[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

CN110997613A - 用于将乙醇转化为乙酸乙酯和氢气的均相铁催化剂 - Google Patents

用于将乙醇转化为乙酸乙酯和氢气的均相铁催化剂 Download PDF

Info

Publication number
CN110997613A
CN110997613A CN201880050166.0A CN201880050166A CN110997613A CN 110997613 A CN110997613 A CN 110997613A CN 201880050166 A CN201880050166 A CN 201880050166A CN 110997613 A CN110997613 A CN 110997613A
Authority
CN
China
Prior art keywords
catalyst
formula
ethyl acetate
hydrogen
independently
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201880050166.0A
Other languages
English (en)
Inventor
苏米特·查克拉博蒂
史蒂文·J·亚当斯
罗伯特·托马斯·赫姆瑞
斯科特·唐纳德·巴尼克
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eastman Chemical Co
Original Assignee
Eastman Chemical Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eastman Chemical Co filed Critical Eastman Chemical Co
Publication of CN110997613A publication Critical patent/CN110997613A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/18Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms
    • B01J31/189Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms containing both nitrogen and phosphorus as complexing atoms, including e.g. phosphino moieties, in one at least bidentate or bridging ligand
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/20Carbonyls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/24Phosphines, i.e. phosphorus bonded to only carbon atoms, or to both carbon and hydrogen atoms, including e.g. sp2-hybridised phosphorus compounds such as phosphabenzene, phosphole or anionic phospholide ligands
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/22Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/003Esters of saturated alcohols having the esterified hydroxy group bound to an acyclic carbon atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/02Iron compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/02Iron compounds
    • C07F15/025Iron compounds without a metal-carbon linkage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/60Reduction reactions, e.g. hydrogenation
    • B01J2231/64Reductions in general of organic substrates, e.g. hydride reductions or hydrogenations
    • B01J2231/641Hydrogenation of organic substrates, i.e. H2 or H-transfer hydrogenations, e.g. Fischer-Tropsch processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/70Oxidation reactions, e.g. epoxidation, (di)hydroxylation, dehydrogenation and analogues
    • B01J2231/76Dehydrogenation
    • B01J2231/763Dehydrogenation of -CH-XH (X= O, NH/N, S) to -C=X or -CX triple bond species
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/02Compositional aspects of complexes used, e.g. polynuclearity
    • B01J2531/0238Complexes comprising multidentate ligands, i.e. more than 2 ionic or coordinative bonds from the central metal to the ligand, the latter having at least two donor atoms, e.g. N, O, S, P
    • B01J2531/0241Rigid ligands, e.g. extended sp2-carbon frameworks or geminal di- or trisubstitution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/84Metals of the iron group
    • B01J2531/842Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0201Oxygen-containing compounds
    • B01J31/0202Alcohols or phenols
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0266Processes for making hydrogen or synthesis gas containing a decomposition step
    • C01B2203/0277Processes for making hydrogen or synthesis gas containing a decomposition step containing a catalytic decomposition step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/048Composition of the impurity the impurity being an organic compound
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1217Alcohols
    • C01B2203/1229Ethanol

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)

Abstract

由螯配体支撑的铁基均相催化剂用于乙醇的催化脱氢偶联,以生产乙酸乙酯和氢气。由于乙醇和乙酸乙酯都是挥发性材料,因此可以通过在室温下应用真空将其容易地与催化剂分离。可以分离出反应的副产物氢气,并将其用于其他化学转化中作为原料。

Description

用于将乙醇转化为乙酸乙酯和氢气的均相铁催化剂
技术领域
本发明大体涉及有机化学领域。其特别涉及乙醇的催化脱氢偶联,以生产乙酸乙酯。
背景技术
乙酸乙酯(EtOAc)是重要的工业化学中间体,并且是用于合成乙酸的主要衍生物之一。其用途除了作为有机溶剂外,EtOAc还常用于食品工业和其他应用,例如胶水、油墨、香水等。
目前,乙酸乙酯的批量规模生产主要通过三种方式进行:(a)乙醛的季先科(Tischenko)反应;(b)乙酸的费歇尔(Fischer)酯化;(c)将乙酸和乙烯的加成。这些方法都不使用可再生原料。
由于乙醇可以源自生物可再生来源,例如生物质和糖基材料,近来,研究人员将注意力集中在使用脱氢偶联方法(DHC)由乙醇(EtOH)直接生产EtOAc上。然而,这些努力仅产生了这样的方法:需要高温(例如,>200℃)、提供低的或中等的产率和选择性,和/或具有低催化剂转换频率(turnover frequency,TOF)。
因此,本领域需要这样的由EtOH制备EtOAc的方法,该方法不需要高反应温度,可以提供高产率和选择性,和/或可以具有高催化剂TOF。
本发明解决了这种需求以及其它需求,这将在以下描述和所附权利要求中变得明显。
发明内容
本发明如在所附权利要求中阐述的。
简言之,本发明提供了一种制备乙酸乙酯和氢气的方法。该方法包括:在反应器中,于有效形成乙酸乙酯和氢气的条件下,使无水乙醇与式(I)的催化剂接触
Figure BDA0002379350420000021
其中,
R1和R2各自独立地为具有1至12个碳原子的烷基、芳基、烷氧基、芳氧基、二烷基氨基、二芳基氨基或烷基芳基氨基;
如果E是氮,则R3和R4各自独立地为具有1至12个碳原子的烷基或芳基;
如果E是磷,则R3和R4各自独立地为具有1至12个碳原子的烷基、芳基、烷氧基、芳氧基、二烷基氨基、二芳基氨基或烷基芳基氨基;
R1、R2和P可连接以形成5或6元杂环;
R3、R4和E可连接以形成5或6元杂环;
R5和R6各自独立地为C1-C6亚烷基或亚芳基;
E是磷或氮;以及
L是中性配体。
具体实施方式
令人惊讶地发现,通过在含有三齿螯配体的均相铁催化剂存在下进行乙醇的脱氢偶联(dehydrogenative coupling、DHC或dehydrocoupling)反应,可以直接生产乙酸乙酯(EtOAc)。该方法可在中等温度下(例如80℃),以低至0.001mol%的铁负载量,有效地、选择性地生产乙酸乙酯。该方法可以连续运行至少五天,而没有明显的催化活性损失。仅通过在室温下施加真空,即可容易地将EtOAc与铁催化剂分离,并且可以通过添加新的一批乙醇来重新开始该过程。
因此,一方面,本发明提供了用于制备乙酸乙酯和氢气的方法。该方法包括这样的步骤:在反应器中,于有效形成乙酸乙酯和氢气的条件下,使无水乙醇与式(I)的催化剂接触
Figure BDA0002379350420000031
式(I)中的R1和R2各自独立地为具有1至12个碳原子的烷基、芳基、烷氧基、芳氧基、二烷基氨基、二芳基氨基或烷基芳基氨基。
如果E是氮,则式(I)中的R3和R4各自独立地为具有1至12个碳原子的烷基或芳基。
如果E是磷,则式(I)中的R3和R4各自独立地为具有1至12个碳原子的烷基、芳基、烷氧基、芳氧基、二烷基氨基、二芳基氨基或烷基芳基氨基。
式(I)中的R5和R6各自独立地为C1-C6亚烷基或亚芳基。
式(I)中的E为磷或氮。
式(I)中的L为中性配体。
式(I)中的R1、R2和P可连接以形成5或6元杂环。
式(I)中的R3、R4和E可连接以形成5或6元杂环。
R1、R2、R3和R4中的一个或多个可取代有选自醚、酯和酰胺的一个或多个基团。如果有的话,R1、R2、R3和R4上的取代基可以相同或不同。
醚基的例子包括甲氧基、乙氧基、异丙氧基等。
酯基的例子包括甲酸酯基、乙酸酯基、丙酸酯基等。
酰胺基的例子包括二甲基氨基、二乙基氨基、二异丙基氨基等。
如本文所用,术语“烷基”是指直链、支化或环状烷基。这些基团的例子包括甲基、乙基、正丙基、异丙基、正丁基、仲丁基、异丁基、叔丁基、正戊基、叔戊基、新戊基、异戊基、仲戊基、3-戊基、环戊基、正己基、异己基、环己基等。
术语“芳基”是指苯基或萘基。
术语“亚烷基”是指二价烷基。
术语“亚芳基”是指二价芳基。
术语“烷氧基”是指-OR基团,例如-OCH3、-OEt、-OiPr、-OBu、-OiBu等。
术语“芳氧基”是指-OAr基团,例如-OPh、-O(取代的Ph)、-O萘基等。
术语“二烷基氨基”是指-NR'R"基团,例如二甲基氨基、二乙基氨基、二异丙基氨基等。
术语“二芳基氨基”是指-NAr'Ar"基团,例如二苯基氨基。
术语“烷基芳基氨基”是指-NRAr基团,例如甲基苯基氨基。
术语“中性配体”是指具有中性电荷的配体。中性配体的例子包括一氧化碳、醚化合物、酯化合物、膦化合物、胺化合物、酰胺化合物、腈化合物和含N杂环化合物等。中性膦配体的例子包括三甲基膦、三环己基膦、三苯基膦等。中性胺配体的例子包括三烷基胺、烷基芳基胺和二烷基芳基胺,例如三甲胺和N,N-二甲基苯胺。中性腈配体的例子包括乙腈。中性含N杂环配体的例子包括吡啶和1,3-二烷基-或二芳基-咪唑碳烯。
在一实施例中,R1、R2、R3和R4都是异丙基。在另一实施例中,R1、R2、R3和R4都是苯基。
在一实施例中,R5和R6都是-(CH2CH2)-。
在一实施例中,E是磷。
在多种实施例中,式(I)的催化剂具有式(1c):
Figure BDA0002379350420000041
其中iPr代表异丙基。
无水乙醇可以以多种等级商购获得,例如,200标准酒精度(proof),按体积计乙醇≥99%、按体积计乙醇≥99.5%、按体积计水<1%、按体积计水<0.5%或按体积计水<0.005%。这些等级中的任何一种可用于DHC反应。
优选地,基于反应混合物的总重量,反应混合物含有如下含量的水:小于1wt%、小于0.5wt%、小于0.4wt%、小于0.3wt%、小于0.2wt%、小于0.1wt%、小于0.05wt%、小于0.01wt%、小于0.005wt%或小于0.001wt%。在一实施例中,DHC反应在无水的情况下进行。
式(I)的催化剂可以以多种方式制备。例如,催化剂可原位形成:通过将式(IIa)或(IIb)的预催化剂引入反应器中
Figure BDA0002379350420000051
并将该预催化剂暴露于热、酸、碱或其组合,以形成式(I)的催化剂。
式(IIa)或(IIb)中的R1、R2、R3、R4、R5、R6、E和L如式(I)中所定义。
式(IIa)中的Z为R7或X。
R7为氢或烷基或芳基。
X为[BH4]-或卤化物。
式(IIb)中的L2为中性配体。
R7所代表的烷基或芳基可含有1至12个碳原子。
X所代表的卤化物包括氯化物、溴化物和碘化物。在一实施例中,X是氯化物或溴化物。
中性配体L2的例子包括醚化合物、酯化合物、酰胺化合物、腈化合物和含N杂环化合物等。
在一实施例中,当X是卤化物时,将预催化剂暴露于碱中,并且可选地暴露于热,以产生催化剂。
在另一实施例中,当X为[BH4]-时,将预催化剂暴露于热,但可选地不存在碱,以产生催化剂。
如本文所用,“不存在”这一表述是指不从外部来源添加所提及的组分,或者,如果添加的话,不以在可察觉的程度上影响DHC反应的量添加,例如这样的量——可以使乙酸乙酯的产率改变超过10%、超过5%、超过1%、超过0.5%或超过0.1%。
在多种实施例中,式(IIa)的预催化剂具有式(1a):
Figure BDA0002379350420000061
其中iPr代表异丙基。
在多种实施例中,式(IIb)的预催化剂具有式(1b):
Figure BDA0002379350420000062
其中iPr代表异丙基。
或者,式(I)的催化剂可以通过以下步骤原位形成:
(a)将下述物质引入反应器中以形成预催化剂混合物:(i)包含中性配体(L)的铁盐或铁络合物,(ii)式(III)的配体
Figure BDA0002379350420000071
可选地,和(iii)中性配体(L);以及
(b)可选地,将预催化剂混合物暴露于热、酸、碱或其组合,以形成式(I)的催化剂。
式(III)中的R1、R2、R3、R4、R5、R6和E如式(I)中所定义。
适于制备式(I)催化剂的铁盐的例子包括[Fe(H2O)6](BF4)2、Fe(CO)5、FeCl2、FeBr2、FeI2、[Fe3(CO)12]、Fe(NO3)2、FeSO4等。
包含中性配体(L)的铁络合物可通过本领域已知的方法制备和/或商购获得。
式(III)的配体可通过本领域已知的方法制备和/或商购获得。
用于产生催化剂的所采用的热没有特别限制。它可以与用于DHC反应的热相同。例如,可将预催化剂或预催化剂混合物暴露在升高的温度下,例如40至200℃、40至160℃、40至150℃、40至140℃、40至130℃、40至120℃、40至100℃、80至160℃、80至150℃、80至140℃、80至130℃、80至120℃或80至100℃,以形成催化剂。
用于形成催化剂的酸没有特别限制。合适的酸的例子包括甲酸、HBF4、HPF6、HOSO2CF3等。
用于形成催化剂的碱没有特别限制。无机碱和有机碱均可使用。合适的无机碱的例子包括Na、K、NaH、NaOH、KOH、CsOH、LiHCO3、NaHCO3、KHCO3、CsHCO3、Li2CO3、Na2CO3、K2CO3、Cs2CO3等。合适的有机碱包括金属醇盐和含氮化合物。合适的金属醇盐的例子包括碱金属C1-C6醇盐,例如LiOEt、NaOEt、KOEt和KOt-Bu。在一实施例中,碱是甲醇钠(NaOMe)。在另一实施例中,碱是乙醇钠(NaOEt)。含氮碱的例子包括三烷基胺,例如三乙胺。
通常,使用1:1摩尔当量的碱与催化剂前体来产生催化剂。可以使用大于1:1的摩尔当量比,例如,碱与催化剂前体的比为2:1。然而,应避免使用大量过量的碱,因为它可能会抑制乙酸乙酯的形成。
有效形成乙酸乙酯的条件包括升高的温度。有利于DHC反应的温度可以例如在40至200℃的范围内、40至160℃的范围内、40至150℃的范围内、40至140℃的范围内、40至130℃的范围内、40至120℃的范围内、40至100℃的范围内、80至160℃的范围内、80至150℃的范围内、80至140℃的范围内、80至130℃的范围内、80至120℃的范围内或80至100℃的范围内。
可以进行脱氢偶联反应的压力没有特别的限制。例如,压力可以在大气压至2MPa的范围内。反应可以在开放的反应器中进行,其中,随着反应进行,可以将所生产的氢气取出。或者,反应可以在密封的反应器中进行,其中,生产的氢气保留在反应器中。
优选地,接触步骤/脱氢偶联反应在不存在碱的情况下进行。反应期间的碱性条件可趋于抑制乙酸乙酯的形成。
脱氢偶联反应可以在存在或不存在溶剂的情况下进行。在一实施例中,接触步骤/DHC反应在溶剂存在下进行。在另一实施例中,接触步骤/DHC反应在不存在溶剂的情况下进行。
如果需要,DHC反应可以在普通的非极性溶剂中进行,例如脂族或芳族的烃,或者在弱极性、非质子溶剂中进行,例如醚和酯。脂族溶剂的例子包括戊烷和己烷。芳族溶剂的例子包括苯、二甲苯、甲苯和三甲苯。醚的例子包括四氢呋喃、二噁烷、乙醚和聚醚。酯的例子包括乙酸乙酯。
在一实施例中,溶剂是甲苯。在另一实施例中,溶剂是均三甲苯。
如果使用,溶剂可以以相对于乙醇的量1:1至100:1,或1:1至20:1(v/v)的量加入。
如上文提到的,为了将乙醇转化为乙酸乙酯和氢气,通常将反应混合物加热至升高的温度,例如40至160℃。在一实施例中,反应在大气压下在回流的苯、二甲苯、均三甲苯或甲苯中进行。
可以以≥10ppm(0.001mol%)的催化剂负载量发生DHC反应。例如,反应可以以如下催化剂负载量进行:10至20000ppm(0.001至2mol%)、10至15000ppm(0.001至1.5mol%)、10至10000ppm(0.001至1mol%)、10至1000ppm(0.001至0.1mol%)或10至500ppm(0.01至0.05mol%)。
根据本发明的一实施例,将催化剂或催化剂前体与乙醇——可选地以及溶剂——以1:10至1:100000的重量比在反应器中混合。将混合物在搅拌(mixing)下加热至40至160℃的温度,为期1-6小时,在此期间放出氢气(H2),并且氢气可以从反应器中除去或不除去。可以将反应进行到完全转化,但是由于速率和反应压力,限制转化可能是有利的。
产物乙酸乙酯可在适中的温度下(乙酸乙酯b.p.=77℃)与乙醇或其它挥发性产物(例如,低于90℃)一起从产物溶液中除去,并用多种冷凝器设计在0℃左右的温度方便地冷凝。
氢气易于与反应液分离,反应液在此温度下冷凝,并且氢气可以纯化和压缩以用于其他的用途。这些操作可以分批或以连续方式进行。含催化剂的浓缩物可通过添加新鲜乙醇而进行再循环。
根据本发明的方法可以生产乙酸乙酯,其产率为至少50%、至少60%、至少70%、至少80%、至少90%或至少99%。可得到这些产率的反应时间包括6小时或更短、5小时或更短、4小时或更短、3小时或更短、2小时或更短或者1小时或更短。
本发明包括并明确地考虑了本文公开的实施例、特征、特性、参数和/或范围的任何的和所有的组合。也就是说,本发明可由本文提到的实施例、特征、特性、参数和/或范围的任何组合来限定。
如本文所用,不定冠词“一(个/种)”是指一个/种或者多个/种,除非上下文另外明确地指出。类似地,名词的单数形式包括其复数形式,反之亦然,除非上下文另外明确地指出。
尽管已经尝试精确,但是本文描述的数值和范围应被认为是近似值(即使在没有用术语“约”限定时)。这些值和范围可以根据其声称的数值而变化,这取决于本发明试图获得的期望特性以及在测量技术中发现的由标准偏差引起的变化。此外,本文描述的范围旨在并且具体地预期为包括所声称范围内的所有子范围和值。例如,50至100的范围旨在描述并包括该范围内的所有值,包括子范围,例如60至90以及70至80。
本文引用的所有文献的内容,包括专利和非专利文献,均通过引用其全文而并入本文。在任何并入的主题与本文的任何公开内容相矛盾的程度上,本文的公开内容应优先于并入的内容。
本发明可以通过其优选实施例的以下实例进一步说明,但是应当理解,除非另有明确说明,仅是出于说明的目的而包括这些实例,并不旨在限制本发明的范围。
实例
总体实验信息
EtOH(200标准酒精度)和NaOEt购自西格玛奥德里奇公司(Sigma Aldrich)。铁螯络合物在实验室中按照下述改良步骤合成(对于所报道的步骤,参见S.Chakraborty etal.,J.Am.Chem.Soc.2014,136,8564),并储存在手套箱中。
1a[(iPrPNHP)Fe(H)(CO)(Br)]的改良合成
Figure BDA0002379350420000101
在手套箱中,在氮气气氛下,向200-mL的烘箱干燥的Schlenk烧瓶中装入络合物[iPrPNHP]FeBr2(CO)(850mg,1.545mmol)、NaBH4(60mg,1.545mmol,纯度98%)和100mL干燥EtOH。将所得的黄色溶液在室温下搅拌18小时,通过Celite(赛力特)过滤,并将滤液蒸发至干,得到纯的1a(分离产率83%)。1a的1H和31P{1H}NMR光谱与报道值(参见S.Chakrabortyet al.,J.Am.Chem.Soc.2014,136,7869)非常吻合。
1b[(iPrPNHP)Fe(H)(CO)(HBH3)]的改良合成
Figure BDA0002379350420000111
在手套箱中,在氮气气氛下,向200-mL的烘箱干燥的Schlenk烧瓶中装入络合物[iPrPNHP]FeBr2(CO)(850mg,1.545mmol)、NaBH4(131mg,3.399mmol,纯度98%)和100mL干燥EtOH。将所得的黄色溶液在室温下搅拌18小时,通过Celite过滤,并将滤液蒸发至干,得到纯的1b(分离产率92%)。1b的1H和31P{1H}NMR光谱与报道值(参见S.Chakraborty et al.,J.Am.Chem.Soc.2014,136,7869)非常吻合。
1c[(iPrPNP)Fe(H)(CO)]的改良合成
Figure BDA0002379350420000112
在手套箱中,在氮气气氛下,向200-mL的烘箱干燥的Schlenk烧瓶中装入络合物1a(500mg,1.06mmol)、NaOtBu(106mg,1.07mmol,纯度97%)和60mL干燥THF。立即得到深红色溶液,将其在室温下再搅拌30分钟。之后,在真空下除去溶剂,将所要产物萃取到戊烷中,并通过Celite塞过滤,以除去NaBr。真空下蒸发所得滤液,提供纯的1c(分离产率72%)。1c的1H和31P{1H}NMR光谱与报道值(参见S.Chakaraborty et al.,J.Am.Chem.Soc.2014,136,8564)非常吻合。
实例1-7
向配备有水冷凝器和磁力搅拌棒的烘箱干燥的200-mL Schlenk烧瓶中装入铁催化剂(0.001-0.1mol%)、NaOEt(0-5mol%)和无水EtOH(0.5mol,29mL)。使用预热的油浴(外部设定到100℃)将所得混合物加热至回流,并在反应过程中将N2气体缓慢鼓泡通过溶液(次表面,sub-surface)。反应在净环境(neat condition)下进行。在整个反应过程中保持恒定的搅拌速度。产生的H2气体被允许通过出口逸出。通过GC定期地分析样品以确定EtOAc的%产率。结果记录于表1中。
表1
铁催化的乙醇至乙酸乙酯的脱氢
Figure BDA0002379350420000121
从表1中可以看出,当用纯(neat)乙醇处理0.1mol%的1a(0.017M)和1mol%的NaOEt(0.172M),并将所得溶液回流6小时,87%的EtOAc形成为唯一产物(实例1)。在不存在NaOEt的情况下,络合物1a不显示任何催化活性(实例2)。
相反,发现在无碱条件下络合物1b和1c都具有催化活性——6小时后分别提供41%和81%的EtOAc(实例3-4)。
当使用络合物1a作为催化剂时,将NaOEt的负载量从1mol%增加到5mol%,在6小时内仅将EtOAc的产率提高了7%(参见实例1和实例5)。该结果表明,较高浓度的碱对产物的总产率几乎没有影响。
显著地,1a的催化剂负载量可以降低到0.01mol%,在这些条件下,在8小时后产生73%的EtOAc,催化转换数(turnover number,TON)为7.3×103,产物选择性>99%(实例6)。将催化剂负载量进一步降低至0.001mol%,在24小时后提供59%的EtOAc,其TON异常高,为5.9×104,转换频率(turnover frequency,TOF)为2.458×103h-1(实例7)。
实例8
使用0.001mol%的1a和1mol%的NaOEt进行动力学研究。
特别地,向配备有水冷凝器和磁力搅拌棒的烘箱干燥的200-mL Schlenk烧瓶中装入1a(0.5mmol)、NaOEt(358mg,5mmol)和无水EtOH(0.5mol,29mL)。使用预热的油浴(外部设定到90℃)将所得混合物加热至回流,并在反应过程中将N2气体缓慢鼓泡通过溶液(次表面)。反应中产生的H2气体被允许通过出口逸出。定期取出样品以通过GC监测反应进程。由于在反应过程中通过GC未检测到其他有机副产物,因此对EtOAc的选择性仍然非常高(>99%)。结果示于表2。
表2
EtOH至EtOAc超过24小时
Figure BDA0002379350420000131
实例9
向配备有水冷凝器和磁力搅拌棒的烘箱干燥的200-mL Schlenk烧瓶中装入铁络合物1a(0.5mmol)、NaOEt(358mg,5mmol)和无水EtOH(0.5mol,29mL)。使用预热的油浴(外部设定到90℃)将所得混合物加热至回流,并在反应过程中将N2气体缓慢鼓泡通过溶液(次表面)。反应中产生的H2气体被允许通过出口逸出。
8小时后,将新的一批无水EtOH(29mL)引入系统中,并且将催化反应继续进行另外8小时。对等份试样进行的GC分析显示,在第二次催化试验后,EtOH基本上定量转化为EtOAc。该结果表明,在第一次催化试验后,催化剂保持完全活性。该结果也与实例7中成功的反应一致,实例7使用了低得多的催化剂负载量。
在说明书中,已经公开了本发明的某些实施例,尽管采用了特定的术语,但是它们仅以一般性和描述性意义使用,而不是为了限制的目的,本发明的范围在伴随的权利要求中阐述。

Claims (17)

1.一种制备乙酸乙酯和氢气的方法,所述方法包括:在反应器中,于有效形成乙酸乙酯和氢气的条件下,使无水乙醇与式(I)的催化剂接触
Figure FDA0002379350410000011
其中,
R1和R2各自独立地为具有1至12个碳原子的烷基、芳基、烷氧基、芳氧基、二烷基氨基、二芳基氨基或烷基芳基氨基;
如果E是氮,R3和R4各自独立地为具有1至12个碳原子的烷基或芳基;
如果E是磷,R3和R4各自独立地为具有1至12个碳原子的烷基、芳基、烷氧基、芳氧基、二烷基氨基、二芳基氨基或烷基芳基氨基;
R1、R2和P可连接以形成5或6元杂环;
R3、R4和E可连接以形成5或6元杂环;
R5和R6各自独立地为C1-C6亚烷基或亚芳基;
E是磷或氮;以及
L是中性配体。
2.根据权利要求1所述的方法,其中,所述催化剂通过下述步骤形成:将式(IIa)或(IIb)的预催化剂引入所述反应器中
Figure FDA0002379350410000021
并将所述预催化剂暴露于热、酸、碱或其组合;以及
其中,
R1、R2、R3、R4、R5、R6、E和L如式(I)中所定义;
Z为R7或X;
R7为氢或烷基或芳基;
X为[BH4]-或卤化物;以及
L2为中性配体。
3.根据权利要求1所述的方法,其中,所述催化剂通过以下步骤形成:
(a)将下述物质引入反应器中以形成预催化剂混合物:(I)包含中性配体(L)的铁盐或铁络合物,(ii)式(III)的配体
Figure FDA0002379350410000022
可选地,和(iii)中性配体(L);以及
(b)可选地,将所述预催化剂混合物暴露于热、酸、碱或其组合;
其中,R1、R2、R3、R4、R5、R6和E如式(I)中所定义。
4.根据权利要求1所述的方法,其中,R1、R2、R3和R4中的一个或多个取代有选自醚、酯和酰胺的一个或多个基团。
5.根据权利要求1所述的方法,其中,R1、R2、R3和R4各自独立地为甲基、乙基、丙基、异丙基、丁基、戊基、异戊基、环戊基、己基、环己基或苯基。
6.根据权利要求5所述的方法,其中,R1、R2、R3和R4中的每一个为异丙基。
7.根据权利要求5所述的方法,其中,R1、R2、R3和R4中的每一个为苯基。
8.根据权利要求1所述的方法,其中R5和R6中的每一个为-(CH2CH2)-。
9.根据权利要求1所述的方法,其中,E是磷。
10.根据权利要求1所述的方法,其中,L是一氧化碳、膦、胺、腈或含N杂环配体。
11.根据权利要求2所述的方法,其中,L2为醚、酯、酰胺、腈或含N杂环配体。
12.根据权利要求1所述的方法,其中,所述接触步骤在40至160℃的温度下进行。
13.根据权利要求1所述的方法,其中,所述接触步骤在溶剂的存在下进行。
14.根据权利要求1所述的方法,其中,所述接触步骤在不存在溶剂的情况下进行。
15.根据权利要求1所述的方法,其中,所述接触步骤在不存在碱的情况下进行。
16.根据权利要求2所述的方法,其中,所述碱是金属醇盐或含氮化合物。
17.根据权利要求16所述的方法,其中,所述碱为甲醇钠、乙醇钠或三乙胺。
CN201880050166.0A 2017-08-02 2018-07-31 用于将乙醇转化为乙酸乙酯和氢气的均相铁催化剂 Pending CN110997613A (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201762540334P 2017-08-02 2017-08-02
US62/540,334 2017-08-02
US16/043,312 2018-07-24
US16/043,312 US20190039991A1 (en) 2017-08-02 2018-07-24 Homogeneous iron catalysts for the conversion of ethanol to ethyl acetate and hydrogen
PCT/US2018/044518 WO2019027965A1 (en) 2017-08-02 2018-07-31 HOMOGENEOUS IRON CATALYSTS FOR THE CONVERSION OF ETHANOL TO ETHYL ACETATE AND HYDROGEN

Publications (1)

Publication Number Publication Date
CN110997613A true CN110997613A (zh) 2020-04-10

Family

ID=65229210

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201880050166.0A Pending CN110997613A (zh) 2017-08-02 2018-07-31 用于将乙醇转化为乙酸乙酯和氢气的均相铁催化剂

Country Status (4)

Country Link
US (1) US20190039991A1 (zh)
EP (1) EP3661908A1 (zh)
CN (1) CN110997613A (zh)
WO (1) WO2019027965A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130281664A1 (en) * 2010-10-19 2013-10-24 David Milstein Novel ruthenium complexes and their uses in processes for formation and/or hydrogenation of esters, amides and derivatives thereof
US20150202609A1 (en) * 2012-09-04 2015-07-23 Dmitri Goussev Catalysts based on Amino-Sulfide Ligands for Hydrogenation and Dehydrogenation Processes
WO2016035080A1 (en) * 2014-09-04 2016-03-10 Yeda Research And Development Co. Ltd. Ruthenium complexes and their uses as catalysts in processes for formation and/or hydrogenation of esters, amides and related reactions

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130281664A1 (en) * 2010-10-19 2013-10-24 David Milstein Novel ruthenium complexes and their uses in processes for formation and/or hydrogenation of esters, amides and derivatives thereof
US20150202609A1 (en) * 2012-09-04 2015-07-23 Dmitri Goussev Catalysts based on Amino-Sulfide Ligands for Hydrogenation and Dehydrogenation Processes
WO2016035080A1 (en) * 2014-09-04 2016-03-10 Yeda Research And Development Co. Ltd. Ruthenium complexes and their uses as catalysts in processes for formation and/or hydrogenation of esters, amides and related reactions

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ELISABETTA ALBERICO ET AL.: "Selective Hydrogen Production from Methanol with a Defined Iron Pincer Catalyst under Mild Conditions", 《ANGEW. CHEM. INT. ED.》 *
PRAGATI PANDEY ET AL.: "Acceptorless Alcohol Dehydrogenation: A Mechanistic Perspective", 《PRAGATI PANDEY ET AL., PROC. NATL. ACAD. SCI., INDIA, SECT. A PHYS. SCI.》 *
SUMIT CHAKRABORTY ET AL.: "Well-Defined Iron Catalysts for the Acceptorless Reversible Dehydrogenation-Hydrogenation of Alcohols and Ketones", 《ACS CATALYSIS》 *

Also Published As

Publication number Publication date
EP3661908A1 (en) 2020-06-10
WO2019027965A8 (en) 2019-03-07
US20190039991A1 (en) 2019-02-07
WO2019027965A1 (en) 2019-02-07

Similar Documents

Publication Publication Date Title
JP6516856B2 (ja) ホルムアミド系化合物を製造する方法
CA2932568A1 (en) Metal-ligand cooperative catalysis through n-h arm deprotonation/pyridine dearomatiztion for efficient hydrogen generation from formic acid
Borah et al. A cyclometalated Ir (III)–NHC complex as a recyclable catalyst for acceptorless dehydrogenation of alcohols to carboxylic acids
TW202219024A (zh) 鹼土金屬甲酸鹽之製造方法
CN103304516B (zh) 一种制备β-氨基酮、酯、腈和酰胺衍生物的方法
Hao et al. Ruthenium carbonyl complexes with pyridine-alkoxide ligands: synthesis, characterization and catalytic application in dehydrogenative oxidation of alcohols
Lu et al. Monoalkyl and monoanilide yttrium complexes containing tridentate pyridyl-1-azaallyl dianionic ligands
CN110997613A (zh) 用于将乙醇转化为乙酸乙酯和氢气的均相铁催化剂
CN110997611A (zh) 用于将甲醇转化为甲酸甲酯和氢气的均相铁催化剂
CN111763226A (zh) 碳酸酯的硼氢化反应方法
KR101546143B1 (ko) 티오노카르복시산의 아릴 에스테르의 제조 방법
CN107721858B (zh) 相转移催化β-酮酸酯不对称α-苯甲酰化的方法
Kang et al. n-Butyllithium as a highly efficient precatalyst for cyanosilylation of aldehydes and ketones
WO2012073038A2 (en) Compounds and methods of making the same
CN110997605B (zh) 通过α-官能化酯与醇的转移氢化合成二醇
JP2019048744A (ja) ジフルオロリン酸リチウムの製造方法
CN110997612B (zh) 甲醇与仲醇或叔醇的铁催化的交叉偶联以生产甲酸酯
JP5407332B2 (ja) クォータピリジン誘導体の製造方法及びその中間体
CN110981900A (zh) 一种金属催化末端烯烃制备1,1-双炔类化合物的方法
CN111032603B (zh) 铁催化的酯向醇的转移氢化
KR20170091501A (ko) 금속 카보네이트의 제조 방법 및 그 제조용 촉매
CN115353449A (zh) 二价钐单电子还原试剂、制备方法及其应用
WO2010018211A1 (en) Cyclopropyl- and cyclobutyl-dioxazaborocane or dioxazaborecane derivatives
CN111393479A (zh) 一种亲核性磷烯类化合物的制备

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20200410

WD01 Invention patent application deemed withdrawn after publication