[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

CN116283970B - 水杨羰基烯拼接莫西沙星衍生物及其制备方法及应用 - Google Patents

水杨羰基烯拼接莫西沙星衍生物及其制备方法及应用 Download PDF

Info

Publication number
CN116283970B
CN116283970B CN202310201015.3A CN202310201015A CN116283970B CN 116283970 B CN116283970 B CN 116283970B CN 202310201015 A CN202310201015 A CN 202310201015A CN 116283970 B CN116283970 B CN 116283970B
Authority
CN
China
Prior art keywords
derivative
moxifloxacin
spliced
alkene
salicyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202310201015.3A
Other languages
English (en)
Other versions
CN116283970A (zh
Inventor
洪怡
刘雄利
王希瑞
潘博文
刘仁明
田方丽
周英
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guizhou University
Original Assignee
Guizhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guizhou University filed Critical Guizhou University
Priority to CN202310201015.3A priority Critical patent/CN116283970B/zh
Publication of CN116283970A publication Critical patent/CN116283970A/zh
Application granted granted Critical
Publication of CN116283970B publication Critical patent/CN116283970B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/04Ortho-condensed systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Communicable Diseases (AREA)
  • Oncology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本发明公开了一种水杨羰基烯拼接莫西沙星衍生物,具体以莫西沙星1与各种取代的3‑羧酸色酮2为原料,在有机溶剂中,在无催化剂室温条件下,发生Michael加成然后脱羧开环反应,生成最终产物水杨羰基烯拼接莫西沙星衍生物3,该骨架化合物是第一例莫西沙星拼接水杨羰基烯的衍生物,可以为生物活性筛选提供化合物源,对药物的筛选和制药行业具有重要的应用价值。本发明操作简单易行,原料合成便宜易得,可以在各种有机溶剂中进行,也具有较好的空气稳定性,适用性广,对于各种取代基都有很好的兼容性。且该骨架化合物对6种菌株(金黄色葡萄球菌,铜绿假单胞菌,变形杆菌,大肠埃希氏菌,枯草芽孢杆菌,粪肠球菌)具有抑制活性的作用。

Description

水杨羰基烯拼接莫西沙星衍生物及其制备方法及应用
技术领域
本发明涉及化学技术和药学技术领域,尤其是一种水杨羰基烯拼接莫西沙星衍生物及其制备方法及应用。
背景技术
根据药物设计的活性骨架重新组合原理,把两个或多个具有生物活性骨架重新组合成一个潜在生物活性的多骨架分子在有机化学和医药化学中是极其重要的研究领域。莫西沙星是由拜耳医药研发的第四代喹诺酮类抗菌药物。它的抗菌能力强,尤其是对肺炎链球菌、嗜血流感杆菌、卡他莫拉汉菌、不动杆菌属以及部分金黄色葡萄球菌都具有很强的抗菌活性。因此,利用药物设计中优势骨架重组策略,合成一系列新的含有潜在多活性官能团的新型莫西沙星衍生物,可以为生物活性筛选提供化合物源,对药物的筛选和制药行业具有重要的应用价值。特别说明的是:该骨架化合物是第一例莫西沙星拼接水杨羰基烯的衍生物,可以为生物活性筛选提供化合物源,对药物的筛选和制药行业具有重要的应用价值。
发明内容
本发明的目的是:提供一种水杨羰基烯拼接莫西沙星衍生物及其制备方法与应用,它是一类重要的药物分子类似物,对药物筛选和制药行业具有重要的应用价值,且其合成方法非常经济简便。
本发明还发现该类化合物在制备抑菌药物中的应用。
本发明是这样实现的:一种水杨羰基烯拼接莫西沙星衍生物,该化合物具有如下通式(Ⅰ)的结构:
R为烷基或烷氧基或卤素或氢。
具体为如下结构式之一:
水杨羰基烯拼接莫西沙星衍生物的制备方法,在有机溶剂中,在无催化剂室温条件下,莫西沙星1与各种取代的3-羧酸色酮2,发生Michael加成然后脱羧开环反应,生成最终产物水杨羰基烯拼接莫西沙星衍生物3。
合成路线举例如下:
其中合成路线中的化合物,其取代基满足式中,R为烷基或烷氧基或卤素或氢。
反应机理如下:
莫西沙星1的二级胺氮原子首先进攻色酮-3-甲酸的α位,发生Michael加成反应,后续发生脱羧反应和色酮的开环反应,得目标产物莫西沙星衍生物3。
水杨羰基烯拼接莫西沙星衍生物在制备抑菌药物中的应用。
通过采用上述技术方案,在有机溶剂中,在无催化剂室温条件下,莫西沙星1与各种取代的3-羧酸色酮2,发生Michael加成然后脱羧开环反应,生成最终产物水杨羰基烯拼接莫西沙星衍生物3,该骨架化合物是第一例莫西沙星拼接水杨羰基烯的衍生物,可以为生物活性筛选提供化合物源,对药物的筛选和制药行业具有重要的应用价值。且该骨架化合物对6种菌株(金黄色葡萄球菌,铜绿假单胞菌,变形杆菌,大肠埃希氏菌,枯草芽孢杆菌,粪肠球菌)具有抑制活性的作用。本发明操作简单易行,原料合成便宜易得,可以在各种有机溶剂中进行,也具有较好的空气稳定性,适用性广,对于各种取代基都有很好的兼容性。
附图说明
图1及图2为本发明实施例1化合物3a谱图数据;
图3及图4为本发明实施例1化合物3b谱图数据;
图5为本发明实施例3不同浓度衍生物3e样品液处理后的荧光值图;
图6为本发明实施例4不同浓度衍生物3e菌液随时间变化OD值图;
图7为本发明实施例4蛋白标准液的标准曲线图;
图8为本发明实施例5蛋白标准液的标准曲线图;
图9为本发明实施例5不同浓度衍生物3e溶液的吸光值图;
图10为本发明实施例6不同浓度衍生物3e溶液的荧光值图;
具体实施方式
本发明的实施例:在反应管中依次加入莫西沙星1(0.20mmol),3-甲酸色酮2a(0.30mmol)和2.0mL二氯甲烷,室温中搅拌反应1天后,TLC检测基本反应完全,直接上样经柱层析(洗脱剂:V(石油醚):V(乙酸乙酯)=5:1)纯化得化合物3a:淡黄色固体,熔点:270.1~270.9℃;产率85%;核磁共振和高分辨质谱测试等结果如下:1H NMR(CDCl3,400MHz)δ:0.76~0.83(m,1H),1.01~1.07(m,2H),1.17~1.24(m,3H),1.54~1.63(m,3H),1.86~1.92(m,2H),2.39~2.44(m,1H),3.32(d,J=10.4Hz,1H),3.55(s,3H),3.88~3.94(m,2H),4.02~4.07(m,1H),4.30(s,1H),5.96(d,J=12.4Hz,1H),6.75~6.75(m,1H),6.84~6.86(m,1H),7.26~7.30(m,1H),7.61~7.63(m,1H),7.70(d,J=13.6Hz,1H),7.84(d,J=12.4Hz,1H),8.70(s,1H),13.64(br s,1H),14.83(br s,1H);13C NMR(CDCl3,100MHz)δ:8.7,10.4,14.2,24.7,29.6,35.9,40.4,56.1,61.3,90.5,107.7,108.1(d,JCF=23.3Hz),118.2(d,JCF=17.2Hz),119.2,120.2,128.3,134.4,136.7,141.6,149.8,153.7(d,JCF=261.0Hz),162.9,166.9,176.7,192.3;HR-MS(ESI-TOF)m/z:Calcd.for C30H30FN3NaO6{[M+Na]+}570.2011,found 570.2015。
本实施例制备化合物3b:淡黄色固体,熔点:203.8~204.5℃;产率83%;核磁共振和高分辨质谱测试等结果如下:1H NMR(CDCl3,400MHz)δ:0.79~0.86(m,1H),1.00~1.07(m,2H),1.16~1.20(m,4H),1.51~1.66(m,2H),1.88~1.91(m,2H),2.12~2.25(m,3H),2.37~2.43(m,1H),3.32(d,J=10.4Hz,1H),3.54(s,3H),3.88~3.93(m,2H),4.01~4.07(m,1H),4.28(s,1H),5.96(d,J=12.4Hz,1H),6.72~6.74(m,1H),7.08(d,J=8.0Hz,1H),7.40(s,1H),7.62(d,J=13.6Hz,1H),7.81(d,J=12.4Hz,1H),8.67(s,1H),13.46(br s,1H),14.87(br s,1H);13C NMR(CDCl3,100MHz)δ:8.7,10.4,14.2,20.6,21.1,29.7,40.5,56.1,60.4,61.3,90.7,107.9(d,JCF=23.2Hz),117.9,119.8,127.1,128.2,134.3,135.3,136.8,141.4,149.8,153.6(d,JCF=249.9Hz),160.7,166.9,176.6,192.2;HR-MS(ESI-TOF)m/z:Calcd.for C31H32FN3NaO6{[M+Na]+}584.2167,found 584.2162。
表1为一种水杨羰基烯拼接莫西沙星衍生物的化学结构
化合物3b至3h的制备方法同化合物3a,投料比与化合物3a相同,可得到化合物3b至3h,反应产率见表1,但需强调的是本发明的化合物不限于表1所表示的内容。
本实施例制备化合物3c:淡黄色固体,熔点:266.3~267.4℃;产率77%;核磁共振和高分辨质谱测试等结果如下:1H NMR(CDCl3,400MHz)δ:0.76~0.84(m,1H),1.03(s,2H),1.18~1.20(m,2H),1.53~1.65(m,2H),1.84~1.87(m,2H),2.22(s,3H),2.40(d,J=5.2Hz,1H),3.20(d,J=10.8Hz,2H),3.54(s,4H),3.91(s,2H),4.03~4.06(m,1H),4.29(s,1H),5.93(d,J=12.4Hz,1H),6.53(d,J=6.8Hz,1H),6.63(d,J=4.0Hz,1H),7.49(d,J=8.4Hz,1H),7.60~7.68(m,1H),7.77(d,J=12.4Hz,1H),8.66~8.68(m,1H),13.69(br s,1H),14.86(br s,1H);13C NMR(CDCl3,100MHz)δ:8.7,10.5,14.2,21.8,29.7,36.0,40.5,56.1,60.4,61.3,90.5,107.5,107.9(d,JCF=23.6Hz),117.8,118.3,119.1,119.4,128.3,134.3,136.8,141.2,145.5,149.8,153.8(d,JCF=249.4Hz),163.0,166.9,176.6,191.9;HR-MS(ESI-TOF)m/z:Calcd.for C31H32FN3NaO6{[M+Na]+}584.2167,found 584.2171。
本实施例制备化合物3d:淡黄色固体,熔点:193.1~193.7℃;产率80%;核磁共振和高分辨质谱测试等结果如下:1H NMR(CDCl3,400MHz)δ:0.79~0.82(m,1H),1.01~1.03(m,2H),1.14~1.18(m,8H),1.54~1.66(m,2H),1.88(s,2H),2.41(s,1H),2.77(s,1H),3.32(d,J=10.0Hz,2H),3.54(s,4H),3.91(d,J=4.0Hz,2H),4.03~4.05(m,1H),4.29(s,1H),5.97(d,J=12.4Hz,1H),6.76~6.80(m,1H),7.16~7.19(m,1H),7.43(d,J=2.0Hz,1H),7.60~7.66(m,1H),7.82(d,J=12.4Hz,1H),8.67~8.69(m,1H),13.47(br s,1H),14.86(br s,1H);13C NMR(CDCl3,100MHz)δ:8.7,10.4,14.2,24.1,24.2,33.5,36.2,40.5,53.5,56.1,61.3,90.6,107.9(d,JCF=24.3Hz),118.0,119.8,125.9,132.5,134.3,136.9,138.4,141.4,149.8,153.6(d,JCF=249.6Hz),161.0,166.9,176.6,192.3;HR-MS(ESI-TOF)m/z:Calcd.for C33H36FN3NaO6{[M+Na]+}612.2480,found 612.2483。
本实施例制备化合物3e:淡黄色固体,熔点:180.2~181.5℃;产率72%;核磁共振和高分辨质谱测试等结果如下:1H NMR(CDCl3,400MHz)δ:0.79~0.85(m,1H),1.01~1.05(m,2H),1.16~1.21(m,3H),1.54~1.66(m,2H),1.87~1.91(m,2H),2.41(d,J=5.2Hz,1H),3.31(d,J=10.4Hz,1H),3.55(s,4H),3.70(s,3H),3.87~3.91(m,2H),4.02~4.07(m,1H),4.29(s,1H),5.91(d,J=12.0Hz,1H),6.77~6.80(m,1H),6.91(d,J=8.8Hz,1H),7.12(d,J=2.8Hz,1H),7.63~7.68(m,1H),7.82(d,J=12.4Hz,1H),8.68(d,J=2.4Hz,1H),13.12(br s,1H),14.86(br s,1H);13C NMR(CDCl3,100MHz)δ:7.7,9.4,13.2,20.0,28.7,39.5,52.5,55.2,59.4,60.3,89.7,106.8(d,JCF=24.2Hz),117.7,119.1,133.3,135.7,140.4,148.8,150.3,152.6(d,JCF=244.5Hz),156.0,165.9,175.6,190.8;HR-MS(ESI-TOF)m/z:Calcd.for C31H32FN3NaO7{[M+Na]+}600.2116,found 600.2113。
本实施例制备化合物3f:淡黄色固体,熔点:224.3~225.2℃;产率78%;核磁共振和高分辨质谱测试等结果如下:1H NMR(CDCl3,400MHz)δ:0.79~0.82(m,1H),1.02~1.04(m,2H),1.16~1.20(m,3H),1.60~1.66(m,3H),1.86~1.92(m,2H),2.39~2.43(m,1H),3.31(d,J=10.4Hz,1H),3.54(s,3H),3.90~3.91(m,2H),4.01~4.06(m,1H),4.40(s,1H),5.86(d,J=8.8Hz,1H),6.76-6.80(m,1H),6.98(d,J=7.2Hz,1H),7.29(d,J=7.2Hz,1H),7.61~7.64(m,1H),7.85(d,J=12.0Hz,1H),8.67(s,1H),13.39(br s,1H),14.86(br s,1H);13C NMR(CDCl3,100MHz)δ:8.7,10.4,13.7,14.2,19.2,30.6,40.5,61.3,65.6,90.0,107.9(d,JCF=24.3Hz),113.5(d,JCF=23.2Hz),119.1(d,JCF=8.3Hz),120.0(d,JCF=6.1Hz),121.4(d,JCF=23.1Hz),128.8,130.9,133.3(d,JCF=204.3Hz),149.8,154.5(d,JCF=236.6Hz),158.9,166.9,167.7,176.6,191.1;HR-MS(ESI-TOF)m/z:Calcd.forC30H29F2N3NaO6{[M+Na]+}588.1917,found 588.1922。
本实施例制备化合物3g:淡黄色固体,熔点:194.3~195.1℃;产率75%;核磁共振和高分辨质谱测试等结果如下:1H NMR(CDCl3,400MHz)δ:0.80~0.86(m,1H),1.01~1.05(m,2H),1.16~1.21(m,3H),1.55~1.63(m,3H),1.89~1.92(m,2H),2.40~2.42(m,1H),3.33(d,J=8.4Hz,1H),3.55(s,3H),3.89~3.94(m,2H),3.89~3.94(m,1H),4.46(s,1H),5.88(s,1H),6.72(d,J=8.8Hz,1H),7.31(d,J=8.0Hz,1H),7.59(d,J=14.0Hz,1H),7.70(s,1H),7.85(d,J=12.4Hz,1H),8.67(s,1H),13.39(br s,1H),14.87(br s,1H);13C NMR(CDCl3,100MHz)δ:8.7,10.5,24.5,36.3,40.5,50.3,53.5,56.1,61.3,89.9,107.5,107.9(d,JCF=24.1Hz),109.7,120.2,121.7,130.6,134.3,136.7,149.8,153.6(d,JCF=237.4Hz),161.9,166.9,176.6,190.8;HR-MS(ESI-TOF)m/z:Calcd.for C30H29BrFN3NaO6{[M+Na]+}648.1116,found 648.1115。
本实施例制备化合物3h:淡黄色固体,熔点:175.7~176.9℃;产率77%;核磁共振和高分辨质谱测试等结果如下:1H NMR(CDCl3,400MHz)δ:0.80~0.86(m,1H),1.01~1.05(m,2H),1.16~1.21(m,2H),1.51~1.67(m,2H),1.89~1.92(m,3H),2.24(s,3H),2.41~2.44(m,1H),3.21(s,1H),3.33(d,J=10.0Hz,1H),3.55(s,4H),3.89~3.94(m,2H),4.00~4.07(m,1H),5.86(d,J=11.6Hz,1H),6.70(s,1H),7.55(s,1H),7.62(d,J=14.0Hz,1H),7.82(d,J=12.4Hz,1H),8.68(s,1H),13.67(br s,1H),14.86(br s,1H);13C NMR(CDCl3,100MHz)δ:7.7,9.4,12.8,19.5,23.5,35.2,39.5,52.3,54.9,59.2,60.3,88.7,106.6,107.0(d,JCF=24.3Hz),118.2,119.2,122.3,127.0,133.3,140.3,141.8,148.8,152.7(d,JCF=249.4Hz),160.3,165.9,175.6,189.8;HR-MS(ESI-TOF)m/z:Calcd.forC31H31ClFN3NaO6{[M+Na]+}618.1778,found 618.1775。
本发明的式(1)化合物具有重要的生物活性,体外对6种菌株(金黄色葡萄球菌,铜绿假单胞菌,变形杆菌,大肠埃希氏菌,枯草芽孢杆菌,粪肠球菌)的抑菌活性试验表明:此类式(1)所示结构的水杨羰基烯拼接莫西沙星衍生物对6种菌株具有抑制作用,有可能发展成为新的抑菌药物。但需强调的是本发明的化合物不限于6种菌株(金黄色葡萄球菌,铜绿假单胞菌,变形杆菌,大肠埃希氏菌,枯草芽孢杆菌,粪肠球菌)表示的抑菌活性。
药理实施例1:衍生物3a~3h对6种菌株的抑菌圈
将用报纸包好的玻璃培养皿、装有一次性枪头的枪盒(200μL,1mL)灭菌,烘干,放入超净台并照紫外杀菌30min以上,再取2个500mL的干净的锥形瓶,每瓶加入16.5g的营养琼脂和500mL的纯水,借用超声振荡器来使其溶解,放入高温灭菌锅,灭菌。从灭菌锅取出后,拿进超净台并趁热倒入培养皿中,待其冷却定型后,将菌株的浓度调为107CFU/mL。吸取100μL的菌悬液(选用100μmol/mL)的链霉素作为阳性对照,DMSO作为阴性对照,并打入固体培养基上,用接种环涂布均匀,将药敏纸片泡入配好的样品液(1min以上),用镊子夹出泡好的纸片放在固体培养皿(一块培养皿放3片,使其构成等边三角形,每种样品液做平行3组实验),做好标记,倒扣放入恒温培养箱(T=37℃,RH=58%)中,培养24h,将培养皿从培养箱中取出,用锌合金数显卡尺测量每个抑菌圈的大小,再进行数据分析。
通过实验定性样品对菌株是否有抑菌作用,依靠固体培养基上抑菌圈的大小来评估药物抑菌作用。选用莫西沙星为阳性对照,DMSO为阴性对照,利用药敏纸片法来检测,经DMSO、莫西沙星和莫西沙星衍生物3分别浸泡后的药敏纸片对6种菌株的抑菌作用,测量固体培养基上产生的抑菌圈的大小。结果如下表1所示。
表1 3a~3h对6种菌株的抑菌圈
实验结论:由表1可知,莫西沙星衍生物、莫西沙星、链霉素、DMSO对6种菌株均有抑制作用,对于6种菌株,衍生物3e的抑菌效果优于链霉素,而阴性对照DMSO的抑菌效果较小,抑菌圈的直径均<10.1mm,衍生物3e对益生菌粪肠球菌有较强的抑制作用d=42.27±5.34mm,除此之外,对金黄色葡萄球菌也有较强的抑制作用,d=24.45±0.87mm。
药理实施例2:衍生物3e对6种菌株的抑菌MIC和MBC值试验
选用微量稀释法,在无菌的超净台里完成本次实验,先往96孔板的每个孔中打入50μL的营养肉汤,再往板的B1-B2横排的A1格打入50μL样品液,B3-B4横排的A1格打入50μL链霉素溶液(100μmol/mL),B5-B6横排的A1格打入50μL莫西沙星溶液,B7-B8则加入50uL的DMSO溶液,用排枪将每一横排的A1格混匀后,吸出50μL至下一格,半倍稀释到每横排的A11格,用排枪将A11格中的50μL溶液吸出打掉,每一横排的A12格做空白对照(不加药),再往板上每一孔中加入50μL菌悬液(浓度为*106CFU/mL),标记好样品名称后,拿出超净台并放到培养箱里培养24h(T=37℃,RH=58%),到时间后,取出96孔板每孔加入20μL刃天青溶液(100μg/mL),放在培养箱中继续培养2h,取出96孔板观察颜色情况,记录对应的MIC和MBC的值,每个样品做3组平行(注:作为显色剂的刃天青在有大量菌存在的情况,会变为红色,而少量菌存在或无菌的情况下,则表现为蓝色)。
表2 3e对6种菌株的抑菌MBC值
表3 3e对6种菌株的抑菌MIC值
定量分析抑菌实验中,运用微量稀释法确定了阳性对照药莫西沙星和链霉素对6种菌株的MIC和MBC值。由于运用微量稀释法对衍生物3e抑菌效果进行定量分析时,由于96孔板中出现了大量蓝色的孔,无法直接确定MIC,MBC值,故采用涂板的方式确定衍生物3e对6种菌株的MIC和MBC值。结果如表2和表3所示。
实验结论:由MBC实验可知衍生物3e对6种菌株的抑菌效果较好(表2),相较而言,对金黄色葡萄球菌有更好的抑菌作用,MBC值为0.39μmol/mL。对比链霉素的抑菌效果,衍生物3e对菌的抑制效果更好,对益生菌(粪肠球菌)的抑菌效果最为明显,其MBC为0.097μmol/mL,除此之外,衍生物3e对金黄色葡萄球菌有很强的抑菌作用,MBC为0.39μmol/mL。采用MIC实验进一步验证衍生物3e对益生菌粪肠球菌的抑菌效果最为明显,其MIC分别为0.048μmol/mL(表3)。
本发明的式(1)衍生物3e在金黄色葡萄球菌上表现出显著的抑菌效果,所以选用金黄色葡萄球菌来开展下面的抑菌机制实验,主要对菌株进行处理后,通过观测菌株的细胞膜的膜电位的变化,菌株本身能否自主合成蛋白,以及是否会抑制细胞生长或者杀死细胞等。
药理实施例3:罗丹明123实验
用荧光法来测定,经过衍生物3e的溶液液处理后、检测金黄色葡萄球菌的细胞膜内外电压的变化,可大致确定衍生物3e是否影响金黄色葡萄球菌的正常生长。本次实验选用染色剂罗丹明123,在进行抗菌机制实验时,衍生物3e的溶液的浓度一般设置为MIC的倍数。在无菌超净台中,先用液体培养基将菌株培养到菌株活力最旺盛的时期,用10mL EP管吸取菌液并放到离心机中,离心10min,用移液枪吸走多余溶液,用PBS(将1包磷酸盐缓冲液溶解于200mL无菌水并过滤溶液中的杂质)清洗菌株细胞3次,移去多余清洗液后,用PBS稀释细菌,直至在紫外分光光度计的测量AbS600为0.5左右,取4个2mL的EP管并将其命名为1-4(1,2,3为实验组,4为空白组,不加样品液),在1-3的EP管中,加入不同浓度的衍生物3e溶液,再在4个管中加入不同体积的菌液,使4个EP管的最终体积为2mL,且1-3的EP管中浓度为2MIC,1MIC,0.5MIC。
将4个EP管放入恒温恒湿培养箱(T=37℃,RH=58%)中培养8h,取出EP管后,离心,吸去多余的上清液,用PBS清洗2-3次,加入100μL的罗丹明123染色液(5ug/mL),再次放入培养箱中避光培养0.5h,到时间后,取出并放入离心机,离心10min,吸掉多余溶液,用PBS清洗细菌2次后,每个EP管中均加入1mL PBS并用涡旋仪打散混匀,吸取200μL菌液到96孔板上,快速用酶标仪(激发波长为480nm,发射波长为530nm)测荧光值,每个样品做3次平行实验。
罗丹明123(Rh123)作为一种电位敏感阳离子染料,经常被用于细胞膜电位的测定。当金黄色葡萄球菌的胞内外电压稳定存在时,细胞内膜会吸附着大量的阳离子染料,而当膜内电压发生变化(如变小时),酶标仪上测出来的数值就会变小,金黄色葡萄球菌经不同浓度的衍生物3e的溶液处理并染色后,测出来的荧光值的图片如附图5所示。由图5可知,当样品液浓度为2MIC,1MIC,0.5MIC时,其相应的荧光值分别为31.81、34.52、61.90,而空白组的数值最大为70.53。
实验结论:在与不加衍生物3e的溶液的空白组对比时,经不同浓度的衍生物3e的溶液处理后的3个实验组的荧光值减小,随着衍生物3e的溶液浓度的增大,酶标仪测出来的数据越发的减小,可推测出在衍生物3e的溶液处理后的菌株细胞内膜电位可能已经发生了一些变化。
存在于细胞膜内外两边离子的浓度不同从而产生了膜电位,人们可以借助膜电位间接观测到细菌的生长状况和自身的代谢能力,由于衍生物3e的溶液对细菌的影响,产生了膜电位去极性的现象,从而导致膜电位数值减小,也就表明细菌的活力降低,衍生物3e的溶液抑制了金黄色葡萄球菌的生长,甚至会导致其死亡,从而可以看出抑菌机制之一是破坏金黄色葡萄球菌的细胞内膜的膜电位。药理实施例4:核酸、蛋白质大分子物质外泄实验
将金黄色葡萄球菌培养到对数期,离心机(5000g)离心菌液10min,吸走多余上清液,用PBS清洗菌液3次,再加入适量PBS并混匀,使其在紫外分光光度计下Abs600=0.5±0.02,往3个EP管中加入不同浓度的样品液并加入菌液定容到2mL,使其最终浓度为2MIC,1MIC,0.5MIC,空白组的EP管中只加入2mL菌液,将EP管放入培养箱(T=37℃,RH=58%)中培养,并在0-10h内,每隔2个小时,从培养箱中取出EP管,离心(5000g),取10μL上清液并加入250μL考马斯亮蓝溶液,在室温下,静置5min,用酶标仪(吸光度设置为595nm)测量吸光度,用OriginPro2018画出标准曲线,据标准曲线求出蛋白质的浓度。
经不同浓度衍生物3e的溶液处理后的细菌,从其上清液中检测出含有大量的蛋白质,且随着浓度的升高,蛋白质含量也随之增大,未经任何溶液处理的空白组蛋白质含量最少,可推测出,细菌的细胞膜可能遭到了样品液的破坏,从而细胞膜内的蛋白质从中泄出,经多方考证发现,酶标仪的吸光度值设定为595nm时,可检测到上清液中的最大吸收值,所以特将实验设计为,用不同浓度衍生物3e的溶液处理供试菌,离心取上清液并加入250μL的考马斯亮蓝溶液,放到酶标仪上检测,再根据所得数据从而判断细胞膜的完整性和蛋白质的有无。最终测得的数据如附图6和图7所示。
药理实施例5:胞内蛋白的合成实验
菌液存在的可溶性蛋白物质其来源主要分为2个部分,一是菌株本身会分泌一些蛋白,二是细胞会偶尔泄漏少量的由蛋白物质组成的胞内酶,通过测量菌液中的蛋白含量,就可大致推测细菌的生长代谢变化。特将实验方案设计为如下所示:将细菌培养到对数期,离心机(5000g)离心菌液10min,吸走多余清液,用PBS清洗菌2次,再加入适量PBS并混匀,使其在紫外分光光度计下Abs600=0.5±0.02,往3个EP管中加入不同浓度的衍生物3e的溶液并加入菌液定容到2ml,使其最终浓度为2MIC,1MIC,0.5MIC,空白组的EP管中只加入2mL菌液,将EP管放入培养箱(T=37℃,RH=58%)中培养12h后,取出EP管并离心10min,用PBS清洗菌体沉淀2次,最后加入200μL PBS稀释并混匀,用200W的超声机,超声30min,取出后再对其金属浴(100℃)加热30min,再用离心机(6000g)离心10min,取上清液10μL于96孔板,再加入250μL考马斯亮蓝溶液,室温放置5min,酶标仪(吸光度值为595nm)检测(做三组平行实验)。
为了验证抑菌机制中衍生物3e的溶液对金黄色葡萄球菌的蛋白合成是否有阻碍作用,菌株的正常生命有无受到影响,为此设计本次实验,用3组加有不同浓度衍生物3e的溶液和不作处理的空白开展本次实验。先在培养箱中培养12h,经超声机破壁处理,染色后,测量各组的OD值,同时还需做一组蛋白标准液的实验,将所得数据画出附图8和图9。
实验结论:在衍生物3e的溶液处理后的实验组吸光值均小于不作任何处理的空白组,在相同的时间下,随着衍生物3e的溶液浓度的加大,测得的吸光值反而减小,可以看出这之间存在着一定的剂量相关,实验数据说明了不作处理的空白组生成的蛋白质大于实验组的,这证明了最初的设想,衍生物3e的溶液会妨碍细菌的生长活动,阻碍菌株自身合成蛋白这一操作。
药理实施例6:活性氧含量的变化实验
将金黄色葡萄球菌培养到对数期,离心机(5000g)离心菌液10min,吸走多余清液,用PBS清洗菌体3次,再加入适量PBS并混匀,使其在紫外分光光度计下Abs600=0.5±0.02,往3个EP管中加入不同浓度的衍生物3e的溶液并加入菌液定容到2mL,使其最终浓度为2MIC,1MIC,0.5MIC,空白组的EP管中只加入2mL菌液,将EP管放入培养箱(T=37℃,RH=58%)中培养12h后,取出EP管并离心10min,用PBS清洗菌体沉淀2次,离心收集菌体沉淀,用1mL染色工作液重悬菌体,放入培养箱中,37℃避光孵育30min后,离心收集菌体并用500μLPBS重悬菌体,充分混匀,取200μL于96孔板中,置于酶标仪中(激发波长488nm,发射波长526nm)并检测荧光强度。
为论证衍生物3e的溶液对菌株自身正常的生长代谢有无影响,特设计本次实验,借助试剂盒来测量不同浓度的实验组和空自组中所含的活性氧,对比得出数据的差异,用不同浓度的衍生物3e的溶液处理3组实验供试菌,使用试剂盒中的荧光探针给金黄色葡萄球菌染色。并用酶标仪测量菌液中的荧光强弱,判断供试菌中ROS含量的差异,得出的数据如附图10所示。
实验结论:经样品液处理后的3个实验组的荧光值都大于空白组,且在相同的时间内,浓度越高,测得的数值越大。可以看出有明显的剂量依赖。金黄色葡萄球菌在衍生物3e的溶液处理后,菌株体内产生了大量的活性氧自由基,而菌体的ROS受到刺激后可能会导致金黄色葡萄球菌的衰亡,出现过氧损伤的现象。
结论:衍生物3e的抑菌效果比阳性对照药链霉素的要好,除了益生菌外,在金黄色葡萄球菌上表现出显著的抑菌效果。抑菌机制实验发现,衍生物3e的溶液对金黄色葡萄球菌有一定的抑制其生长的作用,这主要是通过打乱菌株细胞内膜的电压平衡,抑制其合成蛋白的能力,最后导致菌株生长受到抑制甚至致其死亡。因此,从以上药理实施例中我们可以看出本实验表明此类式(1)所示的化合物具有开发成为抑菌药物的潜力,值得继续深入研究下去。

Claims (3)

1.一种水杨羰基烯拼接莫西沙星衍生物,其特征在于:该化合物具体为如下结构式之一:
2.一种如权利要求1所述的水杨羰基烯拼接莫西沙星衍生物的制备方法,其特征在于:在有机溶剂中,在无催化剂室温条件下,莫西沙星1与各种取代的3-羧酸色酮2,发生Michael加成然后脱羧开环反应,生成最终产物水杨羰基烯拼接莫西沙星衍生物3;
合成路线如下:
R为权利要求1中对应物质的取代基。
3.一种如权利要求1所述的水杨羰基烯拼接莫西沙星衍生物在制备抑菌药物中的应用。
CN202310201015.3A 2023-03-06 2023-03-06 水杨羰基烯拼接莫西沙星衍生物及其制备方法及应用 Active CN116283970B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310201015.3A CN116283970B (zh) 2023-03-06 2023-03-06 水杨羰基烯拼接莫西沙星衍生物及其制备方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310201015.3A CN116283970B (zh) 2023-03-06 2023-03-06 水杨羰基烯拼接莫西沙星衍生物及其制备方法及应用

Publications (2)

Publication Number Publication Date
CN116283970A CN116283970A (zh) 2023-06-23
CN116283970B true CN116283970B (zh) 2024-09-06

Family

ID=86821755

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310201015.3A Active CN116283970B (zh) 2023-03-06 2023-03-06 水杨羰基烯拼接莫西沙星衍生物及其制备方法及应用

Country Status (1)

Country Link
CN (1) CN116283970B (zh)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112804993A (zh) * 2018-08-23 2021-05-14 曼金德公司 氯法齐明的组合物,含它们的组合,它们的制备方法,含它们的用途和方法
CN112824408A (zh) * 2019-11-20 2021-05-21 河南大学 一种莫西沙星的丙烯酮衍生物及其制备方法和应用
CN112159354B (zh) * 2020-09-25 2022-07-05 西南大学 对氨基水杨酸的氟喹诺酮类衍生物及其中间体、制备方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
新型莫西沙星衍生物的合成及其抑菌活性;王芹芹等;《合成化学》;20231231;第31卷(第4期);第245-251页 *

Also Published As

Publication number Publication date
CN116283970A (zh) 2023-06-23

Similar Documents

Publication Publication Date Title
Tansuwan et al. Antimalarial benzoquinones from an endophytic fungus, Xylaria sp.
CN110684015A (zh) 靶向alk的protac及其应用
CN114230519B (zh) 一类具有抗耐药菌活性的截短侧耳素肉桂酸酯类化合物及其合成方法和应用
CN110950779B (zh) 集细菌荧光成像与光动力杀菌于一体的光敏剂及其制备方法和应用
CN109970644A (zh) 一种检测溶酶体极性的双光子荧光探针及其制备方法和应用
CN116283970B (zh) 水杨羰基烯拼接莫西沙星衍生物及其制备方法及应用
CN114349736A (zh) 一种化合物及其应用
CN113005048A (zh) 一种产黑链霉菌cys22、其代谢产物及应用
Ulaş et al. Synthesis of New p-Alkylaminophenol Compounds and Investigation of Their Antimicrobial and Antioxidant Activity
CN112194667B (zh) 取代1,4-苯并噁嗪并二氮卓类化合物及其制备方法和用途
CN113683604B (zh) 一种检测农作物线粒体中二氧化硫衍生物的比率型近红外荧光探针及其制备方法和用途
CN107827852A (zh) 广藿香酮衍生物及其制备方法和用途
CN109651326B (zh) 一类共价键连接标记细胞的荧光探针和跟踪标记细胞的方法
CN111518136A (zh) 一种氧化磷哚衍生物及其制备方法与化学生物学应用
Verma et al. Synthesis Characterization and Biological Activity of 4-Methyl-benzene Sulfonohydrazide Derivatives
CN111004222B (zh) 一种微生物来源灵菌红素类似物及其制备方法与应用
CN104974152B (zh) 一种取代四氢喹啉衍生物及其水解产物与其合成方法和应用
CN110483547A (zh) 二氢青蒿素的简单酚类偶联物、合成方法及应用
CN114621214B (zh) 一种抗菌席夫碱n-酰化物及其制备方法和应用
CN115160213B (zh) 一种大黄酸吡啶季铵盐类化合物及其合成方法和应用
CN109463402A (zh) 一种香樟精油细菌群体感应抑制剂的制备方法及应用
CN116375788A (zh) 抗耐碳青霉烯类鲍曼不动杆菌甘草次酸-金配合物及其制备方法和应用
CN113512046B (zh) C-7位卤代酰基头孢化合物、制备方法和应用
CN112125875B (zh) 维生素E衍生物及其制备方法和在Fe3+特异性检测中的应用
Zou et al. Photocaged probes for spatiotemporal imaging

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant