[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

CN110165268B - 一种碳酸钙-氧化铋复合固体电解质陶瓷片的制备方法 - Google Patents

一种碳酸钙-氧化铋复合固体电解质陶瓷片的制备方法 Download PDF

Info

Publication number
CN110165268B
CN110165268B CN201910536585.1A CN201910536585A CN110165268B CN 110165268 B CN110165268 B CN 110165268B CN 201910536585 A CN201910536585 A CN 201910536585A CN 110165268 B CN110165268 B CN 110165268B
Authority
CN
China
Prior art keywords
calcium carbonate
bismuth oxide
solid electrolyte
oxide composite
composite solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201910536585.1A
Other languages
English (en)
Other versions
CN110165268A (zh
Inventor
丁爱琴
阳杰
田长安
夏棚棚
张辉
许梦琪
吴林枫
汝森
夏淑兰
刘程
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hefei Zhonghang Nanometer Technology Development Co ltd
Original Assignee
Hefei University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hefei University filed Critical Hefei University
Priority to CN201910536585.1A priority Critical patent/CN110165268B/zh
Publication of CN110165268A publication Critical patent/CN110165268A/zh
Application granted granted Critical
Publication of CN110165268B publication Critical patent/CN110165268B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/03Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite
    • C04B35/057Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite based on calcium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/124Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/124Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
    • H01M8/1246Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides
    • H01M8/1266Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides the electrolyte containing bismuth oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3298Bismuth oxides, bismuthates or oxide forming salts thereof, e.g. zinc bismuthate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/442Carbonates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0088Composites
    • H01M2300/0091Composites in the form of mixtures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Conductive Materials (AREA)
  • Fuel Cell (AREA)

Abstract

一种碳酸钙‑氧化铋复合固体电解质陶瓷片的制备方法,涉及固体电解质陶瓷材料制备技术领域。利用乙二醇润湿,将碳酸钙和氧化铋进行固相湿法球磨共混复合,得到碳酸钙‑氧化铋复合固体电解质。碳酸钙与氧化铋的复合重量比为4:6。固相湿法球磨共混时间为2小时。本发明制备的复合电解质材料对合成温度要求较低、比较容易烧结成功、成本相比而言比较低,通过SEM图片可以看出,Bi2O3基的气孔很少,较为容易烧结成功。利用固相湿法球磨共混法成功的制备出了立方结构的掺杂Bi2O3粉末,基本完成从高温区稳定到低温区。抑制Bi2O3的晶型发生转变,防止了立方向菱方相变的出现,这就使复合电解质材料能够具有良好的电导率。

Description

一种碳酸钙-氧化铋复合固体电解质陶瓷片的制备方法
技术领域
本发明涉及固体电解质陶瓷材料制备技术领域,具体是涉及一种碳酸钙-氧化铋复合固体电解质陶瓷片的制备方法。
背景技术
高的电阻以及高的操作温度,会给燃料电池带来相对应的一系列的麻烦,如材料与材料之间的热膨胀系数的匹配系数较低,电解质和电极间的界面扩散不够均匀,为了解决这类问题,科研人员就将其薄膜化。通过数据的分析,可以看出薄膜与厚膜相比,薄膜表面均匀性更好,从而更加有效的提高燃料电池的电学性能。
掺杂的目的是将掺杂剂通过一定的反应使掺杂剂完全的进入纳米Bi2O3晶格之中,常用的掺杂剂大致包括阳离子,阴离子,半导体化合物。阳离子通常则包括过渡性质的金属、贵金属、具有稀土性质的相关元素、碱性金属元素等、阴离子则包括(N、C、F、S等)。通过掺杂,可以使复合几率变得极低,从而进一步的提高光量子效率,进一步的提升Bi2O3的表面吸附力。少量过渡金属离子会使Bi2O3的表面会产生缺陷。会产生一定的载流子陷阱,复合的几率得到了明显的降低,掺杂浓度有最适合的数值,当小于这个数值时,俘获载流子的陷阱不能够满足要求;当大于这个数值时,杂质会相应的增多,另外,不是所有的掺杂都是有利,只有符合特性的离子是对掺杂有利的,而其他不符合要求的掺杂是无用的甚至是有害的。
发明内容
针对现有技术中存在的技术问题,本发明提供了一种碳酸钙-氧化铋复合固体电解质陶瓷片的制备方法,可制备性能优异的电解质材料。
为了实现上述目的,本发明所采用的技术方案为:一种碳酸钙协同促进氧化铋复合固体电解质的制备方法,采用固相湿法球磨共混法,利用乙二醇润湿,将碳酸钙和氧化铋进行固相湿法球磨共混复合,得到碳酸钙-氧化铋复合固体电解质。
作为本发明的制备方法的优选技术方案,碳酸钙与氧化铋的复合重量比为4:6。固相湿法球磨共混时间为2小时。
利用碳酸钙-氧化铋复合固体电解质制作电解质陶瓷片的方法,步骤如下:
A、将碳酸钙-氧化铋复合固体电解质加入5-10wt%的PVA溶液研磨半小时,然后于压片机中进行压片;
B、将压好的片放于马沸炉中煅烧,得到碳酸钙-氧化铋复合固体电解质陶瓷片。
优选地,步骤B中煅烧温度为700℃,煅烧时间为2h。
与现有技术相比,本发明的有益效果表现在:
本发明制备的CaCO3-Bi2O3基电解质材料对合成温度要求较低、比较容易烧结成功、成本相比而言比较低,通过SEM图片可以看出,Bi2O3基的气孔很少,较为容易烧结成功。利用固相湿法球磨共混法成功的制备出了立方结构的掺杂Bi2O3粉末,基本完成从高温区稳定到低温区。抑制Bi2O3的晶型发生转变,防止了立方向菱方相变的出现,这就使复合电解质材料能够具有良好的电导率。
附图说明
图1是CaCO3和CaCO3-Bi2O3电解质的XRD图谱;
图2是制备CaCO3:Bi2O3=4:6(质量比)复合电解质的SEM图;
图3是制备CaCO3-Bi2O3电导率与温度关系图;
图4是制备CaCO3-Bi2O3离子电导率与Arrhenius。
具体实施方式
以下结合实施例和附图对本发明的碳酸钙-氧化铋复合固体电解质陶瓷片的制备方法作出进一步的详述。
实施例1
一种碳酸钙-氧化铋复合固体电解质陶瓷片的制备方法,步骤如下:
①、利用乙二醇润湿,将碳酸钙和氧化铋进行固相湿法球磨共混复合,得到碳酸钙-氧化铋复合固体电解质。碳酸钙与氧化铋的复合重量比依次为2:8、4:6、6:4、8:2、10:0,固相湿法球磨共混时间为2小时。
②、将碳酸钙-氧化铋复合固体电解质加入5wt%的PVA溶液研磨半小时,然后于压片机中进行压片。
③、将压好的片放于马沸炉中煅烧,煅烧温度为700℃,煅烧时间为2h,得到碳酸钙-氧化铋复合固体电解质陶瓷片。
碳酸钙-氧化铋复合固体电解质陶瓷片的性能表征
一、XRD分析
图1是CaCO3和CaCO3-Bi2O3电解质的XRD图谱,由图可以看出CaCO3-Bi2O3在60°之后没有出现衍射峰,衍射峰分别对应的是(111)、(200)、(220)、(311)、(222)。而且其衍射峰均明显可见。此衍射图谱与立方晶向的三氧化二铋的标准图谱(JCPDS 27-0052)对应良好,没有其他多余的衍射峰。CaCO3-Bi2O3的X衍射分析数据,经过700℃烧结2h的粉末的粒径可以通过德拜-谢乐公式进行计算。
Figure GDA0003146031830000031
其中D表示晶粒半径(单位:nm),K为谢乐常数,k=0.89;λ表示X射线的波长(λ=0.15405nm);θ为衍射角;β为半高宽。角度要转换为弧度,一弧度等于一度乘以π再除以180。
计算可以得到其晶粒半径在15到22nm之间。故可以得到以下结论:经过700℃烧结2h的粉末为立方结构。由图可以看出衍射峰的强度逐渐减少,最后趋于平稳,这说明晶型不在发生转变,就是简单立方的Bi2O3,图可以看出CaCO3-Bi2O3在2Theta等于17.678°出现较小的衍射峰,在27.946°、32.387°、46.448°出现明显的特征锋。
二、SEM分析
图2是制备CaCO3:Bi2O3=4:6(质量比)复合电解质的SEM图,各个图为不同放大倍数下观察的结果。由图可以看出陶瓷片的致密性相对良好,只有较少的气孔出现,样品的晶粒较小,颗粒形状不太规则,粒子大小较为均匀,有少量团聚现象发生。颗粒较小可以明显提高材料的烧结驱动力,可以使烧结过程中粒子运动速度加快,扩散路径加宽,可以明显的降低烧结所需的活化能,有利于电池运行的离子传导。气孔较无掺杂相比相对较多,样品晶粒较小且晶粒形状无规则。晶界间距较小,说明掺杂的元素进入晶界间距之中,完成了元素的掺杂,基本替换了Bi2O3的空位,有利于电导率的提升。
三、交流阻抗及电导率分析
图3是制备CaCO3-Bi2O3电导率与温度关系图,由图可以看出,CaCO3-Bi2O3电解质材料的电导率比较高,电导率基本上会随着温度的升高而增大,但有些组分在400℃范围时,电导率较300℃、250℃会稍有下降,原因是在高温时Bi2O3的晶型发生了转变。由简单立方结构转变为四方或者单斜结构。
电导率升高的原因是由于Ca离子部分取代Bi离子。为了保持材料的离子平衡,氧空位的数量就会随之产生,随着氧空位数量的增加,电导率会慢慢的升高。
当CaCO3:Bi2O3=4:6(质量比)时,电导率最高达到0.0034S·cm-1,但是活化能相对较高,可以考虑进一步的降低活化能,来选择固体燃料电池的电解质材料。电导率降低还有可能是Bi2O3基电解质材料在低的氧气下分担的压力下,容易被还原,会还原出小黑点,这些小黑点可能是金属铋的小颗粒,从而使样品的表面变黑,电导率会减小。
图4是制备CaCO3-Bi2O3离子电导率与Arrhenius,以1000/T、ln(T*σ)分别为横纵坐标,由图可以看出,在所测的温度中,1000/T在2.3以后具有良好的线性关系,可能是复合CaCO3完整的Bi2O3形成复合电解质,有利于离子传输,活化能Ea=1.26eV。
以上内容仅仅是对本发明的构思所作的举例和说明,所属本技术领域的技术人员对所描述的具体实施例做各种各样的修改或补充或采用类似的方式替代,只要不偏离发明的构思或者超越本权利要求书所定义的范围,均应属于本发明的保护范围。

Claims (1)

1.一种碳酸钙-氧化铋复合固体电解质陶瓷片的制备方法,其特征在于,步骤如下:
①、利用乙二醇润湿,将重量比为4:6的碳酸钙和氧化铋进行固相湿法球磨共混复合2小时,得到碳酸钙-氧化铋复合固体电解质;
②、将碳酸钙-氧化铋复合固体电解质加入5wt%的PVA溶液研磨半小时,然后于压片机中进行压片;
③、将压好的片放于马沸炉中煅烧,煅烧温度为700℃,煅烧时间为2h,制得碳酸钙-氧化铋复合固体电解质陶瓷片;
制备碳酸钙-氧化铋复合固体电解质陶瓷片为立方晶相,其晶粒半径为15nm-22nm。
CN201910536585.1A 2019-06-20 2019-06-20 一种碳酸钙-氧化铋复合固体电解质陶瓷片的制备方法 Expired - Fee Related CN110165268B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910536585.1A CN110165268B (zh) 2019-06-20 2019-06-20 一种碳酸钙-氧化铋复合固体电解质陶瓷片的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910536585.1A CN110165268B (zh) 2019-06-20 2019-06-20 一种碳酸钙-氧化铋复合固体电解质陶瓷片的制备方法

Publications (2)

Publication Number Publication Date
CN110165268A CN110165268A (zh) 2019-08-23
CN110165268B true CN110165268B (zh) 2021-08-06

Family

ID=67625357

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910536585.1A Expired - Fee Related CN110165268B (zh) 2019-06-20 2019-06-20 一种碳酸钙-氧化铋复合固体电解质陶瓷片的制备方法

Country Status (1)

Country Link
CN (1) CN110165268B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6230614B1 (en) * 1998-07-03 2001-05-15 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Device for reducing the oxidation of food products
CN1635658A (zh) * 2004-11-09 2005-07-06 施秀英 中、低温陶瓷氧化物燃料电池及制备工艺方法
CN105409041A (zh) * 2013-07-31 2016-03-16 株式会社Lg化学 固体氧化物燃料电池及其制造方法
RU2619907C1 (ru) * 2016-04-26 2017-05-19 Федеральное государственное бюджетное учреждение науки Ордена Трудового Красного Знамени Институт химии силикатов им. И.В. Гребенщикова Российской академии наук (ИХС РАН) Твердый электролит на основе сложных оксидов висмута в системе CaO-Bi2O3-Fe2O3 и способ их получения

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200929675A (en) * 2007-12-21 2009-07-01 Univ Nat Cheng Kung High stability bismuth oxide-based ionic conductor
CN106129463B (zh) * 2016-07-04 2019-01-29 山东瑞纳森新能源科技有限公司 固体电解质材料及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6230614B1 (en) * 1998-07-03 2001-05-15 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Device for reducing the oxidation of food products
CN1635658A (zh) * 2004-11-09 2005-07-06 施秀英 中、低温陶瓷氧化物燃料电池及制备工艺方法
CN105409041A (zh) * 2013-07-31 2016-03-16 株式会社Lg化学 固体氧化物燃料电池及其制造方法
RU2619907C1 (ru) * 2016-04-26 2017-05-19 Федеральное государственное бюджетное учреждение науки Ордена Трудового Красного Знамени Институт химии силикатов им. И.В. Гребенщикова Российской академии наук (ИХС РАН) Твердый электролит на основе сложных оксидов висмута в системе CaO-Bi2O3-Fe2O3 и способ их получения

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Bi2O3掺杂YSZ系固体电解质材料制备与性能研究;刘雪峰;《中国优秀硕士学位论文全文数据库工程科技I辑》;20131015(第10期);第15-18页 *

Also Published As

Publication number Publication date
CN110165268A (zh) 2019-08-23

Similar Documents

Publication Publication Date Title
Li et al. Ga-substituted Li7La3Zr2O12: An investigation based on grain coarsening in garnet-type lithium ion conductors
Rioja-Monllor et al. Processing of high performance composite cathodes for protonic ceramic fuel cells by exsolution
JP6831011B2 (ja) 全固体電池用高イオン伝導性固体電解質及びその製造方法
WO2019189275A1 (ja) セラミックス粉末、焼結体及び電池
Kang et al. Performance optimization of Ca and Y co-doped CeO2-based electrolyte for intermediate-temperature solid oxide fuel cells
JP4360110B2 (ja) ランタンガレート系焼結体およびそれを固体電解質として用いた固体電解質型燃料電池
TWI808237B (zh) 固體氧化物形燃料電池空氣極用之粉體及其製造方法
CN109650873B (zh) 一种Ca-W混合掺杂Bi2O3固体电解质的制备方法
KR102200967B1 (ko) 전고체 리튬이차전지용 갈륨-가돌리늄이 도핑된 고체전해질 및 그의 제조방법
Jaiswal et al. Preparation and characterization of Ce 0.85 La 0.15− x Sr x O {2−(0.075+ x/2)} solid electrolytes for intermediate temperature solid oxide fuel cells
JP5019323B2 (ja) 希土類元素をドープしたセリア焼結体とその製造方法
CN110165268B (zh) 一种碳酸钙-氧化铋复合固体电解质陶瓷片的制备方法
KR102347781B1 (ko) 입도를 제어하기 위한 고체전해질의 제조방법
JP2012510952A (ja) p型透明導電膜の製造のための粉末の製造方法
CN115101806A (zh) 氧化物固态电解质及其制备方法、锂电池和电池组
KR102356337B1 (ko) 이종원소가 도핑된 고체전해질, 그의 제조방법 및 그를 포함하는 전고체 리튬이차전지의 제조방법
Khakpour et al. Influence of Gd 3+ and Dy 3+ co-doping and sintering regime on enhancement of electrical conductivity of ceria-based solid electrolyte
DAMISIH et al. Characteristics of gadolinium doped cerium at different calcination temperatures for intermediate temperature SOFC
KR20190022396A (ko) 양극활물질, 그 제조 방법, 및 이를 포함하는 리튬이차전지
CN116169345B (zh) 一种固态电解质材料及其制备方法和电池
US20240194934A1 (en) Solid electrolyte composition for triple-doped garnet-type all-solid-state battery, solid electrolyte for triple-doped garnet-type all-solid-state battery using same, and method for preparing same
CN110707346A (zh) 一种双掺杂的BaCeO3基质子传导电解质材料及制备与应用
KR101787811B1 (ko) 전극의 제조방법, 이에 따라 제조된 전극 및 이를 포함하는 연료전지
KR102605097B1 (ko) 산화물계 고체전해질 및 그 제조방법
CN115385682B (zh) 一种超高电位梯度ZnO压敏陶瓷及其低碳烧结制备工艺

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20211230

Address after: 231139 Gangji Town Industrial Park, Changfeng County, Hefei City, Anhui Province

Patentee after: HEFEI ZHONGHANG NANOMETER TECHNOLOGY DEVELOPMENT Co.,Ltd.

Address before: No.99, Jinxiu Avenue, Jingkai District, Hefei City, Anhui Province

Patentee before: HEFEI University

CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20210806