[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

CN102203655A - 摄像设备 - Google Patents

摄像设备 Download PDF

Info

Publication number
CN102203655A
CN102203655A CN200980143810XA CN200980143810A CN102203655A CN 102203655 A CN102203655 A CN 102203655A CN 200980143810X A CN200980143810X A CN 200980143810XA CN 200980143810 A CN200980143810 A CN 200980143810A CN 102203655 A CN102203655 A CN 102203655A
Authority
CN
China
Prior art keywords
focus detection
pixel
emergent pupil
image
gravity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN200980143810XA
Other languages
English (en)
Other versions
CN102203655B (zh
Inventor
追川真
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Publication of CN102203655A publication Critical patent/CN102203655A/zh
Application granted granted Critical
Publication of CN102203655B publication Critical patent/CN102203655B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B13/00Viewfinders; Focusing aids for cameras; Means for focusing for cameras; Autofocus systems for cameras
    • G03B13/32Means for focusing
    • G03B13/34Power focusing
    • G03B13/36Autofocus systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/28Systems for automatic generation of focusing signals
    • G02B7/34Systems for automatic generation of focusing signals using different areas in a pupil plane
    • G02B7/346Systems for automatic generation of focusing signals using different areas in a pupil plane using horizontal and vertical areas in the pupil plane, i.e. wide area autofocusing
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/28Systems for automatic generation of focusing signals
    • G02B7/36Systems for automatic generation of focusing signals using image sharpness techniques, e.g. image processing techniques for generating autofocus signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/61Control of cameras or camera modules based on recognised objects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/63Control of cameras or camera modules by using electronic viewfinders
    • H04N23/633Control of cameras or camera modules by using electronic viewfinders for displaying additional information relating to control or operation of the camera
    • H04N23/635Region indicators; Field of view indicators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/67Focus control based on electronic image sensor signals
    • H04N23/672Focus control based on electronic image sensor signals based on the phase difference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/67Focus control based on electronic image sensor signals
    • H04N23/675Focus control based on electronic image sensor signals comprising setting of focusing regions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/60Noise processing, e.g. detecting, correcting, reducing or removing noise
    • H04N25/61Noise processing, e.g. detecting, correcting, reducing or removing noise the noise originating only from the lens unit, e.g. flare, shading, vignetting or "cos4"
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/703SSIS architectures incorporating pixels for producing signals other than image signals
    • H04N25/704Pixels specially adapted for focusing, e.g. phase difference pixel sets
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0037Arrays characterized by the distribution or form of lenses
    • G02B3/0056Arrays characterized by the distribution or form of lenses arranged along two different directions in a plane, e.g. honeycomb arrangement of lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/201Filters in the form of arrays
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/10Circuitry of solid-state image sensors [SSIS]; Control thereof for transforming different wavelengths into image signals
    • H04N25/11Arrangement of colour filter arrays [CFA]; Filter mosaics
    • H04N25/13Arrangement of colour filter arrays [CFA]; Filter mosaics characterised by the spectral characteristics of the filter elements
    • H04N25/134Arrangement of colour filter arrays [CFA]; Filter mosaics characterised by the spectral characteristics of the filter elements based on three different wavelength filter elements

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Focusing (AREA)
  • Studio Devices (AREA)
  • Automatic Focus Adjustment (AREA)

Abstract

一种摄像设备,包括:光电转换单元,其包括第一像素组和第二像素组,其中,所述第一像素组对经由拍摄镜头的第一出射光瞳区域形成的被摄体图像进行光电转换,以及所述第二像素组对经由第二出射光瞳区域形成的被摄体图像进行光电转换;焦点检测单元,用于使用从所述第一像素组获得的第一图像信号和从所述第二像素组获得的第二图像信号,检测所述拍摄镜头的焦点;计算单元,用于计算连接所述第一出射光瞳区域的重心和所述第二出射光瞳区域的重心的直线相对于所述第一像素组和所述第二像素组的像素排列方向的倾斜度;以及焦点检测范围设置单元,用于基于所述计算部件的计算结果设置焦点检测范围。

Description

摄像设备
技术领域
本发明涉及包括以下的焦点检测单元的摄像设备,该焦点检测单元根据从光电转换元件获得的一对图像信号的相对位置检测拍摄镜头的焦点状态。
背景技术
传统上,已知有以下的焦点检测方法:该焦点检测方法用于根据相对位置依赖于拍摄镜头的焦点状态而变化的一对图像信号之间的相位差,检测拍摄镜头的焦点状态。例如,在日本特开平5-127074号公报中公开了该方法。根据该方法,所谓的光瞳分割式焦点检测光学系统根据已经通过拍摄光学系统的一对光束在光电转换元件上形成一对被摄体图像。该光电转换元件将这些被摄体图像光电转换成被摄体图像信号。这些被摄体图像信号经过预定计算,从而计算拍摄光学系统的散焦量。
在光瞳分割式焦点检测光学系统中,光电转换元件包括具有第一入射角分布的第一焦点检测像素阵列、和具有相对于第一入射角分布偏移了的第二入射角分布的第二焦点检测像素阵列。入射角分布偏移的方向被称为光瞳分割方向。通过光瞳分割,焦点检测像素阵列对接收已经通过在光瞳分割方向上偏移了的一对不同的拍摄镜头光瞳区域的光束。随着拍摄镜头的焦点状态变化,经由一对光瞳区域形成的一对光学图像沿着光瞳分割方向在相反方向上移动。通过在光瞳分割方向上形成第一焦点检测像素阵列和第二焦点检测像素阵列,检测一对光学图像的移动量以估计焦点状态。这就是光瞳分割式焦点检测的原理。
根据拍摄光学系统和焦点检测光学系统的组合,光瞳分割式焦点检测装置有时存在焦点检测所使用的光束的暗影(eclipse)。不均匀的暗影不利地影响了焦点检测精度,并且在最坏的情况下,焦点检测失败。
日本特开平3-214133号公报公开了减少由暗影引起的不利影响的技术。根据日本特开平3-214133号公报,计算将由拍摄光学系统和焦点检测光学系统产生的光量减少与光接收元件表面上的位置相关联的光量分布信息。基于该光量分布信息,定义焦点检测范围或者校正信号。
日本特开平3-214133号公报考虑了光量减少,但没有考虑焦点检测光学系统的一对光瞳区域的重心朝向光瞳分割方向倾斜。
如果由于拍摄镜头的暗影因而一对光瞳区域被提取成在光瞳分割方向上倾斜的形状,则该对光瞳区域的重心在光瞳分割方向上倾斜。与光瞳分割方向平行地形成第一焦点检测像素阵列和第二焦点检测像素阵列。由于该原因,经由一对光瞳区域形成的一对被摄体图像移动的方向相对于第一焦点检测像素阵列和第二焦点检测像素阵列的方向偏移。如果图像移动方向和检测像素排列方向彼此不一致,则在第一焦点检测像素阵列和第二焦点检测像素阵列检测到的一对光学图像之间产生视差(parallax)。该视差改变了检测到的图像之间的间隔,从而产生焦点检测误差。
发明内容
作出本发明以解决上述缺陷,并且使得能够通过抑制由于拍摄镜头的暗影所产生的焦点检测误差来进行高精度的焦点检测。
根据本发明,提供一种摄像设备,包括:光电转换部件,其包括第一像素组和第二像素组,其中,所述第一像素组对经由拍摄镜头的第一出射光瞳区域形成的被摄体图像进行光电转换,以及所述第二像素组对经由不同于所述第一出射光瞳区域的第二出射光瞳区域形成的被摄体图像进行光电转换;焦点检测部件,用于使用从所述第一像素组获得的第一图像信号和从所述第二像素组获得的第二图像信号,检测所述拍摄镜头的焦点;计算部件,用于计算连接所述第一出射光瞳区域的重心和所述第二出射光瞳区域的重心的直线相对于所述第一像素组和所述第二像素组的像素排列方向的倾斜度;以及焦点检测范围设置部件,用于基于所述计算部件的计算结果设置焦点检测范围。
通过以下参考附图对典型实施例的说明,本发明的其它特征将变得明显。
附图说明
图1是示出根据本发明第一实施例的照相机的配置的框图;
图2是图像传感器的电路图;
图3是图像传感器的像素部的截面图;
图4是图像传感器的驱动时序图;
图5A和5B分别是图像传感器的摄像像素的平面图和截面图;
图6A和6B分别是图像传感器的焦点检测像素的平面图和截面图;
图7A和7B分别是图像传感器的其它焦点检测像素的平面图和截面图;
图8是用于解释图像传感器的光瞳分割的概念图;
图9是用于解释焦点检测区域的图;
图10是用于解释限制出射光瞳的状态的图;
图11是用于解释限制出射光瞳的状态的图;
图12是用于解释限制出射光瞳的状态的图;
图13是用于解释限制出射光瞳的状态的图;
图14A和14B是用于解释当像素排列方向和图像移动方向彼此不一致时出现的问题的图;
图15是用于解释当像素排列方向和图像移动方向彼此不一致时出现的问题的图;
图16A和16B是用于解释当像素排列方向和图像移动方向彼此不一致时出现的问题的图;
图17是用于解释当像素排列方向和图像移动方向彼此不一致时出现的问题的图;
图18A和18B是用于解释当像素排列方向和图像移动方向彼此不一致时出现的问题的图;
图19是用于解释当像素排列方向和图像移动方向彼此不一致时出现的问题的图;
图20是示出光量比RtAB和X方向上的像高之间的关系的图;
图21是示出光量LQ-A和LQ-B与X方向上的像高之间的关系的图;
图22是示出出射光瞳重心倾斜度INCL和W方向上的像高之间的关系的图;
图23是用于解释焦点检测区域中的多种类型的焦点检测像素对的图;
图24是示出横向偏移检测用的焦点检测范围的形状的图;
图25A和25B是根据第一实施例的摄像设备的主序列的流程图;
图26是焦点检测范围设置子例程的流程图;
图27是焦点检测子例程的流程图;
图28是拍摄子例程的流程图;
图29是根据第二实施例的摄像设备的主序列的流程图;
图30是根据第三实施例的包括焦点检测装置的摄像设备的侧视截面图;
图31是示出再成像透镜的从光出射面侧的中央切出的放大图;
图32是示出焦点检测传感器的芯片的从光入射面侧的中央切出的放大图;
图33是示出根据第三实施例的包括焦点检测装置的摄像设备的配置的框图;
图34是示出根据第三实施例的焦点检测范围的形状的图;以及
图35是根据第三实施例的摄像设备的主序列的流程图。
具体实施方式
现在将参考附图来详细说明本发明的实施例。
第一实施例
图1~28是用于解释本发明的第一实施例的图。将参考附图来说明第一实施例。
图1是根据本发明第一实施例的摄像设备的配置的框图。图1示出以下的数字照相机:该数字照相机包括具有图像传感器的照相机本体138和单独的拍摄镜头137,并且将拍摄镜头137可拆卸地安装在照相机本体138上。
首先,将解释拍摄镜头137的配置。
第一透镜组101配置在拍摄光学系统(成像光学系统)的前端部,并且沿着光轴往返移动地保持第一透镜组101。光圈102调节开口直径以调节拍摄时的光量。附图标记103表示第二透镜组。光圈102和第二透镜组103沿着光轴一起往返移动,以与第一透镜组101的往返移动同步地实现变焦操作(变焦功能)。
第三透镜组105沿着光轴往返移动以调节焦点。通过使凸轮筒(未示出)枢转,变焦致动器111驱动第一透镜组101和第二透镜组103以沿着光轴往返移动并进行变焦操作。光圈致动器112控制光圈102的开口直径以调节拍摄时的光量。调焦致动器114驱动第三透镜组105以沿着光轴往返移动并调节焦点。快门139控制拍摄静止图像时的曝光时间。快门致动器140移动快门139。
照相机通信电路136将与镜头有关的信息发送至照相机并且接收与照相机有关的信息。与镜头有关的信息是与变焦状态、光圈状态、调焦状态和镜头框等有关的信息。照相机通信电路136将这些类型的信息传递至照相机中包括的镜头通信电路135。
接着,将解释照相机本体138。
光学低通滤波器106是用于减少所拍摄图像的伪色和波纹的光学元件。图像传感器107包括C-MOS传感器及其外围电路。图像传感器107是在m×n个光接收像素上形成具有拜尔阵列的片上原色马赛克滤波器的二维1CCD滤色器。
使用电子闪光灯115来照亮拍摄时的被摄体。电子闪光灯115优选是使用氙气管的闪光灯照明装置,但可以是具有连续发光LED的照明装置。AF辅助光装置116将具有预定开口图案的掩模的图像经由投射透镜投影到视野,由此提高针对暗的被摄体或低对比度的被摄体的焦点检测能力。
照相机中的CPU 121执行照相机本体的各种控制操作。CPU 121包括运算单元、ROM、RAM、A/D转换器、D/A转换器和通信接口电路等。基于ROM中存储的预定程序,CPU 121驱动照相机的各种电路以执行诸如AF、拍摄、图像处理和记录等的一系列操作。
电子闪光灯控制电路122与拍摄操作同步地控制电子闪光灯115的ON操作。辅助光驱动电路123与焦点检测操作同步地控制AF辅助光装置116的ON操作。图像传感器驱动电路124控制图像传感器107的摄像操作,对获取到的图像信号进行A/D转换,并将数字数据发送至CPU 121。图像处理电路125对图像传感器107获取到的图像进行诸如γ转换、颜色插值和JPEG压缩等的处理。
调焦驱动电路126进行控制以基于焦点检测结果驱动调焦致动器114。调焦驱动电路126驱动第三透镜组105以沿着光轴往返移动,从而调节焦点。光圈驱动电路128进行控制以驱动光圈致动器112,由此控制光圈102的开口。变焦驱动电路129根据用户的变焦操作驱动变焦致动器111。镜头通信电路135与拍摄镜头137中的照相机通信电路136进行通信。快门驱动电路145驱动快门致动器140。
显示器131例如是LCD。显示器131显示与照相机的拍摄模式有关的信息、拍摄前的预览图像、拍摄后的确认图像和焦点检测时的聚焦显示图像等。操作开关132包括电源开关、释放(拍摄触发)开关、变焦操作开关和拍摄模式选择开关。可拆卸闪速存储器133记录所拍摄图像。照相机存储器144保存CPU 121进行计算所需的各种类型的数据。
图2是示出根据第一实施例的图像传感器的示意电路配置的电路图。图2示出二维C-MOS区域传感器的2×4个像素。当使用该区域传感器作为图像传感器时,配置如图2所示的多个像素以获取高分辨率图像。本实施例将例示像素间距为2μm、有效像素计数为3,000×2,000=6,000,000个像素、并且摄像画面大小为宽度6mm×长度4mm的图像传感器。
在图2中,附图标记1表示由MOS晶体管栅极和该栅极下方的耗尽层构成的光电转换元件的光电转换部;附图标记2表示光电门;附图标记3表示传送开关MOS晶体管;附图标记4表示复位MOS晶体管;并且附图标记5表示源极跟随器放大器MOS晶体管。附图标记6表示水平选择开关MOS晶体管;附图标记7表示源极跟随器的负载MOS晶体管;附图标记8表示暗输出传送MOS晶体管;附图标记9表示明输出传送MOS晶体管;附图标记10表示暗输出累积电容CTN;并且附图标记11表示名输出累积电容CTS。附图标记12表示水平传送MOS晶体管;附图标记13表示水平输出线复位MOS晶体管;附图标记14表示差动输出放大器;附图标记15表示水平扫描电路;并且附图标记16表示垂直扫描电路。
图3是示出像素部的截面图。在图3中,附图标记17表示P型阱;附图标记18表示栅极氧化膜;附图标记19表示第一多硅(poly-Si)层;附图标记20表示第二多硅Si层;并且附图标记21表示n+浮动扩散区域(FD区域)。FD区域21经由另一传送MOS晶体管连接至另一光电转换部。在图3中,在两个传送MOS晶体管3的漏极之间共用FD区域21,以通过微图形化和FD区域21的容量减小来提高感光度。可以通过例如Al布线连接FD区域21。
将参考图4的时序图来解释图像传感器的操作。该时序图示出从所有的像素独立输出信号的情况。
响应于来自垂直扫描电路16的定时输出,控制脉冲φL变为高电平以复位垂直输出线。控制脉冲φR0、φPG00和φPGe0变为高电平,以接通复位MOS晶体管4并且将光电门2的第一多硅层19变为高电平。在时间T0时,控制脉冲φS0变为高电平,以接通选择开关MOS晶体管6并且选择第一线和第二线的像素。然后,控制脉冲φR0变为低电平,以停止复位FD区域21。FD区域21变为浮动状态,从而连接源极跟随器放大器MOS晶体管5的栅极和源极。在时间T1时,控制脉冲φTN变为高电平,以通过源极跟随器操作将暗电压从FD区域21输出至累积电容CTN 10。
为了对来自第一线的像素的输出进行光电转换,第一线的控制脉冲φTX00变为高电平,以接通传送开关MOS晶体管3。在时间T2时,控制脉冲φPG00变为低电平。优选此时的电压关系使在光电门2下方扩散的电位阱上升,以将光诱导载流子完全传送至FD区域21。只要可以完全传送载流子,控制脉冲φTX就可以不是脉冲而是固定电位。
在时间T2时,将电荷从光电二极管的光电转换部1传送至FD区域21,从而根据光改变FD区域21的电位。此时,源极跟随器放大器MOS晶体管5处于浮动状态。在时间T3时,控制脉冲φTs变为高电平,以将FD区域21的电位输出至累积电容CTS 11。直到此时为止,已将来自第一线的像素的暗输出和明输出分别累积在累积电容CTN 10和CTS 11中。在时间T4时,控制脉冲φHC暂时变为高电平,以接通水平输出线复位MOS晶体管13并且复位水平输出线。在水平传送时间段中,响应于来自水平扫描电路15的扫描定时信号,将来自像素的暗输出和明输出输出至水平输出线。此时,差动放大器14输出累积电容CTN 10和CTS 11之间的差动输出VOUT,从而获得不存在像素的随机噪声和固定模式噪声的具有高S/N比的信号。与像素30-11和30-21同时将像素30-12和30-22的光电荷分别累积在累积电容CTN 10和CTS 11中。然而,通过使来自水平扫描电路15的定时脉冲延迟了一个像素来将这些光电荷读出至水平输出线。然后,从差动放大器14输出这些光电荷。
根据本实施例,在片内获得差动输出VOUT。然而,代替在片内获得差动输出VOUT,可以在片外部使用传统的CDS(Correlated Double Sampling,相关双采样)电路来获得相同的效果。
在将明输出输出至累积电容CTS 11之后,控制脉冲φR0变为高电平,以接通复位MOS晶体管4并且将FD区域21复位至电源VDD。在从第一线的水平传送结束之后,从第二线读出光电荷。在从第二线读出时,同样驱动控制脉冲φTXe0和φPGe0以供给高电平的控制脉冲φTN和φTS。将光电荷分别累积在累积电容CTN10和CTS 11中,从而提取暗输出和明输出。通过该驱动,可以从第一线和第二线单独读出光电荷。之后,驱动垂直扫描电路以从第(2n+1)线和第(2n+2)线(n=1、2、…)读出光电荷。以这种方式,可以从所有的像素单独读出光电荷。更具体地,对于n=1,控制脉冲φS1变为高电平,然后φR1变为低电平。控制脉冲φTN和φTX01变为高电平,控制脉冲φPG01变为低电平,并且控制脉冲φTs变为高电平。控制脉冲φHC暂时变为高电平,从而从像素30-31和30-32读出像素信号。随后,按上述方式施加控制脉冲φTXe1和φPGe1,从而从像素30-41和30-42读出像素信号。
图5A~7B是用于解释摄像像素和焦点检测像素的结构的图。
第一实施例采用以下的拜尔阵列:在该拜尔阵列中,在2×2=4个像素中在对角上配置具有G(绿色)光谱灵敏度的像素,并且配置各自具有R(红色)光谱灵敏度或B(蓝色)光谱灵敏度的像素作为其余两个像素。焦点检测像素按预定规则分布配置在这些拜尔阵列之间。在日本特开2000-156823号公报等中公开了在摄像像素之间离散配置焦点检测像素的技术,并且该技术是众所周知的,因此将省略对该技术的说明。
图5A和5B示出摄像像素的配置和结构。
图5A是2×2个摄像像素的平面图。如众所周知的,在拜尔阵列中,在对角上配置G像素,并且配置R像素和B像素作为其余两个像素。重复配置该2×2的结构。
图5B是沿着图5A中的线A-A所得的截面图。附图标记ML表示配置在各像素前面的片上微型透镜;附图标记CFR表示R(红色)滤色器;并且附图标记CFG表示G(绿色)滤色器。附图标记PD(Photodiode,光电二极管)表示图3所示的C-MOS传感器的示意光电转换部。附图标记CL表示用于形成传递C-MOS传感器内的各种信号的信号线的互连层。附图标记TL表示示意拍摄光学系统。
摄像像素的片上微型透镜ML和光电转换部PD被配置成尽可能有效地获取已经通过拍摄光学系统TL的光束。换言之,拍摄光学系统TL的出射光瞳EP和光电转换部PD经由微型透镜ML呈共轭关系,并且光电转换部的有效面积被设计成大面积。图5B示出入射到R像素上的光束,但G像素和B(蓝色)像素也具有相同的结构。与R、G和B摄像像素各自相对应的出射光瞳EP的直径大。可以高效地获取从被摄体传播来的光束,从而提高图像信号的S/N比。
图6A和6B示出用于在拍摄镜头的水平方向(横向方向)上分割光瞳的焦点检测像素的配置和结构。
图6A是包括焦点检测像素的2×2个像素的平面图。当获得摄像信号时,G像素提供亮度信息的主要成分。人类的图像识别特性对亮度信息敏感。如果省略了G像素,则容易识别出图像质量劣化。相反,R像素或B像素获取颜色信息,并且人类的图像识别特性对颜色信息不敏感。因此,即使省略了用于获取颜色信息的部分像素,也难以识别出图像质量劣化。据此,在本实施例中,在2×2个像素中,剩余G像素作为摄像像素,并且利用焦点检测像素替换R像素和B像素。在图6A中,SHA和SHB是焦点检测像素。
图6B是沿着图6A中的线A-A所得的截面图。微型透镜ML和光电转换部PD具有与图5B所示的摄像像素(第三像素组)的结构相同的结构。在本实施例中,不使用来自焦点检测像素的信号生成图像,因此代替颜色分离用的滤色器,配置透明膜CFW(白色)。为了利用图像传感器分割光瞳,使互连层CL的开口相对于微型透镜ML的中心线在一个方向上偏移。更具体地,像素SHA的开口OPHA向右侧偏移,并且接收已经通过拍摄光学系统TL的左侧的出射光瞳EPHA的光束。同样,像素SHB的开口OPHB向左侧偏移,并且接收已经通过拍摄光学系统TL的右侧的出射光瞳EPHB的光束。像素SHA在水平方向上规则排列,并且将通过这些像素(第一像素组)所获取的被摄体图像(第一图像信号)定义为图像A。像素SHB也在水平方向上规则排列,并且将通过这些像素(第二像素组)所获取的被摄体图像(第二图像信号)定义为图像B。通过检测图像A和B的相对位置,可以检测拍摄镜头137的散焦量。
微型透镜ML用作以下的透镜元件:该透镜元件用于生成一对光学图像,即利用已经通过拍摄光学系统TL的左侧的出射光瞳EPHA(第一出射光瞳区域)的光束形成的图像A、和利用已经通过拍摄光学系统TL的右侧的出射光瞳EPHB(第二出射光瞳区域)的光束形成的图像B。
像素SHA和SHB使得能够对具有拍摄帧的横向方向上的亮度分布、例如纵向线的被摄体进行焦点检测,但不能对具有纵向方向上的亮度分布的横向线进行焦点检测。因而,本实施例采用用于即使在拍摄镜头的垂直方向(纵向方向)上也分割光瞳的像素,以使得即使在后者情况下也可以进行焦点检测。
图7A和7B示出用于在拍摄镜头的垂直方向上分割光瞳的焦点检测像素的配置和结构。图7A是包括焦点检测像素的2×2个像素的平面图。与图6A相同,剩余G像素作为摄像像素,并且利用焦点检测像素替换R像素和B像素。在图7A中,SVC和SVD是焦点检测像素。
图7B是沿着图7A中的线A-A所得的截面图。除了图6B中的像素具有用于在横向方向上分割光瞳的结构、而图7B中的像素具有用于在纵向方向上分割光瞳的结构以外,图7B中的像素具有与图6B中的像素的结构相同的结构。像素SVC的开口OPVC向下偏移,并且接收已经通过拍摄光学系统TL的上侧的出射光瞳EPVC的光束。同样,像素SVD的开口OPVD向上偏移,并且接收已经通过拍摄光学系统TL的下侧的出射光瞳EPVD的光束。像素SVC在垂直方向上规则排列,并且将通过这些像素所获得的被摄体图像定义为图像C。像素SVD也在垂直方向上规则排列,并且将通过这些像素所获得的被摄体图像定义为图像D。通过检测图像C和D之间的相对位置,可以检测具有垂直方向上的亮度分布的被摄体图像的散焦量。
图8是用于解释第一实施例中的图像传感器的光瞳分割的概念的图。
附图标记TL表示拍摄镜头;附图标记107表示图像传感器;附图标记OBJ表示被摄体;并且附图标记IMG表示被摄体图像。
如参考图5A和5B所述,摄像像素接收已经通过拍摄镜头的整个出射光瞳EP的光束。相反,焦点检测像素具有如参考图6A、6B、7A和7B所述的光瞳分割功能。更具体地,当从摄像面观看透镜后端时,图6A和6B中的像素SHA接收已经通过左侧的光瞳的光束,也就是说,接收已经通过图8中的光瞳EPHA的光束。同样,像素SHB、SVC和SVD分别接收已经通过光瞳EPHB、EPVC和EPVD的光束。焦点检测像素分布在图像传感器107的整个区域中,并且可以在整个摄像区域中检测焦点。
图9是用于解释焦点检测时获取到的图像和焦点检测区域的图。
在图9中,摄像面上形成的被摄体图像包含位于中央的人物、位于左侧的前景中的树和位于右侧的背景中的山。在本实施例中,各自包括横向偏移检测用的像素SHA和SHB的对和各自包括纵向偏移检测用的像素SVC和SVD的对作为焦点检测像素按等密度配置在整个摄像区域上。像素对SHA和SHB以及像素对SVC和SVD这两者均配置在光瞳分割方向上。像素SHA和SHB的光瞳分割方向是x方向,因此像素SHA和SHB在x方向上配置。像素SVC和SVD的光瞳分割方向是y方向。在横向偏移方向上,使用从横向偏移检测用的像素对SHA和SHB获得的一对图像信号作为用于计算相位差的AF像素信号。在纵向偏移检测时,使用从纵向偏移检测用的像素对SVC和SVD获得的一对图像信号作为用于计算相位差的AF像素信号。可以在摄像区域中的任意位置处设置横向偏移检测和纵向偏移检测用的距离测量区域。
在图9中,人物的面部存在于画面的中央。当利用已知的面部识别技术检测到存在面部时,使用面部区域作为中心来设置横向偏移检测用的焦点检测区域AFARh(x1,y1)和纵向偏移检测用的焦点检测区域AFARv(x3,y3)。后缀“h”表示水平方向,并且(x1,y1)和(x3,y3)表示焦点检测区域的左上角的坐标。AFSIGh(A1)是通过针对30个区连接焦点检测区域AFARh(x1,y1)的各区中的横向偏移检测用的焦点检测像素SHA所获得的相位差检测用的图像A信号。同样,AFSIGh(B1)是通过针对30个区连接各区中的横向偏移检测用的焦点检测像素SHB所获得的相位差检测用的图像B信号。利用已知的相关计算来计算图像A信号AFSIGh(A1)和图像B信号AFSIGh(B1)的相对横向偏移量,从而获得拍摄镜头137的散焦量。
以相同的方式还获得了焦点检测区域AFARv(x3,y3)中的散焦量。比较在横向偏移和纵向偏移用的焦点检测区域中检测到的散焦量,并且采用可靠性较高的值。
将考虑指定画面左侧的树的树干附近的部位作为焦点检测位置的情况。树的树干主要具有纵向线成分、即横向方向上的亮度分布。判断为树干是适合于横向偏移检测的被摄体。设置了横向偏移检测用的焦点检测区域AFARh(x2,y2)。当指定画面右侧的山的山脊线作为焦点检测位置时,判断为山脊线是适合于纵向偏移检测的被摄体。这是因为山脊线主要具有横向线成分、即纵向方向上的亮度分布。设置了纵向偏移检测用的焦点检测区域AFARv(x4,y4)。
如上所述,根据第一实施例,可以在画面中的任意位置处设置横向偏移检测和纵向偏移检测用的焦点检测区域。即使被摄体的投影位置和亮度分布的方向变化,也可以总是精确检测到焦点。
图10~13是用于解释通过拍摄镜头137的渐晕(vignetting)来限制出射光瞳的状态的图。为了便于说明,在利用拍摄镜头137的两个镜头框限制出射光瞳的前提下简化该模型。图10是示出投影到拍摄镜头137的出射光瞳上的镜头框的图。图10是当从由-X轴、+Y轴和-Z轴这三个轴定义的象限观看时的立体图。在图10中,附图标记107表示图像传感器;附图标记141和142表示拍摄镜头137的镜头框;并且附图标记141C和142C表示通过将镜头框141和142投影到拍摄镜头137的出射光瞳上所获得的镜头框。在图像传感器107的光接收面上,点140在+X方向上具有像高X140并且在Y方向上具有像高Y140。到达图像传感器107的光接收面的光轴的光未被拍摄镜头137的镜头框遮蔽,并且已经通过图8所示的整个出射光瞳EP。当从拍摄镜头137观看点140时,镜头框141看上去是出射光瞳上在-X方向和-Y方向上偏移了的镜头框141C,并且镜头框142看上去是出射光瞳上在+X方向和+Y方向上偏移了的镜头框142C。到达点140的光已经通过由镜头框141C和142C从图8所示的整个出射光瞳EP切出的区域(图10中的阴影线部分)。
将参考图11来解释依赖于像高X140的、投影到出射光瞳上的镜头框141C和142C的变化。
图11示出当分别从+Y方向和-Z方向观看时的两个图。Z141是从图像传感器107到镜头框141的距离,Z142是从图像传感器107到镜头框142的距离,并且Z143是从图像传感器107到出射光瞳的距离。D141是镜头框141的开口直径,并且D142是镜头框142的开口直径。EPHA是像素SHA的光瞳,并且EPHB是像素SHB的光瞳。EPHX-A是通过利用拍摄镜头137的渐晕限制光瞳EPHA所形成的光瞳,并且EPHX-B是通过利用拍摄镜头137的渐晕限制光瞳EPHB所形成的光瞳。根据图11,通过以下给出投影到出射光瞳上的镜头框141C相对于光轴的X偏移量ShiftX141C、开口直径D141C、投影到出射光瞳上的镜头框142C相对于光轴的X偏移量ShiftX142C和开口直径D142C。
ShiftX141C=X140·(Z143-Z141)/Z141      …(1)
D141C=D141·Z143/Z141                  …(2)
ShiftX142C=X140·(Z142-Z143)/Z142      …(3)
D142C=D142·Z143/Z142                  …(4)
如根据等式(1)~(4)显而易见,投影到出射光瞳上的镜头框141C和142C根据像高X140而变化。
将参考图12来解释投影到出射光瞳上的镜头框141C和142C根据像高Y140的变化。图12示出当分别从-X方向和-Z方向观看时的两个图。根据图12,通过以下给出投影到出射光瞳上的镜头框141C相对于光轴的Y偏移量ShiftY141C、开口直径D141C、投影到出射光瞳上的镜头框142C相对于光轴的Y偏移量ShiftY142C和开口直径D142C
ShiftY141C=Y140·(Z143-Z141)/Z141     …(5)
ShiftY142C=Y140·(Z142-Z143)/Z142     …(6)
如根据等式(5)和(6)显而易见,投影到出射光瞳上的镜头框141C和142C也根据像高Y140而变化。
利用相对于光轴在X方向上偏移了ShiftX141C并且在Y方向上偏移了ShiftY141C的具有直径D141C的开口、和相对于光轴在X方向上偏移了ShiftX142C并且在Y方向上偏移了ShiftY142C的具有直径D142C的开口来限制像素SHA的出射光瞳EPHA和像素SHB的出射光瞳EPHB。结果,出射光瞳EPHA被限制为出射光瞳EPHX-A,并且出射光瞳EPHB被限制为出射光瞳EPHX-B
将参考图13来解释通过拍摄镜头137的渐晕所形成的出射光瞳EPHX-A和EPHX-B的重心。
图13是当从+Z方向观看时拍摄镜头137的出射光瞳的图。利用相对于光轴在X方向上偏移了ShiftX141C并且在Y方向上偏移了ShiftY141C的具有直径D141C的开口、和相对于光轴在X方向上偏移了ShiftX142C并且在Y方向上偏移了ShiftY142C的具有直径D142C的开口来切出像素SHA的出射光瞳EPHA和像素SHB的出射光瞳EPHB。将出射光瞳EPHA和EPHB分别限制为出射光瞳EPHX-A和EPHX-B。将出射光瞳EPHX-A的重心定义为GravityPointA,并且将出射光瞳EPHX-B的重心定义为GravityPointB。尽管出射光瞳EPHX-A的重心GravityPointA在Y方向上几乎不移动,但出射光瞳EPHX-B的重心GravityPointB在-Y方向上大幅移动。连接出射光瞳EPHX-A的重心GravityPointA和出射光瞳EPHX-B的重心GravityPointB的线相对于X轴倾斜。设DistanceX-GP是连接出射光瞳EPHX-A的重心GravityPointA和出射光瞳EPHX-B的重心GravityPointB的矢量的x成分、并且DistanceY-GP是y成分,则通过以下来计算出射光瞳重心倾斜度INCL。
出射光瞳重心倾斜度INCL
=DistanceY-GP/DistanceX-GP    …(7)
如参考图9所述,像素SHA和SHB在X方向上排列。然而,连接重心GravityPointA和GravityPointB的线相对于X方向倾斜。已经通过出射光瞳EPHX-A和EPHX-B的光束根据拍摄镜头137的焦点状态在倾斜了INCL的方向上移动。也就是说,像素排列方向和图像移动方向彼此不一致。
将参考图14A~19来解释当像素排列方向和图像移动方向彼此不一致时出现的问题。
图14A和14B示出投影到焦点检测区域AFARh中的一条纵向线。图14A示出焦点检测区域AFARh中的像素SHA接收到的一条纵向线。图14B示出像素SHB接收到的一条纵向线。在图14A和14B中,像素对SHA和SHB在横向方向上对齐并且检测横向图像移动量。参考图14A,Point-Def0是当拍摄镜头137聚焦时投影一条纵向线的图像的位置。如果拍摄镜头137失焦,则像素SHA接收到的一条纵向线的图像沿着相对于水平方向倾斜了出射光瞳重心倾斜度INCL的方向向左下方移动。Point-DefA是像素SHA接收到的一条纵向线的位置。参考图14B,Point-Def0是当拍摄镜头137聚焦时投影一条纵向线的图像的位置。如果拍摄镜头137失焦,则像素SHB接收到的一条纵向线的图像沿着相对于水平方向偏移了出射光瞳重心倾斜度INCL的方向向右上方移动。Point-DefB是像素SHB接收到的一条纵向线的位置。换句话说,像素SHA接收到的一条纵向线和像素SHB接收到的一条纵向线沿着相对于水平方向倾斜了出射光瞳重心倾斜度INCL的方向在相反方向上移动。
图15示出从像素对SHA和SHB获得的图像信号。在图15中,AFSIG(AA1)是从像素SHA获得的图像信号,并且AFSIG(BB1)是从像素SHB获得的图像信号。此时,AFSIG(AA1)和AFSIG(BB1)具有相位差Phase1。
将参考图16A、16B和17来检查将顺时针地倾斜了45°的一条线的图像投影到焦点检测区域AFARh中的情况。
图16A和16B示出投影到焦点检测区域AFARh中的顺时针地倾斜了45°的一条线的图像。图16A示出焦点检测区域AFARh中的像素SHA感测到的顺时针地倾斜了45°的一条线。图16B示出像素SHB感测到的顺时针地倾斜了45°的一条线。参考图16A,Point-Def0是当拍摄镜头137聚焦时投影顺时针地倾斜了45°的一条线的图像的位置。如果拍摄镜头137失焦,则像素SHA感测到的顺时针地倾斜了45°的一条线的图像沿着相对于水平方向倾斜了出射光瞳重心倾斜度INCL的方向向左下方移动。Point-DefA是像素SHA接收到的顺时针地倾斜了45°的一条线的位置。参考图16B,Point-Def0是当拍摄镜头137聚焦时投影顺时针地倾斜了45°的一条线的图像的位置。如果拍摄镜头137失焦,则像素SHB感测到的顺时针地倾斜了45°的一条线的图像沿着相对于水平方向倾斜了出射光瞳重心倾斜度INCL的方向向右上方移动。Point-DefB是像素SHB感测到的顺时针地倾斜了45°的一条线的位置。也就是说,像素SHA接收到的图像和像素SHB接收到的图像沿着相对于水平方向倾斜了出射光瞳重心倾斜度INCL的方向在相反方向上移动。
图17示出从像素SHA和SHB获得的图像信号。在图17中,AFSIG(AA2)是从像素SHA获得的图像,并且AFSIG(BB2)是从像素SHB获得的图像信号。对于顺时针地倾斜了45°的一条线,在Point-DefA相对于Point-Def0向下移动的影响下,从像素SHA获得的图像信号AFSIG(AA2)向右移动。相反,在Point-DefB相对于Point-Def0向上移动的影响下,从像素SHB获得的图像信号AFSIG(BB2)向左移动。然后,AFSIG(AA2)和AFSIG(BB2)之间的相位差变为比针对一条纵向线的相位差Phase1小的Phase2。
图18A和18B示出投影到焦点检测区域AFARh中的逆时针地倾斜了45°的一条线的图像。图18A示出焦点检测区域AFARh中的像素SHA感测到的逆时针地倾斜了45°的一条线。图18B示出像素SHB感测到的逆时针地倾斜了45°的一条线。参考图18A,Point-Def0是当拍摄镜头137聚焦时投影逆时针地倾斜了45°的一条线的图像的位置。如果拍摄镜头137失焦,则像素SHA感测到的逆时针地倾斜了45°的一条线的图像沿着相对于水平方向倾斜了出射光瞳重心倾斜度INCL的方向向左下方移动。Point-DefA是像素SHA接收到的逆时针地倾斜了45°的一条线的位置。参考图18B,Point-Def0是当拍摄镜头137聚焦时投影逆时针地倾斜了45°的一条线的图像的位置。如果拍摄镜头137失焦,则像素SHB感测到的逆时针地倾斜了45°的一条线的图像沿着相对于水平方向倾斜了出射光瞳重心倾斜度INCL的方向向右上方移动。Point-DefB是像素SHB感测到的逆时针地倾斜了45°的一条线的位置。也就是说,像素SHA接收到的图像和像素SHB接收到的图像沿着相对于水平方向倾斜了出射光瞳重心倾斜度INCL的方向在相反方向上移动。
图19示出从像素SHA和SHB获得的图像信号。在图19中,AFSIG(AA3)是从像素SHA获得的图像信号,并且AFSIG(BB3)是从像素SHB获得的图像信号。对于逆时针地倾斜了45°的一条线,在Point-DefA相对于Point-Def0向下移动的影响下,从像素SHA获得的图像信号AFSIG(AA3)向左移动。作为对比,在Point-DefB相对于Point-Def0向上移动的影响下,从像素SHB获得的图像信号AFSIG(BB3)向右移动。然后,AFSIG(AA3)和AFSIG(BB3)之间的相位差变为比针对一条纵向线的相位差Phase1大的Phase3。
如参考图14A~19所述,当像素排列方向和图像移动方向彼此不一致时,相位差检测结果根据所投影的图像的图案而彼此不同。在利用相位差检测方法的焦点检测中,基于一对图像信号之间的相位差来检测拍摄镜头137的焦点状态。相位差检测时的误差直接导致焦点检测误差。为了防止该情况,第一实施例的摄像设备基于出射光瞳重心倾斜度INCL确定焦点检测范围,并且可以在不增大焦点检测误差的情况下实现高精度的焦点检测。因此,该摄像设备可以减小由于拍摄镜头137的渐晕所引起的焦点检测误差。
图20~22示出基于各个参数被确定为焦点检测范围的像高。作为第一实施例的特征,除了像素对SHA和SHB的光量和光量比以外,考虑了出射光瞳重心在像素排列方向上的倾斜度来确定焦点检测范围。
图20是示出像素对SHA和SHB接收到的光量的比与X方向上的像高之间的关系的图。如参考图10~13所述,当像高变化时,由于拍摄镜头137的渐晕而导致像素对SHA和SHB的出射光瞳被限制为EPHX-A和EPHX-B(参见图13)。出射光瞳EPHX-A和EPHX-B在面积上不同,因此像素SHA接收到的光量和像素SHB接收到的光量彼此不同。像素SHA和SHB接收到的光量的比将被称为光量比RtAB。像素SHA和SHB在X方向上分割光瞳。因而,当像高在X方向上变化时,光量比大幅变化。如图20所示,针对X方向上的各像高计算光量比RtAB。将光量比RtAB落入给定阈值Rt0和1之间的范围L1设置为焦点检测范围。
参考图20,横轴表示X方向上的像高,并且纵轴表示光量比RtAB。通过将像素SHA和SHB接收到的光量中较大的光量设置为分母并将较小的光量设置为分子,计算出图20所示的光量比RtAB为总是小于1的数值。这样,从焦点检测范围中排除了由于拍摄镜头137的渐晕而导致像素SHA接收到的光量和像素SHB接收到的光量彼此大大不同的范围。这样使得能够在不增大由于拍摄镜头137的渐晕所引起的焦点检测误差的情况下,进行高精度的焦点检测。
图21示出像素对SHA和SHB接收到的光量与X方向上的像高之间的关系。如参考图10~13所述,当像高变化时,由于拍摄镜头137的渐晕而导致像素对SHA和SHB的出射光瞳被限制为EPHX-A和EPHX-B(参见图13)。出射光瞳EPHX-A和EPHX-B的面积根据像高X而变化。像素SHA接收到的光量LQ-A和像素SHB接收到的光量LQ-B也根据像高X而变化。据此,如图21所示,针对X方向上的各像高计算LQ-A和LQ-B。将LQ-A和LQ-B这两者均落入给定阈值LQ0和1之间的范围L2设置为焦点检测范围。
参考图21,横轴表示X方向上的像高,并且纵轴表示像素接收到的光量LQ。通过对所有像高处的最大值进行标准化,利用0~1的值来表现图21所示的光量LQ。以这种方式,从焦点检测范围中排除了由于拍摄镜头137的渐晕而导致像素SHA和SHB接收到的光量小的范围。这样使得能够在不增大由于拍摄镜头137的渐晕所引起的焦点检测误差的情况下进行高精度的焦点检测。
图22是示出出射光瞳重心倾斜度INCL和W方向上的像高之间的关系的图。参考图22,横轴W表示使X轴朝向Y轴旋转了45°的方向、即X方向和Y方向之间的中间方向上的像高。纵轴表示出射光瞳重心倾斜度INCL。如参考图10~13所述,随着W方向上的像高增加,由于拍摄镜头137的渐晕而导致连接像素SHA的出射光瞳重心GravityPointA和像素SHB的出射光瞳重心GravityPointB的线相对于像素排列方向倾斜。因而,如图22所示,针对W方向上的各像高计算出射光瞳重心倾斜度INCL。将出射光瞳重心倾斜度INCL没有超过给定阈值INCL0的范围L3设置为焦点检测范围。以这种方式,从焦点检测范围中排除了由于拍摄镜头137的渐晕而导致出射光瞳重心倾斜度INCL变大的范围。这样使得能够在不增大由于拍摄镜头137的渐晕所引起的焦点检测误差的情况下进行高精度的焦点检测。
图23是用于解释在不同的像素对之间保持出射光瞳EPHA和EPHB之间的位置关系时、横向偏移检测用的焦点检测区域AFARh中的多种类型的像素对SHA和SHB相对于像素排列方向的偏移的图。将横向偏移检测用的焦点检测区域AFARh在纵向方向上分割成三个区域。出射光瞳对EPHA和EPHB相对于光轴的偏移量在不同的区域之间不同。将这三个分割后的焦点检测区域从上部开始依次称为AFARh-Pattern1、AFARh-Pattern2和AFARh-Pattern3。
EPHA-P1是焦点检测区域AFARh-Pattern1中的像素SHA的出射光瞳。EPHB-P1是焦点检测区域AFARh-Pattern1中的像素SHB的出射光瞳。EPHA-P2是焦点检测区域AFARh-Pattern2中的像素SHA的出射光瞳。EPHB-P2是焦点检测区域AFARh-Pattern2中的像素SHB的出射光瞳。EPHA-P3是焦点检测区域AFARh-Pattern3中的像素SHA的出射光瞳。EPHB-P3是焦点检测区域AFARh-Pattern3中的像素SHB的出射光瞳。
将焦点检测区域AFARh-Pattern1中的出射光瞳对EPHA-P1和EPHB-P1设置在绕光轴几乎对称的位置处。该出射光瞳对EPHA-P1和EPHB-P1之间的中心存在于光轴上。
作为对比,在保持焦点检测区域AFARh-Pattern2中的出射光瞳对EPHA-P2和EPHB-P2之间的间隔时,将它们设置在向左偏移的位置处。也就是说,出射光瞳对EPHA-P2和EPHB-P2之间的中心相对于光轴向左偏移。
在保持焦点检测区域AFARh-Pattern3中的出射光瞳对EPHA-P3和EPHB-P3之间的间隔时,将它们设置在向右偏移的位置处。也就是说,出射光瞳对EPHA-P3和EPHB-P3之间的中心相对于光轴向右偏移。
当在给定的出射光瞳对上严重地发生拍摄镜头137的渐晕从而极大限制了出射光瞳区域时,前述的光量比、光量和出射光瞳重心倾斜度均超过了它们的阈值,这导致不能进行焦点检测。然而,在不同的出射光瞳对上可能没有严重地发生渐晕,并且可能可以进行焦点检测。考虑到该情况,第一实施例的摄像设备在焦点检测区域AFARh中设置多种类型的出射光瞳对。如果至少一个出射光瞳对可以进行焦点检测,则将该位置设置为焦点可检测区域。换句话说,针对各个出射光瞳对计算根据光量比RtAB、光量LQ-A和LQ-B以及出射光瞳重心倾斜度INCL所确定的焦点检测范围L1、L2和L3。将最大值设置为三类出射光瞳对的检测范围L1、L2和L3。
通过在焦点检测区域AFARh中对多种类型的像素对SHA和SHB设置多种类型的出射光瞳,焦点检测范围L1、L2和L3变大。在抑制焦点检测误差时,可以在宽范围内执行焦点检测。
图24是示出基于光量比RtAB、光量LQ-A和LQ-B以及出射光瞳重心倾斜度INCL所确定的横向偏移检测用的焦点检测范围的形状的图。图24是当从光入射面侧观看时图像传感器107的图。图24示出整个摄像区域中焦点可检测范围的大小和形状。L1是参考图20所述的、根据像素对SHA和SHB的光量比RtAB所确定的焦点检测范围L1。L2是参考图21所述的、根据像素对SHA和SHB的光量LQ-A和LQ-B所确定的焦点检测范围L2。L3是参考图22所述的、根据像素对SHA和SHB的出射光瞳重心倾斜度INCL所确定的焦点检测范围L3。仅在相对于X轴转动了45°的方向上近似根据出射光瞳重心倾斜度INCL所确定的焦点检测范围,以简化该形状。
像素SHA和SHB在X方向上分割光瞳。因而,如果像高在X方向上变化,则光量比RtAB大幅变化,并且即使像高在Y方向上变化,光量比RtAB也几乎不变化。由光量比RtAB所确定的焦点检测范围具有如下的矩形形状:在Y方向上从上端向下端延伸、并且在X方向上自中心起的一边具有L1。同样,如果像高在X方向上变化,则光量LQ-A和LQ-B大幅变化,并且即使像高在Y方向上变化,光量LQ-A和LQ-B也几乎不变化。由光量LQ-A和LQ-B所确定的焦点检测范围具有如下的矩形形状:在Y方向上从上端向下端延伸、并且在X方向上自中心起的一边具有L2。如参考图10~13所述,当相对于X方向和Y方向倾斜了45°的像高都增加时,出射光瞳重心倾斜度INCL大幅变化。由于该原因,由出射光瞳重心倾斜度INCL所确定的焦点检测范围具有通过提取在转动了45°时一边长度为2×L3的正方形所获得的六边形形状。
利用满足光量比RtAB、光量LQ-A和LA-B以及出射光瞳重心倾斜度INCL的所有条件的范围来定义检测区域AFARh的焦点检测范围。因而,横向偏移检测用的焦点检测范围由如下的八边形区域(阴影线部分)构成:宽度为2×L1的矩形和一边长度为2×L3的倾斜的正方形彼此重叠。
图25A~28是用于解释利用根据本发明第一实施例的摄像设备的焦点调节和拍摄处理的流程图。
图25A和25B示出根据第一实施例的摄像设备的主序列。
CPU 121进行主序列。当用户接通照相机的电源开关时(步骤S101),CPU 121检查照相机中的致动器和图像传感器的操作,对存储内容和执行程序进行初始化,并且执行拍摄准备操作(步骤S102)。在步骤S103中,CPU 121经由镜头通信电路135与拍摄镜头137中的照相机通信电路136进行通信。通过与镜头进行通信,CPU 121检查镜头操作,对镜头中的存储内容和执行程序进行初始化,并且使镜头执行准备操作。CPU 121获取焦点检测和摄像所需的镜头特性数据,并将该镜头特性数据保存在照相机存储器144中。在步骤S200中,CPU 121基于在步骤S103中获取到的镜头信息以及焦点检测像素对SHA和SHB的出射光瞳信息,设置焦点检测范围。在步骤S104中,CPU 121开始图像传感器的摄像操作,从而输出预览用的低分辨率运动图像。在步骤S105中,CPU 121将所读出的运动图像显示在照相机的背面安装的显示器131上。用户从视觉上检查该预览图像并确定拍摄构图。此时,还将在步骤S200中设置的焦点检测范围显示在该预览用的低分辨率运动图像上。
在步骤S106中,CPU 121判断在预览运动图像中是否存在面部。如果CPU 121判断为在拍摄区域中存在面部,则处理从步骤S107移动至步骤S108,以将焦点调节模式设置为面部AF模式。该面部AF模式是使照相机聚焦于拍摄区域中的面部的AF模式。
如果在拍摄区域中不存在面部,则处理从步骤S107移动至步骤S109,以将焦点调节模式设置为多点AF模式。该多点AF模式是以下的模式:在该模式中,将拍摄区域分割成例如3×5=15,在分割后的区域中进行焦点检测,根据焦点检测结果和被摄体亮度信息来类推主被摄体,并且使照相机聚焦于该主被摄体的区域。
在步骤S108或S109中确定了AF模式之后,在步骤S110中CPU 121确定焦点检测区域。在步骤S111中,CPU 121判断用户是否已经接通拍摄准备开关。如果用户没有接通拍摄准备开关,则处理进入步骤S116以判断用户是否已经断开主开关。
如果在步骤S111中CPU 121判断为用户已经接通拍摄准备开关,则处理移动至步骤S300以执行焦点检测子例程。
在步骤S113中,CPU 121判断在步骤S300中计算出的散焦量是否小于容许值。如果散焦量等于或大于容许值,则CPU 121判断为照相机失焦。在步骤S112中,CPU 121驱动调焦透镜,然后重复执行步骤S300~S113。如果在步骤S113中CPU 121判断为照相机聚焦,则在步骤S114中CPU 121呈现聚焦显示,并且移动至步骤S115。
在步骤S115中,CPU 121判断用户是否已经接通拍摄开始开关。如果用户没有接通拍摄开始开关,则在步骤S115中CPU121维持拍摄待机状态。如果在步骤S115中CPU 121判断为用户已经接通拍摄开始开关,则处理移动至步骤S400以执行拍摄子例程。
在步骤S400中的拍摄子例程结束之后,处理进入步骤S116以判断用户是否已经断开主开关。如果用户没有断开主开关,则处理返回至步骤S103。如果用户已经断开主开关,则这一系列操作结束。
根据第一实施例的摄像设备通过在步骤S200中重复设置焦点检测范围来适当更新焦点检测范围。因此,可以在焦点检测误差小的情况下设置当前镜头的出射光瞳状态中的最大焦点检测范围。
图26是焦点检测范围设置(焦点检测范围确定)子例程的流程图。
CPU 121还进行焦点检测范围设置子例程的一系列操作。
当处理从主序列的步骤S200跳至该子例程的步骤S200时,在步骤S201中,CPU 121获取焦点检测像素的出射光瞳信息。CPU 121获取照相机存储器144中保存的焦点检测像素SHA、SHB、SVC和SVD的出射光瞳信息。在步骤S202中,CPU 121获取镜头信息。CPU 121经由照相机中的镜头通信电路135与拍摄镜头中的照相机通信电路进行通信。然后,CPU 121获取镜头的变焦状态(变焦范围中的变焦信息)、光圈状态、调焦状态和镜头类型信息。
在步骤S203中,CPU 121获取拍摄镜头的镜头框信息(获取框信息)。当安装了具有镜头框信息的拍摄镜头时,CPU 121经由照相机中的镜头通信电路135与拍摄镜头137中的照相机通信电路136进行通信,从而获取镜头框的位置和半径。拍摄镜头137具有镜头框信息,并且在步骤S203以后的步骤中,照相机基于该镜头框信息进行运算处理。因而,CPU 121无需对各镜头进行特殊运算处理。可以在无需对各镜头执行特殊运算处理、并且不增大由于拍摄镜头的渐晕所引起的焦点检测误差的情况下,实现高精度的焦点检测。
当安装了不具有镜头框信息的拍摄镜头时,CPU 121从照相机存储器144获取与在步骤S202中获取到的镜头类型信息相对应的镜头框信息。因而,即使对于不具有镜头框信息的各拍摄镜头,也可以在无需对各镜头执行特殊运算处理、并且不增大由于拍摄镜头的渐晕所引起的焦点检测误差的情况下进行高精度的焦点检测。
在步骤S204中,CPU 121基于在步骤S201中获取到的焦点检测像素的出射光瞳信息和在步骤S203中获取到的镜头框信息,计算出射光瞳状态。出射光瞳状态的计算是计算如参考图13所述、由于拍摄镜头137的渐晕而形成的出射光瞳EPHX-A和EPHX-B
在步骤S205中,基于在步骤S204中计算出的出射光瞳EPHX-A和EPHX-B,CPU 121计算作为像素SHA和SHB接收到的光量的比的光量比RtAB。
在步骤S206中,基于在步骤S204中计算出的出射光瞳EPHX-A和EPHX-B,CPU 121计算由焦点检测像素SHA接收到的光量LQ-A和焦点检测像素SHB接收到的光量LQ-B。
在步骤S207中,基于在步骤S204中计算出的出射光瞳EPHX-A和EPHX-B,CPU 121计算连接焦点检测像素SHA的出射光瞳重心GravityPointA和焦点检测像素SHB的出射光瞳重心GravityPointB的线相对于像素排列方向的倾斜度(出射光瞳重心倾斜度INCL)。
在步骤S208中,如参考图22所述,CPU 121针对W方向上的各像高计算出射光瞳重心倾斜度INCL,并且将出射光瞳重心倾斜度INCL没有超过给定阈值INCL0的范围L3设置为焦点检测范围。这样,从焦点检测范围中排除了由于拍摄镜头137的渐晕而导致出射光瞳重心倾斜度INCL变大的范围。因此,可以在不增大由于拍摄镜头137的渐晕所引起的焦点检测误差的情况下实现高精度的焦点检测。
在步骤S208完成时,焦点检测范围设置子例程结束,并且处理返回至主序列中的步骤S200。
图27是焦点检测子例程的流程图。
CPU 121还执行焦点检测子例程的一系列操作。
当处理从主序列的步骤S300跳至该子例程的步骤S300时,在步骤S301中,CPU 121从在主例程的步骤S110中确定的焦点检测区域所包括的焦点检测像素读出信号。在步骤S302中,CPU121基于在步骤S205中计算出的光量比RtAB进行所谓的遮光校正,以针对在步骤S301中从焦点检测像素读出的信号校正光量比。在步骤S303中,CPU121排列在步骤S302中已经经过了遮光校正的信号,从而获得相关计算用的图像A和图像B的信号。由此获得的相关计算用的图像A和图像B的信号已经基于光量比RtAB经过了遮光校正,因此像素SHA和SHB的信号水平彼此大致一致。结果,所获得的两个图像的形状彼此一致。这样可以减小由于相关计算用的图像A和图像B的信号之间的一致度差所引起的相位差检测结果误差。
在步骤S304中,CPU 121基于所获得的图像A和B计算相关性,从而计算图像A和B之间的相位差。在步骤S305中,CPU 121判断相关计算结果的可靠性。该可靠性是图像A和B之间的一致度。对于图像A和B之间的高的一致度,相关计算结果的可靠性通常高。根据一致度是否超过给定阈值,判断相位差检测结果的可靠性。当选择了多个焦点检测区域时,优先使用可靠性较高的信息。在步骤S306中,CPU 121根据可靠性高的检测结果计算散焦量。之后,焦点检测子例程结束,并且处理返回至主序列中的步骤S300。
图28是拍摄子例程的流程图。
CPU 121还执行拍摄子例程的一系列操作。
在步骤S401中,CPU 121驱动光量调节光圈以控制用于规定曝光时间的机械快门的开口。在步骤S402中,CPU 121读出用于拍摄高分辨率静止图像的图像,即从所有的像素读出信号。在步骤S403中,CPU 121使用读出的图像信号对缺陷像素的图像信号进行插值。更具体地,来自焦点检测像素的输出不包含摄像用的RGB颜色信息,并且该焦点检测像素在获得图像时存在缺陷。因而,通过使用周围摄像像素的信息进行插值来生成图像信号。
在步骤S404中,CPU 121进行图像的诸如γ校正和边缘增强等的图像处理,并且在步骤S405中将所拍摄图像记录在闪速存储器133中。在步骤S406中,CPU 121将该所拍摄图像显示在显示器131上。之后,处理返回至主序列。
已经将根据第一实施例的摄像设备作为可互换拍摄镜头式照相机进行了说明,但根据第一实施例的摄像设备可以应用于照相机包含拍摄镜头的所谓的内置镜头式照相机。即使该内置镜头式照相机也存在传统的问题。因而,可以通过基于本实施例中的计算而设置焦点检测范围来获得与以上所述的效果相同的效果。
如上所述,第一实施例的摄像设备从焦点检测范围中排除了由于拍摄镜头的渐晕而导致焦点检测像素接收到的光量彼此大大不同的范围。该摄像设备可以在不增大由于拍摄镜头的暗影所引起的焦点检测误差的情况下,进行高精度的焦点检测。
另外,摄像设备从焦点检测范围中排除了由于拍摄镜头的渐晕而导致焦点检测像素接收到的光量小的范围。该摄像设备可以在不增大由于拍摄镜头的暗影所引起的焦点检测误差的情况下,实现高精度的焦点检测。
此外,摄像设备基于焦点检测像素的出射光瞳重心倾斜度来设置焦点检测范围。该摄像设备可以在不增大由于拍摄镜头的暗影所引起的焦点检测误差的情况下,进行高精度的焦点检测。
在每次拍摄镜头状态变化时,摄像设备再次设置焦点检测范围并且更新预览图像上显示的焦点检测范围。该摄像设备可以在抑制焦点检测误差时,设置用于处理当前镜头状态的最大焦点检测范围,并向用户呈现该最大焦点检测范围。
第二实施例
在第一实施例中,在每次镜头的变焦状态、光圈状态或调焦状态变化时,再次设置焦点检测范围以更新预览图像中的焦点检测范围。尽管可以设置当前镜头的出射光瞳状态中的最大焦点检测范围,但在每次镜头操作时焦点检测范围的显示均变化。用户难以掌握该焦点检测范围。
为了防止该情况,在第二实施例中,当安装了新的镜头时,将能够在所有的变焦状态、所有的光圈状态和所有的调焦状态下进行焦点检测的范围设置为焦点检测范围。也就是说,第二实施例的特征是在拆卸镜头之前不改变焦点检测范围。
第二实施例中摄像设备的配置与第一实施例中摄像设备的配置相同,并且将不重复对该配置的说明。
将参考图29来解释根据第二实施例的摄像设备的主序列操作。
CPU 121进行该主序列操作。
当用户接通照相机的电源开关时(步骤S101),CPU 121检查照相机中的致动器和图像传感器的操作,对存储内容和执行程序进行初始化,并且执行拍摄准备操作(步骤S102)。在步骤S117中,CPU 121判断是否已经安装了新的镜头。如果已经安装了新的镜头,则处理进入步骤S103,并且CPU 121经由镜头通信电路135与拍摄镜头中的照相机通信电路进行通信。通过与镜头进行通信,CPU 121检查镜头操作,对镜头中的存储内容和执行程序进行初始化,并且使镜头执行准备操作。CPU 121获取焦点检测和摄像所需的镜头特性数据,并将该镜头特性数据保存在照相机存储器144中。在步骤S200中,CPU 121基于在步骤S103中获取到的镜头信息以及焦点检测像素对SHA和SHB的出射光瞳信息,设置焦点检测范围。
在步骤S104中,CPU 121开始图像传感器的摄像操作,从而输出预览用的低分辨率运动图像。在步骤S105中,CPU 121将所读出的运动图像显示在照相机的背面安装的显示器131上。用户从视觉上检查该预览图像并确定拍摄构图。此时,还将在步骤S200中设置的焦点检测范围显示在该预览用的低分辨率运动图像上。
在第二实施例中,仅当安装了镜头时才设置焦点检测范围。作为焦点检测范围,设置以下的区域:在该区域中,在镜头的所有的变焦状态、所有的光圈状态和所有的调焦状态下,光量比RtAB、光量LQ-A和LQ-B以及出射光瞳重心倾斜度INCL均满足阈值RtAB0、LQ0和INCL0。通过设置这种焦点检测范围,即使镜头的变焦、光圈和调焦变化,焦点检测范围也保持不变。第二实施例可以减少在每次镜头操作时焦点检测范围均变化、并且用户难以掌握该焦点检测范围的问题。
在步骤S106中,CPU 121判断在预览运动图像中是否存在面部。如果CPU 121判断为在拍摄区域中存在面部,则处理从步骤S107移动至步骤S108,以将焦点调节模式设置为面部AF模式。该面部AF模式是使照相机聚焦于拍摄区域中的面部的AF模式。
如果在拍摄区域中不存在面部,则处理从步骤S107移动至步骤S109,以将焦点调节模式设置为多点AF模式。该多点AF模式是以下的模式:在该模式中,将拍摄区域分割成例如3×5=15,在分割后的区域中进行焦点检测,根据焦点检测结果和被摄体亮度信息来类推主被摄体,并且使照相机聚焦于该主被摄体的区域。
在步骤S108或S109中确定了AF模式之后,在步骤S110中CPU 121确定焦点检测区域。在步骤S111中,CPU 121判断用户是否已经接通拍摄准备开关。如果用户没有接通拍摄准备开关,则处理进入步骤S116。
如果在步骤S111中CPU 121判断为用户已经接通拍摄准备开关,则处理移动至步骤S300以执行焦点检测子例程。
在步骤S113中,CPU 121判断在步骤S300中计算出的散焦量是否小于容许值。如果散焦量等于或大于容许值,则CPU 121判断为照相机失焦。在步骤S112中,CPU 121驱动调焦透镜,然后重复执行步骤S300~S113。如果在步骤S113中CPU 121判断为照相机聚焦,则在步骤S114中CPU 121呈现聚焦显示,并且移动至步骤S115。
在步骤S115中,CPU 121判断用户是否已经接通拍摄开始开关。如果用户没有接通拍摄开始开关,则在步骤S115中CPU 121维持拍摄待机状态。如果在步骤S115中CPU 121判断为用户已经接通拍摄开始开关,则处理移动至步骤S400以执行拍摄子例程。
在步骤S400中的拍摄子例程结束之后,处理进入步骤S116以判断用户是否已经断开主开关。如果用户没有断开主开关,则处理返回至步骤S117。如果用户已经断开主开关,则这一系列操作结束。
焦点检测范围设置子例程与第一实施例中的焦点检测范围设置子例程相同。第二实施例的摄像设备从焦点检测范围中排除了由于拍摄镜头的渐晕而导致焦点检测像素接收到的光量彼此大大不同的范围。该摄像设备在不增大由于拍摄镜头的暗影所引起的焦点检测误差的情况下,进行高精度的焦点检测。
此外,摄像设备从焦点检测范围中排除了由于拍摄镜头的渐晕而导致焦点检测像素接收到的光量小的范围。该摄像设备在不增大由于拍摄镜头的暗影所引起的焦点检测误差的情况下,实现高精度的焦点检测。
此外,摄像设备基于焦点检测像素的出射光瞳重心倾斜度来设置焦点检测范围。该摄像设备在不增大由于拍摄镜头的暗影所引起的焦点检测误差的情况下,进行高精度的焦点检测。焦点检测范围设置子例程的操作序列与第一实施例中焦点检测范围设置子例程的操作序列相同,并且将不重复对该操作序列的说明。
焦点检测子例程和拍摄子例程也与第一实施例中的焦点检测子例程和拍摄子例程相同,并且将不重复对这两者的说明。
已经将根据第二实施例的摄像设备作为可互换拍摄镜头式摄像设备进行了说明,但该摄像设备可以应用于照相机包含拍摄镜头的所谓的内置镜头式照相机。即使该内置镜头式照相机也存在传统的问题。可以通过基于本实施例中的计算而设置焦点检测范围来获得与以上所述的效果相同的效果。
如上所述,第二实施例中的焦点检测装置从焦点检测范围中排除了由于拍摄镜头的渐晕而导致焦点检测像素接收到的光量彼此大大不同的范围。该摄像设备在不增大由于拍摄镜头的暗影所引起的焦点检测误差的情况下,进行高精度的焦点检测。
另外,焦点检测装置从焦点检测范围中排出了由于拍摄镜头的渐晕而导致焦点检测像素接收到的光量小的范围。该摄像设备可以在不增大由于拍摄镜头的暗影所引起的焦点检测误差的情况下,实现高精度的焦点检测。
此外,焦点检测装置基于焦点检测像素的出射光瞳重心倾斜度来设置焦点检测范围。该焦点检测设备可以在不增大由于拍摄镜头的暗影所引起的焦点检测误差的情况下,进行高精度的焦点检测。
仅当安装了镜头时才设置焦点检测范围。这样可以减少在每次镜头操作时焦点检测范围均变化、并且用户难以掌握该焦点检测范围的问题。
第三实施例
图30~35是根据本发明第三实施例的图。在第一和第二实施例中,图像传感器包括摄像像素和焦点检测像素。焦点检测像素通过将相对于微型透镜ML的中心偏移了的开口投影到拍摄镜头的出射光瞳上来分割光瞳。通过计算从具有在相反方向上偏移了的开口的一对焦点检测像素获得的一对图像信号之间的相位差来检测拍摄镜头的焦点状态。也就是说,第一和第二实施例采用TTL一次成像型相位差焦点检测方法。
在第三实施例中,沿着拍摄镜头和图像传感器之间的分割光路所引导的光束经由由一对透镜元件构成的二次成像光学系统形成图像。基于所获得的一对图像信号之间的相位差来检测拍摄镜头的焦点状态。也就是说,TTL二次成像型相位差焦点检测方法是第三实施例的特征。
图30是根据第三实施例的摄像设备的侧视截面图。
在图30中,附图标记201表示拍摄光学系统。主镜202分割从拍摄光学系统传播来的被摄体光束。主镜202的一部分是半透半反镜,并且该半透半反镜透过被摄体光束的一部分并且向上反射其余的被摄体光束。辅助镜203向下反射已经通过了主镜202的被摄体光束。焦点检测装置220配置在辅助镜203下方以检测拍摄光学系统201的焦点状态。将辅助镜203反射的光引导至焦点检测装置220。图像传感器204接收经由拍摄光学系统形成为图像的被摄体光束,并将该被摄体光束转换成图像信号。
图像传感器204是封装后的C-MOS传感器。焦点检测装置220利用相位差检测方法进行焦点检测。根据由已经通过了拍摄光学系统201的一对不同的光瞳区域的光束所形成的两个被摄体图像的相对位置来检测拍摄光学系统201的焦点状态。如日本特开昭52-138924号公报所公开的,根据从拍摄光学系统的一对不同的光瞳区域获得的两个被摄体图像的相对位置来检测拍摄光学系统的焦点状态是众所周知的技术。
主镜202由照相机本体经由轴202a所支撑,并且可以相对于照相机本体转动。辅助镜203也由主镜202的保持构件经由轴203a所支撑,并且可以相对于主镜202转动。主镜202绕轴202a转动,并且辅助镜203绕轴203a转动。主镜202和辅助镜203可以取两种状态:即主镜202相对于拍摄光学系统的光轴倾斜了45°并且辅助镜203向下倾斜了约45°的状态(被称为镜向下状态)、以及主镜202和辅助镜203这两者上翻并且从被摄体光束的光路完全退避的状态(被称为镜向上状态)。
在镜向下状态下,来自拍摄光学系统201的被摄体光束分割成针对上方的取景器光学系统和下方的焦点检测装置的两个光束。在镜向上状态下,将来自拍摄光学系统201的所有的被摄体光束引导至图像传感器204。
将光学低通滤波器222插入从拍摄光学系统201延伸至图像传感器204的光路中,以限制拍摄光学系统201的截止频率,从而不将被摄体图像的不必要高的空间频率成分传递至图像传感器204。光学低通滤波器222还包括红外截止滤波器。
快门单元221配置在光学低通滤波器222的光入射面侧,以限制入射到图像传感器204上的被摄体光束的曝光时间。各自均由多个叶片构成的前帘幕221a和后帘幕221b在图像传感器的宽度方向上行进。利用前帘幕221a和后帘幕221b之间的行进间隔来控制快门速度。
遮光构件(被称为盖)205限制辅助镜203所反射的被摄体光束。盖205具有用于仅透过被摄体光束中焦点检测所需的光束的开口。该开口配置在拍摄光学系统201的大致成像面附近。该开口将所需的被摄体光束引导至(后面要说明的)焦点检测光学系统并且截止不需要的被摄体光束。
场透镜207将光圈213投影到拍摄光学系统的光瞳上。通过在玻璃表面上形成铝蒸镀膜来形成反射镜212,并且以几乎相同的反射率反射波长为400~800nm的光束。再成像光学系统包括光圈213。光圈213具有一对开口,以限制入射到再成像透镜214的一对透镜部上的光束。光圈213经由场透镜207被投影到拍摄光学系统201的光瞳上。已经通过拍摄光学系统201的光瞳上一对不同的光瞳区域的光束通过所投影的光圈213的一对开口。
再成像透镜214包括与光圈123的一对开口相对应的一对透镜。再成像透镜214根据从拍摄光学系统201的不同的光瞳区域传播来的光束在焦点检测传感器217上形成图像。焦点检测传感器217对再成像透镜214再次形成的被摄体图像进行光电转换。基于通过焦点检测传感器217进行光电转换所获得的一对图像信号来检测拍摄镜头137的焦点状态。
图31是示出从光出射面侧的中央切出的再成像透镜214的放大图。在该光出射面侧,一对透镜部分别配置在纵向方向和横向方向上,以再次形成一对被摄体图像。各透镜部为球面,并且在光出射面侧凸起。
透镜部214-1A和214-1B根据画面中央处横向距离测量视野中的焦点检测光束再次形成图像。利用透镜部214-1A和214-1B将来自画面中央处横向视野的光束再次形成为图像,从而在焦点检测传感器217的焦点检测像素线上形成在横向方向上排列的一对被摄体图像。
透镜部214-2A和214-2B根据画面中央处纵向视野中的焦点检测光束再次形成图像。利用透镜部214-2A和214-2B将来自画面中央处纵向视野的光束再次形成为图像,从而在焦点检测传感器217的焦点检测像素线上形成在纵向方向上排列的一对被摄体图像。
图32是示出从光入射面侧的中央切出的焦点检测传感器217的芯片的放大图。与参考图31所述由再成像透镜214再次形成的一对被摄体图像的成像位置相对应地配置焦点检测像素线。
利用图31中的透镜部214-1A将来自画面中央处横向视野的光束再次形成为图32中焦点检测像素线Line1A、Line2A和Line3A的图像,并且利用图31中的透镜部214-1B将来自画面中央处横向视野的光束再次形成为图32中焦点检测像素线Line1B、Line2B和Line3B的图像。焦点检测像素线Line1A、Line2A、Line3A、Line1B、Line2B和Line3B是各自均通过在横向方向上排列多个像素所配置成的线传感器。
同样,利用图31中的透镜部214-2A将来自画面中央处纵向视野的光束再次形成为图32中焦点检测像素线Line4A、Line5A和Line6A的图像,并且利用图31中的透镜部214-2B将来自画面中央处纵向视野的光束再次形成为图32中焦点检测像素线Line4B、Line5B和Line6B的图像。焦点检测像素线Line4A、Line5A、Line6A、Line4B、Line5B和Line6B是各自均通过在纵向方向上排列多个像素所配置成的线传感器。
在焦点检测传感器217的一对焦点检测像素线上,排列了多个像素。根据拍摄光学系统201在焦点检测视野中形成的被摄体图像的成像状态,在一对像素线的输出信号波形之间观察相对横向偏移。输出信号波形之间的偏移方向在近焦状态和远焦状态之间相反。焦点检测的原理是利用诸如相关计算等的方法来检测包括方向的相位差。
图33是根据第三实施例的包括焦点检测装置的摄像设备的配置的框图。在图33中,摄像设备是以下的数字照相机:该数字照相机包括具有图像传感器的照相机本体138和单独的拍摄镜头137,并且将拍摄镜头137可拆卸地安装在照相机本体138上。第三实施例与第一实施例的不同之处在于焦点检测装置220和用于驱动焦点检测装置220的AF传感器驱动电路134。其余的配置与第一实施例的配置相同,并且将不重复对这些配置的说明。
参考图33,焦点检测装置220配置在辅助镜203下方以检测拍摄光学系统201的焦点状态。将辅助镜203所反射的光引导至焦点检测装置220。如参考图30所述,焦点检测装置220包括焦点检测传感器217,该焦点检测传感器217对再成像透镜214根据辅助镜203所反射的光束再次形成的光学图像进行光电转换,从而生成一对图像信号。CPU 121具有驱动焦点检测传感器217的功能。CPU 121从焦点检测装置220获取一对图像信号并计算相位差,从而检测拍摄镜头137的焦点状态。
与第一实施例相同,第三实施例的焦点检测像素也如图8所示分割光瞳。
光圈213用作用于在焦点检测像素上形成图像信号的再成像透镜214的出射光瞳。场透镜207将光圈213投影到拍摄光学系统201的出射光瞳上。也就是说,光圈213和拍摄光学系统201的出射光瞳彼此光学共轭。再成像透镜214的透镜部214-1A、214-1B、214-2A和214-2B的出射光瞳经由场透镜207而被投影,并且用作为光瞳EPHA、EPHB、EPVC和EPVD。结果,分割了光瞳。
如在第一实施例中参考图10~13所述,第三实施例的焦点检测像素的出射光瞳也由于拍摄镜头137的渐晕而被限制。将焦点检测像素的出射光瞳限制为图13中的EPHX-A和EPHX-B
出射光瞳EPHX-A和EPHX-B在面积上不同,因此一对焦点检测像素的光量比RtAB根据像高X而变化。如参考第一实施例中的图20所述,将焦点检测范围限制为光量比RtAB等于阈值Rt0的范围L1。这样使得能够在不增大由于拍摄镜头的渐晕所引起的焦点检测误差的情况下,进行高精度的焦点检测。
由焦点检测像素对接收到的光量LQ-A和LQ-B也根据像高X而变化。如参考第一实施例中的图21所述,将焦点检测范围限制为焦点检测像素接收到的光量LQ-A和LQ-B等于或小于阈值LQ0的范围L2。这样使得能够在不增大由于拍摄镜头的渐晕所引起的焦点检测误差的情况下,进行高精度的焦点检测。
此外,连接出射光瞳重心GravityPointA和GravityPointB的线相对于像素排列方向倾斜。出射光瞳重心倾斜度INCL也根据W方向上的像高而变化。将焦点检测范围限制为出射光瞳重心倾斜度INCL等于阈值INCL0的范围L3。这样使得能够在不增大由于拍摄镜头的渐晕所引起的焦点检测误差的情况下,进行高精度的焦点检测。
图34示出根据第三实施例的焦点检测装置中横向偏移检测用的焦点检测范围的形状。图34是当从光入射面侧观看时图像传感器107的平面图。图34示出整个摄像区域中焦点可检测范围的大小和形状。
Line1是图32中的焦点检测像素线Line1A和Line1B接收光的区域。Line2是图32中的焦点检测像素线Line2A和Line2B接收光的区域。Line3是图32中的焦点检测像素线Line3A和Line3B接收光的区域。Line4是图32中的焦点检测像素线Line4A和Line4B接收光的区域。Line5是图32中的焦点检测像素线Line5A和Line5B接收光的区域。Line6是图32中的焦点检测像素线Line6A和Line6B接收光的区域。
与第一实施例相同,基于光量比RtAB、光量LQ-A和LQ-B以及出射光瞳重心倾斜度INCL来确定焦点检测范围。L1是参考图20所述的、根据像素对SHA和SHB的光量比RtAB所确定的焦点检测范围L1。L2是参考图21所述的、根据像素对SHA和SHB的光量LQ-A和LQ-B所确定的焦点检测范围L2。L3是参考图22所述的、根据像素对SHA和SHB的出射光瞳重心倾斜度INCL所确定的焦点检测范围L3。为了简化形状,仅在相对于X轴转动了45°的方向上近似根据出射光瞳重心倾斜度INCL所确定的焦点检测范围。
由满足光量比RtAB、光量LQ-A和LQ-B以及出射光瞳重心倾斜度INCL的所有条件的范围来定义焦点检测范围。因而,该焦点检测范围由宽度为2×L1的矩形和一边长度为2×L3的45°倾斜的正方形彼此重叠的Line1~Line6(阴影线部分)形成。
图35示出根据本发明第三实施例的摄像设备的主序列。
当用户接通照相机的电源开关时(步骤S501),在步骤S502中,CPU 121检查照相机中的致动器和图像传感器的操作,对存储内容和执行程序进行初始化,并且执行拍摄准备操作。在步骤S503中,CPU 121经由镜头通信电路135与拍摄镜头中的照相机通信电路进行通信。通过与镜头进行通信,CPU 121检查镜头操作,对镜头中的存储内容和执行程序进行初始化,并且使镜头执行准备操作。CPU 121获取焦点检测和摄像所需的镜头特性数据,并将该镜头特性数据保存在照相机存储器144中。在步骤S200中,CPU 121基于在步骤S503中获取到的镜头信息和焦点检测像素的出射光瞳信息,设置焦点检测范围。在步骤S504中,CPU 121基于利用操作开关132中设置的焦点检测区域指定构件所指定的位置,确定焦点检测区域。在步骤S505中,CPU 121判断用户是否已经接通拍摄准备开关。如果用户没有接通拍摄准备开关,则处理进入步骤S509。
如果在步骤S505中CPU 121判断为用户已经接通拍摄准备开关,则处理移动至步骤S300以执行焦点检测子例程。
在步骤S506中,CPU 121判断在步骤S300中计算出的散焦量是否小于容许值。如果散焦量等于或大于容许值,则CPU 121判断为照相机失焦。在步骤S510中,CPU 121驱动调焦透镜,然后重复执行步骤S300~S506。如果在步骤S506中CPU 121判断为照相机聚焦,则在步骤S507中呈现聚焦显示,并且移动至步骤S508。
在步骤S508中,CPU 121判断用户是否已经接通拍摄开始开关。如果用户尚未接通拍摄开始开关,则在步骤S508中CPU 121维持拍摄待机状态。如果在步骤S508中CPU 121判断为用户已经接通拍摄开始开关,则处理移动至步骤S400以执行拍摄子例程。在步骤S400中的拍摄子例程结束之后,处理进入步骤S509以判断用户是否已经断开主开关。如果用户没有断开主开关,则处理返回至步骤S503。如果用户已经断开主开关,则这一系列操作结束。
步骤S200中的焦点检测范围设置子例程、步骤S300中的焦点检测子例程和步骤S400中的拍摄子例程与第一实施例中的相同,并且将不重复对这些子例程的说明。
已经将根据第三实施例的拍摄设备作为可互换拍摄镜头式照相机进行了说明,但该摄像设备可以应用于照相机包含拍摄镜头的所谓的内置镜头式照相机。即使该内置镜头式照相机也存在传统的问题。因而,可以通过基于本实施例中的计算而设置焦点检测范围来获得与以上所述的效果相同的效果。
如上所述,即使在TTL二次成像型相位差焦点检测方法中,第三实施例的摄像设备也从焦点检测范围中排除了由于拍摄镜头的渐晕而导致焦点检测像素接收到的光量彼此大大不同的范围。该摄像设备可以在不增大由于拍摄镜头的暗影所引起的焦点检测误差的情况下,进行高精度的焦点检测。
摄像设备从焦点检测范围中排除了由于拍摄镜头的渐晕而导致焦点检测像素接收到的光量小的范围。该摄像设备可以在不增大由于拍摄镜头的暗影所引起的焦点检测误差的情况下,实现高精度的焦点检测。
此外,摄像设备基于焦点检测像素的出射光瞳重心倾斜度来设置焦点检测范围。该摄像设备可以在不增大由于拍摄镜头的暗影所引起的焦点检测误差的情况下,进行高精度的焦点检测。
尽管已经参考典型实施例说明了本发明,但是应该理解,本发明不限于所公开的典型实施例。所附权利要求书的范围符合最宽的解释,以包含所有这类修改以及等同结构和功能。
本申请要求2008年10月30日提交的日本专利申请2008-280274的优先权,在此通过引用包含其全部内容。

Claims (6)

1.一种摄像设备,包括:
光电转换部件,其包括第一像素组和第二像素组,其中,所述第一像素组对经由拍摄镜头的第一出射光瞳区域形成的被摄体图像进行光电转换,以及所述第二像素组对经由不同于所述第一出射光瞳区域的第二出射光瞳区域形成的被摄体图像进行光电转换;
焦点检测部件,用于使用从所述第一像素组获得的第一图像信号和从所述第二像素组获得的第二图像信号,检测所述拍摄镜头的焦点;
计算部件,用于计算连接所述第一出射光瞳区域的重心和所述第二出射光瞳区域的重心的直线相对于所述第一像素组和所述第二像素组的像素排列方向的倾斜度;以及
焦点检测范围设置部件,用于基于所述计算部件的计算结果设置焦点检测范围。
2.根据权利要求1所述的摄像设备,其特征在于,所述光电转换部件还包括用于获取摄像信号的第三像素组,并且所述第一像素组和所述第二像素组离散地配置在所述第三像素组中。
3.根据权利要求1所述的摄像设备,其特征在于,还包括:
信息获取部件,用于从所述拍摄镜头获取变焦信息和光圈信息;
存储部件,用于存储与所述变焦信息和所述光圈信息相对应的镜头框信息;以及
框信息获取部件,用于从所述存储部件获取与所述变焦信息和所述光圈信息相对应的所述镜头框信息,
其中,所述计算部件基于所述镜头框信息计算所述第一出射光瞳区域的重心和所述第二出射光瞳区域的重心,并且计算连接所述第一出射光瞳区域的重心和所述第二出射光瞳区域的重心的直线相对于所述第一像素组和所述第二像素组的像素排列方向的倾斜度。
4.根据权利要求1所述的摄像设备,其特征在于,还包括框信息获取部件,所述框信息获取部件用于从所述拍摄镜头获取镜头框信息,
其中,所述计算部件基于所述镜头框信息计算所述第一出射光瞳区域的重心和所述第二出射光瞳区域的重心,并且计算连接所述第一出射光瞳区域的重心和所述第二出射光瞳区域的重心的直线相对于所述第一像素组和所述第二像素组的像素排列方向的倾斜度。
5.根据权利要求1所述的摄像设备,其特征在于,还包括显示部件,所述显示部件用于显示所述光电转换部件所获得的图像,
其中,每当所述拍摄镜头的变焦状态或光圈状态变化时,更新在所述图像上显示的焦点检测范围。
6.根据权利要求1所述的摄像设备,其特征在于,还包括显示部件,所述显示部件用于显示所述光电转换部件所获得的图像,
其中,在所述图像上显示能够在所述拍摄镜头的整个变焦区域和光圈值的整个区域中进行焦点检测的范围作为所述焦点检测范围。
CN200980143810XA 2008-10-30 2009-10-14 摄像设备 Expired - Fee Related CN102203655B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008280274A JP5147645B2 (ja) 2008-10-30 2008-10-30 撮像装置
JP2008-280274 2008-10-30
PCT/JP2009/068215 WO2010050403A1 (en) 2008-10-30 2009-10-14 Image capturing apparatus

Publications (2)

Publication Number Publication Date
CN102203655A true CN102203655A (zh) 2011-09-28
CN102203655B CN102203655B (zh) 2013-05-08

Family

ID=42128766

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200980143810XA Expired - Fee Related CN102203655B (zh) 2008-10-30 2009-10-14 摄像设备

Country Status (6)

Country Link
US (1) US8477233B2 (zh)
EP (1) EP2340454A4 (zh)
JP (1) JP5147645B2 (zh)
KR (1) KR101215965B1 (zh)
CN (1) CN102203655B (zh)
WO (1) WO2010050403A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103685920A (zh) * 2012-09-11 2014-03-26 佳能株式会社 图像处理设备及方法以及具有图像处理设备的摄像设备
CN104854496A (zh) * 2012-11-22 2015-08-19 富士胶片株式会社 摄像装置、散焦量运算方法及摄像光学系统
CN107249097A (zh) * 2013-04-10 2017-10-13 佳能株式会社 摄像设备及其控制方法
CN107295221A (zh) * 2016-04-08 2017-10-24 佳能株式会社 图像传感器和摄像设备

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010160313A (ja) * 2009-01-08 2010-07-22 Sony Corp 撮像素子および撮像装置
JP5229060B2 (ja) * 2009-03-31 2013-07-03 ソニー株式会社 撮像装置および焦点検出方法
JP5693082B2 (ja) * 2010-08-09 2015-04-01 キヤノン株式会社 撮像装置
JP5735784B2 (ja) * 2010-11-30 2015-06-17 キヤノン株式会社 撮像装置及びその制御方法、レンズ装置及びその制御方法
JP5901246B2 (ja) * 2010-12-13 2016-04-06 キヤノン株式会社 撮像装置
JP5737929B2 (ja) * 2010-12-22 2015-06-17 キヤノン株式会社 画像処理装置及び画像処理方法
JP5685080B2 (ja) * 2010-12-28 2015-03-18 キヤノン株式会社 焦点検出装置及び焦点検出方法
JP5430795B2 (ja) 2011-04-01 2014-03-05 富士フイルム株式会社 撮影装置及びプログラム
JP2012220790A (ja) * 2011-04-11 2012-11-12 Canon Inc 撮像装置
JP5784395B2 (ja) * 2011-07-13 2015-09-24 オリンパス株式会社 撮像装置
JP5845023B2 (ja) * 2011-08-08 2016-01-20 キヤノン株式会社 焦点検出装置及びそれを有するレンズ装置及び撮像装置
JP5525107B2 (ja) * 2011-08-16 2014-06-18 富士フイルム株式会社 撮像装置
EP3182187B1 (en) 2011-09-30 2020-12-23 FUJIFILM Corporation Image capturing apparatus and method for calculating sensitivity ratio of phase difference pixel
JP5943596B2 (ja) 2011-12-19 2016-07-05 キヤノン株式会社 撮像装置
JP5914055B2 (ja) * 2012-03-06 2016-05-11 キヤノン株式会社 撮像装置
JP5947602B2 (ja) * 2012-04-11 2016-07-06 キヤノン株式会社 撮像装置
JP5914192B2 (ja) * 2012-06-11 2016-05-11 キヤノン株式会社 撮像装置及びその制御方法
JP6053347B2 (ja) * 2012-06-25 2016-12-27 キヤノン株式会社 撮像装置およびその制御方法ならびにプログラム
JP6288909B2 (ja) * 2012-10-19 2018-03-07 キヤノン株式会社 撮像素子及び撮像装置
JP6305053B2 (ja) * 2013-01-15 2018-04-04 キヤノン株式会社 画像処理装置、撮像装置、画像処理方法、及びプログラム
TWI620445B (zh) * 2013-03-25 2018-04-01 Sony Corp 攝像元件及電子機器
TWI623232B (zh) 2013-07-05 2018-05-01 Sony Corp 固體攝像裝置及其驅動方法以及包含固體攝像裝置之電子機器
JP5769773B2 (ja) * 2013-09-30 2015-08-26 オリンパス株式会社 カメラシステム及び焦点検出画素の補正方法
JP6305006B2 (ja) * 2013-10-18 2018-04-04 キヤノン株式会社 撮像装置、撮像システム、撮像装置の制御方法、プログラム、および、記憶媒体
JP6485116B2 (ja) * 2015-02-27 2019-03-20 富士通株式会社 合焦位置検出装置、合焦位置検出方法及び合焦位置検出用コンピュータプログラム
JP6365568B2 (ja) * 2016-02-29 2018-08-01 株式会社ニコン 撮像素子および撮像装置
JP6774207B2 (ja) * 2016-04-08 2020-10-21 キヤノン株式会社 撮像素子及び撮像装置
JP6849325B2 (ja) * 2016-06-10 2021-03-24 キヤノン株式会社 制御装置、撮像装置、制御方法、プログラム、および、記憶媒体
WO2018011869A1 (ja) * 2016-07-11 2018-01-18 オリンパス株式会社 観察装置
US10412378B2 (en) 2017-05-08 2019-09-10 Microsoft Technology Licensing, Llc Resonating optical waveguide using multiple diffractive optical elements
US10222615B2 (en) 2017-05-26 2019-03-05 Microsoft Technology Licensing, Llc Optical waveguide with coherent light source
JP2018107460A (ja) * 2018-02-02 2018-07-05 キヤノン株式会社 撮像素子及び撮像装置
JP7145048B2 (ja) * 2018-11-16 2022-09-30 キヤノン株式会社 撮像装置及びその制御方法、プログラム、記憶媒体
CN112004011B (zh) * 2020-08-27 2022-02-01 北京三快在线科技有限公司 一种图像采集的方法、装置及光路转变元件
CN112965243B (zh) * 2021-03-10 2022-10-04 北京航空航天大学 一种紧凑型眼纹(巩膜血管)成像装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1519639A (zh) * 2003-02-04 2004-08-11 ���ְ�˹��ʽ���� 相机
US20040179128A1 (en) * 2002-12-11 2004-09-16 Makoto Oikawa Focus detection device
CN1811516A (zh) * 2005-01-25 2006-08-02 佳能株式会社 照相机及其控制方法
JP2007158692A (ja) * 2005-12-05 2007-06-21 Nikon Corp 固体撮像素子及びこれを用いた電子カメラ
JP2008152012A (ja) * 2006-12-18 2008-07-03 Nikon Corp 撮像素子、焦点検出装置および撮像装置

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52138924A (en) 1976-05-15 1977-11-19 Konishiroku Photo Ind Co Ltd Focal detector
JPS6014211A (ja) * 1983-07-06 1985-01-24 Olympus Optical Co Ltd 合焦検出装置
JPH0616131B2 (ja) 1987-01-12 1994-03-02 キヤノン株式会社 オート フォーカスカメラ
JP2666142B2 (ja) * 1987-02-04 1997-10-22 旭光学工業株式会社 カメラの自動焦点検出装置
JPH03214133A (ja) 1990-01-18 1991-09-19 Nikon Corp 焦点検出装置
DE69128681T2 (de) * 1990-10-01 1998-04-23 Nippon Kogaku Kk Fokusdetektor
JP3240648B2 (ja) 1991-11-01 2001-12-17 キヤノン株式会社 焦点検出装置
JP2814945B2 (ja) * 1995-03-03 1998-10-27 株式会社ニコン 自動焦点検出装置
JP3592147B2 (ja) 1998-08-20 2004-11-24 キヤノン株式会社 固体撮像装置
JP4908668B2 (ja) * 2000-04-19 2012-04-04 キヤノン株式会社 焦点検出装置
JP2003029135A (ja) 2001-07-17 2003-01-29 Canon Inc カメラ、カメラシステムおよび撮影レンズ装置
JP2003250080A (ja) 2002-02-22 2003-09-05 Canon Inc 撮影装置および撮影システム
JP2005062459A (ja) 2003-08-12 2005-03-10 Olympus Corp レンズ交換式カメラ及びカメラシステム
JP2006071950A (ja) * 2004-09-01 2006-03-16 Canon Inc 光学機器
JP4984491B2 (ja) * 2005-10-31 2012-07-25 株式会社ニコン 焦点検出装置および光学システム
JP4946059B2 (ja) 2006-01-11 2012-06-06 株式会社ニコン 撮像装置
US7751700B2 (en) * 2006-03-01 2010-07-06 Nikon Corporation Focus adjustment device, imaging device and focus adjustment method
JP2008040084A (ja) 2006-08-04 2008-02-21 Canon Inc 光学装置
JP4858008B2 (ja) * 2006-08-24 2012-01-18 株式会社ニコン 焦点検出装置、焦点検出方法および撮像装置
US8049801B2 (en) * 2006-09-14 2011-11-01 Nikon Corporation Image sensor and imaging apparatus
JP5028930B2 (ja) * 2006-09-28 2012-09-19 株式会社ニコン 焦点検出装置および撮像装置
JP5458475B2 (ja) * 2007-04-18 2014-04-02 株式会社ニコン 焦点検出装置および撮像装置
JP2009069578A (ja) * 2007-09-14 2009-04-02 Canon Inc 光学機器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040179128A1 (en) * 2002-12-11 2004-09-16 Makoto Oikawa Focus detection device
CN1519639A (zh) * 2003-02-04 2004-08-11 ���ְ�˹��ʽ���� 相机
CN1811516A (zh) * 2005-01-25 2006-08-02 佳能株式会社 照相机及其控制方法
JP2007158692A (ja) * 2005-12-05 2007-06-21 Nikon Corp 固体撮像素子及びこれを用いた電子カメラ
JP2008152012A (ja) * 2006-12-18 2008-07-03 Nikon Corp 撮像素子、焦点検出装置および撮像装置

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9571718B2 (en) 2012-09-11 2017-02-14 Canon Kabushiki Kaisha Image processing apparatus, image processing method, non-transitory computer-readable storage medium and image pickup apparatus for processing a picked-up image
CN103685920B (zh) * 2012-09-11 2017-04-12 佳能株式会社 图像处理设备及方法以及具有图像处理设备的摄像设备
CN103685920A (zh) * 2012-09-11 2014-03-26 佳能株式会社 图像处理设备及方法以及具有图像处理设备的摄像设备
CN104854496A (zh) * 2012-11-22 2015-08-19 富士胶片株式会社 摄像装置、散焦量运算方法及摄像光学系统
CN104854496B (zh) * 2012-11-22 2017-04-12 富士胶片株式会社 摄像装置、散焦量运算方法及摄像光学系统
CN107249097B (zh) * 2013-04-10 2020-04-07 佳能株式会社 摄像设备及其控制方法
CN107249097A (zh) * 2013-04-10 2017-10-13 佳能株式会社 摄像设备及其控制方法
CN107295221A (zh) * 2016-04-08 2017-10-24 佳能株式会社 图像传感器和摄像设备
US10404905B2 (en) 2016-04-08 2019-09-03 Canon Kabushiki Kaisha Image sensor and image capturing apparatus
CN107295221B (zh) * 2016-04-08 2020-07-28 佳能株式会社 图像传感器和摄像设备
CN111741200A (zh) * 2016-04-08 2020-10-02 佳能株式会社 图像传感器和摄像设备
US11006036B2 (en) 2016-04-08 2021-05-11 Canon Kabushiki Kaisha Image sensor and image capturing apparatus
CN111741200B (zh) * 2016-04-08 2021-12-21 佳能株式会社 图像传感器和摄像设备

Also Published As

Publication number Publication date
US20110164166A1 (en) 2011-07-07
WO2010050403A1 (en) 2010-05-06
JP2010107770A (ja) 2010-05-13
EP2340454A1 (en) 2011-07-06
JP5147645B2 (ja) 2013-02-20
KR101215965B1 (ko) 2012-12-27
EP2340454A4 (en) 2013-03-06
US8477233B2 (en) 2013-07-02
KR20110079756A (ko) 2011-07-07
CN102203655B (zh) 2013-05-08

Similar Documents

Publication Publication Date Title
CN102203655B (zh) 摄像设备
US8576329B2 (en) Focus detection apparatus and control method therefor
US8063978B2 (en) Image pickup device, focus detection device, image pickup apparatus, method for manufacturing image pickup device, method for manufacturing focus detection device, and method for manufacturing image pickup apparatus
CN102422196B (zh) 焦点检测设备
US8558940B2 (en) Image sensor and image-capturing device
US8164642B2 (en) Image-capturing device with a destructive read-type image sensor
US7863550B2 (en) Focus detection device and focus detection method based upon center position of gravity information of a pair of light fluxes
US6819360B1 (en) Image pickup element and apparatus for focusing
US8159599B2 (en) Focus detection apparatus, focus detection method, and image sensing apparatus
CN102105830B (zh) 焦点检测设备
JP5947507B2 (ja) 撮像装置及びその制御方法
US20010036361A1 (en) Focus detecting device
JP4992481B2 (ja) 焦点検出装置および撮像装置
CN101662588A (zh) 摄像设备、摄像系统和焦点检测方法
JP4983271B2 (ja) 撮像装置
CN102089697A (zh) 摄像设备
JP5211590B2 (ja) 撮像素子および焦点検出装置
JP5625286B2 (ja) 撮像装置
JP4858179B2 (ja) 焦点検出装置および撮像装置
JP5609098B2 (ja) 撮像装置
JP5804693B2 (ja) 撮像装置
JP5962830B2 (ja) 焦点検出装置
JP5804104B2 (ja) 焦点調節装置
JP6760424B2 (ja) 焦点調節装置
JP2018026604A (ja) 撮像装置および撮像装置システム

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20130508

Termination date: 20201014

CF01 Termination of patent right due to non-payment of annual fee