发明内容
本发明试图减轻至少一个上述问题。
本发明可以包括几种概括形式。本发明的实施例可以包括在此描述的各种不同概括形式之一或者它们的任意组合。
在第一概括形式中,本发明提供了一种用于控制车辆中的蓄电池组的蓄电池控制系统,所述蓄电池组包括多个在该蓄电池组内电连接在一起,以产生该蓄电池组的输出电压的蓄电池单元,其中该系统包括:
多个控制模块,分别包括:
(a)微处理器;
(b)至少一个传感器,用于监测该多个蓄电池单元至少之一的运行特性,所述至少一个传感器通过串联连接与该微处理器可通信地连接;
(c)隔离电路,通过该串联连接,可通信地与该微处理器和至少一个传感器连接,其中该隔离电路用于将该微处理器与该蓄电池组的较高电压隔离;
(d)通信单元,与该微处理器可通信地连接,用于通过通信网络,将该至少一个传感器监视到的运行特性送到其他控制模块,其中该控制模块的所述通信单元以并行方式与该通信网络通信;以及
其中该多个控制模块至少之一被指定为主控模块,用于根据该多个控制模块感测到的运行特性,输出控制信号,以控制该多个蓄电池单元的运行。
通常,该车辆包括电动车辆和混合动力电动车辆至少之一。
优选地,该通信网络可以包括控制器局域网。此外,优选地,该多个控制模块中的每个都可以配置唯一硬件地址,以在通过该控制器局域网进行通信时能够识别。有利的是,根据为了监视特定蓄电池单元或者一组蓄电池单元的运行特性而分配的该控制模块的唯一硬件地址,可以更容易地识别特定蓄电池单元中产生的故障。此外,优选地,该控制器局域网可以用于在蓄电池控制系统、该蓄电池组、蓄电池充电器、车辆控制系统、自检与诊断模块、以及车辆状态查询系统之间进行通信。
优选地,该串联连接包括串行外设接口。有利的是,使用串行外设接口可以允许单个隔离电路在控制模块内与该传感器和微处理器串联布置,从而防止该微处理器受该蓄电池组的高压的影响。因此,由于减少了所使用的部件,这可以支持降低与本发明相关的生产成本。
优选地,该至少一个传感器可以包括集成电路测量传感器。通常,所述多个控制模块中的每个均可以包括一至三个集成电路测量传感器。
优选地,该至少一个传感器监视的运行特性可以包括,与被监视的多个蓄电池单元至少之一相关的电压信号、电流信号和温度测量值至少之一。通常,该至少一个传感器可以用于至少每隔100毫秒监视一次该多个蓄电池单元至少之一的运行特性。
优选地,该隔离电路可以包括光隔离器。
优选地,该多个控制模块中的每个可以至少包括8位微处理器。此外,优选地,该主控模块可以包括32位微处理器。
优选地,该主控模块可以包括热控制器,用于根据由该多个控制模块的至少一个传感器确定的温度测量值,控制该蓄电池单元的温度、该蓄电池组的温度、以及蓄电池单元温差至少之一。
优选地,该主控模块可以包括接触器驱动器,用于选择性地将该蓄电池组的电压与马达和/或者充电器断开以及将该蓄电池组的电压与该马达和/或者充电器连接。
优选地,该主控模块可以包括模数转换器,用于将模拟信号转换为该主控模块的微处理器单元可读的数字电流读数,所述模拟信号表示流过该蓄电池组的电流信号。
优选地,主控模块可以进一步包括RS485和RS232型通信接口至少之一。
优选地,该主控模块可以用于根据该多个控制模块的至少一个传感器监视的运行特性,确定该多个蓄电池单元至少之一的充电状态。
优选地,该主控模块可以用于根据该多个控制模块的至少一个传感器监视的运行特性,确定该蓄电池单元至少之一的健康状态。
优选地,该主控模块可操作地连接到有源平衡电路,所述有源平衡电路响应该主控模块输出的控制信号,有源地使该蓄电池组内的多个蓄电池单元实现平衡。通常,根据该多个蓄电池单元的充电状态,该主控模块可以用于将控制信号输出到该有源平衡电路。
优选地,本发明可以包括数据记录模块,用于监视并存储表示该蓄电池单元的运行历史的数据。通常,该数据包括如下至少之一:
(a)最小、最大和平均电压读数;
(b)最小、最大和平均电流读数;
(c)最小、最大和平均温度读数;
(d)超限运行事件的详情,包括这种超限运行事件的时间、程度和频度;以及
(e)蓄电池充电次数。
优选地,本发明可以包括自检与诊断模块,用于执行包括该微处理器、传感器、隔离电路、串联连接和通信网络的蓄电池控制系统的自检和诊断。
优选地,本发明可以包括故障管理模块,用于根据在该蓄电池单元上检测到的故障,执行故障安全协议。通常,该故障可以包括该蓄电池组的超限情况和该蓄电池单元泄漏至少之一。优选地,该故障安全协议包括如下至少之一:
(a)将该多个蓄电池单元至少之一与该马达和/或者充电器断开;以及
(b)将指示该被检故障的报警送到该车辆用户。
优选地,本发明包括验证与识别模块,用于记录包括如下至少之一的有关蓄电池组的信息:
(a)识别该蓄电池组的制造商的信息;
(b)识别该蓄电池组的标称和蓄电池单元化学性质的信息;
(c)识别与制造该蓄电池组相关的批号和序列号的信息;以及
(d)识别该蓄电池组的生产日期的信息。
优选地,该车辆控制系统还可以包括可操作地连接到该主控模块的可视显示器,其中作为对从该主控模块收到的控制信号的响应,该可视显示器可以用于显示指示如下至少之一的信息:
(a)该多个蓄电池单元至少之一的充电状态;
(b)该多个蓄电池单元至少之一的健康状态;
(c)该多个蓄电池单元至少之一、该蓄电池组的温度或者蓄电池单元温差;
(d)指示连接到该车辆的马达的该蓄电池组的电压的车速;
(e)检测到的该蓄电池单元的故障情况;以及
(f)检测到的过电压故障和/或者欠压故障。
优选地,该数据记录模块、该自检与诊断模块、该故障管理模块、该验证与识别模块、以及该热控制器至少之一可以包括,存储在该主控模块上的、可由该主控模块的微处理器执行的计算机程序。
具体实施方式
现在,参考图1至图6,描述用于控制混合动力电动车辆或者电动车辆的蓄电池组3和其他系统的蓄电池控制系统1的第一实施例。该蓄电池控制系统1包括:主控模块10和多个从属控制模块11,如图3所示,它们通过控制器局域网(controller area network)2互相并联,从而便于在它们之间进行通信。此外,该主控模块10还适于通过RS232和/或者RS485型通信接口,任选地与该车辆的其他系统通信。
方便地,该蓄电池控制系统1可以改变规模,即,用于控制该蓄电池组3的控制模块10,11的所需数量,可以根据该车辆的蓄电池组3的具体电压容量选择性地配置。通常,在许多电动车辆和混合动力电动车辆中,1-9个控制模块通常适于控制12-1000V的蓄电池组3电压。如果蓄电池单元的数量不超过36V,则只需使用一个主模块来控制该蓄电池组。如果包括大于36V的蓄电池单元,则通常配置几个从属模块和一个主模块,用于控制该蓄电池组。例如,通过用作用户输入装置的触摸屏LCD显示器,可以有效配置与给定电压容量的蓄电池组系统一起使用的蓄电池控制系统。
图1示出通过控制器局域网2,与该车辆的各种系统功能互连的蓄电池控制系统1的第一实施例。这种系统包括:该车辆的蓄电池组3、电动马达4和用于驱动马达4的相关马达驱动器5、车载蓄电池充电器6、以及包括液晶显示器(LCD)7a和诸如加速踏板的车速控制器7b的车辆控制系统。
该车辆包括几个用于对电动马达4供电的蓄电池组3,如图2所示。在该实施例中,采用高容量蓄电池组3,诸如铅酸蓄电池、镍镉蓄电池、金属氢化物一镍蓄电池、锂离子蓄电池或者锂聚合物电池。通过布置在该蓄电池组3与该电动马达4的正极总线和负极总线9a,9b之间的蓄电池接触器8a,8b,蓄电池组3能够选择性地与该电动马达4连接和断开。该蓄电池组3分别包括多个独立蓄电池单元(B1...Bn),它们电连接在一起,以提供该蓄电池组3的总体电压。为了便于理解第一实施例,每个从属控制模块和主控模块被分别分配,以便单独监视独立蓄电池组3的蓄电池单元,如图3所示。然而,本技术领域内的技术人员明白,给定的从属控制模块和主控模块可以被配置,以监视跨越一个以上蓄电池组的许多电池单元,或者多个控制模块可以被配置,以监视单个蓄电池组中的蓄电池单元。
在该实施例中,该车辆的电动马达4或者是带电刷的直流马达、又或者是无电刷的直流马达、又或者是交流异步马达又或者牵引马达。该马达驱动器5适于电连接在该蓄电池组3与马达4之间。马达驱动器5还可通信地连接到该电池控制系统1的主控模块10。当用户通过该车辆的车辆加速踏板7b输入速度命令时,该速度命令被接收,作为该主控模块10的输入。接着,该主控模块10将该速度命令转换为该马达驱动器5可读的命令,然后,指示该马达驱动器5调整从该蓄电池组3送到马达4的、以要求的速度驱动马达4所需的电量。如果采用直流马达,则该马达驱动器5可以被配置,以通过将该蓄电池组3的直流电压输出适当脉冲调制到所要求的直流电压电平,调整所提供的直流电量。作为一种选择,如果采用交流马达,则该马达驱动器5可以被配置,以将该蓄电池组3的直流电压转换为适当相位、振幅和极性的三相交流电压,用于以要求的速度驱动该交流马达。
该车载蓄电池充电器6是适于对蓄电池组3提供较慢充电的低功率装置。蓄电池控制系统1还被配置,以使蓄电池组3与外部蓄电池充电站12可控通信。该外部蓄电池充电站12是以较高电流对蓄电池组3快速充电的大功率装置。
车辆控制系统的LCD7a位于车辆仪表盘上,并且对车辆用户显示信息,包括蓄电池组的充电状态和健康状态、蓄电池单元(B1...Bn)的温度、车辆的速度、超限的可视报警和声频报警指示符和/或者蓄电池组3的故障情况、以及在自检和诊断时,检测到蓄电池控制系统上发生故障的可视报警和声频报警指示符。通过控制器局域网2或者单独RS232或者RS485型通信接口,该蓄电池控制系统1可通信地连接到LCD7a,以致根据该蓄电池控制系统1监视的车辆的蓄电池组3和其他系统的运行特性,LCD7a上显示的信息可以被不停地更新。如上所述,该车辆控制系统还包括加速踏板7b,该加速踏板7b通过电位器与该蓄电池控制系统1的主控模块10通信。该电位器将加速踏板7b的物理位置转化为被送到该蓄电池控制系统1的速度控制信号。接着,通过设置速度、电流和功率命令,该蓄电池控制系统1通过控制器局域网2将速度命令送到马达驱动器5,以使该马达驱动器5以要求的速度驱动马达4。
如图5所示,每个从属控制模块11分别包括:8位微处理器11a;3个集成电路测量传感器11b,用于感测蓄电池组3中的各蓄电池单元(B1...Bn)的各种运行特性;光隔离器11c,用于防止微处理器11a承受蓄电池组3的较高电压;以及通信模块11e,允许每个从属控制模块11通过控制器局域网2可通信地并联。每个从属控制模块11还被配置了唯一硬件地址11f,以便能够在通过控制器局域网2通信时,正确识别。本技术领域内的技术人员容易想到,在该实施例中,尽管选择8位微处理器11a用作从属控制模块11的微处理器,但是作为一种选择,具有适当功能的任意低成本微处理器都可以被采用。
每个从属控制模块11上的集成电路测量传感器11b通过串行外设接口(serial peripheralinterface)11d与微处理器11a串联。在该实施例中,每个集成电路测量传感器11b都可以测量其指定的蓄电池组3中的多达12个蓄电池单元。该传感器11b每100毫秒测量一次诸如蓄电池单元两端的电压以及蓄电池单元的温度这种运行特性。通过串行外设接口11d,该测量读数从该传感器传送到从属控制模块11的微处理器11a。微处理器将通过串行外设接口11d收到的传感器读数变换为适于通过控制器局域网2与其他控制模块,特别是主控模块10,通信的格式。
光隔离器11c还沿串行外设接口11d与集成电路测量传感器11b和微处理器11a串联,以防止微处理器11a受蓄电池组3的较高电压和电磁干扰的影响。因为该传感器11b和光隔离器11d被配置为与微处理器11a串联,所以需要较少的部件,并且这样可以降低该蓄电池控制系统1的成本和复杂性。
图4示出主控模块10的体系结构,与从属控制模块11的情况相同,它包括:微处理器10a;3个集成电路测量传感器10b,用于感测蓄电池组3中的各蓄电池单元(B1...Bn)的各种运行特性;光隔离器10c,用于防止微处理器10a受蓄电池组3的较高电压的影响;以及通信模块10e,用于通过控制器,应当是局域网2,与并联的从属控制模块11和其他车辆系统通信。主控模块10还被配置了唯一硬件地址10f,以便在通过控制器局域网2通信时能够正确识别。
主控模块10的微处理器10a是功能更强大的32位微处理器10a,用于执行蓄电池控制系统1的各种处理和控制功能。本技术领域内的技术人员容易明白,尽管在该实施例中,32位微处理器10a被选择用作主控模块10的微处理器,但是可以替换使用适当功能的任何低成本的微处理器。该主控模块10还包括:电流传感器10g,用于感测流过蓄电池组3的电流;模数转换器10k,用于将模拟信号电流读数转换为数字值,以便由32位微处理器10a处理;接触器驱动器10h,用于根据来自蓄电池组3的功率是与电动马达4或者充电器6、12连接还是断开,选择性地与接触器8a、8b、14b连接和断开;风扇/加热器10i响应热控制器,用于控制蓄电池组(B1...Bn)的温度;以及附加RS232和/或者RS485型通信接口10j,以在该32位微处理器10a与其他车辆系统之间通信。
该32位微处理器10a接收:通过模数接口10k来自电流传感器10g的电流读数、每个从属控制模块和主控模块10、11内的传感器10b、11b测量的蓄电池组(B1...Bn)的温度读数和电压读数、以及通过加速踏板7b输入的、通过控制器局域网2的速度命令。因此,针对收到的输入,主控模块10包括在32位微处理器10上可执行的存储程序,以执行至少实现如下功能之一的算法:
(a)确定通过蓄电池组3的蓄电池单元的电流信号是否在预定安全参数范围内工作;
(b)对蓄电池单元(B1...Bn)、蓄电池组3或者单元温差进行热控;
(c)确定蓄电池单元(B1...Bn)的充电状态;
(d)确定蓄电池单元(B1...Bn)的健康状态;
(e)对蓄电池单元(B1...Bn)的充电和放电进行控制;
(f)控制蓄电池组3的接触器;
(g)作为对检测到蓄电池组3工作中的故障的响应,对故障管理和蓄电池单元保护进行控制;
(h)执行蓄电池控制系统1的自检和诊断;
(i)蓄电池组3运行历史的数据记录;以及
(j)验证和识别蓄电池组3制造信息。
在该实施例中,主控模块10是唯一控制模块,它可操作地连接到电流传感器10g。该电流传感器10g产生模拟感测电流信号,它表示例如在对蓄电池组3充电时通过蓄电池组3的电流信号。该大电流模拟信号由模数接口10k转换为0-5V范围内的数字读数,然后,作为输入,被馈送到32位微处理器10a,进行处理,以确定蓄电池组3是否在安全运行参数下运行。例如,如果充电期间,通过蓄电池组3的电流信号被确定为超限运行,则该32位微处理器10a对接触器驱动器10h输出控制信号,以使蓄电池组接触器8a、8b与充电器6、12断开,从而减轻所引起的对蓄电池组3的破坏。此外,32位微处理器10a被配置,以当这种故障被检测到时,与车辆控制系统通信,从而使可视报警显示在LCD7a上。作为一种选择和/或者此外,如果需要,可以输出声频报警。
该主控模块10进一步包括数据记录模块,它监视并存储表示蓄电池组3的运行历史的数据。特别是,这种数据可以包括:电压和电流读数、温度读数、包括这种超限运行事件的时间、程度和频度的超限运行事件的详情、蓄电池充电次数、等等。在该实施例中,该数据记录模块由存储在主控模块10上的、可以由主控模块10的微处理器10a执行的计算机程序予以实现,以执行数据记录功能。
风扇/加热器10i对来自热控制器的控制信号做出响应,以根据从属控制模块和主控模块10、11的传感器10b、11b测量的蓄电池单元(B1...Bn)和/或者蓄电池组3的内部温度和周围环境温度,加热或者冷却特定蓄电池单元(B1...Bn)或者整个蓄电池组,该热控制器包括32位微处理器10a上可执行的计算机程序。这些热测量值可以周期性地送到主控模块10,该主控模块10负责决定,蓄电池组3中的特定蓄电池单元(B1...Bn)是需要加热还是冷却。
根据通过控制器局域网2从控制模块10、11收到的传感器读数,主控模块10的32位微处理器10a确定蓄电池单元(B1...Bn)的充电状态。蓄电池单元的充电状态从32位微处理器10a送到车辆控制系统,然后,它显示在LCD7a上作为燃油表读数。蓄电池单元(B1...Bn)的充电状态测量值也由32位微处理器10a处理,以确定,是否为了减轻各蓄电池单元(B1...Bn)过电压而要求蓄电池单元平衡。下面,将进一步描述蓄电池单元平衡。蓄电池单元(B1...Bn)的充电状态读数也由32位微处理器10a处理,以确定该蓄电池单元(B1...Bn)的充电过程结束。
主控模块10还包括故障管理模块,用于在检测到故障时,执行故障安全协议,从而保护蓄电池单元(B1...Bn)。这种故障包括,不仅在蓄电池组3充电时,而且在蓄电池组3通常运行时,在蓄电池单元(B1...Bn)上检测到的超限运行情况、泄漏等等。作为对检测到故障情况的响应,该故障管理模块被配置,以执行故障安全过程,包括使蓄电池组接触器8a、8b与充电器6、12断开和使故障报警显示在LCD7a上。在该实施例中,故障管理模块由存储在主控模块10上的、可由主控模块10的微处理器10a执行的计算机程序予以实现,从而执行故障管理功能和故障安全保护功能。
对蓄电池单元过充电是蓄电池组3发生故障的主要原因,需要被监视和正确控制,以确保蓄电池组3的使用寿命。该故障管理模块至少在两个方面有助于防止蓄电池组3免受该问题的影响。首先,它根据测量到的蓄电池单元(B1...Bn)的充电状态,监视充电过程结束,然后,通过接触器驱动器10h,将适当控制信号输出到蓄电池组接触器8a、8b,以使该蓄电池组3与充电器6、12断开。其次,故障管理模块监视,流过蓄电池组3的电流信号是否超过充电的安全运行参数,并且如果超过安全运行参数,则断开蓄电池组接触器8a、8b。
主控模块10还包括自检与诊断模块,它被配置,以在对系统1加电时,对蓄电池控制系统1的关键部件进行自检和诊断,以确认该系统正确工作。在该实施例中,自检和诊断还可以由在主控模块10的32位微处理器10a上可执行的计算机程序予以实现,以测试和诊断从属控制模块和主控模块10、11、传感器10b、11b、光隔离器10c、11c、串行外设接口10d、11d、控制器局域网2以及相关系统在运行中的任何故障。如果这种故障被诊断到,则通过车辆控制系统的LCD7a,对车辆用户指示该故障。然后,用户可以对蓄电池控制系统1做适当维护,以纠正检测到的故障。在该实施例中,自检与诊断模块由存储在主控模块11上的、可以由主控模块10的微处理器10a执行的计算机程序予以实现,以执行自检和诊断功能。
由于直至最终蓄电池组3不能再使用或者废弃前随着使用和使用期限发生的不可逆物理变化和化学变化,在蓄电池组3的使用期内,其性能或者“健康”会趋于逐步恶化。因此,该主控模块10进一步包括健康状态模块,用于确定蓄电池组3的健康状态,即,指示蓄电池组3的正常情况以及它们提供其相对于预定性能水平的指定性能的能力。在车辆运行的情况下,为了确保在需要时车辆的紧急电源设备处于备用状态,确定蓄电池组3的健康状态特别重要。存储在数据记录器内的传感器读数可以由主控模块10访问,以计算蓄电池组3的健康状态指示的各种参数,诸如充电接受率、内部电阻/电导、蓄电池单元(B1...Bn)的电压和自放电、以及蓄电池单元(B1...Bn)温度。当因为蓄电池组3的健康状态由不能满足预定阈值水平的主控模块10确定,而被认为不再适于使用时,主控模块10适于将该健康状态情况送到车辆控制系统,以作为报警指示符显示在LCD7a上。因此,该车辆的用户能够对蓄电池组3之一或者全部进行维护和/或者更换。
如图6所示,还设置了平衡电路16,以对特定蓄电池单元中的弱项进行补偿,否则,可能导致蓄电池组3故障。在第一实施例中,采用有源平衡,以使蓄电池单元平衡。与各蓄电池单元(B1...Bn)上的功率耗散在电阻器两端使蓄电池单元(B1...Bn平衡的无源平衡不同,对于在平衡进程中使蓄电池单元(B1...Bn)上的能量保存在变压器的磁场中,有源平衡比较有效。如图6所示,该实施例的有源平衡电路16包括:变压器的初级绕组16a,连接在蓄电池组3的全部蓄电池单元(B1...Bn)的两端;以及变压器的次级绕组16b,分别连接在蓄电池单元(B1...Bn)的每个蓄电池单元的或者蓄电池单元组的两端。平衡电路16可操作地连接到主控模块10,并且作为对主控模块10输出的控制信号的响应,按要求执行电池单元平衡。
主控模块10从主控模块和从属控制模块10、11收到蓄电池组3中的全部蓄电池单元(B1...Bn)的电压读数后,蓄电池单元(B1...Bn)的特定电压和平均电压被处理,以计算各蓄电池单元(B1...Bn)的充电状态。在该实施例中,微处理器10a激活有源平衡电路16,以每当任意给定蓄电池单元的最高充电状态与任意给定蓄电池单元的最低充电状态的偏差大于3%时,对蓄电池单元(B1...Bn)执行有源平衡。有源平衡电路16继续工作,直到蓄电池单元(B1...Bn)之间的充电状态偏差落入3%偏差的范围内。作为例子,在有源平衡时,如果蓄电池单元B3被确定具有最高电压(即,最高充电状态),则开关S和主开关T均闭合,以使来自蓄电池单元B3的能量存储在变压器内,作为磁场。还识别与平均值具有最大偏差的蓄电池单元(B1...Bn),并且如果其电压低于蓄电池单元(B1...Bn)的平均电压,则它被主控模块10选择,以利用存储在该磁场中的能量充电。例如,如果蓄电池单元B2是与平均单元电压具有最大偏差的蓄电池单元,并且低于该平均单元电压,则开关S2被闭合,而主开关T被打开,以使蓄电池单元B3上的存储能量流入蓄电池单元B2,从而有效实现蓄电池单元(B1...Bn)平衡。
如图2所示,主控模块10还可操作地连接到预充电电路14,在加电时,该预充电电路14支持对施加到电动马达4的电压的升压时间进行控制,以减轻对该电动马达4施加的过电压。在该电路中,预充电电阻器14a和预充电接触器14b被串联布置。当加电时,如果电动马达4的正极总线9a与负极总线9b之间的电压低于蓄电池组3的总电压的80%,则该预充电接触器14b被接通。当该电压超过80%时,则接触器8a被首先接通,接着断开该并联通路上的预充电接触器14b。在蓄电池组3与预充电电路14之间还布置了高压熔断器15,该熔断器15被配置,以当流过熔断器15的电流超过预定阈值时,断开该电路。因此,该高压熔断器15有助于防止蓄电池单元被破坏。
主控模块10还包括识别与验证模块,用于记录关于蓄电池组3的信息,诸如制造商的型号标称(type designation)、蓄电池单元的化学性质、制造批号和序列号、制造日期等等。在该实施例中,识别与验证模块由存储在主控模块10上的、可以由主控模块10的微处理器10a执行的计算机程序实现,以执行识别和验证功能。
本技术领域内的技术人员明白,在不脱离本发明范围的情况下,除了具体描述的内容,还可以对在此描述的本发明进行各种变型和修改。所有这些变型和修改对于本技术领域内的技术人员是显而易见的,它们均应当被认为落入在此广泛描述的本发明的实质范围内。应当明白,本发明包括所有这些变型和修改。本发明还包括本说明书中单独或者一起引用的或者指出的所有步骤和特征,以及任意两个或者更多个所述步骤或者特征的任意组合和全部组合。
本说明书中对现有技术的引用不被认为,也不应当被认为是对该现有技术构成部分公知常识的认可或者任何形式的建议。