[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

CN102009175B - 一种多层壳芯复合结构零件的制备方法 - Google Patents

一种多层壳芯复合结构零件的制备方法 Download PDF

Info

Publication number
CN102009175B
CN102009175B CN2010102991388A CN201010299138A CN102009175B CN 102009175 B CN102009175 B CN 102009175B CN 2010102991388 A CN2010102991388 A CN 2010102991388A CN 201010299138 A CN201010299138 A CN 201010299138A CN 102009175 B CN102009175 B CN 102009175B
Authority
CN
China
Prior art keywords
powder
shell
feeding
sandwich layer
transition zone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN2010102991388A
Other languages
English (en)
Other versions
CN102009175A (zh
Inventor
李亚东
李亚军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzhou Ding An Technology Co Ltd
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to CN2010102991388A priority Critical patent/CN102009175B/zh
Application filed by Individual filed Critical Individual
Publication of CN102009175A publication Critical patent/CN102009175A/zh
Priority to PCT/CN2011/076586 priority patent/WO2012045247A1/zh
Priority to US13/878,233 priority patent/US9216454B2/en
Application granted granted Critical
Publication of CN102009175B publication Critical patent/CN102009175B/zh
Priority to US14/938,849 priority patent/US9821373B2/en
Priority to US14/938,846 priority patent/US9937559B2/en
Priority to US14/938,848 priority patent/US10035191B2/en
Priority to US15/788,805 priority patent/US10632537B2/en
Priority to US15/886,836 priority patent/US10688563B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/02Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/32Joints for the hip
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/32Joints for the hip
    • A61F2/34Acetabular cups
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/32Joints for the hip
    • A61F2/36Femoral heads ; Femoral endoprostheses
    • A61F2/3601Femoral heads ; Femoral endoprostheses for replacing only the epiphyseal or metaphyseal parts of the femur, e.g. endoprosthetic femoral heads or necks directly fixed to the natural femur by internal fixation devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/1017Multiple heating or additional steps
    • B22F3/1021Removal of binder or filler
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/105Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/14Both compacting and sintering simultaneously
    • B22F3/15Hot isostatic pressing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/22Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces for producing castings from a slip
    • B22F3/225Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces for producing castings from a slip by injection molding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/008Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression characterised by the composition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/06Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B18/00Layered products essentially comprising ceramics, e.g. refractory products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/111Fine ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/111Fine ceramics
    • C04B35/117Composites
    • C04B35/119Composites with zirconium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/486Fine ceramics
    • C04B35/488Composites
    • C04B35/4885Composites with aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/638Removal thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • C04B35/6455Hot isostatic pressing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3229Cerium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6022Injection moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • C04B2237/343Alumina or aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • C04B2237/345Refractory metal oxides
    • C04B2237/348Zirconia, hafnia, zirconates or hafnates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/58Forming a gradient in composition or in properties across the laminate or the joined articles
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/84Joining of a first substrate with a second substrate at least partially inside the first substrate, where the bonding area is at the inside of the first substrate, e.g. one tube inside another tube

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Transplantation (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Cardiology (AREA)
  • Public Health (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Prostheses (AREA)
  • Materials For Medical Uses (AREA)
  • Powder Metallurgy (AREA)
  • Producing Shaped Articles From Materials (AREA)

Abstract

本发明公开了一种多层壳芯复合结构零件的制备方法,包括下列步骤:(1)分别配制芯层、过渡层和壳层的注射成形用喂料;芯层和壳层喂料中的粉末选自金属粉末、陶瓷粉末或增韧陶瓷粉末中的一种或多种的混合物,且两者不相同,过渡层喂料中的粉末为梯度复合材料粉末;(2)采用粉末注射成形方法分别逐层制作多层壳芯复合结构零件的生坯;(3)对生坯进行脱脂处理;(4)对生坯进行烧结,获得所述多层壳芯复合结构零件。本发明通过采用粉末注射成形方法,制备获得了多层壳芯复合结构的零件,零件表面硬度高、耐磨,壳层厚度均匀,性能稳定持久,壳层和芯层经过渡层结合,结合力强,整体抗弯强度好,冲击韧性好,不易开裂。

Description

一种多层壳芯复合结构零件的制备方法
技术领域
本发明涉及一种多层壳芯结构零件的制备,尤其涉及球状、半球状、半球壳状、柱状、筒状或异形状的多层壳芯复合结构零件的制备。
背景技术
球状、半球状、半球壳状、柱状或筒状零件以及其它异形状零件,被广泛应用于多种领域,其中,在很多应用场合要求零件一方面具有良好的耐磨、耐蚀、耐热性能及极高的尺寸配合精度和光洁度,另一方面具有高强韧性、高力学承载能力和可加工性。常见的这类零件包括,如,球状的人工股骨头、半球壳状人工髋臼、柱状的柱塞、筒状的球阀体和异形状的股骨髁假体等。
陶瓷材料具有表面硬度高、耐磨和耐腐蚀等特点,但是其抗弯强度和冲击韧性低,力学承载能力差,使用过程中容易发生脆性开裂,因而独立应用于制作上述零件时受到限制。现有技术中,有多种复合增韧陶瓷,可以提高陶瓷的冲击韧性,但在增韧的同时,陶瓷的其它性能却受到影响,例如,添加ZrO2的氧化铝陶瓷,其表面硬度和抗压强度会发生下降;添加晶须、纤维的陶瓷,会引起密度的下降和耐磨性能下降等。
为解决上述问题,现有技术中,有采用各种物理或化学方法在金属表面形成陶瓷薄膜,以增强零件表面的耐磨、耐蚀和耐热性能的报道,由此,使这类零件形成了壳层为陶瓷,芯层为金属的壳芯结构。壳芯结构的零件芯层为金属,具有较好的抗弯强度、很高的冲击韧性和机加工性能,使用中不易开裂;壳层为陶瓷,表面硬度高,具有良好的耐磨、耐蚀和耐热性能,从而兼具金属和陶瓷的优点。然而,这些报道中的陶瓷薄膜层常采用物理沉积或化学沉积等方法制备,其厚度仅为几个至几十个微米,存在壳层过薄,且壳层与芯层的结合强度低,力学承载能力差和耐磨、耐蚀的持久性和稳定性差等缺陷。
为增加陶瓷壳层的厚度,增强壳层与芯层之间的结合强度,现有方法一是采用陶瓷、金属粉末及它们不同配比的混合粉末与有机载体等混合形成一定固含量的浆料,经流延、叠层和冷压成形得到壳层-过渡层-芯层的多层壳芯复合结构零件生坯,然后将其进行烧结获得多层壳芯复合结构零件。现有方法二是采用陶瓷、金属粉末及它们不同配比的混合粉末经多次干粉冷压成形得到壳层-过渡层-芯层的多层壳芯复合结构零件生坯,然后将其进行烧结获得多层壳芯复合结构零件。现有方法三是采用陶瓷、金属粉末及它们不同配比的混合粉末与去离子水等溶剂混合形成一定固含量的悬浮液,经多次分步静电沉积成形得到壳层-过渡层-芯层的多层壳芯复合结构零件生坯,然后将其进行烧结获得多层壳芯复合结构零件。然而,上述各种成形技术或不能用于制作异形状多层壳芯复合结构零件,或不能获得层厚大和层厚均匀的多层壳芯复合结构零件,或不能对各层厚度和多层壳芯复合结构零件的组织、性能进行精确控制,而难以应用于本发明所涉及的多层壳芯复合结构零件的制作,即,应用现有技术,具有表面硬度高,耐磨、耐蚀和耐热性能良好,壳层与芯层的结合强度高,力学承载能力好,冲击韧性高,性能持久性和稳定性高等优点的多层壳芯复合结构零件是难以获得的。
发明内容
本发明目的是提供一种多层壳芯复合结构零件的制备方法,实现多层壳芯复合结构的球状、半球状、柱状、筒状、半球壳状及其它异形状精密零件的制备,提高壳层和芯层间的结合强度,以及提高壳层的耐磨、耐蚀及耐热性能,芯层的强韧及抗断裂性能。
为达到上述目的,本发明采用的技术方案是:一种多层壳芯复合结构零件的制备方法,包括下列步骤:
(1)分别配制芯层、过渡层和壳层的注射成形用喂料,所述喂料由粉末与粘结剂和添加剂混炼制成,所述添加剂包括表面活性剂和增塑剂;芯层喂料中的粉末选自金属粉末、陶瓷粉末或增韧陶瓷粉末中的一种或多种的混合物,壳层喂料中的粉末选自金属粉末、陶瓷粉末或增韧陶瓷粉末中的一种或多种的混合物,芯层喂料中的粉末和壳层喂料中的粉末不相同,过渡层喂料中的粉末为梯度复合材料粉末;
(2)采用粉末注射成形方法分别用步骤(1)中配制的三种喂料制作包括芯层、过渡层、壳层的多层壳芯结构零件的生坯;
(3)对步骤(2)获得的生坯进行脱脂处理;
(4)根据壳层、芯层和过渡层使用的材料特性,对步骤(3)中处理过的生坯进行烧结,获得所述多层壳芯复合结构零件。
上述技术方案中,所述过渡层的材料根据壳层与芯层的膨胀系数差异和两者间不良化学反应的程度进行选择,其作用是,减少壳层和芯层由于膨胀系数不同而导致的层间界面应力失配、层间结合力下降甚至开裂等情况的发生,避免壳层材料和芯层材料间直接接触后在一定条件下(例如高温烧结时)发生化学反应。本领域技术人员根据上述作用要求能够选择合适的过渡层材料。过渡层的厚度通常可以在0.1毫米~20毫米之间。添加剂中根据需要可以含有表面活性剂和增塑剂。步骤(2)中获得零件生坯后,可以对生坯进行适当的整形,以保证产品的质量;在烧结后,还可以对零件进行微量加工和表面抛光,例如,采用SiC超细粉和金刚石研磨膏对陶瓷表面进行微量加工和表面抛光研磨,得到具有一定表面光洁度和尺寸配合良好的多层壳芯复合结构零件。所述的粘结剂包括:热塑性粘结剂、热固性粘结剂、胶化粘结剂和聚合物粘结剂。步骤(3)的脱脂工艺包括:催化脱脂、加热脱脂、溶解萃取脱脂、超临界流体萃取脱脂或虹吸脱脂;步骤(4)的烧结工艺包括:在空气、氮气、氩气、真空或氢气等还原性或惰性气氛中进行的高温常压烧结、真空烧结、气氛保护烧结、热压烧结或热等静压烧结。
本发明中的粉末注射成形技术可以有两种不同的工艺方法。包括,步骤(2)中,所述粉末注射成形方法为,采用多套模具在普通粉末注射机上分别多次逐层注射成形壳层-过渡层-芯层复合结构零件的生坯。
或者,步骤(2)中,所述粉末注射成形方法为,采用一套模具,在多材料粉末共注射专用机上通过滑块驱动的注射机构一次共注射成形壳层-过渡层-芯层复合结构零件的生坯。
其中的过渡层可以是一层,也可以是多层结构,制备多层结构的过渡层时,分别配制过渡层中各层的喂料,并分别逐层注射成形。
上述技术方案中,所述陶瓷粉末选自氧化铝、氧化锆、碳化钛、碳化铬、碳化硅、碳化硼、碳化锆、碳化钽、碳化钨、氮化钛、氮化铬、氮化硼、氮化硅、氮化锆和氮化钽粉末中的一种或多种混合物;所述金属粉末选自铌、锆、钛、钼、钽、钴、铬、钒、铝、铁粉末中的一种或其中至少两种的混合物。通常,芯层选用金属粉末制备,壳层选用陶瓷粉末制备;但根据情况,也可以壳层选用陶瓷粉末制备,芯层选用另一种陶瓷粉末或增韧陶瓷粉末制备;或者,壳层用金属粉末制备,芯层用陶瓷粉末或增韧陶瓷粉末制备。过渡层则用于保证壳层和芯层间的良好结合。
上述技术方案中,所述的增韧陶瓷包括由上述陶瓷、金属所组成的金属基、陶瓷基金属陶瓷,以及氧化锆、晶须或纤维增韧陶瓷。它们包括:
(1)金属陶瓷。(a)氧化物基金属陶瓷。以氧化铝、氧化锆为基体与金属铌、钛、锆、钼、钽、钴、铬、钒、铝、铁复合而成。(b)碳化物基金属陶瓷。以碳化钛、碳化铬、碳化硅、碳化硼、碳化锆、碳化钽、碳化钨等为基体与金属铌、钛、锆、钼、钽、钴、铬、钒、铝、铁复合而成的金属陶瓷。(c)氮化物基金属陶瓷。以氮化钛、氮化铬、氮化硼、氮化硅、氮化锆和氮化钽为基体与金属铌、钛、锆、钼、钽、钴、铬、钒、铝、铁复合而成的金属陶瓷。(d)金属基金属陶瓷。以金属铌、钛、锆、钼、钽、钴、铬、钒、铝、铁为基体与氧化物或非氧化物细粉复合而成的金属陶瓷。
(2)ZrO2增韧陶瓷,包括:MgO、CeO2或Y2O3部分稳定化的ZrO2增韧陶瓷或以此作为增韧添加剂,并均匀分布于氧化物或非氧化物粉末中,并经煅烧处理,得到烧结活性好的ZrO2增韧氧化物或非氧化物陶瓷。
(3)晶须、纤维增韧陶瓷,包括:用SiC、Si3N4等晶须或C、SiC等短纤维对氧化铝、氧化锆、氮化铬、氮化硼、氮化硅、氮化锆、氮化钛、氮化钽、碳化硅、碳化锆、碳化铬、碳化硼、碳化钛、碳化钨或碳化钽陶瓷进行复合的增韧陶瓷。
所述过渡层喂料中的梯度复合材料粉末由壳层喂料中的粉末与芯层喂料中的粉末混合组成,其混合比例从近壳层处的壳层喂料中的粉末为主到近芯层处的芯层喂料中的粉末为主呈梯度渐进变化,对过渡层采用多次逐层粉末注射成形方法制作。梯度复合材料可以缓冲壳层材料与芯层材料间膨胀系数(热应力)失配程度、阻止两者间发生不良化学反应和起到两者物理、化学性能过渡匹配作用。
通常,所述壳层、芯层的厚度为0.1毫米~20毫米;所述过渡层的厚度为0.1毫米~20毫米。各层的相对密度为97%以上。
所述多层壳芯复合结构零件外形为球状、半球状、柱状或筒状,也可以是半球壳状或者其它异形状。
采用上述技术方案,可以获得:(1)
Figure BSA00000291981500051
壳面硬度高(HV>1300)、耐磨、耐蚀、表面光洁度高和厚度为0.1~20mm的陶瓷壳层。(2)抗弯强度高、承受冲击载荷能力强和冲击韧性高(KIC>8MPa·m1/2)的增韧芯层和(3)根据陶瓷壳层与强韧内芯组织性能的匹配程度和发生不良化学反应的可能性,可以在两者之间插入具有减小应力和阻止不良化学反应的中间过渡层。(4)经高温烧结而成的陶瓷壳层与强韧内芯具有结合强度高,力学承载能力强和持久稳定性好等优点。
由于上述技术方案运用,本发明与现有技术相比具有下列优点:
1.本发明通过采用多材料粉末共注射成形方法,制备获得了多层壳芯复合结构的零件,在现有技术中,粉末注射成形方法仅用于制备单一陶瓷材料零件或者单一金属材料零件,并没有制备陶瓷、金属多层壳芯复合结构零件的报道,本发明创造性地提出了陶瓷、金属多材料粉末共注射成形的概念,并以此为基础实现了多层壳芯复合结构的制备,具有创造性。
2.本发明通过采用多材料粉末共注射成形方法,在壳层和芯层之间设置过渡层,克服了由于两者材料间物理、化学性能差异造成的组织性能的不匹配、易发生不良化学反应和层间结合力低等缺陷,解决了干粉冷压成形、流延成形和静电沉积成形难以制作球状、半球状、半球壳状、柱状、筒状和异形状等零件和不能精确控制各层厚度、精确控制各层组织和性能的问题,获得了多层壳芯复合结构零件,具有创造性。
3.本发明获得的多层壳芯复合结构零件,陶瓷壳层表面硬度高、耐磨、耐蚀和耐热性能好且稳定持久,壳层厚而均匀,组织结构致密和芯层经过渡层结合,结合力强,整体抗弯强度好,冲击韧性高,不易开裂,具有力学承载能力强和持久稳定性好等优点。
4.本发明所述的多材料粉末共注射成形方法具有工艺流程简单、尺寸控制精度高、近净尺寸成形、尤适异形零件成形、生产效率高和成本低等特点。
附图说明
图1至图5为本发明实施例一、实施例二中几种不同结构的多层壳芯复合结构股骨头的剖视示意图;
图6是本发明实施例中制备工艺的流程简图;
图7为本发明实施例三中多层壳芯复合结构股骨髁假体(人工膝关节)的剖视示意图,其中(a)侧视图,(b)正视图;
图8为本发明实施例四中多层壳芯复合结构髋臼的剖视示意图;
图9为本发明实施例五中多层壳芯复合结构柱塞体的剖视示意图;
图10为本发明实施例六中多层壳芯复合结构球阀阀体的剖视示意图,两边为阀端盖,中间为阀主体。
具体实施方式
下面结合附图及实施例对本发明作进一步描述:
实施例一:
一种多层壳芯复合结构股骨头,它由高纯超细氧化铝陶瓷球壳层1、氧化铝基(铌)金属陶瓷中间层5(即过渡层)和铌金属内芯2三部分组成,其多层组织的复合结构具有如图1至图5所示的五种形式,可以根据使用要求选择。
参见图6,具体制备工艺为:
(1)分别配制高纯超细氧化铝粉末、氧化铝基(铌)金属陶瓷复合粉末和铌金属粉末注射成形喂料。高纯超细氧化铝粉末的纯度大于99.9wt%,颗粒尺寸为0.5~10μm;铌金属粉末的纯度大于99.8wt%,颗粒尺寸为0.5~10μm。为了降低烧结温度,改善烧结性能在高纯超细氧化铝粉末中添加0.25wt.%MgO粉末,在铌金属粉末中添加3wt.%Co粉末作为烧结助剂。采用配制好的改性氧化铝粉末、氧化铝基(铌)金属陶瓷复合粉末和铌金属粉末分别与聚醛树脂基粘结剂(89wt.%聚甲醛、Swt.%高密度聚乙烯和6wt.%其它粘结助剂)混合并在180℃条件下混炼2.5h,获得装载量(固含量)大于55Vol.%的聚醛体系喂料。
(2)采用三套模具先后对氧化铝陶瓷-氧化铝(铌)金属陶瓷中间层-铌金属多层壳芯复合结构股骨头的铌金属内芯2、氧化铝(铌)金属陶瓷中间层5和氧化铝球壳层1进行注射成形。首先用铌金属聚醛喂料在内芯模具中注射成形获得带锥孔3的铌金属内芯2,然后,将铌金属内芯2作为嵌件在第二套模具中注射成形获得氧化铝(铌)金属陶瓷中间层5包裹铌金属内芯2的复合体,最后将氧化铝(铌)金属陶瓷中间层5包裹铌金属内芯2的复合体作为嵌件在第三套模具中注射成形得到氧化铝陶瓷-氧化铝(铌)金属陶瓷中间层-铌金属多层壳芯复合结构股骨头生坯。注射温度为170~180℃,注射压力为110~130MPa,保压压力为70~80MPa,冷却时间为3~4min。
(3)对氧化铝陶瓷-氧化铝(铌)金属陶瓷中间层-铌金属多层壳芯复合结构股骨头生坯的氧化铝球壳面4和铌金属内芯2上的锥孔3进行必要的外形修整。
(4)将氧化铝陶瓷-氧化铝(铌)金属陶瓷中间层-铌金属多层壳芯复合结构股骨头坯放在110~120℃气氛炉中催化脱脂,采用硝酸作为脱脂催化剂,脱脂载气为氮气,脱脂时间为5h。
(5)将脱脂后的氧化铝陶瓷-氧化铝(铌)过渡层-铌金属多层壳芯复合结构股骨头生坯放入气氛保护热等静压炉中控制烧结,烧结温度1450℃,35MPa和保温时间1h,得到相对密度大于99%,硬度大于HV1950的氧化铝球壳层1、致密强韧的氧化铝(铌)过渡层5和铌金属内芯2。
(6)根据产品尺寸要求,对氧化铝陶瓷-氧化铝(铌)金属陶瓷中间层-铌金属多层壳芯复合结构股骨头烧结体的氧化铝陶瓷球壳面4和锥孔3进行微量加工;
(7)最后,采用SiC超细粉和金刚石研磨膏对氧化铝陶瓷球壳面4进行抛光,得到具有一定表面光洁度和锥孔3与股骨柄尺寸配合良好的氧化铝陶瓷-氧化铝(铌)金属陶瓷中间层-铌金属多层壳芯复合结构股骨头。
实施例二:
一种多层壳芯复合结构股骨头,它由高纯超细氧化铝陶瓷球壳层1、ZrO2(3Y2O3)-80wt.%Al2O3增韧陶瓷中间层5和ZrO2(3Y2O3)-20wt.%Al2O3增韧陶瓷内芯2三部分组成。
参见图6,具体制备工艺为:
(1)分别配制高纯超细氧化铝粉末、ZrO2(3Y2O3)-80wt.%Al2O3复合粉末和ZrO2(3Y2O3)-20wt.%Al2O3复合粉末注射成形喂料。高纯超细氧化铝粉末的纯度大于99.9wt%,颗粒尺寸为0.5~10μm;ZrO2粉末的纯度大于99.8wt%,颗粒尺寸为0.5~10μm。为了降低烧结温度,改善烧结性能在高纯超细氧化铝粉末中添加0.25wt.%MgO粉末作为烧结助剂。采用配制好的改性氧化铝粉末、ZrO2(3Y2O3)-80wt.%Al2O3复合粉末和ZrO2(3Y2O3)-20wt.%Al2O3复合粉末分别与聚醛树脂基粘结剂(89wt.%聚甲醛、5wt.%高密度聚乙烯和6wt.%其它粘结助剂)混合并在180℃条件下混炼2.5h,获得装载量(固含量)大于55Vol.%的聚醛体系喂料。
(2)采用三套模具先后对氧化铝陶瓷-ZrO2(3Y2O3)-80wt.%Al2O3中间层-ZrO2(3Y2O3)-20wt.%Al2O3内芯多层壳芯复合结构股骨头的ZrO2(3Y2O3)-20wt.%Al2O3内芯2、ZrO2(3Y2O3)-80wt.%Al2O3中间层5和氧化铝球壳层1进行注射成形。首先用ZrO2(3Y2O3)-20wt.%Al2O3聚醛喂料在内芯模具中注射成形获得带锥孔4的ZrO2(3Y2O3)-20wt.%Al2O3内芯2,然后,将ZrO2(3Y2O3)-20wt.%Al2O3内芯2作为嵌件在第二套模具中注射成形获得ZrO2(3Y2O3)-80wt.%Al2O3中间层5包裹ZrO2(3Y2O3)-20wt.%Al2O3内芯2的复合体,最后将ZrO2(3Y2O3)-80wt.%Al2O3中间层5包裹ZrO2(3Y2O3)-20wt.%Al2O3内芯2的复合体作为嵌件在第三套模具中注射成形得到氧化铝陶瓷-ZrO2(3Y2O3)-80wt.%Al2O3中间层-ZrO2(3Y2O3)-20wt.%Al2O3多层壳芯复合结构股骨头生坯。注射温度为170~180℃,注射压力为110~130MPa,保压压力为70~80MPa,冷却时间为3~4min。
(3)对氧化铝陶瓷-ZrO2(3Y2O3)-80wt.%Al2O3中间层-ZrO2(3Y2O3)-20wt.%Al2O3多层壳芯复合结构股骨头生坯的氧化铝球壳面4和ZrO2(3Y2O3)-20wt.%Al2O3内芯2上的锥孔3进行必要的外形修整。
(4)将氧化铝陶瓷-ZrO2(3Y2O3)-80wt.%Al2O3中间层-ZrO2(3Y2O3)-20wt.%Al2O3多层壳芯复合结构股骨头坯放在110~120℃气氛炉中催化脱脂,采用硝酸作为脱脂催化剂,脱脂载气为氮气,脱脂时间为5h。
(5)将脱脂后的氧化铝陶瓷-ZrO2(3Y2O3)-80wt.%Al2O3中间层-ZrO2(3Y2O3)-20wt.%Al2O3多层壳芯复合结构股骨头生坯放入空气炉中控制烧结,烧结温度1600℃和保温时间1h,得到相对密度大于99.5%,硬度大于HV1950的氧化铝球壳层1和致密强韧的ZrO2(3Y2O3)-80wt.%Al2O3中间层5、断裂韧性大于10MPa·m1/2的ZrO2(3Y2O3)-20wt.%Al2O3内芯2。
(6)根据产品尺寸要求,对氧化铝陶瓷-ZrO2(3Y2O3)-80wt.%Al2O3中间层-ZrO2(3Y2O3)-20wt.%Al2O3多层壳芯复合结构股骨头烧结体的氧化铝陶瓷球面4和锥孔3进行微量加工;
(7)最后,采用SiC超细粉和金刚石研磨膏对氧化铝陶瓷球壳面4进行抛光研磨,得到具有一定表面光洁度和锥孔3与股骨柄尺寸配合良好的氧化铝陶瓷-ZrO2(3Y2O3)-80wt.%Al2O3中间层-ZrO2(3Y2O3)-20wt.%Al2O3多层壳芯复合结构股骨头。
实施例三:
一种多层壳芯复合结构股骨髁假体(人工膝关节部件之一),由Ti6Al4V芯层1、Ti6Al4V-20vol.%Al2O3过渡层2、Ti6Al4V-60vol.%Al2O3过渡层3和高纯超细Al2O3陶瓷壳层4组成。
参见图6,具体制备工艺为:
(1)分别配制高纯超细Al2O3粉末、Ti6Al4V-60vol.%Al2O3复合粉末、Ti6Al4V-20vol.%Al2O3复合粉末和Ti6Al4V粉末注射成形喂料。高纯超细Al2O3粉末的纯度大于99.9wt%,颗粒尺寸为0.5~5μm;Ti6Al4V粉末的纯度大于99.5wt%,颗粒尺寸为l0~35μm。为了降低烧结温度,改善烧结性能在高纯超细Al2O3粉末中添加0.1wt.%MgO粉末作为烧结助剂。采用配制好的改性Al2O3粉末、Ti6Al4V-60vol.%Al2O3复合粉末、Ti6Al4V-20vol.%Al2O3复合粉末和Ti6Al4V粉末分别与聚醛树脂基粘结剂(89wt.%聚甲醛、5wt.%高密度聚乙烯和6wt.%其它助剂)混合并在180℃条件下混炼2.5h,获得装载量(固含量)大于60Vol.%的聚醛体系喂料。
(2)采用四套模具先后对多层壳芯复合结构股骨髁假体的Ti6Al4V芯层1、Ti6Al4V-20wt.%Al2O3过渡层2、Ti6Al4V-80wt.%Al2O3过渡层3和高纯超细Al2O3陶瓷壳层4进行共注射成形。首先用Ti6Al4V聚醛喂料在第一套模具中注射成形获得股骨髁假体的Ti6Al4V芯层1;然后,将Ti6Al4V芯层1作为嵌件在第二套模具中注射成形获得Ti6Al4V-20wt.%Al2O3过渡层2包裹Ti6Al4V芯层1的复合体;再将Ti6Al4V-20wt.%Al2O3过渡层2/Ti6Al4V芯层1复合体作为嵌件在第三套模具中注射成形获得Ti6Al4V-80wt.%Al2O3过渡层3包裹的复合体;最后将Ti6Al4V-80wt.%Al2O3过渡层3/Ti6Al4V-20wt.%Al2O3过渡层2/Ti6Al4V芯层1复合体作为嵌件在第四套模具中注射成形得到高纯超细Al2O3陶瓷壳层4包裹的多层壳芯复合结构股骨髁假体生坯。注射温度为170~180℃,注射压力为100~120MPa,保压压力为70~85MPa,冷却时间为3~4min。
(3)对多层壳芯复合结构股骨髁假体生坯的Al2O3壳层4的表面和Ti6Al4V芯层1的表面进行必要的外形修整。
(4)将多层壳芯复合结构股骨髁假体生坯放在110~120℃气氛炉中催化脱脂,采用硝酸作为脱脂催化剂,脱脂载气为氮气,脱脂时间为5h。
(5)将脱脂后的多层壳芯复合结构股骨髁假体生坯放入气氛保护热等静压炉中控制烧结,烧结温度1420℃,气压40MPa和保温时间1h,得到相对密度大于99.5%,硬度大于HV1950的Al2O3壳层4,致密强韧的过渡层2、3和断裂韧性高,相对密度大于99.0%的Ti6Al4V芯层1。
(6)根据产品尺寸要求,对多层壳芯复合结构股骨髁假体烧结体的Al2O3壳层4进行微量加工;
(7)最后,采用SiC超细粉和金刚石研磨膏对Al2O3壳层4表面进行抛光研磨,得到具有良好表面光洁度的多层壳芯复合结构股骨髁假体。
实施例四:
一种多层壳芯复合结构髋臼(人工髋关节部件之一),由高纯超细Al2O3陶瓷芯层1、Ti6Al4V-60vol.%Al2O3过渡层2、Ti6Al4V-20vol.%Al2O3过渡层3和Ti6Al4V壳层4组成。
参见图6,具体制备工艺为:
(1)分别配制高纯超细Al2O3粉末、Ti6Al4V-60vol.%Al2O3复合粉末、Ti6Al4V-20vol.%Al2O3复合粉末和Ti6Al4V粉末注射成形喂料。高纯超细Al2O3粉末的纯度大于99.9wt%,颗粒尺寸为0.5~5μm;Ti6Al4V粉末的纯度大于99.5wt%,颗粒尺寸为10~35μm。为了降低烧结温度,改善烧结性能在高纯超细Al2O3粉末中添加0.1wt.%MgO粉末作为烧结助剂。采用配制好的改性Al2O3粉末、Ti6Al4V-60vol.%Al2O3复合粉末、Ti6Al4V-20vol.%Al2O3复合粉末和Ti6Al4V粉末分别与聚醛树脂基粘结剂(89wt.%聚甲醛、5wt.%高密度聚乙烯和6wt.%其它助剂)混合并在180℃条件下混炼2.5h,获得装载量(固含量)大于60Vol.%的聚醛体系喂料。
(2)采用四套模具先后对多层壳芯复合结构髋臼的高纯超细Al2O3陶瓷芯层1、Ti6Al4V-60vol.%Al2O3过渡层2、Ti6Al4V-20vol.%Al2O3过渡层3和Ti6Al4V壳层4进行共注射成形。首先用Ti6Al4V聚醛喂料在第一套模具中注射成形获得Ti6Al4V壳层4;然后,将Ti6Al4V壳层4作为嵌件在第二套模具中注射成形获得Ti6Al4V-20wt.%Al2O3过渡层3包裹Ti6Al4V壳层4的复合体;再将Ti6Al4V-20wt.%Al2O3过渡层3/Ti6Al4V壳层4复合体作为嵌件在第三套模具中注射成形获得Ti6Al4V-80wt.%Al2O3过渡层2包裹的复合体;最后将Ti6Al4V-80wt.%Al2O3过渡层2/Ti6Al4V-20wt.%Al2O3过渡层3/Ti6Al4V壳层4复合体作为嵌件在第四套模具中注射成形得到高纯超细Al2O3陶瓷芯层1包裹的多层壳芯复合结构髋臼生坯。注射温度为170~180℃,注射压力为100~120MPa,保压压力为70~85MPa,冷却时间为3~4min。
(3)对多层壳芯复合结构髋臼生坯的Al2O3芯层1的球表面和Ti6Al4V壳层4的表面进行必要的外形修整。
(4)将多层壳芯复合结构髋臼生坯放在110~120℃气氛炉中催化脱脂,采用硝酸作为脱脂催化剂,脱脂载气为氮气,脱脂时间为5h。
(5)将脱脂后的多层壳芯复合结构髋臼生坯放入气氛保护热等静压炉中控制烧结,烧结温度1420℃,气压40MPa和保温时间1h,得到相对密度大于99.5%,硬度大于HV1950的Al2O3芯层1,致密强韧的过渡层2、3和断裂韧性高,相对密度大于99.0%的Ti6Al4V壳层4。
(6)根据产品尺寸要求,对多层壳芯复合结构髋臼烧结体的Al2O3芯层1表面进行微量加工;
(7)最后,采用SiC超细粉和金刚石研磨膏对Al2O3芯层1球表面进行抛光研磨,得到具有良好表面光洁度和与股骨头尺寸配合良好的多层壳芯复合结构髋臼。
实施例五:
一种多层壳芯复合结构陶瓷柱塞,它由ZrO2(Y+Ce)壳层1、17-4PH不锈钢-60vol.%ZrO2(Y+Ce)过渡层2、17-4PH不锈钢-30vol.%ZrO2(Y+Ce)过渡层3和17-4PH不锈钢芯轴4组成。
参见图6,具体制备工艺为:
(1)分别配制ZrO2(Y+Ce)粉末、17-4PH不锈钢-60vol.%ZrO2(Y+Ce)复合粉末、17-4PH不锈钢-30vol.%ZrO2(Y+Ce)复合粉末和17-4PH不锈钢粉末注射成形喂料。ZrO2粉末的纯度大于98.5wt%,颗粒尺寸为0.2~0.5μm;17-4PH不锈钢粉末的纯度大于98.8wt%,颗粒尺寸为5~25μm。为了保证性能,在ZrO2粉末中添加1.5mol%Y2O3+4mol%CeO2粉末作为稳定助剂得到部分稳定化的ZrO2(Y+Ce)粉末。采用配制好的改性ZrO2(Y+Ce)粉末、17-4PH不锈钢-60vol.%ZrO2(Y+Ce)复合粉末、17-4PH不锈钢-30vol.%ZrO2(Y+Ce)复合粉末和l7-4PH不锈钢粉末分别与聚醛树脂基粘结剂(89wt.%聚甲醛、5wt.%高密度聚乙烯和6wt.%其它助剂)混合并在180℃条件下混炼2.5h,获得装载量(固含量)大于55Vol.%的聚醛体系喂料。
(2)采用四套模具先后对多层壳芯复合结构陶瓷柱塞的ZrO2(Y+Ce)壳层1、17-4PH不锈钢-60vol.%ZrO2(Y+Ce)过渡层2、17-4PH不锈钢-30vol.%ZrO2(Y+Ce)过渡层3和17-4PH不锈钢芯轴4进行共注射成形。首先用17-4PH不锈钢聚醛喂料在第一套模具中注射成形获得陶瓷柱塞的17-4PH不锈钢芯轴4;然后,将不锈钢芯轴4作为嵌件在第二套模具中注射成形获得17-4PH不锈钢-30vol.%ZrO2(Y+Ce)过渡层3包裹不锈钢芯轴4的复合体;再将17-4PH不锈钢-30vol.%ZrO2(Y+Ce)过渡层3/不锈钢芯轴4复合体作为嵌件在第三套模具中注射成形获得17-4PH不锈钢-60vol.%ZrO2(Y+Ce)过渡层2包裹的复合体;最后将17-4PH不锈钢-60vol.%ZrO2(Y+Ce)过渡层2/17-4PH不锈钢-30vol.%ZrO2(Y+Ce)过渡层3/不锈钢芯轴4复合体作为嵌件在第四套模具中注射成形得到超细ZrO2(Y+Ce)陶瓷壳层1包裹的多层壳芯复合结构陶瓷柱塞生坯。注射温度为170~180℃,注射压力为100~120MPa,保压压力为70~85MPa,冷却时间为3~4min。
(3)对多层壳芯复合结构陶瓷柱塞生坯的ZrO2(Y+Ce)壳层1表面和17-4PH不锈钢芯轴4端面进行必要的外形修整。
(4)将多层壳芯复合结构陶瓷柱塞生坯放在110~120℃气氛炉中催化脱脂,采用硝酸作为脱脂催化剂,脱脂载气为氮气,脱脂时间为5h。
(5)将多层壳芯复合结构陶瓷柱塞生坯放入气氛保护炉热等静压炉中控制烧结,烧结温度1350℃和保温时间1h,气压35MPa,得到相对密度大于98.8%,硬度大于HV1500的ZrO2壳层1和致密强韧的过渡层2、3和17-4PH不锈钢芯轴。
(6)根据产品尺寸要求,对ZrO2(Y+Ce)壳层1的表面进行微量加工和17-4PH不锈钢芯轴两端进行机加工;
(7)最后,采用SiC超细粉和金刚石研磨膏对ZrO2(Y+Ce)壳层1的表面进行抛光研磨,得到具有良好表面光洁度并与陶瓷柱塞外套尺寸配合良好的多层壳芯复合结构陶瓷柱塞。
实施例六:
一种多层壳芯复合结构全衬陶瓷球阀阀体(包括:一个阀主体和2个阀端盖),它由ZrO2(Y+Ce)阀体内衬1、17-4PH不锈钢-60vol.%ZrO2(Y+Ce)过渡层2、17-4PH不锈钢-30vol.%ZrO2(Y+Ce)过渡层3和17-4PH不锈钢阀体外壳4组成。
参见图6,具体制备工艺为:
(1)分别配制ZrO2(Y+Ce)粉末、17-4PH不锈钢-60vol.%ZrO2(Y+Ce)复合粉末、17-4PH不锈钢-30vol.%ZrO2(Y+Ce)复合粉末和17-4PH不锈钢粉末注射成形喂料。ZrO2粉末的纯度大于98.5wt%,颗粒尺寸为0.2~1.5μm;17-4PH不锈钢粉末的纯度大于98.8wt%,颗粒尺寸为5~35μm。为了改善性能,在ZrO2粉末中添加1.5mol%Y2O3+4mol%CeO2粉末作为稳定助剂得到部分稳定化的ZrO2(Y+Ce)粉末。采用配制好的改性ZrO2(Y+Ce)粉末、17-4PH不锈钢-60vol.%ZrO2(Y+Ce)复合粉末、17-4PH不锈钢-30vol.%ZrO2(Y+Ce)复合粉末和17-4PH不锈钢粉末分别与聚醛树脂基粘结剂(89wt.%聚甲醛、5wt.%高密度聚乙烯和6wt.%其它助剂)混合并在180℃条件下混炼2.5h,获得装载量(固含量)大于55Vol.%的聚醛体系喂料。
(2)采用四套模具先后对多层壳芯复合结构全衬陶瓷球阀阀体的ZrO2(Y+Ce)阀体内衬1、17-4PH不锈钢-60vol.%ZrO2(Y+Ce)过渡层2、17-4PH不锈钢-30vol.%ZrO2(Y+Ce)过渡层3和17-4PH不锈钢阀体外壳4进行共注射成形。首先用17-4PH不锈钢聚醛喂料在第一套模具中注射成形获得不锈钢阀体外壳4;然后,将不锈钢阀体外壳4作为嵌件在第二套模具中注射成形获得17-4PH不锈钢-30vol.%ZrO2(Y+Ce)过渡层3包裹不锈钢阀体外壳4的复合体;再将17-4PH不锈钢-30vol.%ZrO2(Y+Ce)过渡层3/不锈钢阀体外壳4复合体作为嵌件在第三套模具中注射成形获得17-4PH不锈钢-60vol.%ZrO2(Y+Ce)过渡层2包裹的复合体;最后将17-4PH不锈钢-60vol.%ZrO2(Y+Ce)过渡层2/17-4PH不锈钢-30vol.%ZrO2(Y+Ce)过渡层3/不锈钢阀体外壳4复合体作为嵌件在第四套模具中注射成形得到超细ZrO2(Y+Ce)阀体内衬1包裹的多层壳芯复合结构全衬陶瓷球阀阀体生坯。注射温度为170~180℃,注射压力为100~120MPa,保压压力为70~85MPa,冷却时间为3~4min。
(3)对多层壳芯复合结构全衬陶瓷球阀阀体生坯的ZrO2(Y+Ce)阀体内衬1表面和17-4PH不锈钢阀体外壳4端面进行必要的外形修整。
(4)将外形修整后的多层壳芯复合结构全衬陶瓷球阀阀体生坯放在110~120℃气氛炉中催化脱脂,采用硝酸作为脱脂催化剂,脱脂载气为氮气,脱脂时间为5h。
(5)将脱脂后的多层壳芯复合结构全衬陶瓷球阀阀体生坯放入气氛保护热等静压炉中控制烧结,烧结温度1350℃,气压35MPa和保温时间1h,得到相对密度大于98.8%,硬度大于HV1450的ZrO2(Y+Ce)阀体内衬1和致密强韧的过渡层2、3和17-4PH不锈钢阀体外壳。
(6)根据产品尺寸要求,对ZrO2(Y+Ce)阀体内衬1的表面进行微量加工和17-4PH不锈钢阀体外壳进行必要的机加工;
(7)最后,采用SiC超细粉和金刚石研磨膏对ZrO2(Y+Ce)阀体内衬1的表面进行抛光,特别要对2个阀端盖的ZrO2(Y+Ce)内衬球形端面进行抛光研磨,得到具有良好表面光洁度并与陶瓷球阀阀芯尺寸配合良好的多层壳芯复合结构全衬陶瓷球阀阀体。

Claims (18)

1.一种多层壳芯复合结构零件的制备方法,其特征在于,包括下列步骤: 
(1)分别配制芯层、过渡层和壳层的注射成形用喂料,所述喂料由粉末与粘结剂和添加剂混炼制成,所述添加剂包括表面活性剂和增塑剂;芯层喂料中的粉末选自金属粉末、陶瓷粉末或增韧陶瓷粉末中的一种或多种的混合物,壳层喂料中的粉末选自金属粉末、陶瓷粉末或增韧陶瓷粉末中的一种或多种的混合物,芯层喂料中的粉末和壳层喂料中的粉末不相同,过渡层喂料中的粉末为梯度复合材料粉末,所述梯度复合材料粉末由壳层喂料中的粉末与芯层喂料中的粉末混合而成; 
(2)采用粉末注射成形方法分别用步骤(1)中配制的三种喂料制作包括芯层、过渡层、壳层的多层壳芯结构零件的生坯,所述粉末注射成形步骤包括:采用芯层喂料在内芯模具中注射成形获得芯层;将芯层作为嵌件采用过渡层喂料在第二模具中注射成形获得过渡层包裹芯层的复合体;将过渡层包裹芯层的复合体作为嵌件采用壳层喂料在第三模具中注射成形得到壳层包裹过渡层和芯层的多层壳芯复合体; 
(3)对步骤(2)获得的生坯进行脱脂处理; 
(4)根据壳层、芯层和过渡层使用的材料特性,对步骤(3)中处理过的生坯进行烧结,获得所述多层壳芯复合结构零件;
所述多层壳芯复合结构零件为股骨头,所述壳层为氧化铝陶瓷,过渡层为氧化铝基铌金属陶瓷,所述芯层为铌金属;氧化铝粉末的纯度大于99.9wt%,颗粒尺寸为0.5~10μm;铌金属粉末的纯度大于99.8wt%,颗粒尺寸为0.5~10μm,所述壳层喂料中添加有为改善烧结性能的0.25wt.%MgO粉末,所述芯层喂料包括3wt.%Co粉末作为烧结助剂; 
所述粘结剂包括聚醛树脂基粘结剂,所述聚醛树脂基粘结剂包括89wt.%聚甲醛、5wt.%高密度聚乙烯和6wt.%粘结助剂;所述各层配制好的喂料与所述聚醛树脂基粘结剂混合并在180℃条件下混炼2.5h,获得装载量大于55Vol.%的聚醛体系喂料; 
所述注射成形条件包括:注射温度为170~180℃,注射压力为110~130MPa,保压压力为70-80MPa,冷却时间为3~4min; 
所述脱脂处理条件包括:脱脂温度为110~120℃,脱脂催化剂包括硝酸,脱脂载气包括氮气,脱脂时间为5h; 
所述烧结温度为1450℃,烧结压力为35MPa,保温时间1h。 
2.根据权利要求1所述的多层壳芯复合结构零件的制备方法,其特征在于:步骤(2)中,所述粉末注射成形方法为,采用一套模具,在多材料粉末共注射专用机上通过滑块驱动的注 射机构一次共注射成形壳层-过渡层-芯层复合结构零件的生坯。 
3.根据权利要求1所述的多层壳芯复合结构零件的制备方法,其特征在于:所以过渡层喂料中的梯度复合材料粉末由壳层喂料中的粉末与芯层喂料中的粉末混合组成,其混合比例从近壳层处的壳层喂料中的粉末为主到近芯层处的芯层喂料中的粉末为主呈梯度渐进变化。 
4.根据权利要求1所述的多层壳芯复合结构零件的制备方法,其特征在于:所述壳层、过渡层和芯层的厚度分别为0.1毫米~20毫米;相对密度为97%以上。 
5.一种多层壳芯复合结构零件的制备方法,其特征在于,包括下列步骤: 
(1)分别配制芯层、过渡层和壳层的注射成形用喂料,所述喂料由粉末与粘结剂和添加剂混炼制成,所述添加剂包括表面活性剂和增塑剂;芯层喂料中的粉末选自金属粉末、陶瓷粉末或增韧陶瓷粉末中的一种或多种的混合物,壳层喂料中的粉末选自金属粉末、陶瓷粉末或增韧陶瓷粉末中的一种或多种的混合物,芯层喂料中的粉末和壳层喂料中的粉末不相同,过渡层喂料中的粉末为梯度复合材料粉末,所述梯度复合材料粉末由壳层喂料中的粉末与芯层喂料中的粉末混合而成; 
(2)采用粉末注射成形方法分别用步骤(1)中配制的三种喂料制作包括芯层、过渡层、壳层的多层壳芯结构零件的生坯,所述粉末注射成形步骤包括:采用芯层喂料在内芯模具中注射成形获得芯层;将芯层作为嵌件采用过渡层喂料在第二模具中注射成形获得过渡层包裹芯层的复合体;将过渡层包裹芯层的复合体作为嵌件采用壳层喂料在第三模具中注射成形得到壳层包裹过渡层和芯层的多层壳芯复合体; 
(3)对步骤(2)获得的生坯进行脱脂处理; 
(4)根据壳层、芯层和过渡层使用的材料特性,对步骤(3)中处理过的生坯进行烧结,获得所述多层壳芯复合结构零件; 
所述多层壳芯复合结构零件为股骨头,所述壳层为氧化铝陶瓷,过渡层为ZrO2(3Y2O3)-80wt.%Al2O3增韧陶瓷,所述芯层为ZrO2(3Y2O3)-20wt.%Al2O3增韧陶瓷,氧化铝粉末的纯度大于99.9wt%,颗粒尺寸为0.5~10μm,ZrO2粉末的纯度大于99.8wt%;所述壳层喂料中添加有0.25wt.%MgO粉末作为烧结助剂; 
所述粘结剂包括聚醛树脂基粘结剂,所述聚醛树脂基粘结剂包括89wt.%聚甲醛、5wt.%高密度聚乙烯和6wt.%粘结助剂;所述各层配制好的喂料与所述聚醛树脂基粘结剂混合并在 180℃条件下混炼2.5h,获得装载量大于55%的聚醛体系喂料; 
所述注射成形条件包括:注射温度为170~180℃,注射压力为110~130MPa,保压压力为70-80MPa,冷却时间为3~4min; 
所述脱脂处理条件包括:脱脂温度为110~120℃,脱脂催化剂包括硝酸,脱脂载气包括氮气,脱脂时间为5h; 
所述烧结温度为1600℃,保温时间1h。 
6.根据权利要求5所述的多层壳芯复合结构零件的制备方法,其特征在于:步骤(2)中,所述粉末注射成形方法为,采用一套模具,在多材料粉末共注射专用机上通过滑块驱动的注射机构一次共注射成形壳层-过渡层-芯层复合结构零件的生坯。 
7.根据权利要求5所述的多层壳芯复合结构零件的制备方法,其特征在于:所以过渡层喂料中的梯度复合材料粉末由壳层喂料中的粉末与芯层喂料中的粉末混合组成,其混合比例从近壳层处的壳层喂料中的粉末为主到近芯层处的芯层喂料中的粉末为主呈梯度渐进变化。 
8.根据权利要求5所述的多层壳芯复合结构零件的制备方法,其特征在于:所述壳层、过渡层和芯层的厚度分别为0.1毫米~20毫米;相对密度为97%以上。 
9.一种多层壳芯复合结构零件的制备方法,其特征在于,包括下列步骤: 
(1)分别配制芯层、过渡层和壳层的注射成形用喂料,所述喂料由粉末与粘结剂和添加剂混炼制成,所述添加剂包括表面活性剂和增塑剂;芯层喂料中的粉末选自金属粉末、陶瓷粉末或增韧陶瓷粉末中的一种或多种的混合物,壳层喂料中的粉末选自金属粉末、陶瓷粉末或增韧陶瓷粉末中的一种或多种的混合物,芯层喂料中的粉末和壳层喂料中的粉末不相同,过渡层喂料中的粉末为梯度复合材料粉末,所述梯度复合材料粉末由壳层喂料中的粉末与芯层喂料中的粉末混合而成; 
(2)采用粉末注射成形方法分别用步骤(1)中配制的三种喂料制作包括芯层、过渡层、壳层的多层壳芯结构零件的生坯,所述粉末注射成形步骤包括:采用芯层喂料在内芯模具中注射成形获得芯层;将芯层作为嵌件采用过渡层喂料在第二模具中注射成形获得过渡层包裹芯层的复合体;将过渡层包裹芯层的复合体作为嵌件采用壳层喂料在第三模具中注射成形得到壳层包裹过渡层和芯层的多层壳芯复合体; 
(3)对步骤(2)获得的生坯进行脱脂处理; 
(4)根据壳层、芯层和过渡层使用的材料特性,对步骤(3)中处理过的生坯进行烧结,获得所述多层壳芯复合结构零件; 
所述多层壳芯复合结构零件为股骨髁假体,所述过渡层为多层结构,制备时,分别配置过渡层中各层的喂料,并分别多层注射成形,所述过渡层包括第一过渡层和第二过渡层,所述多层注射成形包括将芯层作为嵌件在一模具中注射成形获得第一过渡层包裹芯层的第一复合体;将第一过渡层包裹芯层的第一复合体作为嵌件在另一模具中注射成形获得第二过渡层包裹第一复合体的第二复合体; 
所述芯层为Ti6Al4V,第一过渡层为Ti6Al4V-20vol.%Al2O3,第二过渡层为Ti6Al4V-60vol.%Al2O3,所述壳层为Al2O3陶瓷,Al2O3粉末的纯度大于99.9wt%,颗粒尺寸为0.5~5μm;Ti6Al4V粉末的纯度大于99.5wt%,颗粒尺寸为10~35μm;所述壳层喂料中添加有0.1wt.%MgO粉末作为烧结助剂; 
所述粘结剂包括聚醛树脂基粘结剂,所述聚醛树脂基粘结剂包括89wt.%聚甲醛、5wt.%高密度聚乙烯和6wt.%粘结助剂;所述各层配制好的喂料与所述聚醛树脂基粘结剂混合并在180℃条件下混炼2.5h,获得装载量大于60Vol.%的聚醛体系喂料; 
所述注射成形条件包括:注射温度为170~180℃,注射压力为100~120MPa,保压压力为70-85MPa,冷却时间为3~4min; 
所述脱脂处理条件包括:脱脂温度为110~120℃,脱脂催化剂包括硝酸,脱脂载气包括氮气,脱脂时间为5h; 
所述烧结温度为1420℃,烧结压力为40MPa,保温时间1h。 
10.根据权利要求9所述的多层壳芯复合结构零件的制备方法,其特征在于:步骤(2)中,所述粉末注射成形方法为,采用一套模具,在多材料粉末共注射专用机上通过滑块驱动的注射机构一次共注射成形壳层-过渡层-芯层复合结构零件的生坯。 
11.根据权利要求9所述的多层壳芯复合结构零件的制备方法,其特征在于:所以过渡层喂料中的梯度复合材料粉末由壳层喂料中的粉末与芯层喂料中的粉末混合组成,其混合比例从近壳层处的壳层喂料中的粉末为主到近芯层处的芯层喂料中的粉末为主呈梯度渐进变化。 
12.根据权利要求9所述的多层壳芯复合结构零件的制备方法,其特征在于:所述壳层、过 渡层和芯层的厚度分别为0.1毫米~20毫米;相对密度为97%以上。 
13.一种多层壳芯复合结构零件的制备方法,其特征在于,包括下列步骤: 
(1)分别配制芯层、过渡层和壳层的注射成形用喂料,所述喂料由粉末与粘结剂和添加剂混炼制成,所述添加剂包括表面活性剂和增塑剂;芯层喂料中的粉末选自金属粉末、陶瓷粉末或增韧陶瓷粉末中的一种或多种的混合物,壳层喂料中的粉末选自金属粉末、陶瓷粉末或增韧陶瓷粉末中的一种或多种的混合物,芯层喂料中的粉末和壳层喂料中的粉末不相同,过渡层喂料中的粉末为梯度复合材料粉末,所述梯度复合材料粉末由壳层喂料中的粉末与芯层喂料中的粉末混合而成; 
(2)采用粉末注射成形方法分别用步骤(1)中配制的三种喂料制作包括芯层、过渡层、壳层的多层壳芯结构零件的生坯,所述粉末注射成形步骤包括:采用芯层喂料在内芯模具中注射成形获得芯层;将芯层作为嵌件采用过渡层喂料在第二模具中注射成形获得过渡层包裹芯层的复合体;将过渡层包裹芯层的复合体作为嵌件采用壳层喂料在第三模具中注射成形得到壳层包裹过渡层和芯层的多层壳芯复合体; 
(3)对步骤(2)获得的生坯进行脱脂处理; 
(4)根据壳层、芯层和过渡层使用的材料特性,对步骤(3)中处理过的生坯进行烧结,获得所述多层壳芯复合结构零件; 
所述多层壳芯复合结构零件为陶瓷柱塞,所述过渡层为多层结构,制备时,分别配置过渡层中各层的喂料,并分别多层注射成形,所述过渡层包括第一过渡层和第二过渡层,所述多层注射成形包括将芯层作为嵌件在一模具中注射成形获得第一过渡层包裹芯层的第一复合体;将第一过渡层包裹芯层的第一复合体作为嵌件在另一模具中注射成形获得第二过渡层包裹第一复合体的第二复合体; 
所述芯层为17-4PH不锈钢,第一过渡层为17-4PH不锈钢-30vol.%ZrO(Y+Ce),第二过渡层为17-4PH不锈钢-60vol.%ZrO(Y+Ce),所述壳层为ZrO2(Y+Ce),ZrO2粉末的纯度大于98.5wt%,颗粒尺寸为0.2~0.5μm;17-4PH不锈钢粉末的纯度大于98.8wt%,颗粒尺寸为5~25μm;所述壳层喂料中添加有1.5mol%Y2O3+4mol%CeO2粉末作为稳定助剂; 
所述粘结剂包括聚醛树脂基粘结剂,所述聚醛树脂基粘结剂包括89wt.%聚甲醛、5wt.%高密度聚乙烯和6wt.%粘结助剂;所述各层配制好的喂料与所述聚醛树脂基粘结剂混合并在180℃条件下混炼2.5h,获得装载量大于55%的聚醛体系喂料; 
所述注射成形条件包括:注射温度为170~180℃,注射压力为100~120MPa,保压压力为 70-85MPa,冷却时间为3~4min; 
所述脱脂处理条件包括:脱脂温度为110~120℃,脱脂催化剂包括硝酸,脱脂载气包括氮气,脱脂时间为5h; 
所述烧结温度为1350℃,烧结压力为35MPa,保温时间1h。 
14.根据权利要求13所述的多层壳芯复合结构零件的制备方法,其特征在于:步骤(2)中,所述粉末注射成形方法为,采用一套模具,在多材料粉末共注射专用机上通过滑块驱动的注射机构一次共注射成形壳层-过渡层-芯层复合结构零件的生坯。 
15.根据权利要求13所述的多层壳芯复合结构零件的制备方法,其特征在于:所以过渡层喂料中的梯度复合材料粉末由壳层喂料中的粉末与芯层喂料中的粉末混合组成,其混合比例从近壳层处的壳层喂料中的粉末为主到近芯层处的芯层喂料中的粉末为主呈梯度渐进变化。 
16.根据权利要求13所述的多层壳芯复合结构零件的制备方法,其特征在于:所述壳层、过渡层和芯层的厚度分别为0.1毫米~20毫米;相对密度为97%以上。 
17.一种多层壳芯复合结构零件的制备方法,其特征在于,包括下列步骤: 
(1)分别配制芯层、过渡层和壳层的注射成形用喂料,所述喂料由粉末与粘结剂和添加剂混炼制成,所述添加剂包括表面活性剂和增塑剂;芯层喂料中的粉末选自金属粉末、陶瓷粉末或增韧陶瓷粉末中的一种或多种的混合物,壳层喂料中的粉末选自金属粉末、陶瓷粉末或增韧陶瓷粉末中的一种或多种的混合物,芯层喂料中的粉末和壳层喂料中的粉末不相同,过渡层喂料中的粉末为梯度复合材料粉末,所述梯度复合材料粉末由壳层喂料中的粉末与芯层喂料中的粉末混合而成; 
(2)采用粉末注射成形方法分别用步骤(1)中配制的三种喂料制作包括芯层、过渡层、壳层的多层壳芯结构零件的生坯,所述采用粉末注射成形步骤包括:采用壳层喂料在第一套模具中注射成形获得壳层;将壳层作为嵌件采用第一过渡层喂料在第二模具中注射成形获得第一过渡层包裹壳层的第一复合体;将第一过渡层包裹芯层的第一复合体作为嵌件采用第二过渡层喂料在第三模具中注射成形获得第二过渡层包裹第一复合体第二复合体;将第二复合体作为嵌件采用芯层喂料在第四模具中注射成形得到芯层包裹第二复合体的多层壳芯复合体; 
(3)对步骤(2)获得的生坯进行脱脂处理; 
(4)根据壳层、芯层和过渡层使用的材料特性,对步骤(3)中处理过的生坯进行烧结,获得所述多层壳芯复合结构零件;所述多层壳芯复合结构零件为髋臼,所述芯层为Al2O3陶瓷,所述第一过渡层为Ti6Al4V-60vol.%Al2O3,所述第二过渡层为Ti6Al4V-20vol.%Al2O3,所述壳层为Ti6Al4V,Al2O3粉末的纯度大于99.9wt%,颗粒尺寸为0.5~5μm;Ti6Al4V粉末的纯度大于99.5wt%,颗粒尺寸为10~35μm;所述壳层喂料中添加有0.1wt.%MgO粉末作为烧结助剂; 
所述粘结剂包括聚醛树脂基粘结剂,所述聚醛树脂基粘结剂包括89wt.%聚甲醛、5wt.%高密度聚乙烯和6wt.%粘结助剂;所述各层配制好的喂料与所述聚醛树脂基粘结剂混合并在180℃条件下混炼2.5h,获得装载量大于60Vol.%的聚醛体系喂料; 
所述注射成形条件包括:注射温度为170~180℃,注射压力为100~120MPa,保压压力为70-85MPa,冷却时间为3~4min; 
所述脱脂处理条件包括:脱脂温度为110~120℃,脱脂催化剂包括硝酸,脱脂载气包括氮气,脱脂时间为5h; 
所述烧结温度为1420℃,烧结压力为40MPa,保温时间1h。 
18.一种多层壳芯复合结构零件的制备方法,其特征在于,包括下列步骤: 
(1)分别配制芯层、过渡层和壳层的注射成形用喂料,所述喂料由粉末与粘结剂和添加剂混炼制成,所述添加剂包括表面活性剂和增塑剂;芯层喂料中的粉末选自金属粉末、陶瓷粉末或增韧陶瓷粉末中的一种或多种的混合物,壳层喂料中的粉末选自金属粉末、陶瓷粉末或增韧陶瓷粉末中的一种或多种的混合物,芯层喂料中的粉末和壳层喂料中的粉末不相同,过渡层喂料中的粉末为梯度复合材料粉末,所述梯度复合材料粉末由壳层喂料中的粉末与芯层喂料中的粉末混合而成; 
(2)采用粉末注射成形方法分别用步骤(1)中配制的三种喂料制作包括芯层、过渡层、壳层的多层壳芯结构零件的生坯,所述采用粉末注射成形步骤包括:采用壳层喂料在第一套模具中注射成形获得壳层;将壳层作为嵌件采用第一过渡层喂料在第二模具中注射成形获得第一过渡层包裹壳层的第一复合体;将第一过渡层包裹芯层的第一复合体作为嵌件采用第二过渡层喂料在第三模具中注射成形获得第二过渡层包裹第一复合体第二复合体;将第二复合体作为嵌件采用芯层喂料在第四模具中注射成形得到芯层包裹第二复合体的多层壳芯复合体; 
(3)对步骤(2)获得的生坯进行脱脂处理; 
(4)根据壳层、芯层和过渡层使用的材料特性,对步骤(3)中处理过的生坯进行烧结,获得所述多层壳芯复合结构零件; 
所述多层壳芯复合结构零件为全衬陶瓷球阀阀体,所述芯层为ZrO2(Y+Ce),所述第一过渡层为17-4PH不锈钢-60vol.%ZrO2(Y+Ce)过渡层,所述第二过渡层为17-4PH不锈钢-30vol.%ZrO2(Y+Ce),所述壳层为17-4PH不锈钢,ZrO2粉末的纯度大于98.5wt%,颗粒尺寸为0.2~1.5μm;17-4PH不锈钢粉末的纯度大于98.8wt%,颗粒尺寸为5~35μm; 
所述壳层喂料中添加有1.5mol%Y2O3+4mol%CeO2粉末作为稳定助剂; 
所述粘结剂包括聚醛树脂基粘结剂,所述聚醛树脂基粘结剂包括89wt.%聚甲醛、5wt.%高密度聚乙烯和6wt.%粘结助剂;所述各层配制好的喂料与所述聚醛树脂基粘结剂混合并在180℃条件下混炼2.5h,获得装载量大于55%的聚醛体系喂料;所述注射成形条件包括:注射温度为170~180℃,注射压力为100~120MPa,保压压力为70-85MPa,冷却时间为3~4min; 
所述脱脂处理条件包括:脱脂温度为110~120℃,脱脂催化剂包括硝酸,脱脂载气包括氮气,脱脂时间为5h; 
所述烧结温度为1350℃,烧结压力为35MPa,保温时间1h。 
CN2010102991388A 2010-10-08 2010-10-08 一种多层壳芯复合结构零件的制备方法 Active CN102009175B (zh)

Priority Applications (8)

Application Number Priority Date Filing Date Title
CN2010102991388A CN102009175B (zh) 2010-10-08 2010-10-08 一种多层壳芯复合结构零件的制备方法
PCT/CN2011/076586 WO2012045247A1 (zh) 2010-10-08 2011-06-29 一种多层壳芯复合结构零件的制备方法
US13/878,233 US9216454B2 (en) 2010-10-08 2011-06-29 Manufacturing method of multilayer shell-core composite structural component
US14/938,848 US10035191B2 (en) 2010-10-08 2015-11-12 Manufacturing method of femoral condyle prosthesis
US14/938,849 US9821373B2 (en) 2010-10-08 2015-11-12 Manufacturing method of multilayer shell-core composite structural component
US14/938,846 US9937559B2 (en) 2010-10-08 2015-11-12 Manufacturing method of multilayer shell-core composite structural component
US15/788,805 US10632537B2 (en) 2010-10-08 2017-10-20 Manufacturing method of multilayer shell-core composite structural component
US15/886,836 US10688563B2 (en) 2010-10-08 2018-02-02 Manufacturing method of multilayer shell-core composite structural component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2010102991388A CN102009175B (zh) 2010-10-08 2010-10-08 一种多层壳芯复合结构零件的制备方法

Publications (2)

Publication Number Publication Date
CN102009175A CN102009175A (zh) 2011-04-13
CN102009175B true CN102009175B (zh) 2013-08-21

Family

ID=43839607

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2010102991388A Active CN102009175B (zh) 2010-10-08 2010-10-08 一种多层壳芯复合结构零件的制备方法

Country Status (3)

Country Link
US (6) US9216454B2 (zh)
CN (1) CN102009175B (zh)
WO (1) WO2012045247A1 (zh)

Families Citing this family (68)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2908427T3 (es) 2004-07-13 2022-04-29 Dexcom Inc Sensor de analito transcutáneo
CN102009175B (zh) * 2010-10-08 2013-08-21 李亚东 一种多层壳芯复合结构零件的制备方法
US10399907B2 (en) 2012-03-02 2019-09-03 Dynamic Material Systems, LLC Ceramic composite structures and processing technologies
US9944021B2 (en) 2012-03-02 2018-04-17 Dynamic Material Systems, LLC Additive manufacturing 3D printing of advanced ceramics
US9764987B2 (en) 2012-03-02 2017-09-19 Dynamic Material Systems, LLC Composite ceramics and ceramic particles and method for producing ceramic particles and bulk ceramic particles
CN104550973A (zh) * 2013-10-11 2015-04-29 浙江一火科技有限公司 一种人工髋臼杯的制备方法
CN104546226A (zh) * 2013-10-11 2015-04-29 浙江一火科技有限公司 一种人工髋关节及其制备方法
EP2875938A1 (en) * 2013-11-21 2015-05-27 Airbus Operations GmbH Manufacturing method and manufacturing tool for reinforced structural elements
CN103611939A (zh) * 2013-11-28 2014-03-05 宁波金鹏高强度紧固件有限公司 一种利用3d打印技术制造耐磨紧固件的方法
CN104972125A (zh) * 2014-04-04 2015-10-14 浙江一火科技有限公司 一种活检钳钳头的制备方法
CN104117678A (zh) * 2014-08-11 2014-10-29 长沙学院 一种生产微尺寸铰接零件的粉末注射成形工艺
EP2990013B1 (de) * 2014-09-01 2017-06-21 Jossi Holding AG Künstliche Gelenkschale
CN104355605A (zh) * 2014-10-30 2015-02-18 苏州广型模具有限公司 一种陶瓷拉丝模模芯的烧结工艺
CN104355604A (zh) * 2014-10-30 2015-02-18 苏州广型模具有限公司 一种陶瓷拉丝模模芯的脱脂工艺
CN104307902A (zh) * 2014-10-30 2015-01-28 苏州广型模具有限公司 一种陶瓷拉丝模模芯的注射成型方法
CN104592938B (zh) * 2015-01-13 2017-01-18 广东工业大学 一种金刚石磨粒表面结合剂的梯度合金化造粒方法
CN104921846B (zh) * 2015-07-06 2017-01-18 卢通成 一种抗磨损、不破裂的新型金属陶瓷股骨头及其制作方法
CN105058179B (zh) * 2015-07-21 2017-07-28 四川天邑康和通信股份有限公司 一种陶瓷插芯免加工内孔及同心度的工艺与加工系统
WO2017053850A2 (en) * 2015-09-24 2017-03-30 Dynamic Material Systems, LLC Additive manufacturing 3d printing of advanced ceramics
CN105382261B (zh) * 2015-11-24 2017-12-05 广东省材料与加工研究所 一种钛零件的精密制备方法
CN105921756A (zh) * 2016-03-28 2016-09-07 宿迁启祥电子科技有限公司 带嵌件的成型品的制造方法
CN105728730B (zh) * 2016-04-08 2018-04-13 玉溪大红山矿业有限公司 一种注射成形用不锈钢基喂料及其制备方法
CN106001561B (zh) * 2016-06-03 2018-10-23 广东工业大学 一种多级复合金属陶瓷、其制备方法及盾构刀具
CN107639232A (zh) * 2016-07-21 2018-01-30 宿迁启祥电子科技有限公司 复合结构件的制造方法
US10441684B2 (en) 2016-09-09 2019-10-15 Zimmer, Inc. Monolithic composite orthopedic implants and associated methods
CN106312048A (zh) * 2016-09-18 2017-01-11 广东工业大学 一种金属陶瓷颗粒及其制备方法与应用
CN106424740B (zh) * 2016-09-30 2019-04-12 昆明理工大学 一种碳化钨颗粒增强钢基表层复合材料及其制备方法
WO2018112263A1 (en) * 2016-12-14 2018-06-21 Desktop Metal, Inc. Material systems for additive manufacturing
CN106863558A (zh) * 2017-02-21 2017-06-20 孙震 一种多层坯体注浆成型模具及工艺
CN107056285A (zh) * 2017-04-07 2017-08-18 江苏铭百圣耐火有限公司 一种注射成型塑基氧化锆陶瓷产品的生产工艺流程
CN106945151A (zh) * 2017-04-07 2017-07-14 江苏铭百圣耐火有限公司 一种注射成型塑基氧化铝陶瓷产品的生产工艺流程
FR3066936B1 (fr) * 2017-06-01 2019-11-01 Safran Procede de soudage par cofrittage ameliore
CN109719300B (zh) * 2017-10-31 2020-07-14 华为技术有限公司 手机中框、手机后盖以及手机
CN110355527A (zh) * 2018-04-11 2019-10-22 张文票 一种半球的冲压生产工艺
CN109128186B (zh) * 2018-08-31 2021-01-01 湖南英捷高科技有限责任公司 一种内镜黏膜剥离术电刀头及其制备方法
CN109136712A (zh) * 2018-09-03 2019-01-04 广西冶金研究院有限公司 一种基于mim成型的芯壳层结构的硬质合金球齿的制备方法
CN109400172A (zh) * 2018-10-22 2019-03-01 厦门钜瓷科技有限公司 内部中空流道氮化铝陶瓷器件的制造方法
CN109128171B (zh) * 2018-11-07 2023-09-19 沈阳航空航天大学 一种细化增材制造钛合金晶粒的装置
KR102130490B1 (ko) * 2018-12-18 2020-07-06 주식회사 엔이피 자동차 조향장치에 사용되는 철계금속부품 제조방법
CN110369706A (zh) * 2019-02-25 2019-10-25 上海富驰高科技股份有限公司 一种陶瓷-金属复合材料的制备方法
CN110176317B (zh) * 2019-04-04 2023-10-20 东华大学 一种氧化物梯度复相陶瓷核电用馈通线及其制备和应用
CN111515389B (zh) * 2019-04-20 2021-01-12 深圳市泛海统联精密制造股份有限公司 一种mim直接成型内部倒扣的方法
CN111848204B (zh) * 2019-04-30 2022-06-14 华为技术有限公司 陶瓷结构件及其制备方法和终端
CN110393610B (zh) * 2019-05-15 2021-08-10 上海大学 一种三层复合骨植入假体及其制备方法
CN110625119B (zh) * 2019-09-23 2021-12-28 广西科技大学 一种高结合强度电刀刀头及其制备方法
CN111283202B (zh) * 2020-02-19 2022-08-12 昂纳自动化技术(深圳)有限公司 电子烟雾化组件及其制造方法
AU2021222575A1 (en) * 2020-02-19 2022-10-13 DePuy Synthes Products, Inc. Coated implant and method of making the same
CN114012089B (zh) * 2020-10-20 2023-10-10 北京安泰钢研超硬材料制品有限责任公司 一种金刚石包裹球的制备方法及生成装置
CN112294499B (zh) * 2020-10-30 2024-04-09 嘉思特医疗器材(天津)股份有限公司 含氧化层锆铌合金分区骨小梁股骨髁假体及制备方法
CN112343948B (zh) * 2020-11-05 2021-08-06 三阳纺织有限公司 芯轴部件的制作方法、芯轴部件及应用其的纺织机械
CN112475287A (zh) * 2020-11-28 2021-03-12 苏州创卓精密制造有限公司 一种金属粉末成型工艺
CN114617680A (zh) * 2020-12-14 2022-06-14 苏州诺桥科技有限公司 一种复合材料植入物假体及其制备方法
CN112919909A (zh) * 2021-03-18 2021-06-08 苏州璋驰光电科技有限公司 一种用于调q激光的复合结构激光陶瓷及其制备方法
CA3210177A1 (en) 2021-03-19 2022-09-22 Dexcom, Inc. Drug releasing membrane for analyte sensor
CN113600817B (zh) * 2021-07-28 2023-01-06 深圳市泛海统联精密制造股份有限公司 一种导磁与非导磁双材料金属粉末注塑成型工艺
CN113857472B (zh) * 2021-09-15 2022-06-07 浙江大学 一种钛合金组件注射成形方法
CN116480677B (zh) * 2021-09-17 2024-03-15 荣耀终端有限公司 转轴结构件及其制备方法和应用
CN114101678B (zh) * 2021-11-15 2024-01-12 湖南英捷高科技有限责任公司 一种金属-陶瓷复合材料的制备方法
CN114147233B (zh) * 2022-02-10 2022-04-12 北京煜鼎增材制造研究院有限公司 一种导弹战斗部壳体及其增材制造方法
CN114524669A (zh) * 2022-02-28 2022-05-24 江苏师范大学 一种棒状同心圆结构石榴石基激光透明陶瓷及其制备方法
CN114905042A (zh) * 2022-04-08 2022-08-16 深圳市泛海统联精密制造股份有限公司 一种金属注塑成型工艺制备多孔耐磨产品的方法
CN114523109B (zh) * 2022-04-24 2022-12-13 西部宝德科技股份有限公司 高精度梯度孔隙滤芯的制备方法
CN114988852B (zh) * 2022-05-13 2023-09-05 潍坊科技学院 一种具有多层夹层结构陶瓷型芯的制备方法
CN115124353B (zh) * 2022-07-15 2023-01-24 中材高新氮化物陶瓷有限公司 一种层状复合陶瓷圆柱滚子及其制备方法
CN115138846B (zh) * 2022-09-02 2022-11-25 中国航发北京航空材料研究院 一种粉末冶金用包套双重型芯的制备方法
CN115533102B (zh) * 2022-09-28 2024-09-03 歌尔股份有限公司 钛钢复合材料零部件及其制备方法
CN116000301A (zh) * 2022-12-13 2023-04-25 南京理工大学 一种碳化钨-氮化硅陶瓷复合立铣刀及其制备方法
CN116768607B (zh) * 2023-06-01 2024-09-27 广东佛山市陶瓷研究所控股集团股份有限公司 梯度结构的耐磨锆铝复合陶瓷球及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101612824A (zh) * 2009-08-05 2009-12-30 李新桥 一种金属/陶瓷三层复合材料及其制备工艺与应用
CN101618617A (zh) * 2009-08-03 2010-01-06 李新桥 一种金属/陶瓷三层复合材料及其制备工艺

Family Cites Families (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1049704A (en) * 1964-05-09 1966-11-30 Jack Wingate Sutcliffe Pistons or plungers for pneumatically-operated apparatus
US4010775A (en) * 1975-01-15 1977-03-08 Consolidated Controls Corporation High temperature valve
JPS5316494A (en) * 1976-07-30 1978-02-15 Sumitomo Chemical Co Metal burst porcelain crown
DE2939284C2 (de) * 1979-09-28 1982-08-26 Feldmühle AG, 4000 Düsseldorf Verfahren zum Herstellen von Kolben aus gesinterter Oxidkeramik
JPS6018621B2 (ja) * 1981-05-21 1985-05-11 日本碍子株式会社 エンジン部品
US4741254A (en) * 1986-06-12 1988-05-03 Taylor Julian S Pump plunger
US4955284A (en) * 1989-02-27 1990-09-11 Ingersoll-Rand Company Piston having ceramic parts
US5058537A (en) * 1989-04-21 1991-10-22 Paul Marius A Optimized high pressure internal combustion engines
US5127430A (en) * 1990-02-01 1992-07-07 Industrial Ceramics Engineering Ceramic weir for valve body
DE4016723A1 (de) * 1990-05-24 1991-11-28 Kolbenschmidt Ag Kolben-pleuel-anordnung
US5174193A (en) * 1990-06-23 1992-12-29 T&N Technology Limited Pistons for engines or motors
US5193435A (en) * 1990-06-23 1993-03-16 T&N Technology Limited Piston with ceramic load-transmitting pads
US5284676A (en) * 1990-08-17 1994-02-08 Carbon Implants, Inc. Pyrolytic deposition in a fluidized bed
US5327813A (en) * 1992-06-12 1994-07-12 Ford Motor Company Wrist pin having a ceramic composite core
GB2298023A (en) * 1995-02-16 1996-08-21 Duriron Co Adjustable ball valve
JPH1088368A (ja) * 1996-09-19 1998-04-07 Toshiba Corp 遮熱コーティング部材およびその作製方法
JPH11311103A (ja) 1998-04-27 1999-11-09 Toshiba Corp 高温部品、ガスタービン用高温部品およびこれらの製造方法
JP2000016863A (ja) * 1998-06-30 2000-01-18 Shunzo Tajima アルミナセラミックス生体部材
US20020010070A1 (en) * 2000-04-25 2002-01-24 Bernard Cales Zirconia-toughened alumina biocomponent having high resistance to low temperature degradation and method for preparing same
US20020031675A1 (en) * 2000-04-27 2002-03-14 Bernard Cales Partially stabilized zirconia biocomponent having high resistance to low temperature degradation and a method of preparing same
US6780911B2 (en) * 2000-08-23 2004-08-24 Metabolix, Inc. Low molecular weight polyhydroxyalkanoate molding compositions
US6569380B2 (en) * 2001-08-27 2003-05-27 Advanced Materials Technologies Pte, Ltd. Enclosure for a semiconductor device
US9259508B2 (en) * 2003-03-07 2016-02-16 Louis A. Serafin, Jr. Trust Ceramic manufactures
DE102004048861A1 (de) * 2004-10-07 2006-04-20 Robert Bosch Gmbh Elektromagnetisch betätigbares Ventil, insbesondere für Bremskraftanlagen in Kraftfahrzeugen
US20060163774A1 (en) * 2005-01-25 2006-07-27 Norbert Abels Methods for shaping green bodies and articles made by such methods
US7178446B2 (en) * 2005-02-28 2007-02-20 Caterpillar Inc Cylinder rod with position sensor surface markings
US20060285991A1 (en) * 2005-04-27 2006-12-21 Mckinley Laurence M Metal injection moulding for the production of medical implants
DE102005061409A1 (de) * 2005-12-22 2007-06-28 Robert Bosch Gmbh Elektromagnetisch betätigbares Ventil
JP2007231830A (ja) * 2006-03-01 2007-09-13 Nissan Motor Co Ltd 内燃機関のピストン
JP2009533181A (ja) * 2006-04-11 2009-09-17 スミス アンド ネフュー インコーポレーテッド 整形外科インプラント用セラミック−金属複合材料
WO2007123861A2 (en) * 2006-04-18 2007-11-01 University Of Florida Prosthetic device
KR20090052872A (ko) * 2006-08-16 2009-05-26 생-고뱅 세라믹스 앤드 플라스틱스, 인코포레이티드 세라믹 소자의 사출 성형
CN101224497B (zh) * 2007-01-17 2010-05-26 富准精密工业(深圳)有限公司 动压轴承制造方法
BRPI0807039A2 (pt) * 2007-01-19 2014-04-22 Cinv Ag Implante poroso, degradável feito por moldagem de pó.
US7803313B2 (en) * 2007-02-15 2010-09-28 Precision Castparts Corp. Method for bonding powder metallurgical parts
US8357205B2 (en) * 2007-04-10 2013-01-22 Mohamed Naushad Rahaman Femoral head and method of manufacture thereof
GB0713876D0 (en) * 2007-07-18 2007-08-29 3M Innovative Properties Co Manufacture of components for medicinal dispensers
US7883662B2 (en) * 2007-11-15 2011-02-08 Viper Technologies Metal injection molding methods and feedstocks
DE102008045568A1 (de) * 2008-09-03 2010-03-04 Krones Ag Einrichtung und Kolben zum Aussortieren von Artikeln
KR101080725B1 (ko) * 2009-03-13 2011-11-07 현대자동차주식회사 Ptfe 코팅제, 이의 제조방법 및 사용방법
US10159574B2 (en) * 2009-04-29 2018-12-25 Flextronics Global Services Canada Inc. Method for co-processing components in a metal injection molding process, and components made via the same
EP2448880B1 (en) * 2009-06-30 2019-06-05 Aktiebolaget SKF Zirconia-alumina ceramic rolling element and method for making it
NL2003325C2 (en) * 2009-08-03 2011-02-04 Syroko B V Method for producing a powder injection moulded part.
SE534696C2 (sv) * 2010-03-26 2011-11-22 Diamorph Ab En funktionell gradientmaterialkomponent och metod för att producera en sådan komponent
US20110250560A1 (en) * 2010-04-12 2011-10-13 B&L Biotech Co., Ltd. Dental and medical ultrasonic tip and method of manufacturing the same
US9789543B2 (en) * 2010-04-30 2017-10-17 Accellent Inc. Pressure forming of metal and ceramic powders
CN101947149B (zh) 2010-10-08 2013-01-02 李亚东 多层壳芯复合结构件组成的人工髋关节
CN102009175B (zh) 2010-10-08 2013-08-21 李亚东 一种多层壳芯复合结构零件的制备方法
US9162927B2 (en) * 2011-03-16 2015-10-20 Basf Se Process for producing metallic or ceramic shaped bodies

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101618617A (zh) * 2009-08-03 2010-01-06 李新桥 一种金属/陶瓷三层复合材料及其制备工艺
CN101612824A (zh) * 2009-08-05 2009-12-30 李新桥 一种金属/陶瓷三层复合材料及其制备工艺与应用

Also Published As

Publication number Publication date
WO2012045247A1 (zh) 2012-04-12
US10688563B2 (en) 2020-06-23
US20180154447A1 (en) 2018-06-07
US10035191B2 (en) 2018-07-31
US9216454B2 (en) 2015-12-22
US10632537B2 (en) 2020-04-28
US9937559B2 (en) 2018-04-10
US20160059318A1 (en) 2016-03-03
US20130216420A1 (en) 2013-08-22
CN102009175A (zh) 2011-04-13
US20180036802A1 (en) 2018-02-08
US20160059316A1 (en) 2016-03-03
US20160059317A1 (en) 2016-03-03
US9821373B2 (en) 2017-11-21

Similar Documents

Publication Publication Date Title
CN102009175B (zh) 一种多层壳芯复合结构零件的制备方法
WO2023143489A1 (zh) 一种表面增强陶瓷人工关节凸球型摩擦部件及其制备方法
CN101947149B (zh) 多层壳芯复合结构件组成的人工髋关节
EP2380686A2 (en) A functionally graded material shape and method for producing such a shape
CN109338193B (zh) 一种无芯-环结构金属陶瓷合金及其制备方法
CN201939535U (zh) 多层壳芯复合结构件组成的人工髋关节
CN113354421B (zh) 一种粘接剂及其制备方法和应用
CN107523710A (zh) 一种抗高温氧化的晶须改性Ti(C,N)基复合金属陶瓷制备方法
CN107032826A (zh) 一种空心氧化铝球/碳化硅增强铜基复合材料的制备方法
CN104329988A (zh) 一种防弹陶瓷片及其制备方法
CN111910136B (zh) 一种三维纤维骨架韧化金属陶瓷及其制备方法
CN114716260B (zh) 一种陶瓷-金属复合材料与金属材料的连接件及其制备方法
CN102310196A (zh) 电场作用下烧结制备微小零件的方法
CN106830941A (zh) Al2O3与多组元过渡族金属共价键化合物烧结体及其制备方法
CN113714497A (zh) 梯度粉末冶金高速钢预处理粉末及其处理方法和梯度粉末冶金高速钢制备方法
CN115196973B (zh) 多层氮化硅陶瓷植入物及其制作方法
CN113277846B (zh) 氧化铝原位复合氧化锆陶瓷粉体、陶瓷制备方法及应用
CN115594490B (zh) 低热膨胀氧化铝基陶瓷刀具材料及其制备工艺
KR102148026B1 (ko) 이종재료 접합 및 가압 함침 공정을 이용하여 제조된 압연롤 및 그 제조방법
CN115156541B (zh) 一种高性能叠层结构硬质合金的制备方法
KR200431577Y1 (ko) 세라믹 팁을 갖는 압연롤러
CN118580077A (zh) 一种陶瓷黏结相梯度硬质合金刀具材料及其制备方法
CN117776686A (zh) 一种Al2O3-ZrO2复相陶瓷颗粒及其制备方法和应用
CN117467881A (zh) 一种高熵合金黏结相梯度硬质合金刀具材料及其制备方法
CN114702308A (zh) 一种高强度zta多孔陶瓷材料及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20160523

Address after: 215200 No. 18 Suzhou Road, Wujiang District, Jiangsu, Suzhou

Patentee after: Suzhou Ding an Technology Co., Ltd.

Address before: 215011 Jiangsu Province, Suzhou City District Xintai garden room 45-405

Patentee before: Li Yadong

Patentee before: Li Yajun