[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

CN102306213B - Anti-single particle irradiating method and anti-single particle irradiating system based on frame data processing - Google Patents

Anti-single particle irradiating method and anti-single particle irradiating system based on frame data processing Download PDF

Info

Publication number
CN102306213B
CN102306213B CN 201110202501 CN201110202501A CN102306213B CN 102306213 B CN102306213 B CN 102306213B CN 201110202501 CN201110202501 CN 201110202501 CN 201110202501 A CN201110202501 A CN 201110202501A CN 102306213 B CN102306213 B CN 102306213B
Authority
CN
China
Prior art keywords
frame
frame data
error
data processing
correct
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN 201110202501
Other languages
Chinese (zh)
Other versions
CN102306213A (en
Inventor
郭杰
李云松
刘凯
雷杰
王柯俨
张静
吴成柯
曲波
李金佳
王琰
弋方
窦雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xidian University
Original Assignee
Xidian University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xidian University filed Critical Xidian University
Priority to CN 201110202501 priority Critical patent/CN102306213B/en
Publication of CN102306213A publication Critical patent/CN102306213A/en
Application granted granted Critical
Publication of CN102306213B publication Critical patent/CN102306213B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Detection And Correction Of Errors (AREA)

Abstract

本发明公开了一种基于帧数据处理的抗单粒子辐照方法及抗单粒子辐照系统,主要解决现有帧数据处理系统受单粒子辐照出现功能错误的问题。该抗单粒子辐照系统包括单帧检测及复位模块,帧数据处理器。单帧检测及复位模块对帧数据处理器进行复位。帧数据处理器包括:有限状态机集合单元、控制器保护纠错单元、存储器、存储器保护纠错单元、数据输入接口、数据输出接口和配置模块,有限状态机集合单元处理各帧数据,控制器保护纠错单元保护有限状态机集合单元,存储器保护纠错单元保护存储器数据,配置模块存储帧数据处理器所需的参数信息。本发明具有实现简单、抗单粒子辐照等优点,可用于空间环境中图像压缩系统和其他基于帧或分组的纠错和调制电路。

Figure 201110202501

The invention discloses an anti-single-particle irradiation method and an anti-single-particle irradiation system based on frame data processing, which mainly solves the problem that the existing frame data processing system has a function error caused by single-particle irradiation. The anti-single particle radiation system includes a single frame detection and reset module, and a frame data processor. The single frame detection and reset module resets the frame data processor. The frame data processor includes: a finite state machine assembly unit, a controller protection error correction unit, a memory, a memory protection error correction unit, a data input interface, a data output interface and a configuration module, the finite state machine assembly unit processes each frame data, and the controller The protection error correction unit protects the finite state machine assembly unit, the memory protection error correction unit protects memory data, and the configuration module stores parameter information required by the frame data processor. The invention has the advantages of simple implementation, anti-single particle radiation and the like, and can be used in image compression systems and other error correction and modulation circuits based on frames or groups in space environments.

Figure 201110202501

Description

基于帧数据处理的抗单粒子辐照方法及抗单粒子辐照系统Anti-single event irradiation method and anti-single event irradiation system based on frame data processing

技术领域 technical field

本发明涉及通信技术领域,涉及抗单粒子辐照设计方法和系统,用于空间环境和单粒子辐照下的图像压缩系统,或其他基于帧或分组的纠错和调制电路。The invention relates to the field of communication technology, and relates to a design method and system for anti-single-event radiation, which is used in image compression systems under space environment and single-event radiation, or other error correction and modulation circuits based on frames or groups.

背景技术 Background technique

随着人类迈入信息化时代,特别是最近十几年来,多媒体信号处理技术和通信技术得到了迅猛发展。两者之间的融合势不可挡,大至信息高速公路、骨干网络,小到家庭和个人的多媒体娱乐、个人通信等,都对信息数据的存储和传输提出了更高的要求。用户希望在任何时间、任何地点以任何方式都能得到稳定可靠的信息表示和传输,由此对数字信号处理DSP技术、超大规模集成电路VLSI技术和现代数字通信技术提出了巨大挑战,也带来了以上技术和相关产业的蓬勃发展。随着消费类电子向便携化和小型化发展,航天和军事应用向低存储低功耗转变,以及集成电路技术的快速发展,专用集成电路ASIC和片上系统SoC步入市场并逐渐成熟。As mankind enters the information age, especially in the last ten years, multimedia signal processing technology and communication technology have developed rapidly. The integration between the two is unstoppable, ranging from information highways and backbone networks to small multimedia entertainment and personal communications for families and individuals, all of which have put forward higher requirements for the storage and transmission of information data. Users hope to get stable and reliable information representation and transmission at any time, any place and in any way, which poses a huge challenge to digital signal processing DSP technology, very large scale integrated circuit VLSI technology and modern digital communication technology. The vigorous development of the above technologies and related industries. With the development of consumer electronics towards portability and miniaturization, aerospace and military applications towards low storage and low power consumption, and the rapid development of integrated circuit technology, ASIC and system-on-chip SoC have entered the market and gradually matured.

随着微电子工艺的不断发展,芯片内部的线宽不断降低,因此电子器件的面积愈来愈小;但是线宽降低使芯片线路密度增加,在CMOS电路中栓锁效应愈来愈严重。而且,根据美国研究人员Eugene Normand在1996年期刊IEEE Trans.Nuclear Science发表的论文Single Event Upset at Ground Level(Vo1.43,No.6,Dec.1996,pp.2742-2750)中指出,集成电路和电子设备在空间环境和地面环境中都对辐照非常敏感。例如通信和信号处理芯片如果要应用于卫星系统,就必须保证在空间辐照环境下可靠工作。空间辐照主要来自于宇宙射线、范艾伦辐射带、太阳耀斑、太阳电磁辐射和极光辐射等;地面环境中的辐照主要来自于大气中子、由深空宇宙放射源所产生的高能粒子而形成的宇宙射线、以及电路生产过程中所采用的放射性材料等。With the continuous development of microelectronics technology, the line width inside the chip is continuously reduced, so the area of electronic devices is getting smaller and smaller; however, the reduction of line width increases the circuit density of the chip, and the latch-up effect in CMOS circuits becomes more and more serious. Moreover, according to the paper Single Event Upset at Ground Level (Vo1.43, No.6, Dec.1996, pp.2742-2750) published by American researcher Eugene Normand in the journal IEEE Trans.Nuclear Science in 1996, integrated circuits and electronic equipment are very sensitive to radiation in both the space environment and the terrestrial environment. For example, if communication and signal processing chips are to be used in satellite systems, they must ensure reliable operation in the space radiation environment. Space radiation mainly comes from cosmic rays, Van Allen radiation belts, solar flares, solar electromagnetic radiation, and auroral radiation; radiation in the ground environment mainly comes from atmospheric neutrons and high-energy particles produced by deep-space cosmic radiation sources. cosmic rays, and radioactive materials used in the production of circuits.

辐照作用于电子器件产生功能失效的两种主要原因是原子位移和电离。原子位移是由于粒子撞击原子从而改变其固有位置,如果原子位于晶体结构中,这种原子位移将改变材料特性,粒子注入对半导体器件产生的效应与之类似。电离也会导致电荷移动,形成电子-空穴对,从而产生内部电场和内部电流,而内部电流可能改变原电路的功能。这种作用不会对电路产生损伤,只是导致电路功能发生紊乱。The two main causes of functional failure of electronic devices by irradiation are atomic displacement and ionization. Atomic displacement is caused by particles hitting atoms and changing their intrinsic position. If the atoms are in a crystal structure, this atomic displacement will change the material properties. The effect of particle injection on semiconductor devices is similar. Ionization also causes charges to move, forming electron-hole pairs, which create internal electric fields and internal currents that can change the functionality of the original circuit. This effect will not cause damage to the circuit, but only cause the circuit function to be disordered.

电子器件受辐照作用后,将产生电离辐射总剂量效应、剂量率效应、单粒子效应、位移效应及高压静电放电击穿效应等,目前最受关注的是电离辐射总剂量效应TID和单粒子效应SEE。采用特定的CMOS流片工艺,理论上可以获得良好的电离辐射总剂量指标,并且在实验中得到了验证。单粒子效应主要分为单粒子锁定SEL和单粒子翻转SEU。单粒子锁定是在电源和地之间产生的低频通路处汇聚了较大的电流,因此对电路具有不可避免的破坏性,而且伴随着物理尺寸、供电电流和门限电压的不断降低,单粒子锁定带来的功能失效不断增加。因此在实际应用场合中,从电路设计角度针对辐照环境中单粒子翻转问题进行分析并提出解决方案,具有非常重要的价值。After the electronic device is irradiated, it will produce ionizing radiation total dose effect, dose rate effect, single event effect, displacement effect and high-voltage electrostatic discharge breakdown effect, etc. At present, the total dose effect of ionizing radiation TID and single event Effect SEE. Using a specific CMOS tape-out process, a good total ionizing radiation dose index can be obtained in theory, and it has been verified in experiments. Single event effects are mainly divided into single event locking SEL and single event flipping SEU. Single event lock-up is a large current gathered in the low-frequency path generated between the power supply and ground, so it is inevitably destructive to the circuit, and with the continuous reduction of physical size, supply current and threshold voltage, single event lock-up The resulting functional failures continue to increase. Therefore, in practical applications, it is of great value to analyze and propose solutions to the single event flipping problem in the irradiation environment from the perspective of circuit design.

单粒子翻转是高能带电粒子轰击器件时产生的状态跳变,图8(a)所示为单比特存储单元的简单电路,图中的电路保持在稳定的状态,即存储“0”或存储“1”,在每一种状态下都有两个晶体管处于激活状态,而另外两个处于阻塞状态。图8(b)示意了单比特存储单元被一个高能带电粒子轰击并产生比特翻转的过程,粒子在击穿衬底的路径上形成电子-空穴对,这些电子-空穴对在源极和漏极聚集,与足够大电流脉冲的效应类似,从而产生和正常信号作用于晶体管等效的虚假结果,即比特翻转。除了对存储单元作用产生比特翻转,单粒子翻转还有可能导致逻辑资源的错误,主要有以下几种:(1)改变查找表LUT中的一个比特,从而改变所实现的组合逻辑功能;(2)改变多路选择器MUX的配置,从而导致信号无法正确在各逻辑块中正向传输;(3)改变触发器FF的配置,例如改变复位信号线或者时钟线的极性从而导致电路功能错误。Single event flipping is a state jump generated when high-energy charged particles bombard the device. Figure 8(a) shows a simple circuit of a single-bit memory cell. The circuit in the figure remains in a stable state, that is, storing "0" or storing " 1", in each state two transistors are active and the other two are blocked. Figure 8(b) illustrates the process of a single-bit memory cell being bombarded by a high-energy charged particle and causing a bit flip. The particle forms electron-hole pairs on the path through the substrate. Drain crowding, similar to the effect of a sufficiently large current pulse, produces the spurious equivalent of a normal signal acting on a transistor, namely a bit flip. In addition to generating bit flips on memory cells, single event flips may also cause errors in logic resources, mainly in the following categories: (1) changing a bit in the lookup table LUT, thereby changing the implemented combinational logic function; (2) ) Changing the configuration of the multiplexer MUX, which causes the signal to not be transmitted correctly in the forward direction of each logic block; (3) Changing the configuration of the flip-flop FF, such as changing the polarity of the reset signal line or the clock line, resulting in a circuit function error.

目前所用的现场可编程门阵列FPGA器件和专用芯片大多是基于随机存储器RAM的,这种集成大量存储单元的器件对单粒子翻转更为敏感,而且单粒子翻转发生的频率与辐照环境关系密切。根据美国研究人员Michael Wirthlin在论文TheReliability of FPGA Circuit Designs in the Presence of Radiation Induced ConfigurationUpsets (llth Annual IEEE Symposium on Field-Programmable Custom ComputingMachines,2003,pp.133-142)中估算,对于集成600万比特存储阵列、型号为XilinxVirtex 1000的FPGA,恶劣条件下的单粒子翻转峰值频率高达每小时4.2次,远远超过太阳活动平稳期时的每小时0.13次。而且随着带电粒子所带能量以及发生频率的不同,器件失效表现出来的现象也各不相同,轻微时可能只在单个时钟内发生单比特翻转,严重时则可能出现多个比特位在某段时间内持续或者间歇性翻转,甚至更为恶劣时整器件的功能崩溃。Most of the field programmable gate array FPGA devices and special-purpose chips currently used are based on random access memory RAM. This kind of device integrating a large number of storage units is more sensitive to single event upset, and the frequency of single event upset is closely related to the irradiation environment. . According to American researcher Michael Wirthlin's estimate in the paper The Reliability of FPGA Circuit Designs in the Presence of Radiation Induced Configuration Upsets (llth Annual IEEE Symposium on Field-Programmable Custom Computing Machines, 2003, pp.133-142), for an integrated 6 million-bit storage array , The FPGA model is XilinxVirtex 1000, the peak frequency of single event flipping under harsh conditions is as high as 4.2 times per hour, far exceeding the 0.13 times per hour during the period of stable solar activity. Moreover, with the different energy and frequency of charged particles, the phenomenon of device failure is also different. When it is mild, only a single bit flip may occur in a single clock, and when it is severe, multiple bits may occur in a certain segment The time is continuously or intermittently reversed, and even worse, the function of the whole device collapses.

在涉及民事应用、航天探测以及军事应用等多个领域的通信和信号处理系统中,有很多数据处理单元是由帧结构构成的,即输入和输出以帧为单位,它们相互之间是独立的。例如对于符合JPEG2000标准的图像压缩编码处理单元,分别对各帧数据单独压缩处理,输出比特流由N帧构成,每帧由帧头、帧数据与帧尾构成,具体格式如图9所示;又如通信系统中的纠错编码单元,对于常用的分组编码方法,如里德-索洛蒙RS码、低密度奇偶校验LDPC码等,被编码的信号也是一帧一帧分开的。如果处理单元没有考虑分帧设计,由单粒子翻转造成控制功能的错误有可能将无法得到纠正从而一直错下去。因此即使进行了物理屏蔽和保护,没有加入分帧设计的处理单元在例如空间辐照环境下的应用还是存在潜在的风险,无法为用户提供可靠稳定的服务。In communication and signal processing systems involving civil applications, aerospace exploration, and military applications, many data processing units are composed of frame structures, that is, input and output are in units of frames, and they are independent of each other. . For example, for an image compression encoding processing unit conforming to the JPEG2000 standard, each frame data is separately compressed and processed, and the output bit stream is composed of N frames, and each frame is composed of a frame header, frame data and frame tail, and the specific format is shown in Figure 9; Another example is the error correction coding unit in the communication system. For commonly used block coding methods, such as Reed-Solomon RS code, low-density parity check LDPC code, etc., the encoded signal is also separated frame by frame. If the processing unit does not consider the frame design, the error of the control function caused by the single event flip may not be corrected and the error will continue. Therefore, even with physical shielding and protection, there are still potential risks in the application of processing units without framing design in environments such as space radiation, and cannot provide reliable and stable services for users.

发明内容 Contents of the invention

本发明基于上述单粒子效应成因及其对电子器件影响的分析,结合帧结构数据处理单元的特点,提供一种基于帧数据处理的抗单粒子辐照方法和抗单粒子辐照系统,旨在从电路设计角度对分帧数据处理单元进行保护和纠错,减小单粒子效应的影响,提高处理单元以及整个系统的可靠性和稳定性。Based on the analysis of the above-mentioned single event effect and its influence on electronic devices, and in combination with the characteristics of the frame structure data processing unit, the present invention provides an anti-single event irradiation method and an anti-single event irradiation system based on frame data processing, aiming at From the perspective of circuit design, the frame data processing unit is protected and error corrected to reduce the influence of single event effects and improve the reliability and stability of the processing unit and the entire system.

实现本发明目的的技术关键是建立合理的单粒子翻转模型,通过软件仿真模型分析单粒子效应对分帧数据处理单元的影响,具体就是分析比特翻转分别发生在帧头、帧数据和帧尾中对处理结果的影响,在此基础上从电路设计角度对硬件实现结构中的单帧检测及复位模块、控制器电路、存储器电路和配置模块进行保护和纠错,以使分帧数据处理单元的硬件结构在一定范围内具有对抗单粒子辐照的特性。其具体方案描述如下:The technical key to realize the object of the present invention is to establish a reasonable single event flip model, and analyze the impact of the single event effect on the frame data processing unit through the software simulation model, specifically to analyze the bit flips that occur in the frame header, frame data and frame tail respectively. The impact on the processing results, on this basis, protect and correct the single frame detection and reset module, controller circuit, memory circuit and configuration module in the hardware implementation structure from the perspective of circuit design, so that the frame data processing unit The hardware structure has the characteristics of resisting single event radiation within a certain range. Its specific scheme is described as follows:

一、基于帧数据处理的抗单粒子辐照方法,包括如下步骤:1. The anti-single event irradiation method based on frame data processing, comprising the following steps:

(1)通过读入数据的方式产生待处理且相互独立的各帧数据;(1) By reading in data, each frame of data to be processed and independent of each other is generated;

(2)模拟单粒子辐照效应产生的错误,生成单粒子辐照效应错误列表;(2) Simulate the errors generated by the single event radiation effect, and generate a single event radiation effect error list;

(3)利用单粒子辐照效应错误列表,对正确帧数据处理模块内部功能进行修改,形成错误帧数据处理模块;(3) Using the single event irradiation effect error list, modify the internal functions of the correct frame data processing module to form an error frame data processing module;

(4)用正确帧数据处理模块和错误帧数据处理模块分别对各帧数据单独进行处理,分别得到各帧的正确处理结果和错误处理结果;(4) each frame data is processed separately with the correct frame data processing module and the error frame data processing module, and the correct processing result and the error processing result of each frame are respectively obtained;

(5)对比各帧的正确处理结果与错误处理结果的差别,分析单粒子辐照效应错误列表对正确帧数据处理模块造成的错误具体出现在错误处理结果的帧头、帧数据或帧尾的哪些部分,并给出错误报告;(5) Compare the difference between the correct processing result and the wrong processing result of each frame, and analyze the errors caused by the single event irradiation effect error list to the correct frame data processing module, which specifically appear in the frame header, frame data or frame tail of the error processing result which parts, and give an error report;

(6)将错误报告所列的出错部分,反馈到错误帧数据处理模块对其中的错误功能进行纠正,并得到该步纠正后的处理结果;(6) Feedback the error part listed in the error report to the error frame data processing module to correct the error function therein, and obtain the corrected processing result of this step;

(7)重复步骤(5)~(6),直至纠正后的处理结果与正确帧数据处理模块的结果完全相同。(7) Steps (5)-(6) are repeated until the corrected processing result is exactly the same as the result of the correct frame data processing module.

二、基于帧数据处理的抗单粒子辐照系统,包括:单帧检测及复位模块,帧数据处理器,2. Anti-single particle radiation system based on frame data processing, including: single frame detection and reset module, frame data processor,

该单帧检测及复位模块,包括:帧同步信号提取电路和单帧复位信号产生电路,帧同步信号提取电路从输入的各帧数据中检测并提取帧同步信号传输给单帧复位信号产生电路,单帧复位信号产生电路在帧同步信号无效期间对帧数据处理器进行复位,使帧数据处理器的所有电路回归到初始状态;The single frame detection and reset module includes: a frame synchronization signal extraction circuit and a single frame reset signal generation circuit, the frame synchronization signal extraction circuit detects and extracts the frame synchronization signal from the input frame data and transmits it to the single frame reset signal generation circuit, The single-frame reset signal generating circuit resets the frame data processor during the period when the frame synchronization signal is invalid, so that all circuits of the frame data processor return to the initial state;

该帧数据处理器,包括:有限状态机集合单元、控制器保护纠错单元、存储器、存储器保护纠错单元、数据输入接口、数据输出接口和配置模块,所述的有限状态机集合单元分别与数据输入接口、数据输出接口和配置模块单向连接,并与控制器保护纠错单元和存储器双向连接,用于处理各帧数据,所述的存储器保护纠错单元通过存储器与有限状态机集合单元连接,用于对存储器中的数据采用汉明码进行保护和纠错。The frame data processor includes: a finite state machine assembly unit, a controller protection error correction unit, a memory, a memory protection error correction unit, a data input interface, a data output interface and a configuration module, and the finite state machine assembly unit is respectively connected with The data input interface, the data output interface and the configuration module are unidirectionally connected, and are bidirectionally connected with the controller protection error correction unit and the memory for processing each frame of data. The memory protection error correction unit is integrated with the finite state machine through the memory Connection for protection and error correction of data in memory using Hamming codes.

本发明具有以下优点:The present invention has the following advantages:

(1)本发明提出的基于帧数据处理的抗单粒子辐照方法,通过软件方法模拟单粒子辐照效应产生的错误,建立合理的单粒子翻转模型,并分析单粒子效应对分帧数据处理单元产生的出错影响,从而可以确定比特翻转分别发生在帧头、帧数据和帧尾中对处理结果的影响;(1) The anti-single event irradiation method based on frame data processing proposed by the present invention simulates the error produced by the single event irradiation effect through software methods, establishes a reasonable single event flip model, and analyzes the single event effect on the frame data processing The impact of errors generated by the unit, so that the impact of bit flips on the processing results that occur in the frame header, frame data, and frame tail can be determined;

(2)本发明提出的基于帧数据处理的抗单粒子辐照系统,从电路设计角度对分帧数据处理单元进行纠错和保护,以每帧数据为单位进行检测和复位,并对帧数据处理器中的控制器、存储器和配置模块进行保护和纠错,从而减小单粒子效应的影响,提高分帧数据处理单元以及整个系统的可靠性和稳定性。(2) The anti-single event irradiation system based on frame data processing proposed by the present invention corrects and protects the frame data processing unit from the perspective of circuit design, detects and resets each frame data as a unit, and performs frame data processing The controller, memory and configuration module in the processor perform protection and error correction, thereby reducing the impact of single event effects, and improving the reliability and stability of the frame data processing unit and the entire system.

附图说明 Description of drawings

图1是本发明基于帧数据处理的抗单粒子辐照方法流程图;Fig. 1 is the flow chart of the anti-single particle irradiation method based on frame data processing in the present invention;

图2是本发明基于帧数据处理的抗单粒子辐照系统功能框图;Fig. 2 is a functional block diagram of the anti-single particle irradiation system based on frame data processing in the present invention;

图3是本发明单帧检测及复位模块功能框图;Fig. 3 is a functional block diagram of a single frame detection and reset module of the present invention;

图4是本发明有限状态机集合单元功能框图;Fig. 4 is a functional block diagram of the finite state machine assembly unit of the present invention;

图5是本发明控制器保护纠错单元功能框图;Fig. 5 is a functional block diagram of the controller protection error correction unit of the present invention;

图6是本发明存储器保护纠错单元功能框图;Fig. 6 is a functional block diagram of the memory protection error correction unit of the present invention;

图7是本发明配置模块示意图;Fig. 7 is a schematic diagram of the configuration module of the present invention;

图8是单比特存储单元电路及单粒子翻转示意图;8 is a schematic diagram of a single-bit storage unit circuit and a single event flip;

图9是本发明采用的基于JPEG2000标准的帧格式示意图。FIG. 9 is a schematic diagram of a frame format based on the JPEG2000 standard adopted by the present invention.

具体实施方式 Detailed ways

本发明具体实施例中采用的帧数据处理单元为基于JPEG2000标准的图像压缩系统。JPEG2000标准是目前国际上通用的静止图像压缩编码标准,对静止图像压缩实行各帧独立编码。JPEG2000标准以其优良的压缩性能、支持图像质量和分辨率的渐进传输等特性,在医学影像、遥感图像和数字图像/视频传输等方面得到广泛应用,尤其在对图像压缩质量要求较高的卫星对地观测等应用中发挥着越来越大的技术和战略作用。对于其他基于帧数据处理的数据处理单元,例如基于JPEG标准的图像压缩单元或基于分组的纠错和调制电路,也在各种应用中占有重要的需求,因此研究和设计实现针对空间环境和单粒子辐照下的基于帧数据处理的设计方法和对应结构具有非常重要的意义和价值。The frame data processing unit adopted in the specific embodiment of the present invention is an image compression system based on the JPEG2000 standard. The JPEG2000 standard is currently an international standard for still image compression and encoding, and each frame is independently encoded for still image compression. The JPEG2000 standard is widely used in medical imaging, remote sensing images, and digital image/video transmission due to its excellent compression performance and support for progressive transmission of image quality and resolution, especially in satellites that require high image compression quality. Earth observation and other applications play an increasing technical and strategic role. For other data processing units based on frame data processing, such as image compression units based on JPEG standards or error correction and modulation circuits based on packets, they also have important requirements in various applications, so the research and design implementation for space environment and unit The design method and corresponding structure based on frame data processing under particle irradiation are of great significance and value.

本发明的软件仿真模型利用Microsoft Visual Studio开发平台和C/C++语言完成实现,硬件实现结构采用Xilinx ISE 10.1.03集成开发环境和Verilog HDL语言,在Xilinx公司的型号为XC4Vfx140-11ff1517的FPGA器件上实现。Software emulation model of the present invention utilizes Microsoft Visual Studio development platform and C/C++ language to finish realizing, and hardware implementation structure adopts Xilinx ISE 10.1.03 integrated development environment and Verilog HDL language, and the model of Xilinx company is on the FPGA device of XC4Vfx140-11ff1517 accomplish.

参照图1,本发明提出的基于帧数据处理的抗单粒子辐照方法,包括如下步骤:Referring to Fig. 1, the anti-single event irradiation method based on frame data processing proposed by the present invention comprises the following steps:

第一步,通过读入数据的方式产生待处理且相互独立的各帧数据,所述各帧数据为用于独立处理的若干帧图像或基于分组的纠错和调制序列。In the first step, each frame of data to be processed and independent of each other is generated by reading in data, and each frame of data is several frames of images for independent processing or a packet-based error correction and modulation sequence.

第二步,模拟单粒子辐照效应产生的错误,生成单粒子辐照效应错误列表:The second step is to simulate the errors generated by the single event radiation effect, and generate a single event radiation effect error list:

(2a)将正确帧数据处理模块中的某些状态位或者数据位固定或随机置为“1”或置为“0”,使这些状态位或者数据位发生错误,该错误用于模拟单粒子翻转造成的寄存器比特翻转;(2a) Some status bits or data bits in the correct frame data processing module are fixed or randomly set to "1" or set to "0", so that errors occur in these status bits or data bits, which are used to simulate single events register bit flip caused by flipping;

(2b)将正确帧数据处理模块查找表中的一个或几个比特固定或随机翻转,使查找表的对应关系出现错误,该错误用于模拟单粒子翻转造成的组合逻辑功能错误;(2b) One or several bits in the lookup table of the correct frame data processing module are fixed or randomly flipped, so that the corresponding relationship of the lookup table is wrong, and the error is used to simulate the combinational logic function error caused by the single event flipping;

(2c)以随机分布或其他概率分布,在正确帧数据处理模块缓存数据映射的内存空间中加入误码,使缓存数据发生错误,该错误用于模拟单粒子翻转导致的存储单元数据错误;(2c) Using random distribution or other probability distributions, adding errors in the memory space mapped to the cached data of the correct frame data processing module to cause errors in the cached data, which are used to simulate data errors in storage units caused by single event flipping;

(2d)在正确帧数据处理模块中的函数之间修改参数数值或者切断连接关系,使函数传递发生错误,该错误用于模拟单粒子效应严重时发生的功能紊乱甚至全功能失效;(2d) Modify the parameter value or cut off the connection relationship between the functions in the correct frame data processing module, so that the function transmission error occurs. This error is used to simulate the functional disorder or even the failure of all functions when the single event effect is serious;

(2e)选取(2a)~(2d)错误中的一种或几种进行排列组合,生成单粒子辐照效应错误列表。(2e) Select one or more of the errors in (2a) to (2d) and arrange and combine them to generate a single event irradiation effect error list.

第三步,利用单粒子辐照效应错误列表,对正确帧数据处理模块内部功能进行修改,形成错误帧数据处理模块:The third step is to modify the internal functions of the correct frame data processing module by using the single event irradiation effect error list to form an error frame data processing module:

(3a)将单粒子辐照效应错误列表加入正确帧数据处理模块的帧头部分,造成帧头起止标志位或信息标志位上的数值出现“1”“0”互换、比特增加和比特减少三种错误,导致无法正确确定帧头起止标志位的位置,无法正确表达帧头信息标志位的含义;(3a) Add the single event radiation effect error list to the frame header of the correct frame data processing module, resulting in "1" and "0" exchange, bit increase and bit decrease in the value of the frame header start-stop flag or information flag Three types of errors lead to the inability to correctly determine the position of the frame header start and end flags, and the meaning of the frame header information flags cannot be correctly expressed;

(3b)将单粒子辐照效应错误列表加入正确帧数据处理模块的帧数据部分,造成帧数据有效信息位上的数值出现“1”“0”互换、比特增加和比特减少三种错误,使帧数据所代表的有效信息发生错误;(3b) Add the single event irradiation effect error list to the frame data part of the correct frame data processing module, resulting in three errors of "1" and "0" exchange, bit increase and bit decrease in the value of the effective information bit of the frame data, Make errors in the effective information represented by the frame data;

(3c)将单粒子辐照效应错误列表加入正确帧数据处理模块的帧尾部分,造成帧尾起止标志位或信息标志位上的数值出现“1”“0”互换、比特增加和比特减少三种错误,造成无法正确确定帧尾起止标志位的位置,无法正确表达帧尾信息标志位的含义。(3c) Add the single event irradiation effect error list to the frame tail part of the correct frame data processing module, resulting in "1" and "0" exchange, bit increase and bit decrease in the value of the start and end flag bit or information flag bit at the end of the frame Three kinds of errors cause the position of the start-stop flag at the end of the frame cannot be correctly determined, and the meaning of the end-of-frame information flag cannot be correctly expressed.

第四步,用正确帧数据处理模块和错误帧数据处理模块分别对各帧数据单独进行处理,分别得到各帧的正确处理结果和错误处理结果:The fourth step is to use the correct frame data processing module and the error frame data processing module to process each frame data separately, and obtain the correct processing results and error processing results of each frame respectively:

(4a)对各帧数据形成的序列I,按正确的帧数据处理模块功能F(·)进行基于JPEG标准或JPEG2000标准的图像压缩处理:(4a) For the sequence I formed by each frame data, carry out image compression processing based on the JPEG standard or the JPEG2000 standard according to the correct frame data processing module function F( ):

首先,对图像数据进行离散余弦变换或离散小波变换,First, discrete cosine transform or discrete wavelet transform is performed on the image data,

然后,对变换后系数进行熵编码,Then, entropy encoding is performed on the transformed coefficients,

最后,对熵编码结果进行打包并输出各帧的正确处理结果J=F(I);Finally, pack the entropy encoding result and output the correct processing result J=F(I) of each frame;

(4b)对各帧数据形成的序列S,按正确的帧数据处理模块功能G(·)进行纠错编码处理:(4b) For the sequence S formed by each frame data, carry out error correction coding processing according to the correct frame data processing module function G(·):

首先,对待编码信息位进行分组,First, the information bits to be coded are grouped,

接着,确定纠错编码所用的生成矩阵,Next, determine the generation matrix used in the error correction code,

然后,将分组后的码字与生成矩阵进行矩阵运算生成纠错编码校验位,Then, perform a matrix operation on the grouped codeword and the generator matrix to generate an error correction code check bit,

最后,将信息位和校验位进行交织或合并,并输出各帧的正确处理结果T=G(S);Finally, the information bit and the parity bit are interleaved or combined, and the correct processing result T=G(S) of each frame is output;

(4c)对各帧数据形成的序列X,按正确的帧数据处理模块功能H(·)进行基于JPEG标准或JPEG2000标准图像压缩与纠错编码的级联处理:(4c) For the sequence X formed by each frame data, perform cascade processing based on JPEG standard or JPEG2000 standard image compression and error correction coding according to the correct frame data processing module function H( ):

(4c1)对图像数据进行离散余弦变换或离散小波变换,(4c1) performing discrete cosine transform or discrete wavelet transform on the image data,

(4c2)对变换后系数进行熵编码,(4c2) entropy coding the transformed coefficients,

(4c3)对熵编码结果进行打包,(4c3) Pack the entropy coding result,

(4c4)对打包后的信息位进行分组,(4c4) group the packed information bits,

(4c5)确定级联处理中所用的生成矩阵,(4c5) determining the generator matrix used in the cascading process,

(4c6)将打包分组后的码字与级联处理所用的生成矩阵进行矩阵运算生成级联处理校验位,(4c6) performing a matrix operation on the codeword after packing and grouping with the generation matrix used in the concatenation process to generate the concatenation process check bit,

(4c7)将信息位和校验位进行交织或合并,输出最终各帧的正确处理结果Y=H(X);(4c7) Interleaving or merging the information bit and the parity bit, and outputting the final correct processing result Y=H(X) of each frame;

(4d)对各帧数据形成的序列P,按错误的帧数据处理模块功能E(·)进行处理,该处理是加入单粒子辐照效应错误列表后出现基于JPEG2000标准的图像压缩功能错误,或者是纠错编码错误,或者是基于JPEG2000标准图像压缩与纠错编码的级联处理错误,得到各帧的错误处理结果Q=E(P)。(4d) The sequence P formed by each frame data is processed according to the wrong frame data processing module function E(·), this processing is an image compression function error based on the JPEG2000 standard after adding the single event radiation effect error list, or It is an error correction coding error, or a cascade processing error based on JPEG2000 standard image compression and error correction coding, and the error processing result Q=E(P) of each frame is obtained.

第五步,对比各帧的正确处理结果与错误处理结果的差别,分析单粒子辐照效应错误列表对正确帧数据处理模块造成的错误具体出现在错误处理结果的帧头、帧数据或帧尾的哪些部分,并给出错误报告。The fifth step is to compare the difference between the correct processing result and the wrong processing result of each frame, and analyze the errors caused by the single event irradiation effect error list to the correct frame data processing module, which specifically appear in the frame header, frame data or frame tail of the error processing result which parts of the , and give an error report.

第六步,错误反馈纠正:The sixth step, error feedback correction:

从输出结果来看,单粒子效应造成的错误分为三种情况,即比特错误、比特丢失和比特增加,其中比特错误包括随机错误和突发错误,而且压缩码流的错误直接影响解码软件的正常工作,导致解码恢复图像错误,引起图像质量下降甚至恢复图像不可用,或者在解码过程中丢失大量有用数据,并且一旦解码出错可能直接影响后续解码的正常进行,出现解码错误累积、传播,严重时可能导致解码软件系统崩溃。From the output results, the errors caused by the single event effect are divided into three situations, namely, bit errors, bit loss and bit increase, in which bit errors include random errors and burst errors, and the errors of the compressed code stream directly affect the performance of the decoding software. Normal operation will lead to errors in decoding and restoring images, resulting in image quality degradation or even unusable restored images, or a large amount of useful data will be lost during the decoding process, and once decoding errors may directly affect the normal progress of subsequent decoding, accumulation and propagation of decoding errors will occur, serious It may cause the decoding software system to crash.

将错误报告所列的出错部分,反馈到错误帧数据处理模块对其中的错误功能进行纠正,并得到该步纠正后的处理结果,按如下步骤进行:Feedback the error part listed in the error report to the error frame data processing module to correct the error function, and obtain the corrected processing result of this step, proceed as follows:

首先,帧数据分析模块通过对错误帧数据处理结果和正确帧数据处理结果的检测,判断错误比特分别出现在压缩码流中帧头、帧数据和帧尾的哪些部分,Firstly, the frame data analysis module judges which parts of the frame head, frame data and frame tail appear in the compressed code stream respectively by detecting the error frame data processing result and the correct frame data processing result,

然后,借助图像解压缩软件、客观和主观质量评价准则分析错误对恢复图像的影响,例如轻微错误发生时几乎不影响恢复图像质量;或者中度错误时可以部分正确恢复原始图像,只是导致恢复质量的下降;甚至严重错误时完全无法恢复图像数据,Then, with the help of image decompression software, objective and subjective quality evaluation criteria, the impact of errors on the restored image is analyzed, for example, when a slight error occurs, it hardly affects the quality of the restored image; or when a moderate error occurs, the original image can be partially restored correctly, but the restored quality decline; even in the event of a serious error, the image data cannot be recovered at all,

最后,将错误报告所列的出错部分,反馈到错误帧数据处理模块对其中的错误功能进行纠正。Finally, the error part listed in the error report is fed back to the error frame data processing module to correct the error function therein.

第七步,重复第五步和第六步,直至纠正后的处理结果与正确帧数据处理模块的结果完全相同。In the seventh step, the fifth and sixth steps are repeated until the corrected processing result is exactly the same as the result of the correct frame data processing module.

参照图2,本发明提出的基于帧数据处理的抗单粒子辐照系统,包括:单帧检测及复位模块,帧数据处理器,其中:单帧检测及复位模块,如图3所示;帧数据处理器,如图4~图7所示。Referring to Fig. 2, the anti-single particle irradiation system based on frame data processing proposed by the present invention includes: a single frame detection and reset module, a frame data processor, wherein: a single frame detection and reset module, as shown in Fig. 3; Data processor, as shown in Figure 4 to Figure 7.

参照图3,本发明提出的单帧检测及复位模块,包括:帧同步信号提取电路和单帧复位信号产生电路。Referring to FIG. 3 , the single frame detection and reset module proposed by the present invention includes: a frame synchronization signal extraction circuit and a single frame reset signal generation circuit.

若输入的图像数据中含有帧同步信号,帧同步信号提取电路从中提取帧同步信号传输给单帧复位信号产生电路,图3中帧同步信号为高电平有效,低电平无效;若输入的图像数据中不含帧同步信号,则由帧同步信号提取电路产生对应的帧同步信号传输给单帧复位信号产生电路。If the input image data contains a frame synchronization signal, the frame synchronization signal extraction circuit extracts the frame synchronization signal and transmits it to the single frame reset signal generation circuit, the frame synchronization signal in Fig. 3 is active at high level and invalid at low level; if the input If the image data does not contain a frame synchronization signal, the corresponding frame synchronization signal is generated by the frame synchronization signal extraction circuit and transmitted to the single frame reset signal generation circuit.

单帧复位信号产生电路在帧同步信号无效期间对帧数据处理器进行复位,图3中单帧复位信号低电平处于复位有效状态,高电平处于无效状态,产生的单帧复位信号在每帧图像有效数据输入前使帧数据处理器内部的所有电路回归到初始状态,这样在本帧图像数据内可能发生的单粒子错误就可以限制在该帧内部,避免由单粒子翻转造成的功能错误在连续的两帧之间传递,导致错误无法纠正。The single-frame reset signal generation circuit resets the frame data processor during the invalid period of the frame synchronization signal. In Fig. 3, the low level of the single-frame reset signal is in the reset valid state, and the high level is in the invalid state. The generated single-frame reset signal is in every Return all the circuits inside the frame data processor to the initial state before the effective data of the frame image is input, so that the single event error that may occur in the image data of this frame can be limited to the frame, avoiding the functional error caused by the single event flip passed between two consecutive frames, resulting in uncorrectable errors.

该帧数据处理器,如图4~图7所示,它包括:有限状态机集合单元、控制器保护纠错单元、存储器、存储器保护纠错单元、数据输入接口、数据输出接口和配置模块,有限状态机集合单元分别与数据输入接口、数据输出接口和配置模块单向连接,并与控制器保护纠错单元和存储器双向连接,用于处理各帧数据;存储器保护纠错单元通过存储器与有限状态机集合单元连接,用于对存储器中的数据采用汉明码进行保护和纠错。The frame data processor, as shown in Figures 4 to 7, includes: a finite state machine assembly unit, a controller protection error correction unit, a memory, a memory protection error correction unit, a data input interface, a data output interface and a configuration module, The finite state machine assembly unit is respectively connected to the data input interface, data output interface and configuration module in one direction, and is connected to the controller protection error correction unit and memory in two directions to process each frame of data; the memory protection error correction unit communicates with the finite The state machine assembly unit is connected, and is used for protecting and error-correcting the data in the memory by using the Hamming code.

参照图4,所述帧数据处理器中的有限状态机集合单元,由若干有限状态机级联组成,这些有限状态机共同完成对各帧数据的处理,其中每个有限状态机包括:Referring to Fig. 4, the finite state machine assembly unit in the frame data processor is composed of several finite state machines cascaded, and these finite state machines jointly complete the processing of each frame data, wherein each finite state machine includes:

当前状态寄存器,用于记录该有限状态机在当前状态下的状态值;The current state register is used to record the state value of the finite state machine in the current state;

输出功能电路,用于完成当前状态下的逻辑功能;The output function circuit is used to complete the logic function in the current state;

输出寄存器,用于将输出功能电路产生的结果寄存并输出;The output register is used to register and output the result generated by the output function circuit;

下一状态切换电路,用于在输出功能电路完成当前状态的逻辑功能后,将当前状态寄存器中的状态值切换到下一状态。The next state switching circuit is used to switch the state value in the current state register to the next state after the output function circuit completes the logic function of the current state.

该有限状态机分为摩尔型有限状态机和米勒型有限状态机两种,图4(a)和图4(b)中所示分别为摩尔型和米勒型有限状态机,两者的不同之处在于摩尔型状态机的输出仅与当前状态有关,而米勒型状态机的输出是当前状态和输入信号的函数;两者的共同之处在于无论摩尔型或者米勒型,只有当前状态寄存器是具有记忆能力的时序逻辑部件。The finite state machine is divided into two types: Moore type finite state machine and Miller type finite state machine. Figure 4(a) and Figure 4(b) show Moore type and Miller type finite state machine respectively. The difference is that the output of the Moore-type state machine is only related to the current state, while the output of the Miller-type state machine is a function of the current state and the input signal; both have in common that no matter the Moore-type or Miller-type, only the current Status registers are sequential logic components with memory capabilities.

参照图5,所述帧数据处理器中的控制器保护纠错单元,通过对状态机的保护来实现对帧数据处理器中的控制功能进行有效保护,该控制器保护纠错单元分为图5(a)摩尔型状态机的保护纠错单元和图5(b)米勒型状态机的保护纠错单元两种,这两种保护纠错单元都包括:With reference to Fig. 5, the controller protection error correction unit in the described frame data processor realizes the effective protection to the control function in the frame data processor by the protection of state machine, this controller protection error correction unit is divided into Fig. 5(a) The protection and error correction unit of the Moore-type state machine and the protection and error-correction unit of the Miller-type state machine in Figure 5(b), both of which include:

汉明编码逻辑电路,用于对当前状态寄存器中的所有状态值进行汉明编码;A Hamming coding logic circuit for performing Hamming coding on all state values in the current state register;

汉明解码逻辑电路,用于对当前状态寄存器中当前状态下的状态值进行汉明解码;The Hamming decoding logic circuit is used to perform Hamming decoding on the state value in the current state in the current state register;

出错指示复位电路,用于判断汉明解码逻辑电路产生的状态值是否与汉明编码逻辑电路中的状态值相等,如果两者相等,按有限状态机原有功能继续进行,如果两者不相等,对有限状态机进行复位,使其回归到初始状态;The error indication reset circuit is used to judge whether the state value generated by the Hamming decoding logic circuit is equal to the state value in the Hamming encoding logic circuit. If the two are equal, proceed according to the original function of the finite state machine. If the two are not equal , to reset the finite state machine to make it return to the initial state;

所述汉明编码逻辑电路,汉明解码逻辑电路和出错指示复位电路分别与有限状态机集合单元中的各有限状态机相连,并对有限状态机采用汉明码进行保护和纠错。The Hamming coding logic circuit, the Hamming decoding logic circuit and the error indication reset circuit are respectively connected with each finite state machine in the finite state machine assembly unit, and the finite state machine is protected and corrected by Hamming code.

以下对图5(a)摩尔型状态机的保护纠错单元进行详细的说明。摩尔型状态机的保护纠错单元在对有限状态机进行编码时采用(7,4)汉明码但不限于这种汉明码的分组码形式,通过增加码字之间的汉明距离提高状态机寄存器受单粒子效应影响的容错性。在当前状态寄存器中的状态由当前状态向下一状态跳转的过程中,其摩尔型状态机的保护纠错单元电路的具体实现功能如下:The protection and error correction unit of the Moore-type state machine in FIG. 5( a ) will be described in detail below. The protection and error correction unit of the Moore state machine adopts (7,4) Hamming code when encoding the finite state machine, but it is not limited to the block code form of this Hamming code, and improves the state machine by increasing the Hamming distance between code words. Fault tolerance of registers affected by single event effects. In the process of the state in the current state register jumping from the current state to the next state, the specific implementation functions of the protection and error correction unit circuit of the Moore-type state machine are as follows:

当前状态经过输出功能电路和输出寄存器得到最终结果;The current state passes through the output function circuit and the output register to obtain the final result;

当前状态经过下一状态切换电路跳转到下一状态;The current state jumps to the next state through the next state switching circuit;

汉明编码逻辑电路,对下一状态值进行汉明编码,同时当前状态寄存器中的状态也由当前状态变为下一状态Hamming coding logic circuit, which performs Hamming coding on the next state value, and at the same time, the state in the current state register is changed from the current state to the next state

汉明解码逻辑电路,对当前状态寄存器中当前状态下的状态值进行汉明解码,完成对摩尔型状态机的保护纠错作用;The Hamming decoding logic circuit performs Hamming decoding on the state value in the current state in the current state register, and completes the protection and error correction function of the Moore state machine;

出错指示复位电路,判断汉明解码逻辑电路产生的状态值是否与汉明编码逻辑电路中的状态值相等,如果单粒子效应造成的状态错误在汉明码的纠错能力内,按有限状态机原有功能继续进行,就可以确保整个状态机功能的正确;如果汉明码无法纠正错误,则对当前状态寄存器进行复位,避免当前状态寄存器因单粒子效应发生状态错误而一直得不到纠正。图5(b)为米勒型有限状态机的保护纠错单元,与图5(a)摩尔型有限状态机保护纠错单元的差别仅在输出功能是当前状态和输入信号的函数。An error indication resets the circuit, and judges whether the state value generated by the Hamming decoding logic circuit is equal to the state value in the Hamming coding logic circuit. If the state error caused by the single event effect is within the error correction capability of the Hamming code, according to the principle If the function continues, the correct function of the entire state machine can be ensured; if the Hamming code cannot correct the error, the current state register will be reset to prevent the current state register from being uncorrected due to the state error of the single event effect. Figure 5(b) is the protection and error correction unit of the Miller-type finite state machine, and the difference between the protection and error correction unit of the Moore-type finite state machine in Figure 5(a) is only that the output function is a function of the current state and the input signal.

参照图6,所述帧数据处理器中的存储器保护纠错单元,对存储器中的数据进行保护和纠错,它包括:校验位计算电路、校验位检验电路和比较器。所述校验位计算电路和校验位检验电路均与存储器单向连接,所述比较器分别与存储器和校验位检验电路单向连接。校验位计算电路对待写入存储器的有效数据信息位M进行汉明编码生产校验位K,并将M和K分别写入存储器;校验位检验电路从受单粒子辐照效应影响的存储器中读出信息位M′进行汉明码检验,生成新的校验位K″;比较器从受单粒子辐照效应影响的存储器中读出校验位K′,与K″逐位进行比较,如果K′与K″相等,将读出的信息位M′输出,如果两者不相等,将给出出错指示。Referring to Fig. 6, the memory protection and error correction unit in the frame data processor protects and corrects the data in the memory, and it includes: a check bit calculation circuit, a check bit check circuit and a comparator. Both the check bit calculation circuit and the check bit check circuit are unidirectionally connected to the memory, and the comparator is respectively unidirectionally connected to the memory and the check bit check circuit. The check bit calculation circuit performs Hamming encoding on the effective data information bit M to be written into the memory to produce the check bit K, and writes M and K into the memory respectively; Read the information bit M' from the middle to perform Hamming code inspection to generate a new check bit K"; the comparator reads the check bit K' from the memory affected by the single event irradiation effect, and compares it bit by bit with K", If K' and K" are equal, the read information bit M' is output, and if they are not equal, an error indication will be given.

该存储器保护纠错单元,能在一定程度上缓解单粒子效应对存储器带来的影响。为了节省用于保存校验信息的存储空间,选择汉明码的形式进行校验位计算,例如选择包含4位信息位和3位校验位的(7,4)形式汉明码。根据汉明码的性质,7位数据中的任何1位发生翻转,汉明码都可以纠正,从而达到抗单粒子效应的目的。The memory protection error correction unit can relieve the influence of the single event effect on the memory to a certain extent. In order to save the storage space for saving the check information, choose the form of Hamming code to calculate the check digit, for example, choose the (7,4) form Hamming code including 4 information bits and 3 check digits. According to the nature of the Hamming code, any 1 bit in the 7-bit data is flipped, and the Hamming code can be corrected, so as to achieve the purpose of anti-single event effect.

参照图7,所述帧数据处理器中的配置模块由三个功能相同的参数寄存器组和一个判决器组成,三个寄存器组中存储帧数据处理器所需要的参数信息,判决器分别从三个参数寄存器组中读出对应的参数信息,并按照大数判决方式输出结果。With reference to Fig. 7, the configuration module in the described frame data processor is made up of three parameter register groups with the same function and a decision device, stores the parameter information needed by the frame data processor in the three register groups, and the decision device is respectively from three Read the corresponding parameter information from the parameter register group, and output the result according to the large number judgment method.

第一参数寄存器组由若干数量的寄存器组成,寄存器数量由帧数据处理器的功能确定,寄存器中存储有帧数据处理器所需要的参数信息,第二参数寄存器组和第三参数寄存器组的内部结构与第一参数寄存器组完全相同,即将第一参数寄存器组的功能又复制了两次。在帧数据处理器取用参数寄存器组中参数信息的时候,判决器同时从第一参数寄存器组、第二参数寄存器组和第三参数寄存器组中分别读出对应数据,按照大数判决方式决定输出结果。通过这种参数寄存器组备份的方式,一旦某个参数寄存器组中的比特位受单粒子效应影响出现翻转而发生错误,判决器可以通过其他两个参数寄存器组的数据确定正确的参数信息,避免帧数据处理器使用错误的参数信息而得到错误的处理结果。The first parameter register group is composed of a number of registers. The number of registers is determined by the function of the frame data processor. The parameter information required by the frame data processor is stored in the registers. The internal parameters of the second parameter register group and the third parameter register group The structure is exactly the same as that of the first parameter register group, that is, the function of the first parameter register group is copied twice. When the frame data processor accesses the parameter information in the parameter register group, the decision device simultaneously reads out the corresponding data from the first parameter register group, the second parameter register group and the third parameter register group respectively, and decides according to the large number judgment method Output the result. Through this method of parameter register group backup, once a bit in a parameter register group is affected by a single event effect and an error occurs, the decision device can determine the correct parameter information through the data of the other two parameter register groups to avoid The frame data processor uses wrong parameter information to get wrong processing results.

对于本领域的专业人员来说,在了解了本发明内容和方法后,能够在不背离本发明的原理和范围的情况下,根据本发明的方法进行形式和细节上的各种修正和改变,可以做出不局限于实施例中基于JPEG2000标准图像压缩的抗单粒子辐照方法和抗单粒子辐照结构,例如其他基于帧或分组数据处理的纠错和调制系统的抗单粒子辐照方法和抗单粒子辐照结构,但是这些基于本发明的修正和改变仍在本发明的权利要求保护范围之内。For those skilled in the art, after understanding the contents and methods of the present invention, they can make various modifications and changes in form and details according to the methods of the present invention without departing from the principle and scope of the present invention. It is not limited to the anti-single event irradiation method and anti-single event irradiation structure based on JPEG2000 standard image compression in the embodiment, such as other anti-single event irradiation methods based on frame or packet data processing error correction and modulation systems And anti-single event radiation structure, but these amendments and changes based on the present invention are still within the protection scope of the claims of the present invention.

Claims (8)

1.一种基于帧数据处理的抗单粒子辐照方法,包括如下步骤:1. An anti-single particle irradiation method based on frame data processing, comprising the steps of: (1)通过读入数据的方式产生待处理且相互独立的各帧数据;(1) By reading in data, each frame of data to be processed and independent of each other is generated; (2)模拟单粒子辐照效应产生的错误,生成单粒子辐照效应错误列表;(2) Simulate the errors generated by the single event radiation effect, and generate a single event radiation effect error list; (3)利用单粒子辐照效应错误列表,对正确帧数据处理模块内部功能进行修改,形成错误帧数据处理模块;(3) Using the single event irradiation effect error list, modify the internal functions of the correct frame data processing module to form an error frame data processing module; (4)用正确帧数据处理模块和错误帧数据处理模块分别对各帧数据单独进行处理,分别得到各帧的正确处理结果和错误处理结果;(4) each frame data is processed separately with the correct frame data processing module and the error frame data processing module, and the correct processing result and the error processing result of each frame are respectively obtained; (5)对比各帧的正确处理结果与错误处理结果的差别,分析单粒子辐照效应错误列表对正确帧数据处理模块造成的错误具体出现在错误处理结果的帧头、帧数据或帧尾的哪些部分,并给出错误报告;(5) Compare the difference between the correct processing result and the wrong processing result of each frame, and analyze the errors caused by the single event irradiation effect error list to the correct frame data processing module, which specifically appear in the frame header, frame data or frame tail of the error processing result which parts, and give an error report; (6)将错误报告所列的出错部分,反馈到错误帧数据处理模块对其中的错误功能进行纠正,并得到该步纠正后的处理结果;(6) Feedback the error part listed in the error report to the error frame data processing module to correct the error function therein, and obtain the corrected processing result of this step; (7)重复步骤(5)~(6),直至纠正后的处理结果与正确帧数据处理模块的结果完全相同;(7) Steps (5) to (6) are repeated until the corrected processing result is exactly the same as the result of the correct frame data processing module; 步骤(2)所述的模拟单粒子辐照效应产生的错误,生成单粒子辐照效应错误列表,按如下步骤生成:The error generated by simulating the single event radiation effect described in step (2) generates a single event radiation effect error list, which is generated according to the following steps: (2a)将正确帧数据处理模块中的某些状态位或者数据位固定或随机置为“1”或置为“0”,使这些状态位或者数据位发生错误;(2a) Some status bits or data bits in the correct frame data processing module are fixed or randomly set to "1" or set to "0", so that errors occur in these status bits or data bits; (2b)将正确帧数据处理模块查找表中的一个或几个比特固定或随机翻转,使查找表的对应关系出现错误;(2b) One or several bits in the look-up table of the correct frame data processing module are fixed or flipped randomly, so that the corresponding relationship of the look-up table is wrong; (2c)以随机分布或其他概率分布,在正确帧数据处理模块缓存数据映射的内存空间中加入误码,使缓存数据发生错误;(2c) Using random distribution or other probability distributions, adding error codes into the memory space mapped by the cached data of the correct frame data processing module, causing errors in the cached data; (2d)在正确帧数据处理模块中的函数之间修改参数数值或者切断连接关系,使函数传递发生错误;(2d) Modify the parameter value or cut off the connection relationship between the functions in the correct frame data processing module, so that an error occurs in the function transfer; (2e)选取(2a)~(2d)错误中的一种或几种进行排列组合,生成单粒子辐照效应错误列表。(2e) Select one or more of the errors in (2a) to (2d) and arrange and combine them to generate a single event irradiation effect error list. 2.根据权利要求1所述的抗单粒子辐照方法,其中步骤(3)所述的利用单粒子辐照效应错误列表,对正确帧数据处理模块内部功能进行修改,按如下步骤操作:2. The anti-single event irradiation method according to claim 1, wherein the use of the single event irradiation effect error list described in step (3) modifies the internal functions of the correct frame data processing module, and operates as follows: (3a)将单粒子辐照效应错误列表加入正确帧数据处理模块的帧头部分,造成帧头起止标志位或信息标志位上的数值出现“1”“0”互换、比特增加和比特减少三种错误,导致无法正确确定帧头起止标志位的位置,无法正确表达帧头信息标志位的含义;(3a) Add the single event radiation effect error list to the frame header of the correct frame data processing module, resulting in "1" and "0" exchange, bit increase and bit decrease in the value of the frame header start-stop flag or information flag Three types of errors lead to the inability to correctly determine the position of the frame header start and end flags, and the meaning of the frame header information flags cannot be correctly expressed; (3b)将单粒子辐照效应错误列表加入正确帧数据处理模块的帧数据部分,造成帧数据有效信息位上的数值出现“1”“0”互换、比特增加和比特减少三种错误,使帧数据所代表的有效信息发生错误;(3b) Add the single event irradiation effect error list to the frame data part of the correct frame data processing module, resulting in three errors of "1" and "0" exchange, bit increase and bit decrease in the value of the effective information bit of the frame data, Make errors in the effective information represented by the frame data; (3c)将单粒子辐照效应错误列表加入正确帧数据处理模块的帧尾部分,造成帧尾起止标志位或信息标志位上的数值出现“1”“0”互换、比特增加和比特减少三种错误,造成无法正确确定帧尾起止标志位的位置,无法正确表达帧尾信息标志位的含义。(3c) Add the single event irradiation effect error list to the frame tail part of the correct frame data processing module, resulting in "1" and "0" exchange, bit increase and bit decrease in the value of the start and end flag bit or information flag bit at the end of the frame Three kinds of errors cause the position of the start-stop flag at the end of the frame cannot be correctly determined, and the meaning of the end-of-frame information flag cannot be correctly expressed. 3.根据权利要求1所述的抗单粒子辐照方法,其中步骤(4)所述的用正确帧数据处理模块和错误帧数据处理模块分别对各帧数据单独进行处理,分别得到各帧的正确处理结果和错误处理结果,按如下步骤进行:3. anti-single particle irradiation method according to claim 1, wherein the described in step (4) processes each frame data separately with correct frame data processing module and error frame data processing module, respectively obtains each frame's Correct processing results and error processing results, proceed as follows: (4a)对各帧数据形成的序列I,按正确的帧数据处理模块功能F(·)进行基于JPEG标准或JPEG2000标准的图像压缩处理:(4a) For the sequence I formed by each frame data, carry out image compression processing based on the JPEG standard or the JPEG2000 standard according to the correct frame data processing module function F( ): 首先,对图像数据进行离散余弦变换或离散小波变换,First, discrete cosine transform or discrete wavelet transform is performed on the image data, 然后,对变换后系数进行熵编码,Then, entropy encoding is performed on the transformed coefficients, 最后,对熵编码结果进行打包并输出各帧的正确处理结果J=F(I);Finally, pack the entropy encoding result and output the correct processing result J=F(I) of each frame; (4b)对各帧数据形成的序列S,按正确的帧数据处理模块功能G(·)进行纠错编码处理:(4b) For the sequence S formed by each frame data, carry out error correction coding processing according to the correct frame data processing module function G(·): 首先,对待编码信息位进行分组,First, the information bits to be coded are grouped, 接着,确定纠错编码所用的生成矩阵,Next, determine the generation matrix used in the error correction code, 然后,将分组后的码字与生成矩阵进行矩阵运算生成纠错编码校验位,Then, perform a matrix operation on the grouped codeword and the generator matrix to generate an error correction code check bit, 最后,将信息位和校验位进行交织或合并,并输出各帧的正确处理结果T=G(S);Finally, the information bit and the parity bit are interleaved or combined, and the correct processing result T=G(S) of each frame is output; (4c)对各帧数据形成的序列X,按正确的帧数据处理模块功能H(·)进行基于JPEG标准或JPEG2000标准图像压缩与纠错编码的级联处理:(4c) For the sequence X formed by each frame data, perform cascade processing based on JPEG standard or JPEG2000 standard image compression and error correction coding according to the correct frame data processing module function H( ): 第一步,对图像数据进行离散余弦变换或离散小波变换,The first step is to perform discrete cosine transform or discrete wavelet transform on the image data, 第二步,对变换后系数进行熵编码,The second step is to entropy encode the transformed coefficients, 第三步,对熵编码结果进行打包,The third step is to pack the entropy coding results, 第四步,对打包后的信息位进行分组,The fourth step is to group the packed information bits, 第五步,确定级联处理中所用的生成矩阵,The fifth step is to determine the generation matrix used in the cascade processing, 第六步,将打包分组后的码字与级联处理所用的生成矩阵进行矩阵运算生成级联处理校验位,The sixth step is to perform a matrix operation on the codewords after packing and grouping with the generation matrix used for the concatenation processing to generate the concatenation processing check bits, 第七步,将信息位和校验位进行交织或合并,输出最终各帧的正确处理结果Y=H(X);The 7th step, information bit and parity bit are carried out interweaving or combining, output the correct processing result Y=H(X) of final each frame; (4d)对各帧数据形成的序列P,按错误的帧数据处理模块功能E(·)进行处理,该处理是加入单粒子辐照效应错误列表后出现基于JPEG标准或JPEG2000标准的图像压缩功能错误,或者是纠错编码错误,或者是基于JPEG标准或JPEG2000标准图像压缩与纠错编码的级联处理错误,得到各帧的错误处理结果Q=E(P)。(4d) The sequence P formed by each frame data is processed according to the wrong frame data processing module function E( ), which is an image compression function based on the JPEG standard or JPEG2000 standard after adding the single event radiation effect error list The error is either an error correction coding error, or a cascading processing error based on JPEG standard or JPEG2000 standard image compression and error correction coding, and the error processing result Q=E(P) of each frame is obtained. 4.一种基于帧数据处理的抗单粒子辐照系统,包括:单帧检测及复位模块,帧数据处理器,4. An anti-single event irradiation system based on frame data processing, including: single frame detection and reset module, frame data processor, 所述单帧检测及复位模块,包括:帧同步信号提取电路和单帧复位信号产生电路,帧同步信号提取电路从输入的各帧数据中检测并提取帧同步信号传输给单帧复位信号产生电路,单帧复位信号产生电路在帧同步信号无效期间对帧数据处理器进行复位,使帧数据处理器的所有电路回归到初始状态;The single-frame detection and reset module includes: a frame synchronization signal extraction circuit and a single-frame reset signal generation circuit, and the frame synchronization signal extraction circuit detects and extracts frame synchronization signals from input frame data and transmits them to the single-frame reset signal generation circuit , the single-frame reset signal generation circuit resets the frame data processor during the invalid period of the frame synchronization signal, so that all circuits of the frame data processor return to the initial state; 所述帧数据处理器,包括:有限状态机集合单元、控制器保护纠错单元、存储器、存储器保护纠错单元、数据输入接口、数据输出接口和配置模块,所述的有限状态机集合单元分别与数据输入接口、数据输出接口和配置模块单向连接,并与控制器保护纠错单元和存储器双向连接,用于处理各帧数据;所述的存储器保护纠错单元通过存储器与有限状态机集合单元连接,用于对存储器中的数据采用汉明码进行保护和纠错。The frame data processor includes: a finite state machine assembly unit, a controller protection error correction unit, a memory, a memory protection error correction unit, a data input interface, a data output interface and a configuration module, and the finite state machine assembly unit is respectively One-way connection with the data input interface, data output interface and configuration module, and two-way connection with the controller protection error correction unit and memory for processing each frame of data; the memory protection error correction unit is integrated with the finite state machine through the memory The unit is connected, and is used for protecting and correcting the data in the memory by Hamming code. 5.根据权利要求4所述的抗单粒子辐照系统,其特征在于帧数据处理器中的有限状态机集合单元,由若干有限状态机级联组成,这些有限状态机共同完成对各帧数据的处理,其中每个有限状态机包括:5. The anti-single event irradiation system according to claim 4, characterized in that the finite state machine assembly unit in the frame data processor is composed of several finite state machines cascaded, and these finite state machines jointly complete the processing of each frame data processing, where each finite state machine consists of: 当前状态寄存器,用于记录该有限状态机在当前状态下的状态值;The current state register is used to record the state value of the finite state machine in the current state; 输出功能电路,用于完成当前状态下的逻辑功能;The output function circuit is used to complete the logic function in the current state; 输出寄存器,用于将输出功能电路产生的结果寄存并输出;The output register is used to register and output the result generated by the output function circuit; 下一状态切换电路,用于在输出功能电路完成当前状态的逻辑功能后,将当前状态寄存器中的状态值切换到下一状态。The next state switching circuit is used to switch the state value in the current state register to the next state after the output function circuit completes the logic function of the current state. 6.根据权利要求4所述的抗单粒子辐照系统,其特征在于帧数据处理器中的控制器保护纠错单元,包括:6. The anti-single event irradiation system according to claim 4, characterized in that the controller protection error correction unit in the frame data processor comprises: 汉明编码逻辑电路,用于对当前状态寄存器中的所有状态值进行汉明编码;A Hamming coding logic circuit for performing Hamming coding on all state values in the current state register; 汉明解码逻辑电路,用于对当前状态寄存器中当前状态下的状态值进行汉明解码;The Hamming decoding logic circuit is used to perform Hamming decoding on the state value in the current state in the current state register; 出错指示复位电路,用于判断汉明解码逻辑电路产生的状态值是否与汉明编码逻辑电路中的状态值相等,如果两者相等,按有限状态机原有功能继续进行,如果两者不相等,对有限状态机进行复位,使其回归到初始状态;The error indication reset circuit is used to judge whether the state value generated by the Hamming decoding logic circuit is equal to the state value in the Hamming encoding logic circuit. If the two are equal, proceed according to the original function of the finite state machine. If the two are not equal , to reset the finite state machine to make it return to the initial state; 所述汉明编码逻辑电路,汉明解码逻辑电路和出错指示复位电路分别与有限状态机集合单元中的各有限状态机相连,并对有限状态机采用汉明码进行保护和纠错。The Hamming coding logic circuit, the Hamming decoding logic circuit and the error indication reset circuit are respectively connected with each finite state machine in the finite state machine assembly unit, and the finite state machine is protected and corrected by Hamming code. 7.根据权利要求4所述的抗单粒子辐照系统,其特征在于帧数据处理器中的存储器保护纠错单元采用汉明码的形式对存储器中的数据进行保护和纠错,该存储器保护纠错单元,包括:7. The anti-single event irradiation system according to claim 4, characterized in that the memory protection and error correction unit in the frame data processor adopts the form of Hamming code to protect and correct the data in the memory, the memory protection and correction Faulty units, including: 校验位计算电路,用于对待写入存储器的有效数据信息位M进行汉明编码生产校验位K,并将M和K写入存储器;A parity calculation circuit, which is used to perform Hamming encoding on the effective data information bit M to be written into the memory to produce a parity K, and write M and K into the memory; 校验位检验电路,用于从受单粒子辐照效应影响的存储器中读出信息位M′进行汉明码检验,生成新的校验位K″;A parity check circuit, which is used to read the information bit M' from the memory affected by the single event radiation effect to perform Hamming code check, and generate a new check bit K"; 比较器,用于从受单粒子辐照效应影响的存储器中读出校验位K′,与K″逐位进行比较,如果K′与K″相等,将读出的信息位M′输出,如果两者不相等,将给出出错指示。The comparator is used to read the check bit K' from the memory affected by the single event irradiation effect, and compare it bit by bit with K ", and if K' is equal to K", output the read information bit M', If the two are not equal, an error indication will be given. 8.根据权利要求4所述的抗单粒子辐照系统,其特征在于帧数据处理器中的配置模块由三个功能相同的参数寄存器组和一个判决器组成,三个寄存器组中存储帧数据处理器所需要的参数信息,判决器分别从三个参数寄存器组中读出对应的参数信息,并按照大数判决方式输出结果。8. The anti-single event irradiation system according to claim 4, characterized in that the configuration module in the frame data processor is composed of three parameter register groups with the same function and a decision device, and the frame data is stored in the three register groups For the parameter information required by the processor, the decider reads out the corresponding parameter information from the three parameter register groups respectively, and outputs the result according to the large number judgment method.
CN 201110202501 2011-07-19 2011-07-19 Anti-single particle irradiating method and anti-single particle irradiating system based on frame data processing Expired - Fee Related CN102306213B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201110202501 CN102306213B (en) 2011-07-19 2011-07-19 Anti-single particle irradiating method and anti-single particle irradiating system based on frame data processing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201110202501 CN102306213B (en) 2011-07-19 2011-07-19 Anti-single particle irradiating method and anti-single particle irradiating system based on frame data processing

Publications (2)

Publication Number Publication Date
CN102306213A CN102306213A (en) 2012-01-04
CN102306213B true CN102306213B (en) 2013-01-23

Family

ID=45380074

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201110202501 Expired - Fee Related CN102306213B (en) 2011-07-19 2011-07-19 Anti-single particle irradiating method and anti-single particle irradiating system based on frame data processing

Country Status (1)

Country Link
CN (1) CN102306213B (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9047988B2 (en) * 2012-11-20 2015-06-02 International Business Machines Corporation Flash interface error injector
CN103236271A (en) * 2013-03-26 2013-08-07 深圳市国微电子有限公司 Memory for reinforcing single event upset based on triple modular redundancy, and reinforcing method
CN103218272B (en) * 2013-04-25 2015-09-23 西安空间无线电技术研究所 A kind of spaceborne digital signal processor upset reinforcement means
CN103530196A (en) * 2013-09-24 2014-01-22 北京控制工程研究所 Method for preventing single event upset of FPGA
CN103617811B (en) * 2013-12-03 2017-08-29 中国科学院微电子研究所 Error correction circuit of SRAM type memory
CN107395327A (en) * 2017-07-19 2017-11-24 上海航天测控通信研究所 A kind of high reliability LDPC encoder suitable for satellite communication
CN107894898A (en) * 2017-11-28 2018-04-10 中科亿海微电子科技(苏州)有限公司 Refresh device, implementation method and the fpga chip with error correction on SRAM type FPGA pieces
US10348302B1 (en) * 2018-05-31 2019-07-09 Bae Systems Information And Electronic Systems Integration Inc. Radiation-hardened latch circuit
CN113919265A (en) * 2020-07-10 2022-01-11 南京航空航天大学 HDL (high density hardware description) code level anti-single event upset automatic error correction method for FPGA (field programmable Gate array)
CN112798943B (en) * 2021-01-16 2022-03-08 西安电子科技大学 Real-time FPGA error detection method based on standard input and output verification
CN113296820B (en) * 2021-06-18 2023-01-24 上海航天测控通信研究所 Satellite-borne single event effect resisting reinforcement method based on SRAM FPGA
CN114528983A (en) * 2021-12-29 2022-05-24 北京时代民芯科技有限公司 Pulse neuron reinforcing circuit and reinforcing method
CN114692564B (en) * 2022-04-18 2024-07-26 北京泽石科技有限公司 Verification system and method of LDPC error correction module, storage medium and electronic equipment
CN117474061B (en) * 2023-12-26 2024-03-19 华中师范大学 Anti-radiation low-delay neural network reasoning acceleration chip

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1363437A1 (en) * 2001-08-22 2003-11-19 Telecommunications Advancement Organization of Japan COMMUNICATION QUALITY ESTIMATION METHOD, COMMUNICATION QUALITY ESTIMATION APPARATUS, AND COMMUNICATION SYSTEM
CN1516461A (en) * 2003-01-10 2004-07-28 孙顺姬 Digital dynamic image compression method based on variable image plaid
CN1716211A (en) * 2004-07-02 2006-01-04 中国科学院上海微系统与信息技术研究所 Data error detects and corrects the positive and negative coding structure of intersection of usefulness and the method for decoding
CN1980386A (en) * 2006-07-20 2007-06-13 西安交通大学 1/5 small-wave core optimizing design computing method based on JPEG2000 picture compression

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1363437A1 (en) * 2001-08-22 2003-11-19 Telecommunications Advancement Organization of Japan COMMUNICATION QUALITY ESTIMATION METHOD, COMMUNICATION QUALITY ESTIMATION APPARATUS, AND COMMUNICATION SYSTEM
CN1516461A (en) * 2003-01-10 2004-07-28 孙顺姬 Digital dynamic image compression method based on variable image plaid
CN1716211A (en) * 2004-07-02 2006-01-04 中国科学院上海微系统与信息技术研究所 Data error detects and corrects the positive and negative coding structure of intersection of usefulness and the method for decoding
CN1980386A (en) * 2006-07-20 2007-06-13 西安交通大学 1/5 small-wave core optimizing design computing method based on JPEG2000 picture compression

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
雷杰、周有喜、吴成柯、李云松、孔繁锵."一种新的高效干涉多光谱图像压缩算法".《光子学报》.2009,第38卷(第6期),第1534-1538页.

Also Published As

Publication number Publication date
CN102306213A (en) 2012-01-04

Similar Documents

Publication Publication Date Title
CN102306213B (en) Anti-single particle irradiating method and anti-single particle irradiating system based on frame data processing
Fujiwara Code design for dependable systems: theory and practical applications
Neuberger et al. A multiple bit upset tolerant SRAM memory
Sridevi et al. Implementation of error correction techniques in memory applications
Sharma et al. An HVD based error detection and correction of soft errors in semiconductor memories used for space applications
Dang et al. Parity-based ECC and mechanism for detecting and correcting soft errors in on-chip communication
Ibrahim et al. An energy efficient and low overhead fault mitigation technique for internet of thing edge devices reliable on‐chip communication
Freitas et al. LPC: An error correction code for mitigating faults in 3D memories
Neelima et al. Efficient adjacent 3D parity error detection and correction codes for embedded memories
Song et al. SEC-BADAEC: An efficient ECC with no vacancy for strong memory protection
Dong et al. A universal, low-delay, SEC-DEC-TAEC code for state register protection
Dang et al. An adaptive and high coding rate soft error correction method in network-on-chips
Satyanarayana et al. Design and implementation of error detection and correction system for semiconductor memory applications
Freitas et al. OPCoSA: an Optimized Product Code for space applications
Shahriyar et al. An efficient error correction approach by using successive parity generation
Singh et al. RAM error detection & correction using HVD implementation
Li et al. Area-efficient fault-tolerant design for low-density parity-check decoders
Sundary et al. Multiple error detection and correction over GF (2 m) using novel cross parity code
Santhia et al. Error detection and correction using decimal matrix code: Survey
Ga et al. Embedded Hamming Scheme Implementation Using Single Bit Error Detection and Correction
Sarala et al. Realization of power optimized fault tolerant memory protected ecc structure
RANI et al. Multi Bit Errors Detection and Correction using SRAM Based DMC
Pushpalatha et al. Error Detection and Correction using Decimal Matrix Algorithm
Reviriego et al. Reduction of parity overhead in a subset of orthogonal Latin square codes
RT et al. Rectifying the Impact of Multiple Cell Upsets in Memory Devices

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20130123

Termination date: 20180719