CN110325900B - 波导光电器件 - Google Patents
波导光电器件 Download PDFInfo
- Publication number
- CN110325900B CN110325900B CN201780074560.3A CN201780074560A CN110325900B CN 110325900 B CN110325900 B CN 110325900B CN 201780074560 A CN201780074560 A CN 201780074560A CN 110325900 B CN110325900 B CN 110325900B
- Authority
- CN
- China
- Prior art keywords
- ridge
- region
- waveguide
- sidewall
- doped
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000005693 optoelectronics Effects 0.000 title claims abstract description 41
- 239000000463 material Substances 0.000 claims abstract description 110
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 57
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 57
- 239000010703 silicon Substances 0.000 claims abstract description 57
- 239000004065 semiconductor Substances 0.000 claims abstract description 42
- 238000004519 manufacturing process Methods 0.000 claims abstract description 18
- 239000002019 doping agent Substances 0.000 claims description 48
- 229910000577 Silicon-germanium Inorganic materials 0.000 claims description 31
- 238000005530 etching Methods 0.000 claims description 24
- 238000000034 method Methods 0.000 claims description 17
- 239000000758 substrate Substances 0.000 claims description 11
- 238000005253 cladding Methods 0.000 claims description 8
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 claims description 8
- 229910001092 metal group alloy Inorganic materials 0.000 claims description 7
- 229910000927 Ge alloy Inorganic materials 0.000 claims description 6
- LEVVHYCKPQWKOP-UHFFFAOYSA-N [Si].[Ge] Chemical compound [Si].[Ge] LEVVHYCKPQWKOP-UHFFFAOYSA-N 0.000 claims description 5
- 229910045601 alloy Inorganic materials 0.000 claims description 4
- 239000000956 alloy Substances 0.000 claims description 4
- 229910005898 GeSn Inorganic materials 0.000 claims description 3
- 238000002513 implantation Methods 0.000 description 13
- 230000003287 optical effect Effects 0.000 description 11
- 238000010521 absorption reaction Methods 0.000 description 8
- 238000000137 annealing Methods 0.000 description 8
- 239000007943 implant Substances 0.000 description 6
- 229920002120 photoresistant polymer Polymers 0.000 description 5
- 230000008878 coupling Effects 0.000 description 3
- 238000010168 coupling process Methods 0.000 description 3
- 238000005859 coupling reaction Methods 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 230000001902 propagating effect Effects 0.000 description 3
- 229910052732 germanium Inorganic materials 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical group [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005194 fractionation Methods 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000004377 microelectronic Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/015—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on semiconductor elements having potential barriers, e.g. having a PN or PIN junction
- G02F1/025—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on semiconductor elements having potential barriers, e.g. having a PN or PIN junction in an optical waveguide structure
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/10—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
- G02B6/12—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/21—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour by interference
- G02F1/225—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour by interference in an optical waveguide structure
- G02F1/2257—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour by interference in an optical waveguide structure the optical waveguides being made of semiconducting material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/02—Details
- H01L31/0232—Optical elements or arrangements associated with the device
- H01L31/02327—Optical elements or arrangements associated with the device the optical elements being integrated or being directly associated to the device, e.g. back reflectors
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/10—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
- G02B6/12—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
- G02B2006/12035—Materials
- G02B2006/12061—Silicon
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/10—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
- G02B6/12—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
- G02B2006/12083—Constructional arrangements
- G02B2006/12097—Ridge, rib or the like
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/10—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
- G02B6/12—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
- G02B2006/12166—Manufacturing methods
- G02B2006/12176—Etching
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/10—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
- G02B6/12—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
- G02B2006/12166—Manufacturing methods
- G02B2006/12178—Epitaxial growth
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/10—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
- G02B6/12—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
- G02B2006/12166—Manufacturing methods
- G02B2006/12188—Ion implantation
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/015—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on semiconductor elements having potential barriers, e.g. having a PN or PIN junction
- G02F1/0155—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on semiconductor elements having potential barriers, e.g. having a PN or PIN junction modulating the optical absorption
- G02F1/0157—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on semiconductor elements having potential barriers, e.g. having a PN or PIN junction modulating the optical absorption using electro-absorption effects, e.g. Franz-Keldysh [FK] effect or quantum confined stark effect [QCSE]
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F2201/00—Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
- G02F2201/06—Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 integrated waveguide
- G02F2201/063—Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 integrated waveguide ridge; rib; strip loaded
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F2202/00—Materials and properties
- G02F2202/06—Materials and properties dopant
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F2202/00—Materials and properties
- G02F2202/10—Materials and properties semiconductor
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Electromagnetism (AREA)
- Computer Hardware Design (AREA)
- Power Engineering (AREA)
- Optical Integrated Circuits (AREA)
- Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
Abstract
一种包括肋形波导区域的波导光电器件,以及制造肋形波导区域的方法,所述肋形波导区域具有:基部,所述基部由第一材料形成;以及脊,所述脊从所述基部延伸,所述脊的至少一部分由不同于所述基部的所述材料的所选取半导体材料形成,其中所述硅基部包括位于所述脊的第一侧的第一平板区域和位于所述脊的第二侧的第二平板区域;并且其中:第一掺杂区域沿着所述第一平板区域并沿着所述脊的第一侧壁延伸,所述第一侧壁接触所述第一平板区域;并且第二掺杂区域沿着所述第二平板区域并沿着所述脊的第二侧壁延伸,所述第二侧壁接触所述第二平板区域。
Description
技术领域
根据本发明的实施方案的一个或多个方面涉及一种光电器件,并且更具体地,涉及一种适合与硅肋形波导一起使用的光电器件。
背景技术
硅光子系统在硅基微电子技术上提供改进的能力早已得到公认。硅光子技术的进步巩固了此类系统的成功,并且特别是对于与硅光子系统兼容的更快、更高效的光学调制器和光电探测器的需求日益增长。已发现包括SiGe材料的电吸收调制器(EAM)提供现有技术高速性能,因为锗的存在给予优化器件更多自由。然而,就处理和制造来说,满足大型波导平台中基于SiGe的波导调制器的平板公差要求是具有挑战性的,特别是由于波导高度与平板厚度比率较大的事实。
发明内容
因此,本发明旨在通过根据实施方案的第一方面提供一种波导光电器件来解决上述问题,所述波导光电器件包括肋形波导区域,所述肋形波导区域具有:硅基部和从所述基部延伸的脊,所述脊的至少一部分由不同于所述基部的半导体材料形成;其中所述硅基部包括位于所述脊的第一侧的第一平板区域和位于所述脊的第二侧的第二平板区域;并且其中:第一掺杂区域沿着所述第一平板区域并沿着所述脊的第一侧壁延伸,所述第一侧壁接触所述第一平板区域;并且第二掺杂区域沿着所述第二平板区域并沿着脊的第二侧壁延伸,所述第二侧壁接触所述第二平板区域。所述光电器件可以是调制器或光电探测器。如果所述光电器件是调制器,则所述波导脊区域可称为波导调制脊区域。术语“肋”可与术语“脊”互换使用,其中通常可能意味的是,所述肋形波导器件的光学模式主要限制在所述波导的所述脊区域内。所述肋的部分可以是水平部分或水平层,即,所述肋的沿平行于所述平板的最上部表面的方向延伸的一部分。
所述脊的半导体材料可以是硅锗。然而,也可使用其他半导体材料,特别是III-V材料。还可设想的是,所述脊的材料可采用硅、锗或SiGe的金属合金的形式。例如,GeSn或SiGeSn允许在Si上生长。
以此方式,用于在半导体结上施加电压的平板触点可以是硅。通常,用于在波导器件上施加偏压的触点将由金属制成。由于硅的串联电阻低于其他材料(诸如SiGe),因此接触点处的金属/硅界面将提供比例如在金属SiGe界面处所提供的更好的接触电阻。通过制造其中所述脊的至少一部分由与所述基部不同的材料形成的光电器件结构,所得结构维持与所选取脊材料相关联的优点,同时还享有硅基部层所提供的优点。
在本发明中,与所述平板由SiGe形成的情况相比,就处理而言满足硅平板公差要求更容易且更宽松。因此,本发明的结构提供与SiGe波导EAM相关联的优点,同时解决了上述平板公差要求的问题。
现在将陈述本发明的任选特征。这些特征可单独应用或以与本发明的任何方面的任何组合来应用。
任选地,所述波导电吸收调制器或光电二极管还包括:第一电触点,所述第一电触点位于所述硅基部的所述第一平板区域上;以及第二电触点,所述第二电触点位于所述硅基部的所述第二平板区域上。
任选地,所述第一掺杂区域是n掺杂的,而所述第二掺杂区域是p掺杂的。
任选地,所述脊包括:下脊部,所述下脊部与所述基部接触且背离所述基部延伸;所述基部和所述下部脊部均由硅形成;以及上脊部,所述上脊部与所述下脊部接触且背离所述下脊部延伸,所述上脊部由与所述基部的材料不同的半导体材料形成;其中沿着所述第一侧壁延伸的所述第一掺杂区域包括位于所述第一脊部处的下侧壁部分和位于所述第二脊部处的上侧壁区域;并且沿着所述第二侧壁延伸的所述第二掺杂区域包括位于所述第一脊部处的下侧壁部分和位于所述第二脊部处的上侧壁区域。
以此方式,所述脊(即所述EAM波导的肋部分)还将包括由所述基部材料(在此情况下为硅)制成的部分。此有利地优化了所述波导器件与输入(和输出)无源硅波导之间的光学模式重叠,所述输入(和输出)无源硅波导将光耦合进出波导器件,从而改进总体损耗。
此外,本发明能够在不必改变总体脊高度的情况下改变所述脊的所选取半导体材料的高度(因为脊中的一部分由用于所述基部的材料构成而不是由所述所选取半导体材料构成)。在其中所述所选取半导体材料是SiGe的实施方案中,此可有利地导致具有更高带宽的波导器件的生产。这是因为器件的电容取决于SiGe区域的高度。通过使SiGe区域的高度能够减小,电容可得以降低,带宽可因此得以增加。
任选地,所述下侧壁部分和所述平板区域具有比所述上侧壁部分高的掺杂剂浓度。
任选地,将所述掺杂剂浓度分级,使得所述下侧壁部分具有比所述上侧壁掺杂剂浓度高的掺杂剂浓度;而所述平板区域具有比所述下侧壁部分高的掺杂剂浓度。例如,在所述第一掺杂区域上,所述上侧壁中的掺杂部分可以是n掺杂的;所述下侧壁处的掺杂部分可以是n+掺杂的;而所述平板处的掺杂部分可以是n++掺杂的。对于p掺杂的第二掺杂区域可遵循相同的样式,范围是平板处为p++;下侧壁部分处为p+;而掺杂在上侧壁部分处的为p。通过采用分级的掺杂剂结构,可使平板上接触点处的掺杂剂水平最大化,而不会不利地影响行进穿过波导的光的模式。
任选地,所述第一下侧壁部分和所述第二下侧壁部分延伸到所述脊中所达的距离(dnp2、dpp2)大于所述第一上侧壁部分和所述第二上侧壁部分延伸到所述脊中所达的距离(dn、dp)。也就是说,与所述上脊部相比,在所述侧壁处的所述掺杂区域的厚度可比在所述下脊部中的厚。
以此方式,所述器件的串联电阻(欧姆电阻)得到降低,这改进了总体RF带宽。另外,通过实现这种低串联电阻(欧姆电阻),所述器件的最大光功率处理得到改进。
任选地,所述波导电吸收调制器或光电二极管还可包括:输入肋形波导,所述输入肋形波导耦合到所述肋形波导区域的输入端,以将光耦合到所述肋形波导区域;输出肋形波导,所述输出肋形波导耦合到所述肋形波导区域的输出端,以将光耦合出所述肋形波导区域。
任选地,所述输入肋形波导和所述输出肋形波导中的一者或两者可完全由硅形成。
任选地,所述基部的高度(h2)和所述下侧壁部分的高度(h3)被选取成使得所述肋形波导调制器或光电二极管的模式中心位于所述基部的上方与一个或多个所述输入肋形波导和/或所述输出肋形波导的模中心相同的高度处。
在此类实施方案中,应理解,所述下侧壁部分的高度对应于它们从所述平板所延伸的距离。所述脊从所述基部沿垂直于或基本上垂直于所述基部的上表面的方向延伸。所述基部通常形成在诸如掩埋氧化物(BOX)层(未示出)的绝缘层上,下表面与所述绝缘层接触,并且上表面是相对表面,即不接触所述绝缘层。
所述高度可被视为沿竖直方向延伸,并且所述基部的所述上表面(及因此所述第一平板和所述第二平板中的每一者的上表面)视为位于水平平面(也就是说,平行于所述基部所在的所述绝缘层的任何平面)中。
所述器件还可包括设置在所述硅基部与硅衬底之间的外延结晶包覆层;其中所述硅衬底位于所述硅基部的与所述脊的相反侧上。所述器件还可包括设置在所述外延结晶包覆层的相对水平侧上的掩埋氧化物层,并且其中所述外延结晶包覆层由与所述掩埋氧化物层不同的材料形成。就水平而言,方向可意指垂直于所述脊延伸所沿的方向。所述外延结晶包覆层可由非掩埋氧化物的材料形成。所述外延结晶包覆层可由例如Si或SiGe形成。
根据实施方案的第二方面,提供一种制造肋形波导调制区域的方法,所述方法包括以下步骤:
提供第一半导体材料层;
将空腔蚀刻到所述层中,所述空腔具有基部、第一空腔边缘和第二空腔边缘;
用第一掺杂剂植入所述基部以形成第一掺杂平板区域;
用第二掺杂剂植入所述基部以形成与所述第一平板区域横向间隔开的第二掺杂平板区域;
使所选取半导体材料在所述空腔内生长,所述所选取半导体材料是与所述基部层不同的材料;
蚀刻所生长的所选取半导体材料以形成所选取半导体材料波导脊,所述所选取半导体材料波导脊位于所述空腔内并且从基部向上延伸并覆盖所述第一掺杂平板区域的一部分和所述第二掺杂平板区域的一部分;所述波导具有接触所述第一掺杂平板区域的第一侧壁和接触所述第二掺杂平板区域的第二侧壁;
用所述第一掺杂剂植入所述第一侧壁;
用所述第二掺杂剂植入所述第二侧壁;以及
蚀刻掉所述第一空腔边缘和所述第二腔边缘。
所述方法通常还可包括在已植入第一平板区域和第二平板区域之后的退火步骤。所述方法通常还可包括在已植入第一侧壁和第二侧壁之后的退火步骤。
空腔进入所述硅层中的步骤可以是深度蚀刻步骤,所述蚀刻具有至少2μm的深度。
在一些实施方案中,所述深度蚀刻具有不小于2μm且不大于3μm的蚀刻深度。
在一些实施方案中,所述深度蚀刻具有不小于2.2μm且不大于2.9μm的蚀刻深度。
任选地,所述方法还包括通过以下方式在所述所选取半导体材料的所述波导脊的正下方形成由所述第一半导体材料制成的下脊部的步骤:
蚀刻所述经掺杂第一平板区域达小于其总深度的高度h3;以及
蚀刻经掺杂第二平板区域达小于其总深度的高度h3。
所述第一材料和所述所选取半导体材料通常是适合在光电子领域内使用但具有彼此不同的特性的半导体材料。特别地,所述第一材料可被选取成使得其具有低于所述所选取半导体材料的串联电阻。如先前所述,在一些实施方案中,所述第一材料是硅,而所述所选取半导体材料是SiGe。在其他实施方案中,所述第一材料是硅,而所述所选取半导体材料是锗或者硅、锗或SiGe的金属合金。例如,在Si或III-V半导体上生长的GeSn合金。在又一些实施方案中,所述第一材料是III-V半导体,而所述所选取半导体材料是不同的III-V材料。
根据本发明的实施方案的第三方面,提供一种波导光电器件,其包括肋形波导,所述肋形波导具有:由第一材料形成的基部,以及从所述基部延伸的脊,所述脊的至少一部分由不同于所述第一材料的第二材料形成;其中所述基部包括位于所述脊的第一侧处的第一平板区域和位于所述脊的第二侧处的第二平板区域;并且其中:第一掺杂区域沿着所述第一平板区域并沿着所述脊的第一侧壁延伸,所述第一侧壁接触所述第一平板区域;并且第二掺杂区域沿着所述第二平板区域并沿着所述脊的第二侧壁延伸,所述第二侧壁接触所述第二平板区域;并且其中所述脊包括:下脊部,所述下脊部与所述基部接触且背离所述基部延伸;所述基部和所述下脊部均由所述第一材料形成;以及上脊部,所述上脊部与所述下脊部接触且背离所述下脊部延伸,所述上脊部由所述第二材料形成。
所述第一材料和所述第二材料通常是适合在光电子领域内使用的第一半导体材料和第二半导体材料。在一些实施方案中,所述第一半导体材料具有低于所述第二材料的串联电阻的串联电阻。如先前所述,在一些实施方案中,所述第一材料是硅,而所述第二材料是SiGe。在其他实施方案中,所述第一材料是硅,而所述第二材料是硅、锗或SiGe的金属合金。例如,所述第二材料可以是在Si或III-V半导体上生长的SiGeSn或GeSn合金。在又一些实施方案中,所述第一材料是III-V半导体,而所述第二材料是不同的III-V材料。
附图说明
参考说明书、权利要求和附图将明了和理解本发明的这些和其他特征和优点,在附图中:
图1描绘根据本发明的实施方案的呈波导电吸收调制器(EAM)形式的波导器件的示意图;
图2A描绘沿着图1中的线A-A’的横截面;
图2B描绘沿着图1中的线B-B’的横截面;
图3A描绘图2A的横截面,其中光学模式示出为传播通过波导;
图3B描绘图2B的横截面,其中光学模式示出为传播通过波导;
图4A描绘根据本发明的实施方案的制造肋形波导调制区域的方法中的空腔蚀刻步骤;
图4B描绘制造肋形波导调制区域的方法中的植入步骤;
图4C描绘制造肋形波导调制区域的方法中的另一植入步骤;
图4D描绘制造肋形波导调制区域的方法中的退火步骤;
图4E描绘制造肋形波导调制区域的方法中的SiGe生长步骤;
图4F描绘制造肋形波导调制区域的方法中的另一蚀刻步骤;
图4G描绘制造肋形波导调制区域的方法中的侧壁植入步骤;
图4H描绘制造肋形波导调制区域的方法中的另一侧壁植入步骤;
图4I描绘制造肋形波导调制区域的方法中的另一退火步骤;
图4J描绘制造肋形波导调制区域的方法中的另一蚀刻步骤;
图5描绘根据本发明的波导电吸收调制器的替代实施方案;
图6描绘根据本发明的波导电吸收调制器的另一替代实施方案,此实施方案包括在掺杂剂区域内的进一步分级;
图7A描绘沿着变型器件的线A-A’的横截面;
图7B描绘沿着变型器件的线B-B’的横截面;并且
图8描绘沿着另一变型器件的线A-A’的横截面。
具体实施方式
下文结合附图阐述的详细描述意图作为根据本发明提供的波导光电器件(EAM)和/或制造肋形波导调制区域的方法的示例性实施方案的描述,并非意图表示可构建或利用本发明的唯一形式。该描述结合所示实施方案阐述本发明的特征。然而,应理解,相同或等效功能和结构可由也意图囊括在本发明的精神和范围内的不同实施方案来实现。如本文其他地方所示,相似元素标号意图表示相似元素或特征。下文参考图1、图2A、图2B、图3A和图3B描述根据本发明第一实施方案的波导光电器件1。
如图1所示,波导器件1适于耦合到标准光学输入波导2a和光学输出波导2b,诸如硅肋形波导。虽然此耦合可通过输入波导/输出波导与器件之间的直接耦合来实现,但在所示实施方案中,耦合通过输入锥体3a和输出锥体3b来实现,这允许使用比输入波导2a/输出波导2b的波导尺寸小的波导尺寸来制造波导器件,从而产生更快的操作速度。
图2A和图3A各自示出在图1的线A-A’处(也就是说,横向于光沿着波导传播的方向)截取的波导光电器件的横截面。图2B和图3B各自示出在图1的线B-B’处(在耦合到输出肋形波导2b的锥形部分3b处的输出端处)截取的横截面。同样地,此横截面横向于光的传播方向截取。
波导光电器件1包括具有高度hWG的脊形调制或光电探测区域;所述脊形调制区域由第一材料M1所制成的基部11以及与第一波导材料不同的第二材料M2所制成的脊12构成。
基部11包括沿第一方向背离波导脊的第一侧壁延伸的第一平板区域和沿第二方向背离波导脊的第二侧壁延伸的第二平板区域;所述第二方向与所述第一方向相反。
波导光电器件包括第一掺杂区域,所述第一掺杂区域包括第一掺杂平板区域13a和沿着波导的第一侧壁延伸的第一掺杂侧壁区域。
在图2A和图3A所示的实施方案中,波导的脊由下脊部12a和上脊部12b形成。下脊部与基部接触且背离基部延伸;基部和下脊部均由第一材料M1形成。上脊部由第二材料M2制成,位于下脊部的顶部,因为它与下脊部接触且背离下脊部延伸。
第一掺杂侧壁区域沿着包括下脊部12a和上脊部12b的脊的整个侧壁延伸。因此,第一掺杂侧壁区域包括:第一下侧壁部分13b,所述第一下侧壁部分13b沿着脊的下脊部处的第一侧壁延伸;以及第一上侧壁部分13c,所述第一上侧壁部分13c沿着脊的上脊部处的侧壁延伸。
类似地,在肋形波导的第二侧处,波导光电器件包括第二掺杂平板区域14a和沿着波导的第二侧壁延伸的第二掺杂侧壁区域。第二掺杂侧壁由以下构成:第二下侧壁部分14b,所述第二下侧壁部分14b沿着脊的下脊部处的第二侧壁延伸;第二上侧壁部分13c,所述第二上侧壁部分13c沿着脊的上脊部处的侧壁延伸。
掺杂平板区域和下掺杂侧壁区域处的掺杂剂浓度高于上掺杂侧壁区域的掺杂剂浓度。在图2A和图3A所示的实施方案中,第一掺杂平板区域和第一下侧壁掺杂区域是n++掺杂的,而第一上侧壁是n掺杂的;与n掺杂区域相比,所述n++掺杂剂区域通常每cm3含有至少1-2个数量级的更多掺杂剂。第二掺杂平板区域和第二下侧壁掺杂区域是p++掺杂的,而第一上侧壁是p掺杂的。
在图2A和图3A的此实施方案中,第一材料M1由硅(Si)形成,而第二材料M2是硅锗(SiGe)。然而,如上所述,可设想的是,此实施方案的结构同样可应用于其他合适的光学材料。Si/SiGe的M1/M2结构的合适掺杂剂浓度的实例在下文表1中示出。
掺杂类型 | 掺杂范围[1/cm3] |
n | 1e15-1e18 |
p | 1e15-1e18 |
n++ | 1e18-1e20 |
p++ | 1e18-1e20 |
表1
如图2A可见,第一掺杂平板区域可由它向下延伸到第一材料M1的平板中所达的厚度dnp1限定。第一下侧壁部分13b和第二下侧壁部分14b各自背离平板向上延伸达对应于脊的下部的高度的高度h3。这些下侧壁部分13b、14b延伸到脊中达相应距离dnp2、dpp2,这些相应距离中的每一者小于下脊部的总横截面宽度的一半,使得未掺杂区域将n++区域与p++区域分开,从而形成p-i-n结。
电触点(未示出)将位于平板区域中的每一者处,以便在由掺杂区域形成的结上施加偏压。这些电触点将直接位于平板上(即在平板的上表面处,在脊的两侧上)。通常,所述触点可与脊的相应侧壁等距。
第一上侧壁部分13c和第二上侧壁部分14c延伸到脊的上脊部中达距离dn、dp,其中的每一者都小于下侧壁部分13b、14b各自延伸到肋形波导的下部中所达的相应距离dnp2、dpp2。在表2中给出典型测量值的实例(以nm为单位)。
表2
在此实施方案中,波导器件采用波导电吸收调制器(EAM)的形式。然而,可设想的是,所述器件可替代地采用另一光电组件(诸如波导光电二极管(PD))的形式。
特别参考图3A和图3B,选择器件的参数,使得器件1的肋形波导内的光学模式与传播通过输入波导和任何输入耦合器(诸如锥体)的光学模式相匹配。特别地,器件的脊中的模式相对于器件的基部的高度h模式1与输入波导或锥体的基部上方的模式的高度h模式2相匹配。通常,光电器件、输入波导/输出波导和任何耦合器将位于同一平面内(即,光电器件的基部的底表面将与输入波导/输出波导的基部的底表面平齐)。例如,光电器件、输入波导/输出波导和耦合器均可在诸如掩埋氧化物(BOX)层(未示出)的平面绝缘层上制造。
参考图4A至图4J,描述根据本发明的制造肋形波导调制区域的方法的实例。
最初,提供第一材料M1的层401;所述层具有上表面401a和下表面(对应于光电器件的基部的底表面)401b。在一些实施方案中,初始半导体层的此基部层将位于诸如BOX层的绝缘体层上。通常,第一材料将是硅,但可设想的是,本文所述的方法可应用于适合与光电组件一起使用的诸如硅的金属合金的其他材料。
将第一材料的初始层的上表面401a向下蚀刻到层401的底部上方的给定高度(h2+h3),所述蚀刻过程因此产生位于第一材料的初始层内的空腔402。通过蚀刻过程形成的空腔将具有:基部402a;第一空腔边缘402b;和第二空腔边缘402c。
一旦已形成空腔402,就将光刻胶403沉积到第一材料M1上,从而覆盖除空腔的基部的一部分之外的所有部分,基部402a的未覆盖部分从第一空腔边缘402b延伸到小于跨空腔的基部的总长度的一半。空腔的基部最终将成为光电器件的第一平板和第二平板。
然后在空腔402的基部402a的未覆盖部分上执行植入步骤,以用第一掺杂剂(在此情况下为n型掺杂剂)植入未覆盖部分,以便形成第一掺杂平板区域13a。在此情况下,掺杂部分具有可在1e18-1e20cm-3的范围内的掺杂剂浓度。通常,掺杂剂竖直地施加,即沿与空腔的边缘平行或基本上平行的方向施加。
合适的n型掺杂剂的实例包括:磷和砷。合适的p型掺杂剂的实例是硼。
一旦完成第一掺杂平板区域的植入,就去除光刻胶403,并在空腔的另一侧重复植入过程,以产生第二掺杂平板区域,如图4C所示。同样,将光刻胶404沉积到第一材料M1上;此时覆盖了除空腔的基部的第二部分之外的所有部分,基部402a的未覆盖部分从第二空腔边缘402c延伸到小于跨空腔的基部的总长度的一半,使得它不接触经植入n掺杂区域。在空腔402的基部402a的未覆盖的第二部分上执行植入步骤,以用第二掺杂剂(在此情况下为p型掺杂剂)植入未覆盖的第二部分,以便形成第二掺杂平板区域14a。同样,掺杂部分具有可在1e18-1e20 cm-3的范围内的掺杂剂浓度。掺杂部分以相应的深度dnp1和dpp1延伸到空腔的基部中(即进入成品器件的平板中)。
执行随后的退火步骤,如图4D所示。
退火后,第二材料M2在空腔内生长,所述第二材料与第一材料不同。在此实施方案中,第二材料M2通常是外延生长的硅锗(SiGe),但可设想的是,可使用其他光学上合适的材料,包括:III-V材料以及硅、锗或SiGe的金属合金。外延生长层从空腔的基部延伸所达的高度将形成脊的上部的高度。
然后执行另一蚀刻步骤以形成上脊部12b,如图4F所示,其中蚀刻掉第二材料M2的在第一掺杂平板区域13a上方的区域和第二材料M2的在第二掺杂平板区域14a上方的区域。蚀刻沿着空腔的整个深度延伸,使得未覆盖的掺杂区域保持完全暴露第二材料M2的剩余部分的两侧,这形成光电器件的上脊部。应注意,第一掺杂平板区域和第二掺杂平板区域中的每一者实际上横向延伸超过脊的上部的第一侧壁和第二侧壁,使得脊的上部覆盖第一掺杂平板区域的一部分并且还覆盖第二掺杂部分的一部分。
一旦已形成上脊部,就执行侧壁植入步骤以分别用n掺杂剂和p掺杂剂植入第一侧壁和第二侧壁。首先,如图4G所示,通过施加光刻胶以覆盖第二材料M2和第二掺杂平板区域14a来掺杂上脊部12b的第一侧壁,之后在第一侧壁处与侧壁成一定角度植入n型掺杂剂。第一空腔边缘402b可用作遮蔽件,因此选择植入角度,使得空腔的边缘遮蔽第一掺杂平板部分,这意味着n掺杂剂仅施加到第一侧壁而不到达第一掺杂平板区域。然后,如图4H所示,对脊的第二侧壁重复侧壁植入步骤。具体地,光刻胶将覆盖第二材料M2和第一掺杂平板区域13a,之后在侧壁处与侧壁成一定角度植入p型掺杂剂。第二空腔边缘402c可用作遮蔽件,因此选择植入角度,使得空腔的边缘遮蔽第二掺杂平板部分,这意味着p掺杂剂仅施加到第二侧壁而不到达第二掺杂平板区域。
执行另一退火步骤,如图4I所描绘的。退火(如图4D和图4I两者所示)可在450℃-800℃的温度下进行并且达30分钟或更短的典型持续时间。
图4J描绘另一蚀刻步骤,其中蚀刻第一掺杂平板区域13a和第二掺杂平板区域14a达深度h2,从而形成下脊部12a。对于诸如图5所示的那些的光电器件的一些实施方案,不存在下脊部12a,因此不执行此额外蚀刻步骤。图5的实施方案与图2A和图3A的实施方案的不同之处仅在于,光电器件的脊12完全由第二材料M2制成,因此不存在下脊部。相反地,脊是直接从器件的基部延伸的单件第二材料M2。最后(未示出),可蚀刻掉空腔壁的其余部分以产生最终器件。图6描绘根据本发明的波导电吸收调制器的另一替代实施方案,此实施方案与图2A的实施方案的不同之处在于,它还包括在掺杂剂区域内的进一步分级。分级掺杂剂区域包括:第一中间掺杂区域16a,其具有与第一平板部分相同类型的掺杂剂,但掺杂剂浓度在第一掺杂平板部分与第一掺杂侧壁的掺杂剂浓度之间;以及第二中间掺杂区域16b,其具有与第一平板部分相同类型的掺杂剂,但掺杂剂浓度在第二掺杂平板部分与第二掺杂侧壁的掺杂剂浓度之间。第一中间掺杂区域和第二中间掺杂区域可以与侧壁掺杂部分相同的方法进行施加,但使用更陡的植入角(即,植入角的角度与侧壁的角度小于用于侧壁掺杂的植入角度)。
图7A和图7B分别描绘沿着线A-A’和B-B’的根据本发明的波导电吸收调制器的另一替代实施方案。此实施方案与图6所示的实施方案的不同之处在于,所述器件还包括由更低折射率材料M3(例如,氧化硅)以及另一衬底材料702(例如,硅)形成的区域701。这可通过蚀刻区域701的区域来提供,以便提供宽度为We的空腔,然后将另外的衬底材料生长到所述空腔中。在此实例中,宽度We具有从0.5μm至20μm的值。如图7A所示,区域701的特征在于,在其中具有在有源波导区域下方的间隙。在此实例中,区域701具有从0.2μm至4μm的高度hb。衬底材料702可具有从200μm至800μm的厚度。图7B所示的器件的部分在无源波导下方具有完整区域701,即它尚未被蚀刻,因此基本上是连续的。此结构可改进从图7B所示的无源波导到图7A所示的有源波导的模式匹配。
图8示出沿线A-A’的根据本发明的波导电吸收调制器的另一替代实施方案。此实施方案与图7A所示的实施方案的不同之处在于,波导的一个上侧壁部分14c包括具有宽度Wb的硅区域901,所述宽度在0.1μm至0.4μm的范围内。硅上侧壁部分是全部或部分地n或p掺杂的,而相对的上侧壁部分13c由SiGe或Ge形成,并包含具有与硅上侧壁部分相反极性的掺杂剂。硅侧壁的添加有助于降低器件的电容,因此可增加操作射频带宽。
虽然本文已具体描述和说明波导电吸收调制器和制造肋形波导调制区域的方法的示例性实施方案,但许多修改和变型对于本领域技术人员而言将是显而易见的。因此,应理解,根据本发明原理构造的波导电吸收调制器可以不同于本文具体描述的方式来体现。本发明还在以下权利要求及其等同物中限定。
Claims (19)
1.一种波导光电器件,其包括肋形波导区域,所述肋形波导区域具有:
硅基部,以及
脊,所述脊从所述基部延伸,所述脊的至少一部分由不同于所述基部的材料的所选取半导体材料形成;
其中所述硅基部包括位于所述脊的第一侧的第一平板区域和位于所述脊的第二侧的第二平板区域;并且
其中:
第一掺杂区域沿着所述第一平板区域并沿着所述脊的第一侧壁延伸,所述第一侧壁接触所述第一平板区域;并且
第二掺杂区域沿着所述第二平板区域并沿着所述脊的第二侧壁延伸,所述第二侧壁接触所述第二平板区域,
其中所述脊包括:
下脊部,所述下脊部与所述基部接触且背离所述基部延伸;所述基部和所述下脊部均由硅形成;以及
上脊部,所述上脊部与所述下脊部接触且背离所述下脊部延伸,所述上脊部由所述所选取半导体材料形成;
其中
沿着所述第一侧壁延伸的所述第一掺杂区域包括位于所述下脊部处的第一下侧壁部分和位于所述上脊部处的第一上侧壁部分;并且
沿着所述第二侧壁延伸的所述第二掺杂区域包括位于所述下脊部处的第二下侧壁部分和位于所述上脊部处的第二上侧壁部分。
2.如权利要求1所述的波导光电器件,其中所述器件是:
波导电吸收调制器EAM并且所述肋形波导区域是肋形波导调制区域;或者
波导光电二极管PD。
3.如权利要求1所述的波导光电器件,其中所述所选取半导体材料是硅锗SiGe或者硅、锗或SiGe的金属合金。
4.如权利要求3所述的波导光电器件,其中所述所选取半导体材料是在Si或III-V半导体上生长的GeSn或SiGeSn合金。
5.如权利要求1-4中任一项所述的波导光电器件,其还包括:
第一电触点,所述第一电触点位于所述硅基部的所述第一平板区域上;以及
第二电触点,所述第二电触点位于所述硅基部的所述第二平板区域上。
6.如权利要求1-4中任一项所述的波导光电器件,其中所述第一掺杂区域是n掺杂的,而所述第二掺杂区域是p掺杂的。
7.如权利要求1所述的波导光电器件,其中
所述第一和第二下侧壁部分和平板区域具有比所述第一和第二上侧壁部分高的掺杂剂浓度。
8.如权利要求7所述的波导光电器件,其中所述第一和第二下侧壁部分具有比所述第一和第二上侧壁部分高的掺杂剂浓度;并且
其中所述掺杂区域的所述平板区域具有比所述第一和第二下侧壁部分高的掺杂剂浓度。
9.如权利要求1所述的波导光电器件,其中所述第一下侧壁部分和所述第二下侧壁部分延伸到所述脊中所达的距离dnp2、dpp2大于所述第一上侧壁部分和所述第二上侧壁部分延伸到所述脊中所达的距离dn、dp。
10.如权利要求1-4中任一项所述的波导光电器件,其还包括:
输入肋形波导,所述输入肋形波导耦合到所述肋形波导区域的输入端,以将光耦合到所述肋形波导区域中;以及
输出肋形波导,所述输出肋形波导耦合到所述肋形波导区域的输出端,以将光耦合出所述肋形波导区域。
11.如权利要求10所述的波导光电器件,其中所述基部的高度h2和所述第一和第二下侧壁部分的高度h3被选取成使得所述肋形波导的模式中心位于所述基部的上方与一个或多个所述输入肋形波导和/或所述输出肋形波导的模式中心相同的高度处。
12.如权利要求1-4中任一项所述的波导光电器件,其还包括设置在所述硅基部与硅衬底之间的外延结晶包覆层;其中所述硅衬底位于所述硅基部的与所述脊的相反侧上。
13.如权利要求12所述的波导光电器件,其还包括设置在所述外延结晶包覆层的相对水平侧上的掩埋氧化物层,并且其中所述外延结晶包覆层由与所述掩埋氧化物层不同的材料形成。
14.一种制造肋形波导区域的方法,所述方法包括以下步骤:
提供硅层;
将空腔蚀刻到所述硅层中,所述空腔具有基部、第一空腔边缘和第二空腔边缘;
用第一掺杂剂植入所述基部以形成第一掺杂平板区域;
用第二掺杂剂植入所述基部以形成与所述第一掺杂平板区域横向间隔开的第二掺杂平板区域;
使所选取半导体材料在所述空腔内生长,所述所选取半导体材料是与所述硅层不同的材料;
蚀刻所生长的所选取半导体材料以形成波导脊的上脊部,其中所述上脊部位于所述空腔内并且从基部向上延伸并覆盖所述第一掺杂平板区域的一部分和所述第二掺杂平板区域的一部分;所述上脊部具有接触所述第一平板掺杂区域的第一侧壁和接触所述第二掺杂平板区域的第二侧壁;
用所述第一掺杂剂植入所述第一侧壁以形成位于所述上脊部处的第一掺杂上侧壁部分;
用所述第二掺杂剂植入所述第二侧壁以形成位于所述上脊部处的第二掺杂上侧壁部分;
蚀刻所述第一掺杂平板区域的一部分和所述第二掺杂平板区域的一部分以形成所述波导脊的下脊部以及位于所述下脊部处的第一和第二掺杂下侧壁部分;以及
蚀刻掉所述第一空腔边缘和所述第二空腔边缘,
其中,所述下脊部与所述基部接触且背离所述基部延伸,所述基部和所述下脊部均由硅形成,以及
其中,所述上脊部与所述下脊部接触且背离所述下脊部延伸,所述上脊部由所述所选取半导体材料形成。
15.如权利要求14所述的方法,其中所述将空腔蚀刻到所述硅层中的步骤是深度蚀刻步骤,所述蚀刻具有至少2μm的深度。
16.如权利要求14所述的方法,其还包括以下步骤:
通过以下方式在所述所选取半导体材料的所述波导脊的正下方形成由硅制成的所述下脊部:
蚀刻经掺杂第一平板区域达小于其总深度的高度h2;以及
蚀刻经掺杂第二平板区域达小于其总深度的高度h2。
17.如权利要求14至16中任一项所述的方法,其中所述所选取半导体材料是硅锗SiGe或者硅、锗或SiGe的金属合金。
18.如权利要求17所述的方法,其中所述所选取半导体材料是在Si或III-V半导体上生长的GeSn合金。
19.一种波导光电器件,其包括肋形波导,所述肋形波导具有:
基部,所述基部由第一材料形成,以及
脊,所述脊从所述基部延伸,所述脊的至少一部分由不同于所述第一材料的第二材料形成;
其中所述基部包括位于所述脊的第一侧的第一平板区域和位于所述脊的第二侧的第二平板区域;并且
其中:
第一掺杂区域沿着所述第一平板区域并沿着所述脊的第一侧壁延伸,所述第一侧壁接触所述第一平板区域;并且
第二掺杂区域沿着所述第二平板区域并沿着所述脊的第二侧壁延伸,所述第二侧壁接触所述第二平板区域;并且
其中所述脊包括:
下脊部,所述下脊部与所述基部接触且背离所述基部延伸;所述基部和所述下脊部均由所述第一材料形成;以及
上脊部,所述上脊部与所述下脊部接触且背离所述下脊部延伸,所述上脊部由所述第二材料形成,
其中
沿着所述第一侧壁延伸的所述第一掺杂区域包括位于所述下脊部处的第一下侧壁部分和位于所述上脊部处的第一上侧壁部分;并且
沿着所述第二侧壁延伸的所述第二掺杂区域包括位于所述下脊部处的第二下侧壁部分和位于所述上脊部处的第二上侧壁部分。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201662429701P | 2016-12-02 | 2016-12-02 | |
US62/429701 | 2016-12-02 | ||
PCT/EP2017/081186 WO2018100157A1 (en) | 2016-12-02 | 2017-12-01 | Waveguide optoelectronic device |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110325900A CN110325900A (zh) | 2019-10-11 |
CN110325900B true CN110325900B (zh) | 2023-11-17 |
Family
ID=60574585
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201780074560.3A Active CN110325900B (zh) | 2016-12-02 | 2017-12-01 | 波导光电器件 |
Country Status (4)
Country | Link |
---|---|
US (1) | US11105975B2 (zh) |
CN (1) | CN110325900B (zh) |
GB (1) | GB2559252B (zh) |
WO (1) | WO2018100157A1 (zh) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11022825B2 (en) * | 2018-09-03 | 2021-06-01 | Ciena Corporation | Silicon photonics modulator using TM mode and with a modified rib geometry |
US11886055B2 (en) * | 2019-12-22 | 2024-01-30 | Mellanox Technologies, Ltd. | Low voltage modulator |
US11378750B2 (en) * | 2020-01-17 | 2022-07-05 | Taiwan Semiconductor Manufacturing Company, Ltd. | Germanium photodetector embedded in a multi-mode interferometer |
US11869991B2 (en) * | 2020-09-18 | 2024-01-09 | Taiwan Semiconductor Manufacturing Company Limited | Semiconductor device and method of making |
US11994716B2 (en) * | 2021-03-18 | 2024-05-28 | Rockley Photonics Limited | Waveguide heater |
CN113281919A (zh) * | 2021-05-07 | 2021-08-20 | 三明学院 | 一种新型硅基电光调制器及其制备工艺 |
CN114035270B (zh) * | 2021-11-08 | 2023-10-13 | 浙江光特科技有限公司 | 一种光波导中金属刻蚀的方法 |
US11855700B2 (en) | 2021-12-16 | 2023-12-26 | Mellanox Technologies, Ltd. | High bandwidth optical modulator |
US11906873B2 (en) | 2022-01-05 | 2024-02-20 | Mellanox Technologies, Ltd. | Serial data conversion redundancy using optical modulators |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1323403A (zh) * | 1998-08-13 | 2001-11-21 | 布克哈姆技术公共有限公司 | 电光调制器 |
US6584239B1 (en) * | 1998-05-22 | 2003-06-24 | Bookham Technology Plc | Electro optic modulator |
CN102696113A (zh) * | 2009-09-04 | 2012-09-26 | 科途嘉光电公司 | 具有采用水平电场的光传感器的光学装置 |
JP2012248587A (ja) * | 2011-05-26 | 2012-12-13 | Nippon Telegr & Teleph Corp <Ntt> | 半導体受光装置 |
CN103207464A (zh) * | 2012-01-17 | 2013-07-17 | 上海硅通半导体技术有限公司 | 一种电光开关或光衰减器 |
WO2014129508A1 (ja) * | 2013-02-21 | 2014-08-28 | 住友大阪セメント株式会社 | 光導波路素子及び光導波路素子の製造方法 |
CN104685408A (zh) * | 2012-05-09 | 2015-06-03 | 科途嘉光电公司 | 在光学装置上的部件隔离 |
WO2015155900A1 (en) * | 2014-04-07 | 2015-10-15 | Fujikura Ltd. | Optical waveguide device and method of manufacturing the same |
CN105487263A (zh) * | 2014-06-30 | 2016-04-13 | 硅光电科技股份有限公司 | 硅基脊型波导调制器及其制造方法 |
CN105917257A (zh) * | 2014-02-24 | 2016-08-31 | 洛克利光子有限公司 | 检测器重调器和光电子交换机 |
CN106133585A (zh) * | 2014-01-24 | 2016-11-16 | 思科技术公司 | 使用肋形波导的电光调制器 |
Family Cites Families (282)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4093345A (en) | 1976-05-27 | 1978-06-06 | Bell Telephone Laboratories, Incorporated | Semiconductor rib waveguide optical modulator with heterojunction control electrode cladding |
FR2562328B1 (fr) | 1984-03-30 | 1987-11-27 | Menigaux Louis | Procede de fabrication d'un dispositif optique integre monolithique comprenant un laser a semi-conducteur et dispositif obtenu par ce procede |
DD234208A3 (de) | 1984-06-08 | 1986-03-26 | Halle Feinmech Werke Veb | Anordnung zur externen modulation von ir-laser-strahlung hoher leistung |
US5163118A (en) * | 1986-11-10 | 1992-11-10 | The United States Of America As Represented By The Secretary Of The Air Force | Lattice mismatched hetrostructure optical waveguide |
EP0310058B1 (en) | 1987-09-30 | 1995-06-07 | Nec Corporation | Time and wavelength division switching system |
US4943133A (en) | 1988-08-08 | 1990-07-24 | Bell Communications Research, Inc. | Low loss semiconductor optical phase modulator |
US4961619A (en) * | 1989-03-02 | 1990-10-09 | At&T Bell Laboratories | Low loss waveguide intersection |
JP2894735B2 (ja) * | 1989-08-30 | 1999-05-24 | 日本電気株式会社 | 光回路 |
US5048907A (en) | 1990-02-23 | 1991-09-17 | Amoco Corporation | Electric field induced quantum well waveguides |
GB9009726D0 (en) | 1990-05-01 | 1990-06-20 | British Telecomm | Optoelectronic device |
US5155791A (en) | 1990-12-07 | 1992-10-13 | E. I. Du Pont De Nemours And Company | Hybrid optical waveguides for phase-matched nonlinear wavelength conversion |
FR2680418B1 (fr) * | 1991-08-13 | 1995-01-20 | Corning Inc | Diviseur achromatique en optique integree et coupleur de m entrees vers n sorties incorporant un tel diviseur. |
JP3158706B2 (ja) | 1992-09-09 | 2001-04-23 | 株式会社日立製作所 | 光分配装置 |
FR2695761B1 (fr) | 1992-09-11 | 1994-12-30 | Slimane Loualiche | Procédé de fabrication de dispositifs électro-optiques à ruban, notamment de lasers, et dispositifs ainsi obtenus. |
JP3109934B2 (ja) | 1993-02-02 | 2000-11-20 | シャープ株式会社 | 光電子電界効果型トランジスタ |
DE69434078T2 (de) | 1993-03-11 | 2005-11-03 | At & T Corp. | Optisches Netzwerk mit Endgerätfernabfrage und optische Netzwerkeinheit dafür, dass Wellenlängen transformiert |
US5757986A (en) | 1993-09-21 | 1998-05-26 | Bookham Technology Limited | Integrated silicon pin diode electro-optic waveguide |
US5524076A (en) | 1994-01-28 | 1996-06-04 | Northern Telecom Limited | Chirp control of a Mach-Zehnder optical modulator using non-equal power splitting |
JP3462265B2 (ja) | 1994-06-21 | 2003-11-05 | パイオニア株式会社 | 波長変換素子 |
US5911018A (en) * | 1994-09-09 | 1999-06-08 | Gemfire Corporation | Low loss optical switch with inducible refractive index boundary and spaced output target |
US5715076A (en) | 1995-05-11 | 1998-02-03 | Ciena Corporation | Remodulating channel selectors for WDM optical communication systems |
US6233077B1 (en) | 1995-05-11 | 2001-05-15 | Ciena Corporation | Remodulating channel selectors for WDM optical communication systems |
US9191117B2 (en) | 1995-05-11 | 2015-11-17 | Ciena Corporation | High-speed optical transponder systems |
US5784184A (en) | 1995-05-11 | 1998-07-21 | Ciena Corporation | WDM Optical communication systems with remodulators and remodulating channel selectors |
US5726784A (en) | 1995-05-11 | 1998-03-10 | Ciena Corp. | WDM optical communication system with remodulators and diverse optical transmitters |
US5861966A (en) | 1995-12-27 | 1999-01-19 | Nynex Science & Technology, Inc. | Broad band optical fiber telecommunications network |
US5917642A (en) | 1996-09-23 | 1999-06-29 | Integrated Optical Components Limited | Optical modulator |
CA2197624C (en) | 1997-02-14 | 2003-07-29 | Robert J. Davies | Hybrid single sideband optical modulator |
JP3112070B2 (ja) | 1997-04-28 | 2000-11-27 | 日本電気株式会社 | 光ネットワークおよびそのスイッチ制御方法 |
US6061487A (en) * | 1997-04-30 | 2000-05-09 | Nok Corporation | Optical waveguide circuit, optical branched waveguide circuit, and optical modulator |
US5894535A (en) * | 1997-05-07 | 1999-04-13 | Hewlett-Packard Company | Optical waveguide device for wavelength demultiplexing and waveguide crossing |
US6396801B1 (en) | 1998-03-17 | 2002-05-28 | Trw Inc. | Arbitrary waveform modem |
US20010040907A1 (en) | 1998-06-12 | 2001-11-15 | Utpal Kumar Chakrabarti | Optical device including carbon-doped contact layers |
US6229189B1 (en) | 1998-12-24 | 2001-05-08 | Hughes Electronics Corporation | Multi-function optoelectronic device structure |
US6438279B1 (en) * | 1999-01-07 | 2002-08-20 | Cornell Research Foundation, Inc. | Unitary microcapiliary and waveguide structure and method of fabrication |
GB2348293A (en) | 1999-03-25 | 2000-09-27 | Bookham Technology Ltd | Optical phase modulator |
US6349106B1 (en) | 1999-09-02 | 2002-02-19 | Agility Communications, Inc. | Method for converting an optical wavelength using a monolithic wavelength converter assembly |
US6614819B1 (en) | 1999-09-02 | 2003-09-02 | Agility Communications, Inc. | Method of modulating an optical wavelength with an opto-electronic laser with integrated modulator |
US6580739B1 (en) | 1999-09-02 | 2003-06-17 | Agility Communications, Inc. | Integrated opto-electronic wavelength converter assembly |
US6549313B1 (en) | 1999-09-21 | 2003-04-15 | Lucent Technologies Inc. | Broadbrand electronic N×N cross-connect switch using tunable lasers |
US6445839B1 (en) | 1999-11-05 | 2002-09-03 | The Board Of Trustees Of The Leland Stanford Junior University | Optical wavelength-division-multiplexed cross-connect incorporating optically controlled optical switch |
US6678479B1 (en) | 2000-03-01 | 2004-01-13 | Opnext Japan, Inc. | Semiconductor electro-absorption optical modulator integrated light emission element light emission element module and optical transmission system |
US6222951B1 (en) * | 2000-04-03 | 2001-04-24 | Fengyi Huang | Silicon-based silicon-germanium integrated-circuit optical network unit |
US6734453B2 (en) | 2000-08-08 | 2004-05-11 | Translucent Photonics, Inc. | Devices with optical gain in silicon |
US7095957B1 (en) | 2000-08-17 | 2006-08-22 | At&T Corp. | Optical/radio local access network |
US6665495B1 (en) | 2000-10-27 | 2003-12-16 | Yotta Networks, Inc. | Non-blocking, scalable optical router architecture and method for routing optical traffic |
JP4828018B2 (ja) * | 2000-11-06 | 2011-11-30 | 三菱電機株式会社 | 光変調器およびその製造方法並びに光半導体装置 |
US6917455B2 (en) | 2000-11-22 | 2005-07-12 | Jds Uniphase Corporation | Cascaded RZ and NRZ laser modulators having RZ/NRZ phase alignment bias control |
US6636662B1 (en) | 2000-12-15 | 2003-10-21 | Nortel Networks Limited | Planar waveguide dispersion compensator |
JP2002208895A (ja) | 2001-01-10 | 2002-07-26 | Fujitsu Ltd | 光アッド/ドロップ装置 |
US6597824B2 (en) | 2001-01-28 | 2003-07-22 | Raytheon Company | Opto-electronic distributed crossbar switch |
US6710911B2 (en) | 2001-03-02 | 2004-03-23 | Evident Technologies | Optical wavelength converter |
US6563627B2 (en) | 2001-04-06 | 2003-05-13 | Sung-Joo Ben Yoo | Wavelength converter with modulated absorber |
US6594409B2 (en) | 2001-04-18 | 2003-07-15 | Apic Corporation | WDM transmitter or receiver including an array waveguide grating and active optical elements |
US6690863B2 (en) * | 2001-05-17 | 2004-02-10 | Si Optical, Inc. | Waveguide coupler and method for making same |
US6760498B2 (en) * | 2001-05-17 | 2004-07-06 | Sioptical, Inc. | Arrayed waveguide grating, and method of making same |
US6891985B2 (en) * | 2001-05-17 | 2005-05-10 | Sioptical, Inc. | Polyloaded optical waveguide devices and methods for making same |
US6898352B2 (en) * | 2001-05-17 | 2005-05-24 | Sioptical, Inc. | Optical waveguide circuit including passive optical waveguide device combined with active optical waveguide device, and method for making same |
US6738546B2 (en) * | 2001-05-17 | 2004-05-18 | Sioptical, Inc. | Optical waveguide circuit including multiple passive optical waveguide devices, and method of making same |
US6842546B2 (en) * | 2001-05-17 | 2005-01-11 | Sioptical, Inc. | Polyloaded optical waveguide device in combination with optical coupler, and method for making same |
US6967347B2 (en) * | 2001-05-21 | 2005-11-22 | The Regents Of The University Of Colorado | Terahertz interconnect system and applications |
EP1276004B1 (en) | 2001-07-12 | 2007-09-05 | Avago Technologies Fiber IP (Singapore) Pte. Ltd. | A method and system for optical wavelength conversion and regeneration |
FR2828046B1 (fr) | 2001-07-27 | 2003-10-10 | Thales Sa | Procede de gestion de taches pour un automate de routage d'un commutateur de paquets faisant partie d'un reseau securise de transmission a commutation par paquets |
US6704487B2 (en) | 2001-08-10 | 2004-03-09 | Lightwave Microsystems Corporation | Method and system for reducing dn/dt birefringence in a thermo-optic PLC device |
US6680791B2 (en) | 2001-10-01 | 2004-01-20 | The Board Of Trustees Of The Leland Stanford Junior University | Semiconductor device for rapid optical switch by modulated absorption |
US7116851B2 (en) | 2001-10-09 | 2006-10-03 | Infinera Corporation | Optical signal receiver, an associated photonic integrated circuit (RxPIC), and method improving performance |
US7751658B2 (en) | 2001-10-09 | 2010-07-06 | Infinera Corporation | Monolithic transmitter photonic integrated circuit (TxPIC) having tunable modulated sources with feedback system for source power level or wavelength tuning |
EP1436870A2 (en) | 2001-10-09 | 2004-07-14 | Infinera Corporation | TRANSMITTER PHOTONIC INTEGRATED CIRCUITS (TxPIC) AND OPTICAL TRANSPORT NETWORKS EMPLOYING TxPICs |
US7672546B2 (en) | 2001-10-09 | 2010-03-02 | Infinera Corporation | Optical transport network having a plurality of monolithic photonic integrated circuit semiconductor chips |
US7577320B2 (en) * | 2001-10-26 | 2009-08-18 | Infinera Corporation | Low loss lateral optical waveguide intersections |
US7254299B2 (en) * | 2001-12-20 | 2007-08-07 | Lynx Photonic Networks, Inc. | High-tolerance broadband-optical switch in planar lightwave circuits |
JP3878012B2 (ja) * | 2001-12-21 | 2007-02-07 | 日本電信電話株式会社 | 光導波回路 |
US7386207B2 (en) | 2001-12-27 | 2008-06-10 | Kotura, Inc. | In-line light sensor |
US6768827B2 (en) | 2002-01-16 | 2004-07-27 | The Regents Of The University Of California | Integrated optical router |
US7092609B2 (en) | 2002-01-31 | 2006-08-15 | Intel Corporation | Method to realize fast silicon-on-insulator (SOI) optical device |
US7263247B1 (en) * | 2002-02-11 | 2007-08-28 | Gemfire Corporation | Integrated optical isolator array |
US6697553B2 (en) | 2002-02-15 | 2004-02-24 | Jds Uniphase Corporation | Compact, low insertion loss, high yield arrayed waveguide grating |
US6642151B2 (en) | 2002-03-06 | 2003-11-04 | Applied Materials, Inc | Techniques for plasma etching silicon-germanium |
US7006719B2 (en) | 2002-03-08 | 2006-02-28 | Infinera Corporation | In-wafer testing of integrated optical components in photonic integrated circuits (PICs) |
US6873763B2 (en) | 2002-04-12 | 2005-03-29 | Intel Corporation | Managing channels with different wavelengths in optical networks |
US20040013429A1 (en) | 2002-07-19 | 2004-01-22 | Marcus Duelk | Power equalization in optical switches |
US7076130B2 (en) * | 2002-09-11 | 2006-07-11 | Adc Telecommunications, Inc. | Semiconductor optical device having asymmetric ridge waveguide and method of making same |
JP3913161B2 (ja) | 2002-11-14 | 2007-05-09 | アンリツ株式会社 | 光導波路型半導体デバイス |
US7245793B2 (en) * | 2002-11-19 | 2007-07-17 | Nippon Telegraph And Telephone Corporation | Optical waveguide circuit |
US6915047B1 (en) * | 2003-03-24 | 2005-07-05 | Inplane Photonics, Inc. | Broadband, polarization independent integrated optical tap |
US6845198B2 (en) | 2003-03-25 | 2005-01-18 | Sioptical, Inc. | High-speed silicon-based electro-optic modulator |
US6934446B2 (en) * | 2003-03-27 | 2005-08-23 | Lucent Technologies Inc. | Optical waveguiding apparatus having reduced crossover losses |
JP2006525677A (ja) * | 2003-04-21 | 2006-11-09 | シオプティカル インコーポレーテッド | シリコン・ベースの光デバイスの電子デバイスとのcmos互換集積化 |
JP2007525691A (ja) * | 2003-04-23 | 2007-09-06 | シオプティカル インコーポレーテッド | Soi光プラットフォームの上に形成されたサブミクロン・プレーナ型光波デバイス |
FR2855883B1 (fr) | 2003-06-03 | 2005-08-26 | Cit Alcatel | Dispositif optoelectronique integre comportant un modulateur a electroabsorption et un element electronique de commande du modulateur |
US7444053B2 (en) * | 2003-06-16 | 2008-10-28 | The Regents Of The University Of California | Integrated electrical and optical sensor for biomolecule analysis with single molecule sensitivity |
US6969631B2 (en) * | 2003-06-16 | 2005-11-29 | Micron Technology, Inc. | Method of forming photodiode with self-aligned implants for high quantum efficiency |
US7122392B2 (en) | 2003-06-30 | 2006-10-17 | Intel Corporation | Methods of forming a high germanium concentration silicon germanium alloy by epitaxial lateral overgrowth and structures formed thereby |
US7043097B2 (en) | 2003-07-25 | 2006-05-09 | Agility Communications, Inc. | Traveling-wave optoelectronic wavelength converter |
US7085443B1 (en) | 2003-08-15 | 2006-08-01 | Luxtera, Inc. | Doping profiles in PN diode optical modulators |
US7099586B2 (en) | 2003-09-04 | 2006-08-29 | The Regents Of The University Of California | Reconfigurable multi-channel all-optical regenerators |
JP3920900B2 (ja) * | 2003-09-12 | 2007-05-30 | 日本電信電話株式会社 | 波長合分波器 |
US8401385B2 (en) | 2003-10-02 | 2013-03-19 | Trex Enterprises Corp. | Optically switched communication network |
US6937795B2 (en) | 2003-10-22 | 2005-08-30 | Optovia Corporation | Combination wavelength multiplexer and wavelength stabilizer |
US7212708B2 (en) | 2003-10-22 | 2007-05-01 | Jds Uniphase Corporation | Optical grating based multiplexer device with power tap capability |
WO2005082091A2 (en) * | 2004-02-26 | 2005-09-09 | Sioptical, Inc. | Active manipulation of light in a silicon-on-insulator (soi) structure |
FR2868171B1 (fr) * | 2004-03-29 | 2006-09-15 | Univ Paris Sud | Modulateur optoelectronique haute frequence integre sur silicium |
JP2007531022A (ja) | 2004-03-31 | 2007-11-01 | ピレリ・アンド・チ・ソチエタ・ペル・アツィオーニ | 光変調器 |
JP2005300678A (ja) | 2004-04-07 | 2005-10-27 | Nippon Telegr & Teleph Corp <Ntt> | 無機光学結晶導波路及びその製造方法 |
US20050236619A1 (en) * | 2004-04-21 | 2005-10-27 | Vipulkumar Patel | CMOS-compatible integration of silicon-based optical devices with electronic devices |
US7394948B1 (en) | 2004-06-07 | 2008-07-01 | Kotura, Inc. | High speed optical phase modulator |
US6987920B1 (en) | 2004-06-28 | 2006-01-17 | Xerox Corporation | Waveguide structures and methods |
US7397101B1 (en) * | 2004-07-08 | 2008-07-08 | Luxtera, Inc. | Germanium silicon heterostructure photodetectors |
JP4613304B2 (ja) * | 2004-09-07 | 2011-01-19 | 独立行政法人産業技術総合研究所 | 量子ナノ構造半導体レーザ |
US7515777B2 (en) * | 2004-12-09 | 2009-04-07 | The Board Of Trustees Of The Leland Stanford Junior University | Silicon-based Ge/SiGe optical interconnects |
WO2006066611A1 (en) * | 2004-12-24 | 2006-06-29 | Pirelli & C. S.P.A. | Photodetector in germanium on silicon |
US7570844B2 (en) | 2005-01-18 | 2009-08-04 | Doron Handelman | Photonic integrated circuit device and elements thereof |
US20060177173A1 (en) * | 2005-02-04 | 2006-08-10 | Sioptical, Inc. | Vertical stacking of multiple integrated circuits including SOI-based optical components |
US7894696B2 (en) | 2005-06-28 | 2011-02-22 | California Institute Of Technology | Integrated optical modulator |
US7265008B2 (en) * | 2005-07-01 | 2007-09-04 | Synopsys, Inc. | Method of IC production using corrugated substrate |
JP4509892B2 (ja) * | 2005-08-26 | 2010-07-21 | 浜松ホトニクス株式会社 | 光導波路基板及びその製造方法 |
US7505686B2 (en) | 2005-09-01 | 2009-03-17 | Alcatel-Lucent Usa Inc. | Highly scalable multi-granular node architecture |
EP1761103B1 (en) | 2005-09-01 | 2011-07-06 | Lucent Technologies Nederland B.V. | Non-blocking cyclic AWG-based node architectures |
US7440655B2 (en) | 2005-09-21 | 2008-10-21 | Andevices, Inc. | Duplex arrayed waveguide grating |
US7558487B2 (en) | 2005-09-25 | 2009-07-07 | Alcatel-Lucent Usa Inc. | Multilevel amplitude and phase encoded signal generation |
WO2007048110A2 (en) * | 2005-10-19 | 2007-04-26 | University Of Notre Dame Du Lac | High-index-contrast waveguide |
CA2564448C (en) * | 2005-10-24 | 2010-09-07 | Nec Corporation | Optical waveguide device and method of adjusting a transmission loss thereof |
US20070104441A1 (en) | 2005-11-08 | 2007-05-10 | Massachusetts Institute Of Technology | Laterally-integrated waveguide photodetector apparatus and related coupling methods |
WO2007061986A1 (en) | 2005-11-22 | 2007-05-31 | Massachusetts Institute Of Technology | High speed and low loss gesi/si electro-absorption light modulator and method of fabrication using selective growth |
US7391801B1 (en) * | 2005-11-25 | 2008-06-24 | The United States Of America As Represented By The Secretary Of The Air Force | Electrically pumped Group IV semiconductor micro-ring laser |
US8106379B2 (en) * | 2006-04-26 | 2012-01-31 | The Regents Of The University Of California | Hybrid silicon evanescent photodetectors |
US7256929B1 (en) | 2006-01-20 | 2007-08-14 | Intel Corporation | Semiconductor waveguide based high speed all optical wavelength converter |
US7418166B1 (en) | 2006-02-24 | 2008-08-26 | The Board Of Trustees Of The Leland Stanford Junior University | Device and approach for integration of optical devices and waveguides therefor |
US20070280309A1 (en) | 2006-05-23 | 2007-12-06 | Ansheng Liu | Optical waveguide with single sided coplanar contact optical phase modulator |
JP4676531B2 (ja) | 2006-05-25 | 2011-04-27 | 富士通株式会社 | 光アクセスネットワークシステム |
US20080002929A1 (en) * | 2006-06-30 | 2008-01-03 | Bowers John E | Electrically pumped semiconductor evanescent laser |
US7257283B1 (en) * | 2006-06-30 | 2007-08-14 | Intel Corporation | Transmitter-receiver with integrated modulator array and hybrid bonded multi-wavelength laser array |
US9086584B2 (en) | 2006-08-24 | 2015-07-21 | Cornell University | Dynamic wavelength converter |
CN101529306B (zh) | 2006-08-24 | 2012-08-29 | 康乃尔研究基金会有限公司 | 电-光调制器 |
US7920790B2 (en) | 2006-09-08 | 2011-04-05 | Telcordia Technologies, Inc. | Polarization envelope modulation for signaling and labeling in optical networks |
JP4416050B2 (ja) * | 2006-09-21 | 2010-02-17 | 日立化成工業株式会社 | 光導波路基板およびそれを用いた光電気混載回路実装基板 |
US7483597B2 (en) | 2006-10-19 | 2009-01-27 | Lightwire, Inc. | Optical modulator utilizing multi-level signaling |
US7603016B1 (en) * | 2007-04-30 | 2009-10-13 | The United States Of America As Represented By The Secretary Of The Air Force | Semiconductor photonic nano communication link apparatus |
CN101842736A (zh) | 2007-08-08 | 2010-09-22 | 新加坡科技研究局 | 电光设备及其制备方法 |
KR101554755B1 (ko) | 2007-10-02 | 2015-09-21 | 럭스테라, 인코포레이티드 | Cmos 칩 상에 집적된 광전자공학 트랜시버들에 대한 방법 및 시스템 |
US7903909B2 (en) * | 2007-10-22 | 2011-03-08 | Massachusetts Institute Of Technology | Low-loss bloch wave guiding in open structures and highly compact efficient waveguide-crossing arrays |
US7811844B2 (en) | 2007-10-26 | 2010-10-12 | Bae Systems Information And Electronic Systems Integration Inc. | Method for fabricating electronic and photonic devices on a semiconductor substrate |
WO2009058470A1 (en) * | 2007-10-30 | 2009-05-07 | Bae Systems Information And Electronic Systems Integration Inc. | Method for fabricating butt-coupled electro-absorptive modulators |
US8571363B2 (en) | 2007-12-14 | 2013-10-29 | Hewlett-Packard Development Company, L.P. | Ring resonator with inductance coupled heat tuning |
US20090169149A1 (en) | 2007-12-27 | 2009-07-02 | Bruce Andrew Block | Stabilized ring resonator modulator |
US8559478B2 (en) | 2008-01-18 | 2013-10-15 | The Regents Of The University Of California | Hybrid silicon laser-quantum well intermixing wafer bonded integration platform for advanced photonic circuits with electroabsorption modulators |
JP2009182145A (ja) | 2008-01-30 | 2009-08-13 | Sumitomo Electric Ind Ltd | 半導体光素子 |
US7941014B1 (en) | 2008-04-09 | 2011-05-10 | Sandia Corporation | Optical waveguide device with an adiabatically-varying width |
US8290325B2 (en) * | 2008-06-30 | 2012-10-16 | Intel Corporation | Waveguide photodetector device and manufacturing method thereof |
CN102177668A (zh) | 2008-08-08 | 2011-09-07 | 惠普开发有限公司 | 用于在相对低基交换机物理网络上实现高基交换机拓扑结构的方法和系统 |
US8149493B2 (en) | 2008-09-06 | 2012-04-03 | Sifotonics Technologies (Usa) Inc. | Electro-optic silicon modulator |
US8238014B2 (en) | 2008-09-08 | 2012-08-07 | Luxtera Inc. | Method and circuit for encoding multi-level pulse amplitude modulated signals using integrated optoelectronic devices |
US8253211B2 (en) | 2008-09-24 | 2012-08-28 | Taiwan Semiconductor Manufacturing Company, Ltd. | Semiconductor sensor structures with reduced dislocation defect densities |
US7747122B2 (en) | 2008-09-30 | 2010-06-29 | Intel Corporation | Method and apparatus for high speed silicon optical modulation using PN diode |
US7916377B2 (en) | 2008-11-03 | 2011-03-29 | Luxtera, Inc. | Integrated control system for laser and Mach-Zehnder interferometer |
WO2010057290A1 (en) | 2008-11-21 | 2010-05-27 | Institut National Optique | Spectrally tailored pulsed fiber laser oscillator |
EP2359187B1 (en) | 2008-12-16 | 2019-09-11 | Teraxion Inc. | Monolithic optoelectronic twe-component structure |
CN102388298B (zh) | 2009-02-05 | 2013-10-23 | 康奈尔大学 | 通过使用四波混频进行时间展宽的高速光采样 |
US7977622B2 (en) | 2009-02-09 | 2011-07-12 | Hewlett-Packard Development Company, L.P. | Tuning an optical resonator using a feedback signal representing an average DC balanced coding |
US8053790B2 (en) | 2009-02-19 | 2011-11-08 | Kotusa, Inc. | Optical device having light sensor employing horizontal electrical field |
WO2010100738A1 (ja) * | 2009-03-05 | 2010-09-10 | 富士通株式会社 | 半導体レーザ、シリコン導波路基板、集積素子 |
FR2943802B1 (fr) * | 2009-03-24 | 2011-09-30 | Univ Paris Sud | Modulateur optique a haut debit en semi-conducteur sur isolant |
US8078013B2 (en) * | 2009-03-31 | 2011-12-13 | Oracle America, Inc. | Dual-layer thermally tuned optical device |
US8150223B2 (en) * | 2009-03-31 | 2012-04-03 | Oracle America, Inc. | Thermal tuning of an optical device |
US7848599B2 (en) * | 2009-03-31 | 2010-12-07 | Oracle America, Inc. | Optical device with large thermal impedance |
US8724988B2 (en) | 2009-05-05 | 2014-05-13 | Telefonaktiebolaget L M Ericsson (Publ) | Synchronous packet switches |
US8346025B2 (en) | 2009-05-18 | 2013-01-01 | Alcatel Lucent | Compact electrooptic modulator |
US20100310208A1 (en) | 2009-06-08 | 2010-12-09 | Omega Optics, Inc. | Photonic crystal band-shifting device for dynamic control of light transmission |
US20110013905A1 (en) | 2009-07-17 | 2011-01-20 | Avago Technologies Fiber Ip (Singapore) Pte. Ltd. | Active optical cable apparatus and method for detecting optical fiber breakage |
US8953950B2 (en) | 2009-07-24 | 2015-02-10 | Technion Research And Development Foundation Ltd. | Ultra-high-speed photonic-enabled ADC based on multi-phase interferometry |
US9164026B2 (en) * | 2009-08-03 | 2015-10-20 | Omega Optics, Inc. | Packaged chip for multiplexing photonic crystal microcavity coupled waveguide and photonic crystal slot waveguide devices for chip-integrated label-free detection and absorption spectroscopy with high throughput, sensitivity, specificity, and wide dynamic range |
CN101631081B (zh) | 2009-08-12 | 2011-06-08 | 华为技术有限公司 | 一种多级交换网 |
US9316785B2 (en) * | 2013-10-09 | 2016-04-19 | Skorpios Technologies, Inc. | Integration of an unprocessed, direct-bandgap chip into a silicon photonic device |
US8242432B2 (en) | 2009-10-23 | 2012-08-14 | Kotura, Inc. | System having light sensor with enhanced sensitivity including a multiplication layer for generating additional electrons |
EP2510390A4 (en) | 2009-12-10 | 2013-06-19 | Onechip Photonics Inc | OPTICALLY PRE-AMPLIFIED WAVEGUIDE DETECTOR WITH TRANSMISSION WAVELENGTH FILTERING |
US8897606B2 (en) | 2009-12-15 | 2014-11-25 | Kotura, Inc. | Ring resonator with wavelength selectivity |
US8346028B2 (en) | 2009-12-15 | 2013-01-01 | Kotura, Inc. | Optical device having modulator employing horizontal electrical field |
US8983292B2 (en) | 2009-12-23 | 2015-03-17 | Telefonaktiebolaget L M Ericsson (Publ) | Electrical signal packet routing |
GB2477131A (en) | 2010-01-22 | 2011-07-27 | Univ Surrey | Electro-optic device |
GB2477935A (en) | 2010-02-17 | 2011-08-24 | Univ Surrey | Electro-optic device with a waveguide rib |
US8396375B2 (en) | 2010-02-18 | 2013-03-12 | Universitat Politecnica De Catalunya | Method and apparatus for bidirectional optical link using a single optical carrier and colorless demodulation and detection of optical frequency shift keyed data |
US8737772B2 (en) * | 2010-02-19 | 2014-05-27 | Kotura, Inc. | Reducing optical loss in an optical modulator using depletion region |
US20110215344A1 (en) * | 2010-03-05 | 2011-09-08 | Dardy Henry D | LOW POWER GRADED BASE SiGe HBT LIGHT MODULATOR |
WO2011146066A1 (en) | 2010-05-20 | 2011-11-24 | Hewlett-Packard Development Company, L.P. | Switching in a network device |
US8472805B2 (en) | 2010-05-26 | 2013-06-25 | Google Inc. | Tunable multi-wavelength optical transmitter and transceiver for optical communications based on wavelength division multiplexing |
US8401345B2 (en) * | 2010-06-16 | 2013-03-19 | Oracle America, Inc. | Optical modulator with three-dimensional waveguide tapers |
US8411260B1 (en) * | 2010-07-28 | 2013-04-02 | Kotura, Inc. | Light monitor configured to tap portion of light signal from mid-waveguide |
US8824837B2 (en) * | 2010-08-26 | 2014-09-02 | The Board Of Trustees Of The Leland Stanford Junior University | Integration of optoelectronics with waveguides using interposer layer |
US9128309B1 (en) | 2010-09-29 | 2015-09-08 | Lockheed Martin Corporation | Plural EAM device with optimized waveguide profile |
US8588570B2 (en) | 2010-09-30 | 2013-11-19 | Intel Corporation | Two-photon-absorption-based silicon waveguide photo-power monitor |
US9178642B2 (en) | 2010-10-27 | 2015-11-03 | Hewlett-Packard Development Company, L.P. | Receivers and transceivers for optical multibus systems |
US20130243374A1 (en) * | 2010-12-01 | 2013-09-19 | Nec Corporation | Optical branching element, optical waveguide device using optical branching element, and method of manufacturing optical branching element, method of manufacturing optical waveguide device |
US8403571B2 (en) | 2010-12-07 | 2013-03-26 | Corning Cable Systems Llc | Apparatuses, systems, and methods for facilitating optical communication between electronic devices |
CN102569513B (zh) * | 2010-12-22 | 2016-02-17 | 李冰 | 一种波导光探测器及其制备方法 |
US9110314B2 (en) | 2010-12-29 | 2015-08-18 | Agency For Science, Technology And Research | Optical modulator and a method of forming the same |
CN102162137B (zh) | 2011-01-28 | 2013-05-29 | 中国科学院上海硅酸盐研究所 | 一种高质量应变的Ge/SiGe超晶格结构及其制备方法 |
CN103635785B (zh) * | 2011-02-15 | 2016-11-02 | 勒克思马克斯科技公司 | 整合cmos-ftir测定及拉曼测定的光谱仪及其方法 |
US20120243826A1 (en) * | 2011-03-21 | 2012-09-27 | Liping Sun | Low power compact optical switch |
US20120300796A1 (en) * | 2011-05-27 | 2012-11-29 | Sysak Matthew N | Hybrid lasers |
US8410566B2 (en) | 2011-07-21 | 2013-04-02 | Kotura, Inc. | Application of electrical field power to light-transmitting medium |
JP5817315B2 (ja) | 2011-08-10 | 2015-11-18 | 富士通株式会社 | 光半導体素子 |
US8731017B2 (en) * | 2011-08-12 | 2014-05-20 | Acorn Technologies, Inc. | Tensile strained semiconductor photon emission and detection devices and integrated photonics system |
US9306698B2 (en) | 2011-08-30 | 2016-04-05 | University Of Houston System | Methods and apparatuses for DWDM multi-mode switching router and dynamic multi-mode configuration and reconfiguration |
US9097846B2 (en) * | 2011-08-30 | 2015-08-04 | Skorpios Technologies, Inc. | Integrated waveguide coupler |
US9608760B2 (en) | 2011-09-21 | 2017-03-28 | Nanyang Technological University | Integrated access network |
US8798480B2 (en) | 2011-10-05 | 2014-08-05 | Nec Laboratories America, Inc. | High-speed optical 8-QAM modulation by cascading dual-drive mach-zehnder modulator with I/Q modulator |
US20130094797A1 (en) | 2011-10-13 | 2013-04-18 | Finisar Corporation | Optical Transmitter With Tunable Chirp |
WO2013095397A1 (en) * | 2011-12-20 | 2013-06-27 | Intel Corporation | Hybrid integration of group iii-v semiconductor devices on silicon |
US9182544B2 (en) * | 2011-12-21 | 2015-11-10 | Intel Corporation | Fabrication of planar light-wave circuits (PLCS) for optical I/O |
US8817354B2 (en) | 2012-01-12 | 2014-08-26 | Kotura, Inc. | Optical device having reduced optical leakage |
US8542954B2 (en) * | 2012-02-01 | 2013-09-24 | Kotura, Inc. | Optical component having reduced dependency on etch depth |
US8638485B2 (en) * | 2012-03-05 | 2014-01-28 | Kotura, Inc. | Integration of components on optical device |
US8792787B1 (en) | 2012-07-19 | 2014-07-29 | Google Inc. | Optoelectronic packet switch/routers |
US9417186B2 (en) * | 2012-08-30 | 2016-08-16 | Infineon Technologies Ag | Opto-electronic sensor |
US8724100B1 (en) * | 2012-10-22 | 2014-05-13 | Kotura, Inc. | Wafer level testing of optical devices |
SG2013082102A (en) * | 2012-11-05 | 2014-06-27 | Agency Science Tech & Res | Method for forming an optical modulator |
US9306671B2 (en) | 2012-12-07 | 2016-04-05 | Applied Optoelectronics, Inc. | Thermally isolated multi-channel transmitter optical subassembly and optical transceiver module including same |
US10025120B2 (en) * | 2012-12-13 | 2018-07-17 | Luxtera, Inc. | Method and system for a low parasitic silicon high-speed phase modulator having raised fingers perpendicular to the PN junction |
JP5413865B1 (ja) | 2012-12-27 | 2014-02-12 | 株式会社フジクラ | 光導波路素子及び光変調器 |
WO2014120203A1 (en) | 2013-01-31 | 2014-08-07 | Hewlett-Packard Development Company, L.P. | Radix enhancement for photonic packet switch |
WO2014145453A1 (en) * | 2013-03-15 | 2014-09-18 | Gigoptix Inc. | Wavelength tunable integrated optical subassembly based on polymer technology |
US9541775B2 (en) * | 2013-03-19 | 2017-01-10 | Luxtera, Inc. | Method and system for a low-voltage integrated silicon high-speed modulator |
KR102116977B1 (ko) | 2013-04-11 | 2020-05-29 | 삼성전자 주식회사 | 비열 광 변조기 및 그 제조 방법 |
EP2988338B1 (en) * | 2013-04-19 | 2017-08-30 | Fujitsu Ltd. | Semiconductor light-receiving element and method for manufacturing same |
US9939578B2 (en) * | 2013-05-10 | 2018-04-10 | Intel Corporation | Low cost integration of optical components in planar lightwave circuits |
JP2016524722A (ja) | 2013-05-14 | 2016-08-18 | コリアント・アドヴァンスド・テクノロジー・エルエルシー | 空乏モードシリコン変調器のための超応答移相器 |
FR3005756A1 (fr) | 2013-05-17 | 2014-11-21 | St Microelectronics Sa | Dephaseur electro-optique statique a double jonction pin |
US10353224B2 (en) * | 2013-06-09 | 2019-07-16 | Electronic Photonic Ic Inc. (Epic Inc.) | Optical signal processing devices with high device performances |
US9952456B2 (en) * | 2013-06-09 | 2018-04-24 | Electronic Photonic Ic Inc. (Epic Inc.) | Thin layer photonic integrated circuit based optical signal manipulators |
US8989300B1 (en) | 2013-09-06 | 2015-03-24 | Avago Technologies General Ip (Singapore) Pte. Ltd. | Multi-level coding and distortion compensation |
WO2015060820A1 (en) | 2013-10-22 | 2015-04-30 | Hewlett-Packard Development Company, L.P. | Hybrid circuit-packet switch |
TWI634716B (zh) * | 2013-10-22 | 2018-09-01 | 美國麻省理工學院 | 使用cmos製造技術之波導形成 |
US9305780B2 (en) | 2013-12-06 | 2016-04-05 | Applied Materials, Inc. | Self-limiting chemical vapor deposition and atomic layer deposition methods |
US9360622B2 (en) * | 2014-01-27 | 2016-06-07 | Huawei Technologies Co., Ltd. | Low loss optical crossing and method of making same |
US20170082876A1 (en) | 2014-02-24 | 2017-03-23 | Rockley Photonics Limited | Detector remodulator |
US10928659B2 (en) * | 2014-02-24 | 2021-02-23 | Rockley Photonics Limited | Optoelectronic device |
GB2523383B (en) | 2014-02-24 | 2016-09-14 | Rockley Photonics Ltd | Detector remodulator |
US10222677B2 (en) * | 2014-02-24 | 2019-03-05 | Rockley Photonics Limited | Optoelectronic device |
US10663663B2 (en) * | 2014-02-28 | 2020-05-26 | Ciena Corporation | Spot-size converter for optical mode conversion and coupling between two waveguides |
JP6224495B2 (ja) * | 2014-03-19 | 2017-11-01 | 株式会社東芝 | 半導体レーザ装置 |
US9142698B1 (en) | 2014-04-14 | 2015-09-22 | Oracle International Corporation | Integrated electro-absorption modulator |
KR20160019044A (ko) | 2014-05-29 | 2016-02-18 | 에스케이하이닉스 주식회사 | 광변조기 및 그 제조 방법 |
US11180668B2 (en) * | 2014-06-17 | 2021-11-23 | Vadient Optics, Llc | Printed circuit board with integrated optical waveguides |
US20180081118A1 (en) * | 2014-07-14 | 2018-03-22 | Biond Photonics Inc. | Photonic integration by flip-chip bonding and spot-size conversion |
WO2016011002A1 (en) * | 2014-07-14 | 2016-01-21 | Biond Photonics Inc. | 3d photonic integration with light coupling elements |
US9372317B1 (en) * | 2014-07-22 | 2016-06-21 | Mellanox Technologies Silicon Photonics Inc. | Temperature control of a component on an optical device |
US9733542B2 (en) | 2014-08-25 | 2017-08-15 | Futurewei Technologies, Inc. | Multi-segment Mach-Zehnder modulator-driver system |
JP5998183B2 (ja) * | 2014-08-27 | 2016-09-28 | 株式会社フジクラ | 基板型光導波路素子 |
CN106716200A (zh) * | 2014-09-22 | 2017-05-24 | 日本电气株式会社 | 光电路元件和光电路元件的配置方法 |
US9282384B1 (en) | 2014-10-07 | 2016-03-08 | Huawei Technologies Co., Ltd. | System and method for commutation in photonic switching |
US9470951B2 (en) | 2014-10-09 | 2016-10-18 | The Royal Institution For The Advancement Of Learning / Mcgill University | Methods and devices for photonic M-ary pulse amplitude modulation |
US20170317471A1 (en) * | 2014-11-10 | 2017-11-02 | Agency For Science, Technology And Research | An optical device and a method for fabricating thereof |
US9575337B2 (en) | 2014-12-12 | 2017-02-21 | Cisco Technology, Inc. | Electro-optic modulator termination |
EP3046275B1 (en) | 2015-01-16 | 2019-10-09 | Luxtera, Inc. | Method and system for a distributed optical transmitter with local domain splitting |
US9484711B2 (en) * | 2015-01-20 | 2016-11-01 | Sae Magnetics (H.K.) Ltd. | Semiconductor laser apparatus and manufacturing method thereof |
US9838239B2 (en) | 2015-01-22 | 2017-12-05 | Futurewei Technologies, Inc. | Digital generation of multi-level phase shifting with a Mach-Zehnder modulator (MZM) |
US11150494B2 (en) | 2015-03-05 | 2021-10-19 | Rockley Photonics Limited | Waveguide modulator structures |
US10678115B2 (en) | 2015-03-05 | 2020-06-09 | Rockley Photonics Limited | Waveguide modulator structures |
US10921616B2 (en) * | 2016-11-23 | 2021-02-16 | Rockley Photonics Limited | Optoelectronic device |
US10216059B2 (en) * | 2015-03-05 | 2019-02-26 | Rockley Photonics Limited | Waveguide modulator structures |
US10191350B2 (en) | 2015-03-05 | 2019-01-29 | Rockley Photonics Limited | Waveguide modulators structures |
US10222294B2 (en) * | 2015-03-31 | 2019-03-05 | Mellanox Technologies Silicon Photonics Inc. | Wafer level testing of optical devices |
EP3278177B1 (en) | 2015-04-01 | 2021-03-31 | ETH Zürich | Electrooptic modulator |
US20160313577A1 (en) * | 2015-04-23 | 2016-10-27 | Laxense Inc. | Dual-junction optical modulator and the method to make the same |
US9748250B2 (en) * | 2015-06-08 | 2017-08-29 | International Business Machines Corporation | Deep trench sidewall etch stop |
JP6523060B2 (ja) | 2015-06-09 | 2019-05-29 | 日本オクラロ株式会社 | 光信号生成装置 |
GB2566781B (en) * | 2015-11-12 | 2020-06-03 | Rockley Photonics Ltd | An optoelectronic component |
CN205485142U (zh) | 2016-01-15 | 2016-08-17 | 北京大学 | 硅基电光调制器掺杂结构 |
US9817185B2 (en) * | 2016-01-21 | 2017-11-14 | The Governing Council Of The University Of Toronto | Photonic platform having light-transferring interlayer transitions |
CN108885305B (zh) | 2016-02-04 | 2021-02-26 | 古河电气工业株式会社 | 光元件、光元件的制造方法及光调制器 |
US10732349B2 (en) * | 2016-02-08 | 2020-08-04 | Skorpios Technologies, Inc. | Broadband back mirror for a III-V chip in silicon photonics |
JP6681217B2 (ja) | 2016-02-29 | 2020-04-15 | 日本ルメンタム株式会社 | 光情報伝送システム、及び光送信器 |
WO2017151843A1 (en) * | 2016-03-02 | 2017-09-08 | The Government Of The United States Of America, As Represented By The Secretary Of The Navy Naval | Chip-scale two-dimensionai optical phased array with simplified controls |
US10514503B2 (en) * | 2016-03-04 | 2019-12-24 | The Governing Council Of The University Of Toronto | System and method for manufacturing a semiconductor junction |
US9709738B1 (en) * | 2016-03-11 | 2017-07-18 | Huawei Technologies Co., Ltd. | Waveguide crossing |
US20170288781A1 (en) | 2016-03-29 | 2017-10-05 | Stmicroelectronics (Crolles 2) Sas | Higher order optical pam modulation using a mach-zehnder interferometer (mzi) type optical modulator having a bent optical path |
US10838240B2 (en) * | 2016-11-23 | 2020-11-17 | Rockley Photonics Limited | Electro-absorption modulator |
US11101256B2 (en) | 2016-11-23 | 2021-08-24 | Rockley Photonics Limited | Optical modulators |
US10135542B2 (en) | 2016-12-15 | 2018-11-20 | Rockley Photonics Limited | Optical modulators |
US10394060B2 (en) | 2017-05-17 | 2019-08-27 | Mellanox Technologies, Ltd. | Optical testing of FK modulators for silicon photonics applications |
GB2576652B (en) | 2017-07-05 | 2021-12-22 | Rockley Photonics Ltd | Optoelectronic device |
US10340661B2 (en) * | 2017-11-01 | 2019-07-02 | International Business Machines Corporation | Electro-optical device with lateral current injection regions |
-
2017
- 2017-12-01 US US16/465,535 patent/US11105975B2/en active Active
- 2017-12-01 CN CN201780074560.3A patent/CN110325900B/zh active Active
- 2017-12-01 GB GB1720033.8A patent/GB2559252B/en active Active
- 2017-12-01 WO PCT/EP2017/081186 patent/WO2018100157A1/en active Application Filing
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6584239B1 (en) * | 1998-05-22 | 2003-06-24 | Bookham Technology Plc | Electro optic modulator |
CN1323403A (zh) * | 1998-08-13 | 2001-11-21 | 布克哈姆技术公共有限公司 | 电光调制器 |
CN102696113A (zh) * | 2009-09-04 | 2012-09-26 | 科途嘉光电公司 | 具有采用水平电场的光传感器的光学装置 |
JP2012248587A (ja) * | 2011-05-26 | 2012-12-13 | Nippon Telegr & Teleph Corp <Ntt> | 半導体受光装置 |
CN103207464A (zh) * | 2012-01-17 | 2013-07-17 | 上海硅通半导体技术有限公司 | 一种电光开关或光衰减器 |
CN104685408A (zh) * | 2012-05-09 | 2015-06-03 | 科途嘉光电公司 | 在光学装置上的部件隔离 |
WO2014129508A1 (ja) * | 2013-02-21 | 2014-08-28 | 住友大阪セメント株式会社 | 光導波路素子及び光導波路素子の製造方法 |
CN106133585A (zh) * | 2014-01-24 | 2016-11-16 | 思科技术公司 | 使用肋形波导的电光调制器 |
CN105917257A (zh) * | 2014-02-24 | 2016-08-31 | 洛克利光子有限公司 | 检测器重调器和光电子交换机 |
WO2015155900A1 (en) * | 2014-04-07 | 2015-10-15 | Fujikura Ltd. | Optical waveguide device and method of manufacturing the same |
CN105487263A (zh) * | 2014-06-30 | 2016-04-13 | 硅光电科技股份有限公司 | 硅基脊型波导调制器及其制造方法 |
Non-Patent Citations (2)
Title |
---|
低阈值大功率半导体激光器的研制;李玉东等;《吉林大学学报(理学版)》;19900126(第01期);全文 * |
太赫兹量子级联激光器研究进展;万文坚等;《中国激光》;20060911(第07期);全文 * |
Also Published As
Publication number | Publication date |
---|---|
GB2559252A (en) | 2018-08-01 |
US11105975B2 (en) | 2021-08-31 |
WO2018100157A1 (en) | 2018-06-07 |
US20200012043A1 (en) | 2020-01-09 |
GB201720033D0 (en) | 2018-01-17 |
GB2559252B (en) | 2020-06-03 |
CN110325900A (zh) | 2019-10-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110325900B (zh) | 波导光电器件 | |
US10928659B2 (en) | Optoelectronic device | |
US10216059B2 (en) | Waveguide modulator structures | |
DE102012015309B4 (de) | Zugverformte Halbleiter-Photonenemissions- und -Detektionsanordnungen und integrierte photonische Systeme | |
US20170184883A1 (en) | Dual-junction optical modulator and the method to make the same | |
US11508868B2 (en) | Avalanche photodiode structure | |
US10151941B2 (en) | Optical modulation element, optical modulator, and manufacturing method of optical modulation element | |
CN109564362B (zh) | 光电装置 | |
US10962812B2 (en) | Electro-optic modulator | |
US10921616B2 (en) | Optoelectronic device | |
US20200313021A1 (en) | Photodetector | |
US11378827B2 (en) | Photonic devices and methods of fabrication thereof | |
CN110945412A (zh) | 光电子器件及其制造方法 | |
WO2010151224A1 (en) | Thin-film solar cell interconnection | |
US20210271120A1 (en) | Silicon photonics modulator using TM mode and with a modified rib geometry | |
EP3961727A2 (en) | Diode with light-sensitive intrinsic region | |
CN210015860U (zh) | 垂直光电二极管和具有垂直光电二极管的光电转换器 | |
US7865053B2 (en) | Multi-semiconductor slab electro-optic modulator and process for using the same | |
US9035409B2 (en) | Germanium photodetector having absorption enhanced under slow-light mode | |
JP5824929B2 (ja) | 光半導体素子の製造方法 | |
US12100773B2 (en) | Avalanche photodiode structure | |
CN117157575A (zh) | 电容谐振器调制器 | |
US20190019902A1 (en) | Silicon waveguide integrated with germanium pin photodetector | |
GB2561811A (en) | Optical device | |
US20220342240A1 (en) | Optoelectronic device and method of manufacturing an optoelectronic device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |