目前的技术中,电极层的厚度是在上述范围左右,但在不产生电极断裂的范围内厚度越薄越好。
对于电极层的形成方法,只要是能均匀地形成电极层的方法,就没有特殊的限制,本实施方式中采用使用电极层用糊料(导电糊料)的丝网印刷法。
在本实施方式中所用的导电糊料含有导电材料和有机载体。
导电材料由第1成分和第2成分构成。
第1成分是粉末状,含有以Ni为主成分的金属元素。以第1成分的总量为100重量%,则第1成分中含有的Ni的比例优选为99~100重量%,更优选为99.5~100重量%。
从使内部电极层的变薄的观点看,优选第1成分的平均粒径小。具体地说,当第1成分的形状为球状时,其平均粒径优选小于0.5μm,更优选0.3μm或以下。假如第1成分的平均粒径为0.5μm或以上,可能会降低电容器内部电极的被覆率。第1成分的平均粒径的下限优选为0.01μm。假如第1成分的平均粒径太小,电容器1可能产生裂纹。
第2成分含有固溶在上述第1成分中、且熔点为1490℃或以上的金属元素。通过将上述第2成分与上述第1成分共同使用,可提高电容器内部电极的被覆率。
具体地说,作为第2成分中所含有的金属元素,可例举选自Cr(1857℃)、Mo(2620℃)、W(3380℃)、Fe(1540℃)、Ru(2310℃)、Co(1490℃)、Rh(1970℃)、Zr(2410℃)、Pd(1550℃)和Pt(1770℃)中的一种或一种以上金属元素。其中,优选选自Cr、Mo、W、Fe、Co、Zr和Pd中的一种或一种以上金属元素,更优选选自Cr、Mo和W中的一种或一种以上金属元素,进一步优选选自Cr和Mo中的一种或一种以上金属元素,特别优选Cr。Cr与作为第1成分的主成分的Ni原子半径接近,对于Ni是可以最优选使用的组合。另外,括号内数字是该金属的熔点。附带说一下,上述作为第1成分的主成分的Ni,熔点为1450℃。
另外,作为第2成分,除了上述的各金属元素本身外,还可以它们的氧化物的形式包含在导电糊料中。作为上述各金属元素的氧化物,例如有Cr2O3、Co3O4、ZrO2、Fe2O3等。
当第2成分的形状为球状时,其平均粒径优选小于0.5μm,更优选为0.1μm或以下,进一步优选是上述第1成分的平均粒径的0.25倍或0.25倍以下。假如第2成分的平均粒径为0.5μm或以上,可能会降低电容器内部电极的被覆率。特别是通过使第2成分的平均粒径小于0.5μm,且为上述第1成分平均粒径的0.25倍或0.25倍以下,可进一步提高电容器内部电极的被覆率。第2成分平均粒径的下限优选为0.01μm。第2成分的平均粒径太小时,由于第2成分凝聚太强,则分散性不好,很难保证导电糊料分散度的均匀性,由此会降低电容器内部电极被覆率的改善效果。
相对于上述第1成分100重量%,第2成分的添加量优选为10重量%或以下。第2成分的添即使超过10重量%,虽然也对改善电容器内部电极的被覆率有一定效果,但已达到顶点,同时也可能使电容器1产生裂纹。即,添加量为10重量%或以下时,不会使电容器1产生裂纹,还可有效地改善电容器内部电极被覆率。第2成分添加量的下限优选是0.05重量%。假如第2成分的添加量过少,恐怕电容器内部电极被覆率的改善效果不充分。
第2成分也可以以粉末状态含有,或以金属树脂酸盐(金属レジネ一ト)的形式含有。所谓金属树脂酸盐就是金属树脂酸盐(金属树脂酸塩),高级脂肪酸金属盐是其代表物质。作为金属有机物,可使用例如环烷酸盐、辛酸盐、硬脂酸盐、油酸盐、棕榈酸盐、月桂酸盐、肉豆蔻酸盐、苯甲酸盐、パラトイル酸盐、正癸酸盐、金属醇盐和金属乙酰丙酮化合物等。
导电糊料中含有的导电材料优选为30~60重量%,更优选为40~50重量%。
有机载体可使用与上述电介质糊料中同样的物质。
在本实施方式中所用的导电糊料,除了上述的导电材料和有机载体外,还可含有与上述电介质糊料中所含有的陶瓷粉末相同的陶瓷粉末作为共用材料。在烧结过程中,共用材料起到抑制导电材料的烧结作用。在导电糊料中,相对于100重量份的导电材料,陶瓷粉末(共用材料)的含量优选为5~30重量份。若共用材料的量过少,会降低导电材料的烧结抑制效果,内部电极的线性(连续性)恶化,表观介电常数下降。另一方面,若共用材料的量过多,内部电极的线性也容易恶化,也存在表观介电常数下降的倾向。
为了改善密合性,在导电糊料中可以含有增塑剂。作为增塑剂,列举苯二甲酸苄基丁酯(BBP)等苯二甲酸脂、己二酸、磷酸脂和二醇类等。
导电糊料可通过将上述各成分用球磨机等混练,然后浆化而获得。
生片的制作和烧结等
(4)接着,将上述表面上形成了规定图案的电极用糊料层的生片多层层叠制成生片,经过脱粘合剂工序、烧结工序和根据需要进行的退火工序形成烧结体,在由烧结体构成的电容器主体10上印刷或转印外部电极用糊料,经过烧结形成外部电极4、4,制成叠层陶瓷电容器1。
以上对本发明的实施方式作了说明,但本发明不受上述实施方式的任何限制,在不脱离本发明要旨的范围内,可以进行各种变化。
例如,作为本发明的电子部件,在上述的实施方式中列举了叠层陶瓷电容器,但本发明的叠层陶瓷电子部件不限于叠层陶瓷电容器,不用说还可以适用于多层陶瓷基板等。
实施例
以下基于实施例进一步详细说明本发明,但本发明不限于这些实施例。
实施例1
导电糊料的制作
首先,准备作为导电材料第1成分的平均粒径为0.4μm的Ni粉末,作为导电材料的第2成分的平均粒径为0.008~1μm的Cr2O3粉末和作为有机粘合剂的乙基纤维素以及作为溶剂的萜品醇。
其次,相对于100重量%的Ni粉末,称量0.03~20重量%的Cr2O3粉末;并且相对于导电材料(Ni粉末+Cr2O3粉末),分别称量5重量%的有机粘合剂和100重量%的溶剂;用球磨机搅拌、浆化得到导电糊料。
电介质糊料的制备
准备BaTiO3系陶瓷粉末,作为有机粘合剂的聚乙烯醇缩丁醛(PVB)和作为溶剂的甲醇。然后,相对于陶瓷粉末,分别称量10重量%的有机粘合剂和150重量%的溶剂,用球磨机混练、浆化得到电介质糊料。
叠层陶瓷电容器试样的制作
下面,使用所获得的电介质糊料和导电糊料,按以下方式制备图1所示的叠层陶瓷电容器1。
首先,采用刮板法将电介质糊料按规定的厚度涂敷在PET膜上,干燥后形成厚度为1μm的陶瓷生片。在本实施例中,将该陶瓷生片为第1生片,并准备多片这种陶瓷生片。
其次,采用丝网印刷法,按规定的图案在获得的第1生片上形成导电糊料,获得具有厚度约为1μm的电极图案的陶瓷生片。在本实施例中,将该陶瓷生片作为第2生片,并准备多片这种陶瓷生片。
接着,将第1生片层叠到150μm的厚度形成生片组。在该生片组上,将第2生片层叠250片,在其上进一步叠层形成与上述同样的生片组,在温度70℃和压力1.5吨/cm2的条件下加热加压,从而获得生陶瓷叠层体。
下面,将获得的叠层体按规定的尺寸切断后,进行脱粘合剂处理、烧结并退火,从而获得烧结体。
脱粘合剂是在升温速度:5~300℃/小时、保持温度:200~400℃、保持时间:0.5~20小时、氛围气体:加湿的N2的条件下进行。烧结是在升温速度:5~500℃/小时、保持温度:1200℃、保温时间:0.5~8小时、冷却速度:50~500℃/小时、氛围气体:加湿的N2和H2的混合气体、氧分压:10-7Pa的条件下进行。退火(再氧化)是在升温速度:200~300℃/小时、保持温度:1050℃、保温时间:2小时、冷却速度:300℃/小时、氛围气体:加湿的N2气体、氧分压:10-1Pa的条件下进行。另外,使用加湿器在水温0~75℃下进行氛围气体的加湿。
获得的烧结体尺寸为长1.6mm×宽0.8mm×高0.8mm,一对内部电极层间夹持的电介质层2的厚度约为1μm,内部电极层3的厚度为1μm。
烧结体的评价
利用所获得的烧结体评价内部电极层的被覆率。内部电极层的被覆率(单位%)是切割所获得的烧结体,使任意的内部电极层的整面露出,用超深度彩色3D形状测试显微镜VK-9500((株)キ一エンス公司生产),以1000倍拍摄露出的内部电极层后,根据图象的直方图(histongram)算出的被覆率。在本实施例中,看到明亮场地方的范围区域内被覆有Ni。本实施例的被覆率良好,为80%以上。结果示于表1。
另外,将具有代表性的实施例试样9和比较例试样6所露出的内部电极层的摄影图像示于图2和图3。
然后,将获得的烧结体端面用喷砂器研磨后,涂敷In-Ga合金,形成试验用电极,从而获得了叠层陶瓷电容器试样。
电容器试样的评价
评价所获得的电容器试样的静电容量和有无裂纹。
在基准温度25℃下,使用数字LCR测量仪(YHP公司生产的4274A),在频率1kHz、输入信号电平(测试电压)1Vrms的条件下测定样品的静电容量C(单位nF)。静电容量C优选1.93nF或以上为良好。
对于有无裂纹,经过观察电容器试样的外观,或经过研磨用金属显微镜进一步观察内部构造来判定有无裂纹。没有裂纹的为良好。
结果示于表1。
                                       表1
Figure G06179379520060519D000111
表1中,试样8是与试样3同样的试样。
如表1所示,(1)作为第2成分的Cr2O3粉末的平均粒径过大,为1μm时,虽然不会产生裂纹,但被覆率和静电容量变低(试样5)。相反,若平均粒径过小,为0.008μm时,被覆率和静电容量变低,而且还会产生裂纹(试样1)。相对于此,假如平均粒径小于0.5μm,就不会降低被覆率和静电容量,而且也不会产生裂纹(试样2~4)。
(2)即使是平均粒径为0.1μm的微细的Cr2O3粉末,相对于100重量%的Ni粉末(第1成分)的添加量过多,为20重量%时,虽然被覆率和静电容量没有下降,但改善被覆率的效果趋于顶点,并且产生裂纹(试样10)。相反,若添加量过少,为0.03重量%时,虽然不会产生裂纹,但被覆率和静电容量变低(试样6)。相对于此,添加量为10重量%或以下时,既不会降低被覆率和静电容量,也不会产生裂纹(试样7~9)。
实施例2
除使用平均粒径0.01~0.45μm的Mo粉末代替Cr2O3粉末作为导电材料的第2成分,并且相对于100重量%的Ni粉末,Mo粉末的添加量为0.05~12重量%之外,与实施例1同法制作叠层陶瓷电容器试样,并与实施例1同法进行评价。结果示于表2。
                                       表2
Figure G06179379520060519D000121
表2中,试样15和试样12是相同的试样。
根据表2,可以确认,用Mo粉末代替Cr2O3粉末作为第2成分时,也可得到同样的结果。
实施例3
除了使用W、Co3O4、ZrO2、Pd、Fe2O3、Ru、Rh、Pt各粉末代替Cr2O3粉末作为导电材料的第2成分以外,与实施例1的试样3同法制作叠层陶瓷电容器试样,并与实施例1同法进行评价。结果示于表3。
                                        表3
Figure G06179379520060519D000132
表3中,试样18是和实施例1的试样3相同的试样,试样19是和实施例2的试样12相同的试样。
根据表3,可确认当使用Mo、Co3O4、ZrO2、Pd、Fe2O3、Ru、Rh、Pt各粉末代替Cr2O3粉末作为第2成分时,也获得同样的结果。另外,表3的各试样使用平均粒径在0.1~0.2μm范围的各粉末作为第2成分,添加量均为1重量%的试样,根据此表3的结果,当使用Cr2O3、Mo、Co3O4、ZrO2、Pd和Fe2O3作为第2成分,时,特别是使用Cr2O3和Mo时,可确认静电容量的改善效果提高。
实施例4
除了使用在平均粒径为0.4μm的Ni粉末(第1成分)的表面涂布了Cr2O3(第2成分)的涂层粉作为导电材料之外,与实施例1同法制作叠层陶瓷电容器试样,并用与实例1同样的方法进行评价。另外,作为涂层粉,使用相对于Ni:100重量%涂覆了1重量%的Cr2O3的涂层粉。其结果可获得与实施例1大致相同的评价。

Claims (3)

1.一种叠层陶瓷电子部件,该部件具有电介质层和使用导电糊料形成的内部电极层;其中,
上述导电糊料含有导电材料;
上述导电材料由第1成分和第2成分构成;
上述第1成分为Ni金属粉;
上述第2成分是相对于上述第1成分100重量%以0.05~10重量%的量添加的平均粒径0.1μm的Mo粉末。
2.根据权利要求1所述的叠层陶瓷电子部件,上述第2成分的平均粒径是上述第1成分的平均粒径的0.25倍以下。
3.一种叠层陶瓷电子部件的制造方法,该方法是对将导电糊料按规定图案与陶瓷生片一起交替层叠多层而得到的生陶瓷叠层体进行烧结,其中,
上述导电糊料含有导电材料;
上述导电材料由第1成分和第2成分构成;
上述第1成分为Ni金属粉;
上述第2成分是相对于上述第1成分100重量%以0.05~10重量%的量添加的平均粒径0.1μm的Mo粉末。
CN2006100793795A 2005-03-31 2006-03-31 叠层陶瓷电子部件及其制造方法 Active CN1841598B (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2005103509 2005-03-31
JP2005-103509 2005-03-31
JP2005103509 2005-03-31
JP2006010339A JP4513981B2 (ja) 2005-03-31 2006-01-18 積層セラミック電子部品及びその製造方法
JP2006-010339 2006-01-18
JP2006010339 2006-01-18

Publications (2)

Publication Number Publication Date
CN1841598A CN1841598A (zh) 2006-10-04
CN1841598B true CN1841598B (zh) 2011-06-15

Family

ID=37070116

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2006100793795A Active CN1841598B (zh) 2005-03-31 2006-03-31 叠层陶瓷电子部件及其制造方法

Country Status (5)

Country Link
US (1) US7817402B2 (zh)
JP (1) JP4513981B2 (zh)
KR (1) KR20060105585A (zh)
CN (1) CN1841598B (zh)
TW (1) TW200644004A (zh)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201002038D0 (en) * 2010-02-09 2010-03-24 Bae Systems Plc Electrostatic capacitors
TW201135766A (en) * 2010-04-01 2011-10-16 Chien-Chiang Chan Energy storage device
KR20130007301A (ko) * 2011-06-30 2013-01-18 삼성전기주식회사 적층 세라믹 전자부품 및 그의 제조방법
KR101862396B1 (ko) * 2011-09-08 2018-05-30 삼성전기주식회사 적층 세라믹 전자부품 및 이의 제조방법
KR101823160B1 (ko) * 2012-04-26 2018-01-29 삼성전기주식회사 적층 세라믹 전자부품 및 이의 제조방법
KR20140024584A (ko) * 2012-08-20 2014-03-03 삼성전기주식회사 내부전극용 도전성 페이스트 조성물 및 이를 포함하는 적층 세라믹 전자부품
KR102057911B1 (ko) * 2013-06-19 2019-12-20 삼성전기주식회사 적층 세라믹 전자부품
DE102013017350B4 (de) * 2013-10-17 2020-07-09 Tdk Electronics Ag Vielschichtbauelement und Verfahren zur Herstellung eines Vielschichtbauelements
JP2014239204A (ja) * 2014-01-31 2014-12-18 株式会社村田製作所 電子部品及び電子部品の実装構造体
KR102217288B1 (ko) * 2018-08-16 2021-02-19 삼성전기주식회사 적층 세라믹 전자부품 및 그 제조방법
KR102140622B1 (ko) 2018-08-23 2020-08-03 삼성전기주식회사 적층 세라믹 전자부품 및 그 제조방법
KR102351181B1 (ko) * 2018-08-23 2022-01-14 삼성전기주식회사 적층 세라믹 전자부품 및 그 제조방법
KR102147408B1 (ko) * 2018-08-23 2020-08-24 삼성전기주식회사 적층 세라믹 전자부품 및 그 제조방법
JP7493322B2 (ja) * 2019-11-13 2024-05-31 株式会社村田製作所 積層セラミックコンデンサ
KR20230062024A (ko) * 2021-10-29 2023-05-09 삼성전기주식회사 커패시터 부품

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1503275A (zh) * 2002-11-25 2004-06-09 Tdk��ʽ���� 导电组合物及陶瓷电子元件

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU870383A1 (ru) * 1979-03-12 1981-10-07 Предприятие П/Я Х-5425 Паста дл металлизации керамики
JPS59114703A (ja) * 1982-12-21 1984-07-02 太陽誘電株式会社 焼付型導電性ペ−スト
JPS63201079A (ja) * 1986-10-02 1988-08-19 日本タングステン株式会社 セラミツク焼結体用メタライズペ−スト及びそのメタライズ法
JPS6481106A (en) * 1987-09-22 1989-03-27 Sumitomo Metal Mining Co Composition for forming conductive film
JPH02106808A (ja) * 1988-10-17 1990-04-18 Hitachi Ltd 導電ペーストおよびそれを用いた電子回路部品並びにその製法
JPH0374819A (ja) * 1989-08-16 1991-03-29 Matsushita Electric Ind Co Ltd 積層セラミック部品の製造方法
JP2991527B2 (ja) * 1991-05-22 1999-12-20 第一工業製薬株式会社 セラミックコンデンサー電極用導体ペースト
JPH05205969A (ja) * 1992-01-29 1993-08-13 Sumitomo Metal Mining Co Ltd 積層コンデンサ内部電極用ペースト
JPH05226179A (ja) * 1992-02-10 1993-09-03 Daido Steel Co Ltd 導電ペースト用粉末
JPH06236707A (ja) * 1993-02-09 1994-08-23 Murata Mfg Co Ltd 導電ペースト
JPH06290985A (ja) * 1993-03-30 1994-10-18 Taiyo Yuden Co Ltd 内部電極ペースト
JPH07211132A (ja) * 1994-01-10 1995-08-11 Murata Mfg Co Ltd 導電性ペーストおよびこれを用いた積層セラミックコンデンサの製造方法
JPH07197103A (ja) * 1994-01-10 1995-08-01 Murata Mfg Co Ltd 金属粉末表面への金属化合物被覆方法
JPH08255509A (ja) * 1995-03-16 1996-10-01 Toshiba Corp 導電ペースト及び積層セラミック電子部品
JP3039403B2 (ja) * 1996-12-06 2000-05-08 株式会社村田製作所 積層セラミックコンデンサ
JP3527822B2 (ja) * 1997-01-31 2004-05-17 京セラ株式会社 導電性ペースト
JP3874041B2 (ja) * 1997-08-18 2007-01-31 Tdk株式会社 Cr複合電子部品とその製造方法
JP3534999B2 (ja) * 1997-12-19 2004-06-07 京セラ株式会社 導電性ペースト
JP2000269073A (ja) * 1999-03-19 2000-09-29 Taiyo Yuden Co Ltd 積層セラミックコンデンサとその製造方法
JP4548897B2 (ja) * 2000-03-31 2010-09-22 京セラ株式会社 導電性ペーストおよび積層型電子部品並びにその製法
JP2001307941A (ja) * 2000-04-21 2001-11-02 Shoei Chem Ind Co 端子電極ペーストおよび積層セラミックコンデンサの製造方法
DE10126099B4 (de) * 2000-05-30 2008-11-13 Tdk Corp. Keramischer Vielschichtkondensator und Verfahren zu seiner Herstellung
JP2002060877A (ja) * 2000-08-16 2002-02-28 Kawatetsu Mining Co Ltd 導電ペースト用Ni合金粉
US20020139457A1 (en) * 2001-04-02 2002-10-03 Coppola Vito A. Method of suppressing the oxidation characteristics of nickel
JP3900248B2 (ja) * 2001-03-30 2007-04-04 ハリマ化成株式会社 多層配線板およびその形成方法
JP4403705B2 (ja) * 2003-02-17 2010-01-27 Tdk株式会社 誘電体磁器組成物および電子部品
JP3947118B2 (ja) * 2003-03-03 2007-07-18 Jfeミネラル株式会社 表面処理金属超微粉、その製造方法、導電性金属ペースト及び積層セラミックコンデンサ
JP4337501B2 (ja) * 2003-10-27 2009-09-30 株式会社村田製作所 導電性ペーストおよび積層セラミック電子部品
US20060169389A1 (en) * 2005-01-31 2006-08-03 Barber Daniel E Electrode paste for thin nickel electrodes in multilayer ceramic capacitors and finished capacitor containing same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1503275A (zh) * 2002-11-25 2004-06-09 Tdk��ʽ���� 导电组合物及陶瓷电子元件

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
JP平3-74819A 1991.03.29
JP特开2000-269073A 2000.09.29
JP特开2001-284162A 2001.10.12
JP特开平11-185527A 1999.07.09

Also Published As

Publication number Publication date
KR20060105585A (ko) 2006-10-11
TW200644004A (en) 2006-12-16
JP2006310760A (ja) 2006-11-09
CN1841598A (zh) 2006-10-04
JP4513981B2 (ja) 2010-07-28
US7817402B2 (en) 2010-10-19
US20060221547A1 (en) 2006-10-05

Similar Documents

Publication Publication Date Title
CN1841598B (zh) 叠层陶瓷电子部件及其制造方法
CN1941233B (zh) 叠层型陶瓷电子部件的制造方法
KR100918346B1 (ko) 전자 부품 및 그 제조 방법
JP4449984B2 (ja) 導電性粒子の製造方法、導電性ペーストおよび電子部品の製造方法
JP2010153485A (ja) 電子部品
JP2018181941A (ja) 積層セラミックコンデンサおよびその製造方法
JP2018181940A (ja) 積層セラミックコンデンサおよびその製造方法
JP2019033243A (ja) 積層セラミックコンデンサおよびその製造方法
JP2014146752A (ja) 積層セラミックコンデンサ
JP5870625B2 (ja) 電極焼結体、積層電子部品、内部電極ペースト、電極焼結体の製造方法、積層電子部品の製造方法
JP2010153486A (ja) 電子部品
KR100814206B1 (ko) 공재 입자, 그 제조 방법, 전극 페이스트, 전자 부품의제조 방법
JP4182009B2 (ja) 導電性粒子、導電性ペースト、電子部品、積層セラミックコンデンサおよびその製造方法
JP2007234330A (ja) 導電体ペーストおよび電子部品
JP2007234588A (ja) 導電性ペースト、電子部品、積層セラミックコンデンサおよびその製造方法
JP4896364B2 (ja) 積層セラミックコンデンサおよびその製造方法
JP6586507B2 (ja) ニッケル電極用cog誘電体組成物
CN114641835A (zh) 层叠陶瓷电容器内部电极用导电膏组合物及其制造方法以及导电膏
JP4303715B2 (ja) 導電性ペーストおよび積層型電子部品の製造方法
JP4867948B2 (ja) 導電性粒子、導電性ペースト、電子部品、積層セラミックコンデンサおよびその製造方法
JP4968309B2 (ja) ペースト組成物、電子部品および積層セラミックコンデンサの製造方法
JP4432882B2 (ja) 積層型電子部品およびその製造方法
KR20080073259A (ko) 전자 부품 및 그 제조 방법
JP4387150B2 (ja) 積層セラミック電子部品およびその製造方法
JP2019067827A (ja) 積層電子部品

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant