CN101474995B - 确定电-机械动力系统最小最大转矩极限的系统约束方法 - Google Patents
确定电-机械动力系统最小最大转矩极限的系统约束方法 Download PDFInfo
- Publication number
- CN101474995B CN101474995B CN2008102463799A CN200810246379A CN101474995B CN 101474995 B CN101474995 B CN 101474995B CN 2008102463799 A CN2008102463799 A CN 2008102463799A CN 200810246379 A CN200810246379 A CN 200810246379A CN 101474995 B CN101474995 B CN 101474995B
- Authority
- CN
- China
- Prior art keywords
- conversion
- motor
- torque
- maximum
- constraint
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W20/00—Control systems specially adapted for hybrid vehicles
- B60W20/10—Controlling the power contribution of each of the prime movers to meet required power demand
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K6/00—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
- B60K6/20—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
- B60K6/22—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
- B60K6/26—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the motors or the generators
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K6/00—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
- B60K6/20—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
- B60K6/22—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
- B60K6/36—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings
- B60K6/365—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings with the gears having orbital motion
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K6/00—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
- B60K6/20—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
- B60K6/42—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
- B60K6/44—Series-parallel type
- B60K6/445—Differential gearing distribution type
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K6/00—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
- B60K6/20—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
- B60K6/50—Architecture of the driveline characterised by arrangement or kind of transmission units
- B60K6/54—Transmission for changing ratio
- B60K6/547—Transmission for changing ratio the transmission being a stepped gearing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L50/00—Electric propulsion with power supplied within the vehicle
- B60L50/10—Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
- B60L50/16—Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L50/00—Electric propulsion with power supplied within the vehicle
- B60L50/50—Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
- B60L50/60—Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
- B60L50/61—Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W10/00—Conjoint control of vehicle sub-units of different type or different function
- B60W10/04—Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
- B60W10/08—Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W10/00—Conjoint control of vehicle sub-units of different type or different function
- B60W10/10—Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W10/00—Conjoint control of vehicle sub-units of different type or different function
- B60W10/24—Conjoint control of vehicle sub-units of different type or different function including control of energy storage means
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W10/00—Conjoint control of vehicle sub-units of different type or different function
- B60W10/24—Conjoint control of vehicle sub-units of different type or different function including control of energy storage means
- B60W10/26—Conjoint control of vehicle sub-units of different type or different function including control of energy storage means for electrical energy, e.g. batteries or capacitors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K1/00—Arrangement or mounting of electrical propulsion units
- B60K1/02—Arrangement or mounting of electrical propulsion units comprising more than one electric motor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2220/00—Electrical machine types; Structures or applications thereof
- B60L2220/10—Electrical machine types
- B60L2220/18—Reluctance machines
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/40—Drive Train control parameters
- B60L2240/42—Drive Train control parameters related to electric machines
- B60L2240/423—Torque
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/40—Drive Train control parameters
- B60L2240/48—Drive Train control parameters related to transmissions
- B60L2240/486—Operating parameters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W20/00—Control systems specially adapted for hybrid vehicles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W50/00—Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
- B60W2050/0001—Details of the control system
- B60W2050/0019—Control system elements or transfer functions
- B60W2050/0022—Gains, weighting coefficients or weighting functions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W50/00—Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
- B60W2050/0001—Details of the control system
- B60W2050/0019—Control system elements or transfer functions
- B60W2050/0028—Mathematical models, e.g. for simulation
- B60W2050/0031—Mathematical model of the vehicle
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2510/00—Input parameters relating to a particular sub-units
- B60W2510/08—Electric propulsion units
- B60W2510/083—Torque
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2510/00—Input parameters relating to a particular sub-units
- B60W2510/24—Energy storage means
- B60W2510/242—Energy storage means for electrical energy
- B60W2510/244—Charge state
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2540/00—Input parameters relating to occupants
- B60W2540/10—Accelerator pedal position
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2540/00—Input parameters relating to occupants
- B60W2540/12—Brake pedal position
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2710/00—Output or target parameters relating to a particular sub-units
- B60W2710/08—Electric propulsion units
- B60W2710/083—Torque
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2710/00—Output or target parameters relating to a particular sub-units
- B60W2710/10—Change speed gearings
- B60W2710/105—Output torque
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H37/00—Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00
- F16H37/02—Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings
- F16H37/06—Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts
- F16H37/08—Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing
- F16H37/0833—Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing with arrangements for dividing torque between two or more intermediate shafts, i.e. with two or more internal power paths
- F16H37/084—Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing with arrangements for dividing torque between two or more intermediate shafts, i.e. with two or more internal power paths at least one power path being a continuously variable transmission, i.e. CVT
- F16H2037/0866—Power split variators with distributing differentials, with the output of the CVT connected or connectable to the output shaft
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H37/00—Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00
- F16H37/02—Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings
- F16H37/06—Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts
- F16H37/08—Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing
- F16H37/10—Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing at both ends of intermediate shafts
- F16H2037/102—Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing at both ends of intermediate shafts the input or output shaft of the transmission is connected or connectable to two or more differentials
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H37/00—Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00
- F16H37/02—Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings
- F16H37/06—Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts
- F16H37/08—Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing
- F16H37/10—Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing at both ends of intermediate shafts
- F16H2037/104—Power split variators with one end of the CVT connected or connectable to two or more differentials
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H37/00—Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00
- F16H37/02—Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings
- F16H37/06—Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts
- F16H37/08—Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing
- F16H37/10—Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing at both ends of intermediate shafts
- F16H2037/105—Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing at both ends of intermediate shafts characterised by number of modes or ranges, e.g. for compound gearing
- F16H2037/106—Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing at both ends of intermediate shafts characterised by number of modes or ranges, e.g. for compound gearing with switching means to provide two variator modes or ranges
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H3/00—Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
- F16H3/44—Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion
- F16H3/72—Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion with a secondary drive, e.g. regulating motor, in order to vary speed continuously
- F16H3/727—Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion with a secondary drive, e.g. regulating motor, in order to vary speed continuously with at least two dynamo electric machines for creating an electric power path inside the gearing, e.g. using generator and motor for a variable power torque path
- F16H3/728—Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion with a secondary drive, e.g. regulating motor, in order to vary speed continuously with at least two dynamo electric machines for creating an electric power path inside the gearing, e.g. using generator and motor for a variable power torque path with means to change ratio in the mechanical gearing
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/40—Engine management systems
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/62—Hybrid vehicles
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/64—Electric machine technologies in electromobility
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/7072—Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
Landscapes
- Engineering & Computer Science (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Power Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Automation & Control Theory (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
- Hybrid Electric Vehicles (AREA)
Abstract
本发明公开了一种确定电-机械动力系统最小最大转矩极限的系统约束方法,其中该动力系包括电-机械变速器,该变速器机械地操作连接到适于将功率传递到输出元件上的内燃机和电机。一种用于控制该电-机械变速器的方法包括:确定用于第一和第二电机的最小和最大电机转矩约束,并且用电池功率约束确定可用电池功率。基于电池功率约束和电机转矩约束来确定第一、第二和第三种情况中的一种。确定用于传递至电-机械变速器的输出元件的优选输出转矩。
Description
相关申请的交叉引用
本申请要求了2007年11月1日申请的美国临时申请60/984,524的权益,因此该申请作为参考合并在此。
技术领域
本发明涉及一种电-机械变速器的控制系统。
背景技术
该部分的说明仅提供与本发明相关的背景信息,并且可能不构成现有技术。
已知的混合动力系结构可包括多种转矩产生装置,这些装置包括内燃发动机和非燃烧式机械(例如电机),它们通过一变速器装置传递转矩至一输出元件。一个示例性混合动力系包括双模式、混合-分离(compound-split)、电-机械变速器和输出元件,该变速器利用一输入元件接收来自于优选为内燃发动机的原动机动力源的牵引转矩。输出元件可以操作地连接至机动车辆的传动系,用于将牵引转矩传递给传动系。作为电动机或者发电机运转的机械能够向变速器产生输入转矩,该输入转矩独立于来自内燃发动机的输入转矩。该机械可将通过车辆传动系传递的车辆动能转换成可存储在一电能存储装置中的能量。一控制系统监控来自于车辆和操作者的各种输入,并且对混合动力系提供操作控制,这些操作控制包括控制变速器的运行状态和换档、控制转矩产生装置、以及调节电能存储装置和该电机之间的能量交换,以管理包括转矩和转速在内的变速器输出。
发明内容
公开了一种包括电-机械变速器的动力系,该变速器机械地操作连接到适于将功率传递到输出元件上的内燃机和电机。一种用于控制该电-机械变速器的方法包括:确定用于第一和第二电机的最小和最大电机转矩约束,并且用电池功率约束确定可用电池功率。基于相对于电池功率约束的第一和第二电机的最小和最大电机转矩约束来确定第一、第二和第三种情况中的一种,并选择第一,第二和第三种情况中所确定的一种情况的预定区域。基于电机转矩约束和电池功率约束确定用于所选区域的至少一个输出转矩,以及,选择用于所选区域的优选输出转矩,以传递至电-机械变速器的输出元件。
附图说明
现参照附图举例说明一个或多个实施例,其中:
图1为根据本发明的示例性动力系的示意图;
图2是根据本发明用于控制系统和动力系的示例性构架的示意图;以及,
图3至19是根据本发明的图解示意图。
具体实施方式
现在参看附图,其中附图只是为了示出某些示例性实施例,而不是限制实施例,图1和2描绘了一示例性电-机械混合动力系。图1所描绘的本发明的该示例性电-机械混合动力系包括双模式、混合-分离、电-机械混合变速器10,该变速器10操作连接至发动机14和第一和第二电机(‘MG-A’)56和(‘MG-B’)72。发动机14和第一和第二电机56和72每个都产生能传递给变速器10的功率。由发动机14和第一和第二电机56和72所产生的并且传递给变速器10的功率用术语输入转矩和电机转矩及速度来描述,在本文中该输入转矩和电机转矩分别用TI、TA和TB来表示,该速度则分别用NI、NA和NB来表示。
示例性发动机14包括多缸内燃发动机,其选择性地在多个状态下运转,以经由输入轴12将转矩传递给变速器10,该发动机14可以是点燃式或者压燃式发动机。发动机14包括操作联接到变速器10的输入轴12上的曲轴(未示出)。转速传感器11监控输入轴12的转速。来自发动机14的包括转速和发动机转矩的功率输出可能与传递给变速器10的输入速度NI和输入转矩TI不同,这是由于在发动机14和变速器10之间的输入轴12上放置转矩消耗部件,例如液压泵(未示出)和/或转矩管理装置。
该示例性的变速器10包含三组行星齿轮组24、26、28以及四个选择性接合的转矩传递装置,即离合器C1 70、C2 62、C3 73和C4 75。本文所使用的离合器是指任何类型的摩擦转矩传递装置,例如它们包括单盘式或复合盘式离合器或组件、带式离合器及制动器。优选由变速器控制模块(下面用‘TCM’表示)17控制的液压控制回路(HYD)42操作控制离合器的状态。离合器C2 62和C4 75优选包括以液压方式施用的旋转摩擦离合器。离合器C1 70和C3 73优选包括可选择性地接到变速器壳体68上的液压控制固定装置。离合器C1 70、C2 62、C3 73和C4 75中的每一个都优选是以液压方式施用的,选择性地通过液压控制回路42接收已加压的液压流体。
第一和第二电机56和72优选包括三相交流电机以及各自的第一和第二解算器(resolver)80和82,每个三相交流电机都包括定子(未示出)和转子(未示出)。每个电机的电机定子都接到变速器壳体68的外部上,并且还包括定子心,盘绕的电绕组自该定子心开始延伸。第一电机56的转子支撑在毂盘齿轮(hubplate gear)上,该毂盘齿轮经由第二行星齿轮组26操作地附接到轴60上。第二电机72的转子固定地附接到衬套轴毂(sleeve shaft hub)66上。
第一和第二解算器80、82的每一个优选都包括可变磁阻装置,该可变磁阻装置包括解算器定子(未示出)和解算器转子(未示出)。第一和第二解算器80和82分别被适当地定位和安装在对应的第一和第二电机56和72上。该解算器80和82的定子分别操作连接到第一和第二电机56和72的定子之一上。解算器的转子操作连接到对应的第一和第二电机56和72的转子上。第一和第二解算器80和82每个都信号连接和操作连接到变速器功率变换器控制模块(下面用‘TPIM’表示)19上,并且每个解算器检测和监控解算器转子相对于解算器定子的旋转位置,从而监控对应的第一和第二电机56和72的旋转位置。此外,将来自于第一和第二解算器80和82的信号输出进行解释,以分别提供第一和第二电机56和72的转速,即NA和NB。
变速器10包括输出元件64,例如轴,其可操作地连接车辆(未示出)的传动系90以向该传动系90提供输出功率,该输出功率被传递给车轮93,在图1中示出了该车轮93中的一个。在输出元件64处的输出功率用术语输出转速NO和输出转矩TO来表征。变速器输出速度传感器84监控输出元件64的转速和旋转方向。车轮93的每一个优选地都配有适于监测车轮速度的传感器94,该传感器94的输出由针对图2所描述的分布式控制模块系统中的一控制模块来监控,以确定用于制动控制、牵引控制和车辆加速管理的车辆速度以及绝对的和相对的车轮速度。
来自发动机14的输入转矩和来自第一和第二电机56和72的电机转矩(分别为TI、TA和TB)是由燃料或存储于电能存储装置(下面用‘ESD’来表示)74中的电势能的能量转化而产生的。ESD 74经由直流电传递导线27而高压直流地连接到TPIM 19。传递导线27包括接触器开关38。在正常工况下,当接触器开关38闭合时,电流能够在ESD 74和TPIM 19之间流动。当接触器开关38断开时,ESD 74和TPIM 19之间的电流流动则中断。通过传递导线29,TPIM 19将电能传递给第一电机56,及传递来自于第一电机56的电能,并且类似地,通过传递导线31,TPIM 19将电能传递给第二电机72,及传递来自于第二电机72的电能,以作为对电机转矩TA和TB的响应来满足对第一和第二电机56和72的转矩命令。电流被传递给ESD 74及从ESD 74中输出是要依据ESD 74是被充电还是被放电。
TPIM 19包括一对功率变换器(未示出)和对应的电机控制模块(未示出),该电机控制模块配置成接受转矩命令并基于此来控制变换器状态,以便提供电机驱动或者再生功能,从而满足所命令的电机转矩TA和TB。功率变换器包括公知的互补型三相功率电子装置,每个装置都包括多个绝缘栅双极晶体管(未示出),其通过高频下的转换而将来自ESD 74的直流电转变为交流电,用于为相应的第一和第二电机56和72提供功率。绝缘栅双极晶体管形成为用于接收控制命令的开关模式功率供给源。典型地,每一个三相电机的每一相都配有一对绝缘栅双极晶体管。通过控制绝缘栅双极晶体管的状态来提供电机驱动机械能的产生或者电能再生的功能。三相变换器通过直流电传递导线27接收或者提供直流电,并且把直流电转化为三相交流电或者将三相交流电转化为直流电,该交流电分别通过传递导线29和31传导给第一和第二电机56和72或从第一和第二电机56和72传导出,以便作为电动机或者发电机工作。
图2示出了分布式控制模块系统的示意性框图。下文中将描述的元件包括整个车辆控制结构的一个子集,其对图1所描述的示例性混合动力系提供了协调系统控制。该分布式控制模块系统综合有关的信息和输入,并且执行算法来控制各个致动器以实现控制目标,这些控制目标包括:燃油经济性、排放物、性能、驾驶性能以及包括ESD 74的电池及第一和第二电机56和72在内的硬件的保护。分布式控制模块系统包括发动机控制模块(下面用‘ECM’来表示)23、TCM 17、电池组控制模块(接下来用’BPCM’来表示)21以及TPIM 19。混合控制模块(下面用‘HCP’来表示)5对ECM 23、TCM 17、BPCM 21和TPIM19提供监督控制和协调。用户接口(‘UI’)13信号地连接至多个装置,通过这些装置,车辆驾驶员就能控制或者指挥电-机械混合动力系的运行。这些装置包括加速踏板113(‘AP’)、驾驶员制动踏板112(‘BP’)、变速器档位选择器114(‘PRNDL’)和车辆速度巡航控制器(未示出)。变速器档位选择器114可以具有离散数目的驾驶员可选位置,这些可选位置包括输出元件64的旋转方向,以便能实现前进和倒退方向之一。
前面提到的这些控制模块通过局域网(下面用‘LAN’来表示)总线6与其它控制模块、传感器和致动器通信。LAN总线6允许在各种控制模块之间进行运行参数状态和致动器命令信号的结构化通信。所采用的特定通信协议是专用的(application-specific)。LAN总线6和合适的协议在前面提到的控制模块之间以及和其他控制模块之间提供了鲁棒通讯和多控制模块接口连接,这些其他控制模块提供了包括例如防抱死制动、牵引控制和车辆稳定性等功能。可以用多个通信总线来改进通信速度,并提供某种水平的信号冗余性和完整性。使用直接链路,例如串行外围接口(‘SPI’)总线(未示出),还可以进行各个控制模块之间的通信。
HCP 5能对混合动力系提供监督控制,用于ECM 23、TCM 17、TPIM 19和BPCM21的协调运行。基于来自用户接口13和包括ESD 74在内的混合动力系的各种输入信号,HCP 5确定出驾驶员转矩请求、输出转矩命令、发动机输入转矩命令、用于变速器10中所施用的转矩传递离合器C1 70、C2 62、C3 73、C4 75的离合器转矩、以及第一和第二电机56和72的电机转矩TA和TB。TCM17操作连接到液压控制回路42并提供各种功能,包括监测各种压力传感装置(未示出)和产生和传送控制信号至各种螺线管(未示出),从而控制液压控制回路42内包含的压力开关和控制阀。
ECM 23操作连接至发动机14,其作用是在多条离散线路上从传感器获取数据并控制发动机14的致动器,为了简便起见,该多条离散线路图示为总的双向接口电缆35。ECM 23接收来自于HCP 5的发动机输入转矩命令。ECM 23根据监控到的发动机速度和负载确定出在那一时间点提供给变速器10的实际发动机输入转矩TI,该实际发动机输入转矩TI被传送至HCP 5。ECM 23监控来自转速传感器11的输入,以确定到达输入轴12的发动机输入速度,该发动机输入速度转化为变速器的输入速度NI。ECM 23监控来自传感器(未示出)的输入,以确定包括如歧管压力、发动机冷却液温度、环境空气温度以及环境压力在内的其他发动机运行参数的状态。例如,从歧管压力或者可替代地从监控给加速踏板113的驾驶员输入可以确定发动机负载。ECM 23产生命令信号,并且传输这些命令信号来控制发动机致动器,这些致动器包括例如喷油器、点火模块和节气门控制模块,这些在图中都没有示出。
TCM 17操作连接至变速器10并且监控来自传感器(未示出)的输入,以确定变速器运行参数的状态。TCM 17产生命令信号,并且传输这些信号以控制变速器10,包括控制液压回路42。由TCM 17输入给HCP 5的输入包括:离合器(即C1 70、C2 62、C3 73和C4 75)中的每一个的估计离合器转矩,以及输出元件64的旋转输出速度NO。出于控制目的,其他致动器和传感器可用来自TCM 17向HCP 5提供附加信息。TCM 17监控来自于压力开关(未示出)的输入,并且选择性地致动液压回路42中的压力控制电磁阀(未示出)和换档电磁阀(未示出),以选择性地致动各离合器C1 70、C2 62、C3 73和C4 75,进而实现如下面所描述的各种变速器运行范围状态。
BPCM 21信号连接至传感器(未示出)以监控ESD 74,包括监控电流和电压参数的状态,以向HCP 5提供表示ESD 74的电池的参数状态的信息。该电池的这些参数状态优选包括电池荷电状态、电池电压、电池温度及用范围PBAT_MIN到PBAT_MAX来表示的可用电池功率。
制动器控制模块(下面用‘BrCM’来表示)22操作连接至车轮93的每一个上的摩擦制动器(未示出)。BrCM 22监控驾驶员对制动踏板112的输入,并产生控制信号以控制摩擦制动器,并且向HCP 5发送控制信号以基于此信号来运转第一和第二电机56和72。
控制模块ECM 23、TCM 17、TPIM 19、BPCM 21和BrCM 22的每一个优选都是通用数字计算机,该数字计算机包括微处理器或中央处理单元、存储介质(包括只读存储器(‘ROM’)、随机存储器(‘RAM’),可电编程只读存储器(‘EPROM’))、高速时钟、模拟/数字(‘A/D’)和数字/模拟(‘D/A’)转换电路、以及输入/输出电路和装置(‘I/O’)、和适宜的信号调节和缓冲电路。每个控制模块都包括一组控制算法,该算法包括存储于存储介质之一中的驻留程序命令和校验(calibration),执行该算法来提供各计算机的相应功能。控制模块之间的信息传递优选由LAN总线6和串行外围接口总线来完成。在预设的循环周期中执行该控制算法使得每个算法在每个循环周期中至少被执行一次。由中央处理单元之一采用预设的校验来执行存储于非易失性存储器装置中的算法,以监控来自于传感装置的输入,及执行控制致动器运行的控制和诊断程序。定期执行循环周期,例如在混合动力系运行期间每3.125、6.25、12.5、25和100毫秒执行一次。或者,响应事件的发生而执行算法。
示例性混合动力系可选择性地在若干运行范围状态之一下运行,这些状态可以用包含发动机开状态(‘ON’)和发动机关状态(‘OFF’)的发动机状态以及包含多个固定档位和无级变速运行模式的变速器状态来描述,下面参考表1对这些状态进行描述。表1
表中描述了各个变速器运行范围状态,并指出在每个运行范围状态中特定离合器C1 70、C2 62、C3 73和C4 75中的哪些被施用。通过使用离合器C170(只为了将第三行星齿轮组28的外部齿轮元件“接地”),从而选择第一无级变速模式,即EVT模式1或M1。发动机状态可以是ON(‘M1_Eng_On’)或者OFF(‘M1_Eng_Off’)之一。通过使用离合器C2 62(只将轴60接到第三行星齿轮组28的架上)从而选择第二无级变速模式,即EVT模式2或M2。发动机状态可以是ON(‘M2_Eng_On’)或者OFF(‘M2_Eng_Off’)之一。为了便于说明,当发动机状态是OFF时,发动机输入速度等于0转每分钟(‘RPM’),即,发动机曲轴不旋转。固定档位运行提供了变速器10的输入比输出速度的固定传动比运行,即NI/NO。通过使用离合器C1 70和C4 75,而选择第一固定档位运行(‘G1’)。通过使用离合器C1 70和C2 62而选择第二固定档位运行(‘G2’)。通过使用离合器C2 62和C4 75而选择第三固定档位运行(‘G3’)。通过使用离合器C2 62和C3 73而选择第四固定档位运行(‘G4’)。由于行星齿轮组24、26和28中的减小的传动比,输入比输出速度的固定传动比运行随着固定档位运行的升高而增加。第一和第二电机56和72的转速NA和NB分别取决于由离合操作所限定的该机构的内部旋转,且与在输入轴12处所测得的输入速度成比例。
作为对由用户接口13所捕获的经由加速踏板113和制动踏板112输入的驾驶员输入的响应,HCP 5和一个或多个其他控制模块确定出转矩命令,从而控制包括发动机14及第一和第二电机56和72在内的转矩产生装置,以满足在输出元件64处传递给传动系90的驾驶员转矩请求。基于来自用户接口13以及包括ESD 74在内的混合动力系的输入信号,HCP 5分别确定驾驶员转矩请求、变速器10与传动系90之间的被命令的输出转矩、来自发动机14的输入转矩、变速器10的转矩传递离合器C1 70、C2 62、C3 73、C4 75的离合器转矩以及第一和第二电机56和72的电机转矩,在下文中将描述它们。命令输出转矩可以是牵引转矩,其中,转矩流动开始于发动机14和第一和第二电机56和72,并通过变速器10传递到传动系90,并且也可以是反作用转矩,其中转矩流动开始于传动系90的车轮93并通过变速器10传递到第一和第二电机56和72以及发动机14。
最终的车辆加速可能受到其他因素的影响,这些其它因素包括,例如路面载荷、道路等级以及车辆重量。基于混合动力系的各种运行特性可以确定出变速器的运行范围状态。这包括如前面所描述的,通过加速踏板113和制动踏板112传输给用户接口13的驾驶员转矩请求。在电能产生模式或转矩产生模式下,根据由运行第一和第二电机56和72的命令所导致的混合动力系的转矩要求,可以断定该运行范围状态。该运行范围状态可以通过优化算法或程序来确定,该优化算法或程序根据驾驶员的功率要求、电池荷电状态以及发动机14和第一和第二电机56和72的能效确定最优的系统效率。控制系统根据所执行的优化程序的结果来管理来自于发动机14及第一和第二电机56和72的转矩输入,并且由此使管理燃油经济性及电池充电的系统效率得到优化。此外,还可以根据部件或系统的故障来决定操作。HCP 5监控转矩产生装置,并且确定响应于在输出元件64处所需要的输出转矩而需要的变速器10的功率输出,以满足驾驶员的转矩请求。根据上面所描述的,显然,ESD 74与第一和第二电机56和72操作电连接以便在它们之间形成能量流。此外,发动机14、第一和第二电机56和72以及电-机械变速器10操作地机械连接以在它们之间传递功率,进而向输出元件64传递能量流。
发动机14和变速器10的运行由发动机14、第一和第二电机56和72、ESD74以及离合器C1 70、C2 62、C3 73和C4 75的功率、转矩和速度极限来约束。对发动机14和变速器10的运行约束可翻译为一套系统约束方程,该方程作为在控制模块之一(例如,HCP5)内的一个或多个算法而被执行。
再次参考图1,在总体运行中,变速器10通过选择性致动一个或两个转矩传递离合器而在这些运行范围状态之一中运行。每个发动机14和第一和第二电机56、72的转矩约束,每个发动机14和第一和第二电机56、72以及变速器10的输出轴64的速度约束被确定。ESD74的电池功率约束被确定,并且应用到进一步限制第一和第二电机56、72的电机转矩约束。基于电池功率约束,电机转矩约束以及速度约束,采用系统约束方程来确定动力系的优选运行范围。该优选运行范围包括发动机14和第一和第二电机56、72的允许运行转矩或速度的范围。
通过推导并同时求解变速器10的动态方程,转矩极限(在这个实施例中为输出转矩T0)可采用下述线性方程确定:TM1=TAtoTM1*TA+TBtoTM1*TB+Misc_TM1 [1]TM2=TAtoTM2*TA+TBtoTM2*TB+Misc_TM2 [2]TM3=TAtoTM3*TA+TBtoTM3*TB+Misc_TM3 [3]其中,在这个实施例中,TM1代表输出元件64处的输出转矩To。TM2代表输入轴12的输入转矩TI。TM3代表变速器10的所施用的转矩传递离合器C1 70、C2 62、C3 73和C4 75的反作用离合器转矩。TAtoTM1,TAtoTM2,TAtoTM3分别为TA至TM1,TM2,TM3的影响因素。TBtoTM1,TBtoTM2,TBtoTM3分别为TB至TM1,TM2,TM3的影响因素。Misc_TM1,Misc_TM2和Misc_TM3是常数,该常数分别通过NI_DOT,NO_DOT,NC_DOT(输入速度、输出速度以及离合器打滑速度的时间率变化(time-ratechange))而贡献于TM1,TM2,TM3。TA和TB为来自第一和第二电机56、72的电机转矩。依赖于应用,转矩参数TM1、TM2、TM3可为任意三个独立参数,。
由于机械和系统限制,发动机14和变速器10以及第一和第二电机56,72具有速度约束、转矩约束和电池功率约束。
速度约束可包括发动机14的NI=0(发动机关闭状态)以及N1的范围从600rpm(怠速)到6000rpm的的发动机速度约束。第一和第二电机56、72的速度约束如下:-10500rpm≤NA≤+10500rpm,以及-10500rpm≤NB≤+10500rpm
转矩约束包括发动机转矩约束和第一和第二电机的电机转矩约束,发动机转矩约束包括TI_MIN<TI<TI_MAX,第一和第二电机的电机转矩约束包括TA_MIN<TA<TA_MAX,TB_MIN<TB<TB_MAX。电机转矩约束TA_MAX和TA_MIN包括当第一电机分别作为转矩产生马达和发电机工作时的第一电机56的转矩极限。电机转矩约束TB_MAX和TB_MIN包括当第二电机分别作为转矩产生马达和发电机工作时的第二电机72的转矩极限。最小和最大电机转矩约束TA_MAX,TA_MIN,TB_MAX和TB_MIN优选地从一个控制模块的存储装置内的以表格形式存储的数据组中获得。这些数据组通过对电机与功率电子装置(例如功率变换器)的组合在各种温度和电压条件下进行常规测功试验而实验推导出。
电池功率约束包括PBAT_MIN到PBAT_MAX范围内的可用电池功率,其中,PBAT_MIN是最小允许电池充电功率,PBAT_MAX是最大允许电池放电功率。
为了控制发动机14、第一和第二电机56和72(下面也称为电机A 56和电机B 72)以及变速器10的运行以满足驾驶员转矩需求和命令转矩,在正在运行的工作期间,TM1的最小和最大值在速度约束,电机转矩约束以及电池功率约束内确定。
包括转矩输出范围的运行范围可基于ESD74的电池功率约束来确定。电池功率利用(usage)PBAT的计算如下:PBAT=PA,ELEC+PB,ELEC+PDC_LOAD [4]其中,PA,ELEC包括电机A 56的功率,PB,ELEC包括电机B 72的功率,以及PDC_LOAD包括已知的直流负载,包括附属负载。
替换PA,ELEC和PB,ELEC的方程,得到如下:PBAT=(PA,MECH+PA,LOSS)+(PB,MECH+PB,LOSS)+PDC_LOAD [5]其中,PA,MECH包括电机A 56的机械功率,PA,LOSS包括电机A 56的功率损失,PB,MECH包括电机B 72的机械功率,以及PB,LOSS包括电机B 72的功率损失。
方程5可重新表述为以下的方程6,其中,速度NA和NB以及转矩TA和TB代替了功率PA和PB。这包括一个假设,即,电机和变换器功率损失可基于转矩数学模型如下的二次方程,如下:PBAT=(NATA+(a1(NA)TA 2+a2(NA)TA+a3(NA)))+(NBTB+(b1(NB)TB 2+b2(NB)TB+b3(NB)))+PDC_LOAD [6]其中,NA和NB包括电机A 56和B 72的速度,TA和TB包括电机A 56和B 72的转矩,a1,a2,a3,b1,b2,b3每一个包括二次系数,其为各自电机速度NA,NB的函数。
这可作为以下的方程7重新表述。PBAT=a1*TA 2+(NA+a2)*TA [7]+b1*TB 2+(NB+b2)*TB+a3+b3+PDC_LOAD
这可换算为方程8如下。PBAT=a1[TA 2+TA(NA+a2)/a1+((NA+a2)/(2*a1))2] [8]+b1[TB 2+TB(NB+b2)/b1+((NB+b2)/(2*b1))2]+a3+b3+PDC_LOAD-(NA+a2)2/(4*a1)-(NB+b2)2/(4*b1)
这可换算为方程9如下。PBAT=a1[TA+(NA+a2)/(2*a1)]2+b1[TB+(NB+b2)/(2*b1)]2 [9]+a3+b3+PDC_LOAD-(NA+a2)2/(4*a1)-(NB+b2)2/(4*b1)
这可换算为方程10如下。PBAT=[SQRT(a1)*TA+(NA+a2)/(2*SQRT(a1))]2 [10]+[SQRT(b1)*TB+(NB+b2)/(2*SQRT(b1))]2+a3+b3+PDC_LOAD-(NA+a2)2/(4*a1)-(NB+b2)2/(4*b1)
这可化简为方程11如下。PBAT=(A1*TA+A2)2+(B1*TB+B2)2+C [11]其中A1=SQRT(a1)B1=SQRT(b1)A2=(NA+a2)/(2*SQRT(a1))B2=(NB+b2)/(2*SQRT(b1)),以及C=a3+b3+PDC_LOAD-(NA+a2)2/(4*a1)-(NB+b2)2/(4*b1)
电机转矩TA和TB可以变换(transform)为Tx和TY。 其中,TX是TA的变换。TY是TB的变换,以及A1,A2,B1,B2包括具体应用的标量值
方程11可以进一步化简为如下。PBAT=(TX 2+TY 2)+C [13]PBAT=R2+C [14]
方程12详细说明了电机转矩TA到TX的变换以及电机转矩TB到TY的变换。这样,被称为TX/TY空间的一个新的坐标系统被定义,并且方程13包括被变换到TX/TY空间的电池功率PBAT。这样,位于最大和最小电池功率PBAT_MAX和PBAT_MIN之间的电池功率范围在该变换空间TX/TY中可以计算和画线成中心在点(0,0)处的半径RMax和RMin,如参考图3所示,其中:RMin=SQRT(PBAT_MIN-C)而且RMax=SQRT(PBAT_MAX-C)
最小和最大电池功率PBAT_MIN和PBAT_MAX优选与各种条件,例如,荷电状态、温度、电压以及利用(安培-小时/小时)相关联。以上的参数C定义为忽略电机转矩极限时在给定电机速度NA和NB处的绝对最小可能电池功率。在物理上,当TA=0和TB=0,从第一和第二电机56和72的输出功率为0。在物理上,TX=0和TY=0与ESD74的最大充电功率状态相对应。正标记(‘+’)定义为从ESD74放电,并且,负标记(‘-’)定义为向ESD74充电。RMax定义了一最大电池功率,通常是放电功率,RMin定义了最小电池功率,通常为充电功率。
前述的到TX/TY空间的变换显示在图3中,为具有RMin和RMax半径(电池功率约束)的同心圆的电池功率约束表示和电机转矩约束(电机转矩约束)的直线表示限定了允许的运行范围。可以分析,在方程12确定的变换矢量[Tx Ty]可以与方程13中定义的矢量(包括用RMIN和RMAX标识的最小和最大电池功率)同时得到求解,以便确定在TX/TY空间中的允许转矩范围,该允许转矩范围由受最小和最大电池功率PBAT_MIN和PBAT_MAX约束的电机转矩TA和TB构成。在TX/TY空间中,允许转矩的范围在图3中表示,在图中,A,B,C,D和E表示这些边界,并限定了直线和半径。
在TX/TY空间中定义了常数转矩线,如图3所示(TM1=C1),它包括方程1中描述的的极限转矩TM1。在该实施例中极限转矩TM1包括输出转矩TO,在TX/TY空间中方程1、2和3重新表示为以下方程。TM1=TAtoTM1*(TX-A2)/A1+TBtoTM1*(TY-B2)/B1+Misc_TM1 [15]TM2=TAtoTM2*(TX-A2)/A1+TBtoTM2*(TY-B2)/B1+Misc_TM2 [16]TM3=TAtoTM3*(TX-A2)/A1+TBtoTM3*(TY-B2)/B1+Misc_TM3 [17]
定义TM1-XY,TM2-XY和TM3-XY作为TM1,TM2和TM3中仅由TA和TB贡献的部分。TM1-XY=TAtoTM1*(TX-A2)/A1+TBtoTM1*(TY-B2)/B1 [18]TM2-XY=TAtoTM2*(TX-A2)/A1+TBtoTM2*(TY-B2)/B1 [19]TM3-XY=TAtoTM3*(TX-A2)/A1+TBtoTM3*(TY-B2)/B1 [20]
下面的系数被定义:TXtoTM1=TAtoTM1/A1,TYtoTM1=TBtoTM1/B1,TM1_Intercept=TAtoTM1*A2/A1+TBtoTM1*B2/B1,TXtoTM2=TAtoTM2/A1,TYtoTM2=TBtoTM2/B1,TM2_Intercept=TAtoTM2*A2/A1+TBtoTM2*B2/B1,TXtoTM3=TAtoTM3/A1,TYtoTM3=TBtoTM3/B1,以及TM3_Intercept=TAtoTM3*A2/A1+TBtoTM3*B2/B1,
这样,方程1,2,3变换到TX/TY空间,如下所示。TM1_XY=TXtoTM1*TX+TYtoTM1*TY+TM1_Intercept [21]TM2_XY=TXtoTM2*TX+TYtoTM2*TY+TM2_Intercept [22]TM3_XY=TXtoTM3*TX+TYtoTM3*TY+TM3_Intercept [23]
速度约束、电机转矩约束以及电池功率约束可以在正在进行(ongoing)的工作中被确定而且在TX/TY变换空间中可以表示为线性方程。方程21构成一个极限转矩函数,该函数描述了输出转矩约束TM1,例如TO。该极限转矩函数可以与速度约束、电机转矩约束以及电池功率约束同时求解,以确定在TX/TY空间中变换的最小或最大极限转矩,它包括TM1-XYMax和TM1-XYMin(即,已经被变换的最大和最小输出转矩TO_Max和TO_Min)中的一个。然后,在TX/TY变换空间中被变换的最大或最小转矩可以被重新变换(retransform)出TX/TY空间,以确定最大或者最小极限转矩TM1_Max和TM1_Min,以便管理变速器14和第一和第二电机56和72的控制和运行。
图4、5以及6图解地示出了由变换至Tx/TY空间的TA和TB的变换最大和最小电机转矩(‘TX_Min’、‘TX_Max’、‘Ty_Min’、‘Ty_Max’)构成的电机转矩约束。电池功率约束变换至Tx/TY空间(‘R_Min’、‘R_Max’)并且具有由(Kx,Ky)=(0,0)构成的中心位置点K。表示线TM1_XY的常数转矩线(‘Tm1’)具有以下通式的斜率-a/b:Tm1=a*Tx+b*Ty+C [24]
其中,a<0、b>0并且C为常数项。在随后的描述中,为了示例,线TM1_XY具有1∶1的正斜率。
图4描述了第一种情况,其中变换的最小电机转矩TA(‘TX_Min’)和变换的最大电机转矩TB(‘Ty_Max’)的组合处于在变换的最小与最大电池功率PBAT_MIN至PBAT_MAX(‘R_Min’、‘R_Max’)之间限定的空间内。电池功率约束足够满足基于电机转矩约束获得最大输出转矩所需要的电池功率。
图5描述了第二种情况,其中变换的最小电机转矩TA(‘TX_Min’)和变换的最大电机转矩TB(‘Ty_Max’)的组合比变换的最大电池功率(‘R_Max’)大。电池功率约束小于足够满足基于电机转矩约束获得最大输出转矩所需要的电池功率,即,最大电机转矩输出超过了最大电池放电功率。参照图7-14在下文中说明识别对于第二种情况可获得的最大转矩输出。
图6描述了第三种情况,其中变换的最小电机转矩TA(‘TX_Min’)和变换的最大电机转矩TB(‘Ty_Max’)的组合比变换的最小电池功率(‘R_Min’)小。因此,电池功率约束超过了足够满足基于电机转矩约束获得最大输出转矩所需要的电池功率,即,构成充电功率的最小电机转矩输出超过了最大电池充电功率。参照图15-19在下文中说明识别对于第三种情况可获得的最大转矩输出。
在第一、第二和第三种的每种情况中,最大输出转矩TM1确定在点Z处,并且在变换的最小电机转矩TA(‘TX_Min’)、最小电机转矩TB(‘Ty_Min’)、变换的最大电机转矩TA(‘TX_Max’)、变换的最大电机转矩TB(‘Ty_Max’)、变换的最小电池功率(‘R_Min’)变换的最大电池功率(‘R_Max’)以及常数线(‘Tm1’)之间包括一个或多个交点。通过同时求解方程12、13和24可以计算出该交点。该解产生表示变换的电机转矩(TX,Ty)的点Z,其中变换的电机转矩(TX,Ty)表示基于电机转矩约束和电池功率约束可获得的最大输出转矩。变换的电机转矩(TX,Ty)可以重新变换为用于第一和第二电机56和72的控制和运行的电机转矩(TA,TB)。
第一种情况在图4中示出,并且包括单个区域,其中可获得的最大转矩输出由变换的最小电机转矩TA(‘TX_Min’)与最大电机转矩TB(‘Ty_Max’)之间的交点构成。可获得的最大输出转矩因此是该最大输出转矩。变换的电机转矩(TX_Min,Ty_Min)可以重新变换为用于第一和第二电机56和72的控制和运行的电机转矩(TA,TB)。
图7-14描述了在存在具体的限制时识别第二种情况可获得的最大转矩输出。图7示出了第二种情况的多个区域(‘区域1’、‘区域2’、‘区域3’、‘区域4’、‘区域5’、‘区域6’、‘区域7’)。每个区域都由电机转矩约束相对于中心位置K的方位限定出,该中心位置K由变换的电池功率约束限定并指示为K即(KX,Ky)=(0,0),其中电机转矩约束由TA和TB的变换最小和最大电机转矩(‘TX_Min’,TX_Max’,Ty_Min’,Ty_Max’)构成。在每个区域内可以确定在电机转矩约束范围内可获得的最大输出转矩TM1。可获得的最大输出转矩TM1包括变换的最小电机转矩TA(‘TX_Min’)、变换的最大电机转矩TA(‘TX_Max’)、变换的最小电机转矩TB(‘Ty_Min’)、变换的最大电机转矩TB(‘Ty_Max’)、以及常数线(‘Tm1’)与包括最大电池功率(‘R_Max’)的电池功率约束相交的切点中的一个。该解集(solution set)由表示用于控制运行的优选解的(TX,Ty)点构成,其可以重新变换为电机转矩(TA,TB)从而控制第一和第二电机56和72的运行。
工作中,基于电池功率约束和电机转矩约束可以识别具体的情况。基于变换的电池功率约束和变换的电机转矩约束可以识别具体的区域。每个区域具有至少一个由可获得的最大转矩输出(TX,Ty)点构成的解集。当存在多于一个的解集时,基于一种管理约束可以确定优选的解。通过计算代表变换的电池功率约束、变换的电机转矩约束以及转矩极限TM1(该实施例中包括输出转矩TO)的线和圆的交点以及切点,计算出包括可获得的最大转矩输出(TX,Ty)点的解集。可以确定一个或多个解,并且该优选解是这样的解,即,该解产生在电机转矩约束范围内可获得的最大转矩极限TM1,并且包括变换的最小电机转矩TA(‘TX_Min’)、变换的最大电机转矩TA(‘TX_Max’)、变换的最小电机转矩TB(‘Ty_Min’)、变换的最大电机转矩TB(‘Ty_Max’)、以及常数线(‘Tm1’)与最大电池功率(‘R_max’)相交的切点中的一个。
图8A和8B描述了区域1,其中,中心位置点K的位置使得KX≤TX_Min且Ky≥Ty_Max,并且常数线(‘Tm1’)与最大电池功率(‘R_max’)相交的切点在由TA和TB的变换最小和最大电机转矩(‘TX_Min’、TX_Max’、Ty_Min’、Ty_Max’)构成的电机转矩约束的外部。在区域1中,没有解集能够产生由变换的最小电机转矩TA(‘TX_Min’),变换的最大电机转矩TB(‘TY_Max’)、以及常数线(‘Tm1’)之间的交点构成的可获得最大输出转矩TM1。在图8A和8B中没有解能够满足所有的电机转矩约束和电池功率约束,因此,优选的解包括满足电机转矩约束且对电池功率约束的违反最小化的解。
图8A描述了一种运行状态,其中,表示变换的最大电池功率(‘R_max’)的曲线不与变换的电机转矩约束(‘TX_Min’,TX_Max’,Ty_Min’,Ty_Max’)中的任何一个相交。如点Z所描述的,发现可获得的最大转矩输出是变换的最小电机转矩TA(‘TX_Min’)与变换的最大电机转矩TB(‘Ty_Max’)的交点。
图8B描述了一种运行状态,其中,表示变换的最大电池功率(‘R_max’)的曲线与变换的最小电机转矩TA(‘TX_Min’)相交。如点Z所描述的,发现可获得的最大转矩输出是变换的最小电机转矩TA(‘TX_Min’)与变换的最大电机转矩TB(‘Ty_Max’)的交点。
图9A、9B、9C以及9D描述了区域2,其中,中心位置点K定位成使得KX≤TX_Min以及Ky≤Ty_Max。常数线(‘Tm1’)与最大电池功率(‘R_max’)相交的切点在变换的电机转矩约束(‘TX_Min’,TX_Max’,Ty_Min’,Ty_Max’)的外部。在区域2中,可获得的最大转矩输出是在电机转矩约束范围内产生最大输出转矩TM1并且包括变换的最小电机转矩TA(‘TX_Min’)的(TX,Ty)点。
图9A描述了一种运行状态,其中,代表变换的最大电池功率(‘R_max’)的曲线在两个不同的点处与变换的最小电机转矩TA相交,并且该解是具有较大的Ty的点,表示为Z。
图9B描述了一种运行状态,其中,在最大电池功率与电机转矩约束之间没有交点。此外,中心点K的Ky小于变换的最小电机转矩TB(‘Ty_Min’)。因此,可获得的最大转矩输出是由变换的最小电机转矩TA和变换的最小电机转矩TB构成的点(TX,Ty),表示为点Z。
图9C描述了一种运行状态,其中,在最大电池功率和电机转矩约束之间没有交点。在该问题组中,中心点K的Ky大于变换的最小电机转矩TB(‘Ty_Min’)。因此,可获得的最大转矩输出是处于变换的最小电机转矩TA和对应于Ty=0的变换电机转矩TB的交点处的(TX,Ty)点,表示为点Z。
图9D描述了一种运行状态,其中,对于变换的电机转矩TA(‘TX_Min’),存在最大电池功率和电机转矩约束的两个交点。由于两个交点的Ty都在针对变换电机转矩TB的电机转矩约束的外部,因此,可获得的最大转矩输出是变换的最小电机转矩TA和变换的最小电机转矩TB的交点处的(TX,Ty)点,表示为点Z。
图10A、10B、10C、10D以及10E描述了区域3,其中,中心位置点K定位成使得KX≥TX_Min以及Ky≥Ty_Max。常数线(‘Tm1’)与最大电池功率(‘R_max’)相交的切点在变换的电机转矩约束(‘TX_Min’、‘TX_Max’、‘Ty_Min’、‘Ty_Max’)的外部。在区域3中,优选的解集是这样的解集,即,该解集在电机转矩约束范围内产生最大输出转矩TM1并且包括变换的最大电机转矩TB(‘Ty_Max’)。
图10A描述了一种运行状态,其中,变换的最大电池功率与变换的最大电机转矩TB(‘Ty_Max’)之间没有交点,并且中心点K的Kx大于变换的最大电机转矩TA(‘TX_Max’)。可获得的最大转矩输出包括在变换的最大电机转矩TA和变换的最大电机转矩TB的交点处的(TX,Ty)点,表示为点Z。
图10C描述了一种运行状态,其中,在变换的最大电池功率与变换的最大电机转矩TB(‘Ty_Max’)之间存在两个交点,并且中心点K的Kx大于变换的最大电机转矩TA(‘TX_Max’)。可获得的最大转矩输出包括在变换的最大电机转矩TA和变换的最大电机转矩TB的交点处的(TX,Ty)点,表示为点Z。
图10B描述了一种运行状态,其中,在变换的最大电池功率与变换的最大电机转矩TB(‘Ty_Max’)之间没有交点,并且中心点K的Kx在变换的电机转矩(‘TX_Min/TX_Max’)的范围内。可获得的最大转矩输出包括在变换的最大电机转矩TB与对应于TX=0的变换电机转矩TA处的(TX,Ty)点,表示为点Z。
图10D描述了一种运行状态,其中,变换的最大电池功率(‘R_Max’)与变换的最大电机转矩TB(‘Ty_Max’)在两个不同的变换电机转矩TA点处相交。可获得的最大转矩输出出现在具有较小的变换电机转矩TA的交点处,再次表示为点Z。
图10E描述了一种运行状态,其中,变换的最大电池功率(‘R_max’)与变换的电机转矩约束在变换的最大电机转矩TB(‘Ty_Max’)处以及在变换的最大电机转矩TA(‘TX_Max’)处相交。可获得的最大转矩输出是变换的最大电机转矩TB与变换的电池功率R_max相交处的点(TX,Ty),再次表示为点Z。
图11A、11B以及11C描述了区域4,其中,中心位置点K定位成使得TX_Min≤KX≤TX_Max以及Ty_Min≤Ky≤Ty_Max。在区域4中,优选的解集是这样的解集,即,该解集产生电机转矩约束范围内的最大输出转矩TM1,并且包括变换的最大电机转矩TB(‘Ty_Max’)、变换的最小电机转矩TA(‘TX_Min’)、以及常数线(‘Tm1’)与最大电池功率(‘R_max’)相交的切点中的一个。
图11A描述了一种运行状态,其中,表示变换最大电池功率(‘R_max’)的曲线与变换最大电机转矩TB(‘Ty_Max’)在变换电机转矩TA的两个不同的点处相交。常数线(‘Tm1’)与最大电池功率(‘R_max’)相交的切点在变换电机转矩约束(‘TX_Min’、‘TX_Max’、‘Ty_Min’、‘Ty_Max’)的外部。可获得的最大转矩输出出现在具有较小的变换电机转矩TA的(TX,Ty)点处,表示为点Z。
图11B描述了一种运行状态,其中,变换的最大电池功率(‘R_max’)既不与变换最大或最小电机转矩TB(‘Ty_Max’)、(‘Ty_Min’)相交也不与变换的最大或最小电机转矩TA(‘TX_Max’)、(‘TX_Min’)相交。常数线(‘Tm1’)与最大电池功率(‘R_max’)相交的切点在电机转矩约束范围内。可获得的最大转矩输出是表示常数线(‘Tm1’)与最大电池功率(‘R_max’)相交的切点的点(TX,Ty),表示为点Z。
图11C描述了一种运行状态,其中,变换的最大电池功率(‘R_max’)在两个不同的点处与变换的最小电机转矩TA(‘TX_Min’)相交。常数线(‘Tm1’)与最大电池功率(‘R_max’)相交的切点在变换的电机转矩约束(‘TX_Min’,‘TX_Max’,‘Ty_Min’,‘Ty_Max’)的外部。可获得的最大转矩输出出现在具有较大的变换电机转矩TB的交点处,再次表示为点Z。
图12A、12B、12C以及12D描述了区域5,其中,中心位置点K定位成使得TX_Min≤KX≤TX_Max以及Ky≤Ty_Min。在区域5中,优选的解集是这样的解集,即,该解集产生电机转矩约束范围内的最大输出转矩TM1,并且包括变换的最小电机转矩TB(‘Ty_Min’)、变换的最大电机转矩TB(‘Ty_Max’)、变换的最小电机转矩TA(‘TX_Min’)、以及常数线(‘Tm1’)与最大电池功率(‘R_max’)相交的切点中的一个。
图12A描述了一种运行状态,其中,常数线(‘Tm1’)在变换的电机转矩约束(‘TX_Min’,‘TX_Max’,‘Ty_Min’,‘Ty_Max’)范围内相切地与变换的最大电池功率(‘R_max’)相交。可获得的最大转矩输出是构成常数线(‘Tm1’)与最大电池功率(‘R_max’)相交的切点的点(TX,Ty),表示为点Z。
图12B描述了一种运行状态,其中,变换的最大电池功率(‘R_max’)在两个不同的点处与变换的最大电机转矩TB(‘Ty_Max’)相交。可获得的最大转矩输出出现在具有较小的变换的电机转矩TA的交点处,表示为点Z。
图12C描述了一种运行状态,其中,变换的最大电池功率(‘R_max’)在两个不同的点处与变换的最小电机转矩TB(‘Ty_Min’)相交。可获得的最大转矩输出出现在具有较小的变换的电机转矩TA的交点处,表示为点Z。
图12D描述了一种运行状态,其中,变换的最大电池功率(‘R_max’)与变换的最小电机转矩TB(‘Ty_Min’)和变换的最小电机转矩TA(‘TX_Min’)相交。常数线(‘Tm1’)与最大电池功率(‘R_max’)相交的切点在电机转矩约束(‘TX_Min’、‘TX_Max’、‘Ty_Min’、‘Ty_Max’)的外部。可获得的最大转矩输出出现在变换的最大电池功率(‘R_max’)和变换的最小电机转矩TA(‘TX_Min’)的交点处,再次表示为点Z。
图13A、13B、13C以及13D描述了区域6,其中,中心位置点K定位成使得TX_Max≤KX以及Ty_Min≤Ky≤Ty_Max。在区域6中,优选的解集是这样的解集,即,该解集产生电机转矩约束范围内的最大输出转矩TM1,并且包括变换的最小电机转矩TA(‘TX_Min’)、变换的最大电机转矩TA(‘TX_Max’)、变换的最大电机转矩TB(‘Ty_Max’)、以及常数线(‘Tm1’)与最大电池功率(‘R_max’)相交的切点中的一个。
图13A描述了一种运行状态,其中,常数线(‘Tm1’)在由TA和TB的变换的最小和最大电机转矩(‘TX_Min’、‘TX_Max’、‘Ty_Min’、‘Ty_Max’)构成的电机转矩约束范围内相切地与变换的最大电池功率(‘R_max’)相交。可获得的最大转矩输出是表示常数线(‘Tm1’)与最大电池功率(‘R_max’)相交的切点的点(TX,Ty),表示为点Z。
图13B描述了一种运行状态,其中,变换的最大电池功率(‘R_max’)与变换的最大电机转矩TB(‘Ty_Max’)和变换的最大电机转矩TA(‘TX_Max’)相交。常数线(‘Tm1’)与最大电池功率(‘R_max’)相交的切点在由TA和TB的变换的最小和最大电机转矩(‘TX_Min’、‘TX_Max’、‘Ty_Min’、‘Ty_Max’)构成的电机转矩约束范围的外部。可获得的最大转矩输出是在变换的最大电池功率(‘R_max’)与变换的最大电机转矩TB(‘Ty_Max’)的交点处表示变换的电机转矩TA的点(TX,Ty),再次表示为点Z。
图13C描述了一种运行状态,其中,变换的最大电池功率(‘R_max’)与变换的电机转矩TB在变换的最大电机转矩TA(‘TX_Max’)上的两个点处相交。常数线(‘Tm1’)与最大电池功率(‘R_max’)相交的切点在由TA和TB的变换的最小和最大电机转矩(‘TX_Min’、‘TX_Max’、‘Ty_Min’、‘Ty_Max’)构成的电机转矩约束范围的外部。可获得的最大转矩输出是出现在具有较大的变换的电机转矩TB的交点处,再次表示为点Z。
图13D描述了一种运行状态,其中,变换的最大电池功率(‘R_max’)与变换的电机转矩TB在变换的最大电机转矩TA(‘TX_Max’)上的两个点处以及变换的最小电机转矩TA(‘TX_Min’)上的两个点处相交。常数线(‘Tm1’)与最大电池功率(‘R_max’)相交的切点在由TA和TB的变换的最小和最大电机转矩(‘TX_Min’、‘TX_Max’、‘Ty_Min’、‘Ty_Max’)构成的电机转矩约束范围的外部。可获得的最大转矩输出是出现在具有较大的变换电机转矩的交点处,再次表示为点Z。
图14A、14B、14C、14D、14E以及14F描述了区域7,其中,中心位置点K定位成使得TX_Max≤KX以及Ky≤Ty_Min。在区域7中,优选的解集是这样的解集,即,该解集产生电机转矩约束范围内的最大输出转矩TM1,并且包括变换的最小电机转矩TA(‘TX_Min’)、变换的最大电机转矩TA(‘TX_Max’)、变换的最小电机转矩TB(‘Ty_Min’)、变换的最大电机转矩TB(‘Ty_Max’)、以及常数线(‘Tm1’)与最大电池功率(‘R_max’)相交的切点中的一个。
图14A描述了一种运行状态,其中,变换的最大电池功率(‘R_max’)与变换的最大电机转矩TA(‘TX_Max’)相交并且与变换的最小电机转矩TB(‘Ty_Min’)相交。常数线(‘Tm1’)与最大电池功率(‘R_max’)相交的切点在由TA和TB的变换的最小和最大电机转矩(‘TX_Min’、‘TX_Max’、‘Ty_Min’、‘Ty_Max’)构成的电机转矩约束范围的外部。可获得的最大转矩输出是在变换的最大电池功率(‘R_max’)和变换的最大电机转矩TA(‘TX_Max’)的交点处表示变换的电机转矩TB的(TX,Ty)点,表示为点Z。
图14B描述了一种运行状态,其中,变换的最大电池功率(‘R_max’)与变换的最大电机转矩TA(‘TX_Max’)相交并且与变换的最小电机转矩TA(‘TX_Min’)相交。常数线(‘Tm1’)与最大电池功率(‘R_max’)相交的切点在变换的电机转矩约束(‘TX_Min’、‘TX_Max’、‘Ty_Min’、‘Ty_Max’)的外部。可获得的最大转矩输出是在变换的最大电池功率(‘R_max’)和变换的最小电机转矩TA(‘TX_Min’)的相交处表示变换的电机转矩TB的(TX,Ty)点,再次表示为点Z。
图14C描述了一种运行状态,其中,变换的最大电池功率(‘R_Max’)与变换的最大电机转矩TA(‘TX_Max’)相交以及与变换的最小电机转矩TB(‘Ty_Min’)相交。常数线(‘Tm1’)与最大电池功率(‘R_max’)相交的切点在由TA和TB的变换的最小和最大电机转矩(‘TX_Min’、‘TX_Max’、‘Ty_Min’、‘Ty_Max’)构成的电机转矩约束范围的内部。可获得的最大转矩输出是在常数线(‘Tm1’)与最大电池功率(‘R_max’)相交的切点处表示的变换电机转矩TA和变换电机转矩TB的点(TX,Ty),表示为点Z。
图14D描述了一种运行状态,其中,变换的最大电池功率(‘R_max’)与变换的最小电机转矩TB(‘Ty_Min’)相交以及与变换的最大电机转矩TB(‘Ty_Max’)相交。常数线(‘Tm1’)与最大电池功率(‘R_max’)相交的切点在由TA和TB的变换的最小和最大电机转矩(‘TX_Min’、‘TX_Max’、‘Ty_Min’、‘Ty_Max’)构成的电机转矩约束范围的外部。可获得的最大转矩输出是出现在变换的最大电池功率(‘R_max’)与变换的最大电机转矩TB(‘Ty_Max’)的交点,再次表示为点Z。
图14E描述了一种运行状态,其中,变换的最大电池功率(‘R_max’)不与由TA和TB的变换的最小和最大电机转矩(‘TX_Min’、‘TX_Max’、‘Ty_Min’、‘Ty_Max’)构成的电机转矩约束相交。可获得的最大转矩输出是表示变换的最大电机转矩TA(‘TX_Max’)和变换的最小电机转矩TB(‘Ty_Min’)的(TX,Ty)点,表示为点Z。
图14F描述了一种运行状态,其中,变换的最大电池功率(‘R_max’)与变换的最大电机转矩TA(‘TX_Max’)相交以及与变换的最小电机转矩TB(‘Ty_Min’)相交。常数线(‘Tm1’)与最大电池功率(‘R_max’)相交的切点在由TA和TB的变换的最小和最大电机转矩(‘TX_Min’、‘TX_Max’、‘Ty_Min’、‘Ty_Max’)构成的电机转矩约束范围的内部。可获得的最大转矩输出是表示在常数线(‘Tm1’)与最大电池功率(‘R_max’)相交的切点处的变换的电机转矩TB和变换的电机转矩TA的(TX,Ty)点,表示为点Z。
图15示出了第三种情况的多个区域,其中,在点(TX_Min,Ty_Max)处的电池功率小于最小电池功率(‘R_Min’)(‘区域11’、‘区域12’、‘区域13’、‘区域14’)。每个区域由变换电池功率约束的中心位置点K相对于平均变换电机转矩TA(‘TX_avg’)和平均变换电机转矩TB(‘Ty_avg’)的方位限定出。平均的变换电机转矩TA(‘TX_avg’)是变换的最小电机转矩TA(‘TX_Min’)与变换的最大电机转矩TA(‘TX_Max’)的数学平均值。平均的变换电机转矩TB(‘Ty_avg’)是变换的最小电机转矩TB(‘Ty_Min’)与变换的最大电机转矩TB(‘Ty_Max’)的数学平均值。每个区域都产生在电机转矩约束内可获得的最大输出转矩TM1,并且包括变换的最小电机转矩TA(‘TX_Min’)、变换的最大电机转矩TA(‘TX_Max’)、变换的最小电机转矩TB(‘Ty_Min’)和变换的最大电机转矩TB(‘Ty_Max’)中的一个。可获得的最大转矩输出集由表示用于控制工作的优选解的(TX,Ty)点构成,该优选解可以重新变换为(TA,TB),从而控制第一和第二电机56和72的工作。
在工作中,基于电池功率约束和在(TX_Min,Ty_Max)点处的电池功率可以识别出具体的情况。基于(KX,Ky)相对于变换的电机转矩约束的TX_avg和Ty_avg轴线的位置可以识别出具体的区域。每个区域具有由(TX,Ty)点构成的至少一个可获得最大转矩输出集。当存在多于一个的解集时,基于管理约束可以确定优选的解。通过计算表示变换电池功率约束、变换电机转矩约束、以及转矩极限TM1(在该实施例中包括输出转矩TO)的线和圆的交点,基于该管理约束可以计算出包括(TX,Ty)点的解集。可以确定一个或多个的解,并且优选的解是这样的解,即,该解产生电机转矩约束范围内的最大转矩极限TM1,并且包括变换最小电机转矩TA(‘TX_Min’)、变换最大电机转矩TA(‘TX_Max’)、变换最小电机转矩TB(‘Ty_Min’)和变换最大电机转矩TB(‘Ty_Max’)中的一个。
图16描述了区域11,其中,中心位置点K定位成使得KX≥TX_avg且Ky≤Ty_avg。最小电池功率(‘R_min’)不与由TA和TB的变换最小和最大电机转矩(‘TX_Min’,‘TX_Max’,‘Ty_Min’,‘Ty_Max’)构成的电机转矩约束相交。因此,优选的可获得最大转矩输出是最接近该变换最小电池功率(‘R_Min’)的(TX,Ty)点,其是变换的最小电机转矩TA(‘TX_Min’)和变换的最大电机转矩TB(‘Ty_Max’)的交点,描述为点Z。
图17A和17B描述了区域12,其中,中心位置点K定位成使得KX≥TX_avg,Ky>TY_avg。区域12中,优选的解集是这样的解集,即,该解集产生电机转矩约束内的最大输出转矩TM1,并且包括变换最小电机转矩TA(‘TX_Min’)。
图17A描述了一种运行状态,其中,最小电池功率(‘R_min’)不与由TA和TB的变换最小和最大电机转矩(‘TX_Min’、‘TX_Max’、‘Ty_Min’、‘Ty_Max’)构成的电机转矩约束相交。优选的可获得最大转矩输出集是最接近变换最小电池功率(‘R_Min’)的(TX,Ty)点,并且包括变换的最小电机转矩TA(‘TX_Min’)。因此,该解是变换的最小电机转矩TA(‘TX_Min’)与变换的最小电机转矩TB(‘Ty_Min’)的交点,描述为点Z。
图17B描述了一种运行状态,其中,最小电池功率(‘R_min’)与变换的最小电机转矩TA(‘TX_Min’)、变换的最大电机转矩TA(‘TX_Max’),变换的最小电机转矩TB(‘Ty_Min’)相交。优选的可获得最大转矩输出是变换最小电机转矩TA(‘TX_Min’)与变换最小电池功率(‘R_Min’)相交的交点(TX,Ty),描述为点Z。
图18A和18B描述了区域13,其中,中心位置点K定位成使得KX<TX_avg,Ky≤Ty_avg。区域13中,优选的解集是这样的解集,即,该解集产生电机转矩约束内的最大转矩输出TM1并且包括变换的最大电机转矩TB(‘Ty_Max’)。
图18A描述了一种运行状态,其中,最小电池功率(‘R_min’)不与由TA和TB的变换的最小和最大电机转矩(‘TX_Min’、‘TX_Max’、‘Ty_Min’、‘Ty_Max’)构成的电机转矩约束相交。优选的可获得最大转矩输出集是最接近变换最小电池功率(‘R_Min’)并且包括变换最大电机转矩TB(‘Ty_Max’)的(TX,Ty)点。因此,可获得的最大转矩输出是变换的最大电机转矩TA(‘TX_Max’)与变换的最大电机转矩TB(‘Ty_Max’)相交的(TX,Ty)点,描述为点Z。
图18B描述了一种运行状态,其中,最小电池功率(‘R_min’)与变换最大电机转矩TB(‘Ty_Max’)和变换最小电机转矩TB(‘Ty_Min’)相交。可获得的最大转矩输出集是变换最小电池功率(‘R_Min’)与变换最大电机转矩TB(‘Ty_Max’)相交的(TX,Ty)点,描述为点Z。
图19A、19B、19C、19D以及19E描述了区域14,其中,中心位置点K定位成使得KX<TX_avg且Ky>Ty_avg。区域14中,优选的解集是这样的解集,即,该解集产生电机转矩约束内的最大输出转矩TM1,并且包括变换最小电机转矩TA(‘TX_Min’)、变换最大电机转矩TA(‘TX_Max’)、变换最小电机转矩TB(‘Ty_Min’)和变换最大电机转矩TB(‘Ty_Max’)中的一个。
图19A描述了一种运行状态,其中,最小电池功率(‘R_min’)与由TA和TB的变换最小和最大电机转矩(‘TX_Min’、‘TX_Max’、‘Ty_Min’、‘Ty_Max’)构成的电机转矩约束之间不相交。优选的可获得最大转矩输出集是最接近变换最小电池功率(‘R_Min’)的(TX,Ty)点。因此,可获得的最大转矩输出是变换的最大电机转矩TA(‘TX_Max’)与变换的最小电机转矩TB(‘Ty_Min’)的交点处的(TX,Ty)点,描述为点Z。
图19B描述了一种运行状态,其中,最小电池功率(‘R_min’)与变换最大电机转矩TB(‘Ty_Max’)和变换最小电机转矩TA(‘TX_Min’)相交。中心位置点K定位成使得Ky小于变换最大电机转矩TB(‘Ty_Max’)。因此,可获得的最大转矩输出集是变换的最小电池功率(‘R_Min’)与变换的最大电机转矩TB(‘Ty_Max’)相交的(TX,Ty)点,描述为点Z。
图19C描述了一种运行状态,其中,最小电池功率(‘R_min’)与变换的最大电机转矩TB(‘Ty_Max’)和变换的最小电机转矩TA(‘TX_Min’)相交。中心位置点K定位成使得Ky大于变换的最大电机转矩TB(‘Ty_Max’)。因此,可获得的最大转矩输出集是变换最小电池功率(‘R_Min’)与变换最小电机转矩TA(‘TX_Min’)相交的点(TX,Ty),描述为点Z。
图19D描述了一种运行状态,其中,最小电池功率(‘R_min’)与变换的最大电机转矩TB(‘Ty_Max’)和变换的最小电机转矩TB(‘Ty_Min’)相交。可获得的最大转矩输出集是变换的最小电池功率(‘R_Min’)与变换的最小电机转矩TB(‘Ty_Min’)相交的点(TX,Ty),描述为点Z。
图19E描述了一种运行状态,其中,最小电池功率(‘R_min’)与变换的最大电机转矩TA(‘TX_Max’)和变换的最小电机转矩TB(‘Ty_Min’)相交。可获得的最大转矩输出集是变换的最小电池功率(‘R_Min’)与变换的最大电机转矩TA(‘TX_Max’)相交的点(TX,Ty),描述为点Z。
本发明描述了某些优选实施例以及其修改。在阅读和理解说明书后也可以作出进一步的修改和改变。因此,本发明并不限于在此公开的作为实现本发明的最佳模式的优选实施例,而是本发明将包括在所附的权利要求的范围内的所有实施例。
Claims (24)
1.一种用于控制电-机械变速器的方法,该变速器选择性地操作连接到第一和第二电机,以将机械功率传递至输出元件,所述方法包括:
确定第一和第二电机的最小和最大电机转矩约束;
确定用电池功率约束表示的可用电池功率;
基于第一和第二电机的最小和最大电机转矩约束相对于电池功率约束的情况来确定第一、第二和第三种情况中的一种,其中基于第一电机的最小电机转矩约束和第二电机的最大电机转矩约束相对于电池功率约束的情况来确定该第一、第二和第三种情况;其中,该电池功率约束包括最大允许电池充电功率和最大允许电池放电功率;
其中,该第一种情况包括单个区域,其中,该可用电池功率足以满足为实现第一电机的最小电机转矩和第二电机的最大电机转矩而所需的电池功率;
其中,该第二种情况包括:该最大允许电池放电功率不足以满足为实现第一电机的最小电机转矩和第二电机的最大电机转矩而所需的电池功率;
其中,该第三种情况包括:该最大允许电池充电功率超过为实现第一电机的最小电机转矩和第二电机的最大电机转矩而所需的电池功率;
选择第一、第二和第三种情况中所确定的一种情况中的预定区域;
基于电机转矩约束和电池功率约束为所选区域确定至少一个输出转矩;以及
为所选区域选择优选输出转矩,该优选输出转矩用于传递至该电-机械变速器的输出元件。
2.如权利要求1所述的方法,其中,选择该第一种情况中的单个区域,该优选输出转矩包括基于电机转矩约束确定的最大输出转矩。
3.如权利要求1所述的方法,包括:
选择该第二种情况中的预定区域;以及
基于电机转矩约束和电池功率约束为所选区域确定至少一个可获得的最大输出转矩。
4.如权利要求1所述的方法,包括:
选择该第三种情况中的预定区域;以及
基于电机转矩约束和电池功率约束为所选区域确定至少一个可获得的最大输出转矩。
5.如权利要求1所述的方法,还包括:
用数学方程表示第一和第二电机的最大和最小电机转矩约束以及用数学方程表示最大和最小电池功率约束;
用数学方程表示输出转矩;
将表示最大和最小电池功率约束的数学方程变换为由具有对应半径的同心圆构成的方程;
将表示第一和第二电机的最大和最小电机转矩约束的数学方程变换为由线构成的方程;以及
将表示输出转矩的数学方程变换为由线构成的方程。
6.如权利要求5所述的方法,还包括:
基于第一和第二电机的变换电机转矩约束以及变换电池功率约束,为第一,第二和第三种情况中所确定的一种情况中的所选区域确定至少一个变换的、可获得的输出转矩;
确定从电-机械变速器输出的变换的可获得的最大输出转矩;以及
将该所选区域的变换的可获得的最大输出转矩重新变换,以确定该所选区域的第一和第二电机的优选输出转矩。
7.如权利要求6所述的方法,其中,从该电-机械变速器输出的优选的变换输出转矩包括所选区域的可获得的最大的变换输出转矩。
8.如权利要求6所述的方法,包括:基于该变换电池功率约束的中心点相对于第一和第二电机的变换最大和最小电机转矩约束的位置来选择第二种情况的该预定区域。
9.如权利要求8所述的方法,包括第一区域,其中,该中心点的位置在第一和第二电机的变换的最大和最小电机转矩约束的外部,并且该变换的可获得的最大转矩输出包括第一电机的变换最小电机转矩约束和第二电机的变换最大电机转矩约束。
10.如权利要求8所述的方法,包括第二区域,其中,该中心点的位置小于第一电机的变换最小电机转矩约束且小于第二电机的变换最大电机转矩约束,并且该变换的可获得的最大转矩输出包括第一电机的变换最小电机转矩约束。
11.如权利要求8所述的方法,包括第三区域,其中,该中心点的位置大于第一电机的变换最小电机转矩约束且大于第二电机的变换最大电机转矩约束,并且该变换的可获得的最大转矩输出包括第二电机的变换最大电机转矩约束。
12.如权利要求8所述的方法,包括第四区域,其中,该中心点的位置在第一和第二电机的变换电机转矩约束范围内,并且该变换的最大转矩输出包括第二电机的变换最大电机转矩约束、第一电机的变换最小电机转矩约束、以及该变换输出转矩与变换最大电池功率的切点中的一个。
13.如权利要求8所述的方法,包括第五区域,其中,该中心点的位置在第一电机的变换电机转矩约束范围内并且小于第二电机的变换最大电机转矩约束,并且该变换的可获得的最大转矩输出包括第二电机的变换最大电机转矩约束、第二电机的变换最小电机转矩约束、第一电机的变换的最大电机转矩约束、以及该变换输出转矩与变换最大电池功率的切点中的一个。
14.如权利要求8所述的方法,包括第六区域,其中,该中心点的位置大于第一电机的变换最大电机转矩约束并且在第二电机的变换电机转矩约束范围内,并且该变换的可获得的最大转矩输出包括第一电机的变换最大电机转矩约束、第一电机的变换最小电机转矩约束、第二电机的变换最大电机转矩约束、以及该变换输出转矩与变换最大电池功率的切点中的一个。
15.如权利要求8所述的方法,包括第七区域,其中,该中心点的位置大于第一电机的变换电机转矩约束并且小于第二电机的变换最小电机转矩约束,并且该变换的可获得的最小转矩输出包括第一电机的变换最大电机转矩约束、第一电机的变换最小电机转矩约束、第二电机的变换最小电机转矩约束、第二电机的变换最大电机转矩约束、以及该变换输出转矩与变换最大电池功率的切点中的一个。
16.如权利要求6所述的方法,包括:基于该变换电池功率约束的中心点相对于第一和第二电机的最大和最小电机转矩约束的变换平均值的位置来选择第三种情况的该预定区域。
17.如权利要求16所述的方法,包括第一区域,其中,该中心点的位置大于第一电机的电机转矩约束的变换平均值并且小于第二电机的电机转矩约束的变换平均值,并且该变换的可获得的最大转矩输出包括第一电机的变换最小电机转矩约束和第二电机的变换最大电机转矩约束。
18.如权利要求16所述的方法,包括第二区域,其中,该中心点的位置大于第一电机的电机转矩约束的变换平均值并且大于第二电机的电机转矩约束的变换平均值,并且该变换的可获得的最大转矩输出包括第一电机的变换最小电机转矩约束。
19.如权利要求16所述的方法,包括第三区域,其中,该中心点的位置小于第一电机的电机转矩约束的变换平均值并且小于第二电机的电机转矩约束的变换平均值,并且该变换的可获得的最大转矩输出包括第二电机的变换最大电机转矩约束中的一个。
20.如权利要求16所述的方法,包括第四区域,其中,该中心点的位置小于第一电机的电机转矩约束的变换平均值并且大于第二电机的电机转矩约束的变换平均值,并且该变换的可获得的最大转矩输出包括第一电机的变换最大电机转矩约束、第一电机的变换最小电机转矩约束、第二电机的变换最小电机转矩约束、第二电机的变换最大电机转矩约束中的一个。
21.如权利要求5所述的方法,包括:计算表示最大和最小电池功率约束的变换数学方程、表示第一和第二电机的最大和最小电机转矩约束的变换数学方程与表示输出转矩的变换数学方程的交点。
22.如权利要求21所述的方法,还包括:基于情况和区域计算交点。
23.如权利要求22所述的方法,其中,基于情况和区域计算出的交点包括该变换的最大转矩输出。
24.如权利要求23所述的方法,其中,当表示最大和最小电池功率约束的变换数学方程不与表示第一和第二电机的最大和最小电机转矩约束的变换数学方程相交时,该变换的最大转矩输出包括该变换的可获得的最大转矩输出。
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US98452407P | 2007-11-01 | 2007-11-01 | |
US60/984524 | 2007-11-01 | ||
US12/238559 | 2008-09-26 | ||
US12/238,559 US8145375B2 (en) | 2007-11-01 | 2008-09-26 | System constraints method of determining minimum and maximum torque limits for an electro-mechanical powertrain system |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101474995A CN101474995A (zh) | 2009-07-08 |
CN101474995B true CN101474995B (zh) | 2013-01-23 |
Family
ID=40404809
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2008102463799A Active CN101474995B (zh) | 2007-11-01 | 2008-10-31 | 确定电-机械动力系统最小最大转矩极限的系统约束方法 |
Country Status (3)
Country | Link |
---|---|
US (1) | US8145375B2 (zh) |
EP (1) | EP2055581B1 (zh) |
CN (1) | CN101474995B (zh) |
Families Citing this family (125)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102006044427A1 (de) * | 2006-09-21 | 2008-04-03 | Robert Bosch Gmbh | Verfahren zum Betreiben eines Hybridantriebs eines Kraftfahrzeugs |
US8390240B2 (en) | 2007-08-06 | 2013-03-05 | GM Global Technology Operations LLC | Absolute position sensor for field-oriented control of an induction motor |
US7867135B2 (en) | 2007-09-26 | 2011-01-11 | GM Global Technology Operations LLC | Electro-mechanical transmission control system |
US8234048B2 (en) | 2007-10-19 | 2012-07-31 | GM Global Technology Operations LLC | Method and system for inhibiting operation in a commanded operating range state for a transmission of a powertrain system |
US9140337B2 (en) | 2007-10-23 | 2015-09-22 | GM Global Technology Operations LLC | Method for model based clutch control and torque estimation |
US8060267B2 (en) | 2007-10-23 | 2011-11-15 | GM Global Technology Operations LLC | Method for controlling power flow within a powertrain system |
US8335623B2 (en) | 2007-10-25 | 2012-12-18 | GM Global Technology Operations LLC | Method and apparatus for remediation of and recovery from a clutch slip event in a hybrid powertrain system |
US8296027B2 (en) | 2007-10-25 | 2012-10-23 | GM Global Technology Operations LLC | Method and apparatus to control off-going clutch torque during torque phase for a hybrid powertrain system |
US8118122B2 (en) | 2007-10-25 | 2012-02-21 | GM Global Technology Operations LLC | Method and system for monitoring signal integrity in a distributed controls system |
US8187145B2 (en) | 2007-10-25 | 2012-05-29 | GM Global Technology Operations LLC | Method and apparatus for clutch torque control in mode and fixed gear for a hybrid powertrain system |
US8265821B2 (en) | 2007-10-25 | 2012-09-11 | GM Global Technology Operations LLC | Method for determining a voltage level across an electric circuit of a powertrain |
US8204702B2 (en) | 2007-10-26 | 2012-06-19 | GM Global Technology Operations LLC | Method for estimating battery life in a hybrid powertrain |
US8548703B2 (en) | 2007-10-26 | 2013-10-01 | GM Global Technology Operations LLC | Method and apparatus to determine clutch slippage in an electro-mechanical transmission |
US7985154B2 (en) * | 2007-10-26 | 2011-07-26 | GM Global Technology Operations LLC | Method and apparatus to control hydraulic pressure for component lubrication in an electro-mechanical transmission |
US8560191B2 (en) | 2007-10-26 | 2013-10-15 | GM Global Technology Operations LLC | Method and apparatus to control clutch pressures in an electro-mechanical transmission |
US8406945B2 (en) | 2007-10-26 | 2013-03-26 | GM Global Technology Operations LLC | Method and apparatus to control logic valves for hydraulic flow control in an electro-mechanical transmission |
US8303463B2 (en) * | 2007-10-26 | 2012-11-06 | GM Global Technology Operations LLC | Method and apparatus to control clutch fill pressure in an electro-mechanical transmission |
US8167773B2 (en) | 2007-10-26 | 2012-05-01 | GM Global Technology Operations LLC | Method and apparatus to control motor cooling in an electro-mechanical transmission |
US9097337B2 (en) | 2007-10-26 | 2015-08-04 | GM Global Technology Operations LLC | Method and apparatus to control hydraulic line pressure in an electro-mechanical transmission |
US8062174B2 (en) | 2007-10-27 | 2011-11-22 | GM Global Technology Operations LLC | Method and apparatus to control clutch stroke volume in an electro-mechanical transmission |
US8099219B2 (en) | 2007-10-27 | 2012-01-17 | GM Global Technology Operations LLC | Method and apparatus for securing an operating range state mechanical transmission |
US8428816B2 (en) | 2007-10-27 | 2013-04-23 | GM Global Technology Operations LLC | Method and apparatus for monitoring software and signal integrity in a distributed control module system for a powertrain system |
US8244426B2 (en) | 2007-10-27 | 2012-08-14 | GM Global Technology Operations LLC | Method and apparatus for monitoring processor integrity in a distributed control module system for a powertrain system |
US8282526B2 (en) | 2007-10-29 | 2012-10-09 | GM Global Technology Operations LLC | Method and apparatus to create a pseudo torque phase during oncoming clutch engagement to prevent clutch slip for a hybrid powertrain system |
US8209098B2 (en) | 2007-10-29 | 2012-06-26 | GM Global Technology Operations LLC | Method and apparatus for monitoring a transmission range selector in a hybrid powertrain transmission |
US8095254B2 (en) | 2007-10-29 | 2012-01-10 | GM Global Technology Operations LLC | Method for determining a power constraint for controlling a powertrain system |
US8112194B2 (en) | 2007-10-29 | 2012-02-07 | GM Global Technology Operations LLC | Method and apparatus for monitoring regenerative operation in a hybrid powertrain system |
US8489293B2 (en) | 2007-10-29 | 2013-07-16 | GM Global Technology Operations LLC | Method and apparatus to control input speed profile during inertia speed phase for a hybrid powertrain system |
US8290681B2 (en) | 2007-10-29 | 2012-10-16 | GM Global Technology Operations LLC | Method and apparatus to produce a smooth input speed profile in mode for a hybrid powertrain system |
US8170762B2 (en) | 2007-10-29 | 2012-05-01 | GM Global Technology Operations LLC | Method and apparatus to control operation of a hydraulic pump for an electro-mechanical transmission |
US8556011B2 (en) | 2007-11-01 | 2013-10-15 | GM Global Technology Operations LLC | Prediction strategy for thermal management and protection of power electronic hardware |
US7977896B2 (en) | 2007-11-01 | 2011-07-12 | GM Global Technology Operations LLC | Method of determining torque limit with motor torque and battery power constraints |
US8073602B2 (en) | 2007-11-01 | 2011-12-06 | GM Global Technology Operations LLC | System constraints method of controlling operation of an electro-mechanical transmission with an additional constraint range |
US8035324B2 (en) * | 2007-11-01 | 2011-10-11 | GM Global Technology Operations LLC | Method for determining an achievable torque operating region for a transmission |
US8131437B2 (en) | 2007-11-02 | 2012-03-06 | GM Global Technology Operations LLC | Method for operating a powertrain system to transition between engine states |
US8224539B2 (en) | 2007-11-02 | 2012-07-17 | GM Global Technology Operations LLC | Method for altitude-compensated transmission shift scheduling |
US8121765B2 (en) | 2007-11-02 | 2012-02-21 | GM Global Technology Operations LLC | System constraints method of controlling operation of an electro-mechanical transmission with two external input torque ranges |
US8170764B2 (en) | 2007-11-02 | 2012-05-01 | GM Global Technology Operations LLC | Method and apparatus to reprofile input speed during speed during speed phase during constrained conditions for a hybrid powertrain system |
US8825320B2 (en) | 2007-11-02 | 2014-09-02 | GM Global Technology Operations LLC | Method and apparatus for developing a deceleration-based synchronous shift schedule |
US8200403B2 (en) | 2007-11-02 | 2012-06-12 | GM Global Technology Operations LLC | Method for controlling input torque provided to a transmission |
US8847426B2 (en) | 2007-11-02 | 2014-09-30 | GM Global Technology Operations LLC | Method for managing electric power in a powertrain system |
US8287426B2 (en) | 2007-11-02 | 2012-10-16 | GM Global Technology Operations LLC | Method for controlling voltage within a powertrain system |
US8585540B2 (en) | 2007-11-02 | 2013-11-19 | GM Global Technology Operations LLC | Control system for engine torque management for a hybrid powertrain system |
US8121767B2 (en) | 2007-11-02 | 2012-02-21 | GM Global Technology Operations LLC | Predicted and immediate output torque control architecture for a hybrid powertrain system |
US8133151B2 (en) | 2007-11-02 | 2012-03-13 | GM Global Technology Operations LLC | System constraints method of controlling operation of an electro-mechanical transmission with an additional constraint |
US8296021B2 (en) | 2007-11-03 | 2012-10-23 | GM Global Technology Operations LLC | Method for determining constraints on input torque in a hybrid transmission |
US8204664B2 (en) | 2007-11-03 | 2012-06-19 | GM Global Technology Operations LLC | Method for controlling regenerative braking in a vehicle |
US8002667B2 (en) | 2007-11-03 | 2011-08-23 | GM Global Technology Operations LLC | Method for determining input speed acceleration limits in a hybrid transmission |
US8135526B2 (en) | 2007-11-03 | 2012-03-13 | GM Global Technology Operations LLC | Method for controlling regenerative braking and friction braking |
US8868252B2 (en) | 2007-11-03 | 2014-10-21 | GM Global Technology Operations LLC | Control architecture and method for two-dimensional optimization of input speed and input power including search windowing |
US8155814B2 (en) | 2007-11-03 | 2012-04-10 | GM Global Technology Operations LLC | Method of operating a vehicle utilizing regenerative braking |
US8406970B2 (en) | 2007-11-03 | 2013-03-26 | GM Global Technology Operations LLC | Method for stabilization of optimal input speed in mode for a hybrid powertrain system |
US8010247B2 (en) | 2007-11-03 | 2011-08-30 | GM Global Technology Operations LLC | Method for operating an engine in a hybrid powertrain system |
US8260511B2 (en) | 2007-11-03 | 2012-09-04 | GM Global Technology Operations LLC | Method for stabilization of mode and fixed gear for a hybrid powertrain system |
US8224514B2 (en) | 2007-11-03 | 2012-07-17 | GM Global Technology Operations LLC | Creation and depletion of short term power capability in a hybrid electric vehicle |
US8285431B2 (en) | 2007-11-03 | 2012-10-09 | GM Global Technology Operations LLC | Optimal selection of hybrid range state and/or input speed with a blended braking system in a hybrid electric vehicle |
US8068966B2 (en) | 2007-11-03 | 2011-11-29 | GM Global Technology Operations LLC | Method for monitoring an auxiliary pump for a hybrid powertrain |
US7988594B2 (en) | 2007-11-04 | 2011-08-02 | GM Global Technology Operations LLC | Method for load-based stabilization of mode and fixed gear operation of a hybrid powertrain system |
US8248023B2 (en) | 2007-11-04 | 2012-08-21 | GM Global Technology Operations LLC | Method of externally charging a powertrain |
US8126624B2 (en) | 2007-11-04 | 2012-02-28 | GM Global Technology Operations LLC | Method for selection of optimal mode and gear and input speed for preselect or tap up/down operation |
US8204656B2 (en) | 2007-11-04 | 2012-06-19 | GM Global Technology Operations LLC | Control architecture for output torque shaping and motor torque determination for a hybrid powertrain system |
US8118903B2 (en) | 2007-11-04 | 2012-02-21 | GM Global Technology Operations LLC | Method for preferential selection of modes and gear with inertia effects for a hybrid powertrain system |
US8000866B2 (en) | 2007-11-04 | 2011-08-16 | GM Global Technology Operations LLC | Engine control system for torque management in a hybrid powertrain system |
US8002665B2 (en) | 2007-11-04 | 2011-08-23 | GM Global Technology Operations LLC | Method for controlling power actuators in a hybrid powertrain system |
US8414449B2 (en) | 2007-11-04 | 2013-04-09 | GM Global Technology Operations LLC | Method and apparatus to perform asynchronous shifts with oncoming slipping clutch torque for a hybrid powertrain system |
US9008926B2 (en) | 2007-11-04 | 2015-04-14 | GM Global Technology Operations LLC | Control of engine torque during upshift and downshift torque phase for a hybrid powertrain system |
US8098041B2 (en) | 2007-11-04 | 2012-01-17 | GM Global Technology Operations LLC | Method of charging a powertrain |
US8112192B2 (en) | 2007-11-04 | 2012-02-07 | GM Global Technology Operations LLC | Method for managing electric power within a powertrain system |
US8112206B2 (en) | 2007-11-04 | 2012-02-07 | GM Global Technology Operations LLC | Method for controlling a powertrain system based upon energy storage device temperature |
US8396634B2 (en) * | 2007-11-04 | 2013-03-12 | GM Global Technology Operations LLC | Method and apparatus for maximum and minimum output torque performance by selection of hybrid range state and input speed for a hybrid powertrain system |
US8214120B2 (en) | 2007-11-04 | 2012-07-03 | GM Global Technology Operations LLC | Method to manage a high voltage system in a hybrid powertrain system |
US8067908B2 (en) | 2007-11-04 | 2011-11-29 | GM Global Technology Operations LLC | Method for electric power boosting in a powertrain system |
US8200383B2 (en) | 2007-11-04 | 2012-06-12 | GM Global Technology Operations LLC | Method for controlling a powertrain system based upon torque machine temperature |
US8346449B2 (en) | 2007-11-04 | 2013-01-01 | GM Global Technology Operations LLC | Method and apparatus to provide necessary output torque reserve by selection of hybrid range state and input speed for a hybrid powertrain system |
US8818660B2 (en) | 2007-11-04 | 2014-08-26 | GM Global Technology Operations LLC | Method for managing lash in a driveline |
US8095282B2 (en) | 2007-11-04 | 2012-01-10 | GM Global Technology Operations LLC | Method and apparatus for soft costing input speed and output speed in mode and fixed gear as function of system temperatures for cold and hot operation for a hybrid powertrain system |
US8079933B2 (en) | 2007-11-04 | 2011-12-20 | GM Global Technology Operations LLC | Method and apparatus to control engine torque to peak main pressure for a hybrid powertrain system |
US8504259B2 (en) | 2007-11-04 | 2013-08-06 | GM Global Technology Operations LLC | Method for determining inertia effects for a hybrid powertrain system |
US8494732B2 (en) | 2007-11-04 | 2013-07-23 | GM Global Technology Operations LLC | Method for determining a preferred engine operation in a hybrid powertrain system during blended braking |
US8374758B2 (en) * | 2007-11-04 | 2013-02-12 | GM Global Technology Operations LLC | Method for developing a trip cost structure to understand input speed trip for a hybrid powertrain system |
US8897975B2 (en) | 2007-11-04 | 2014-11-25 | GM Global Technology Operations LLC | Method for controlling a powertrain system based on penalty costs |
US8145397B2 (en) | 2007-11-04 | 2012-03-27 | GM Global Technology Operations LLC | Optimal selection of blended braking capacity for a hybrid electric vehicle |
US8121766B2 (en) | 2007-11-04 | 2012-02-21 | GM Global Technology Operations LLC | Method for operating an internal combustion engine to transmit power to a driveline |
US8221285B2 (en) | 2007-11-04 | 2012-07-17 | GM Global Technology Operations LLC | Method and apparatus to offload offgoing clutch torque with asynchronous oncoming clutch torque, engine and motor torque for a hybrid powertrain system |
US8092339B2 (en) | 2007-11-04 | 2012-01-10 | GM Global Technology Operations LLC | Method and apparatus to prioritize input acceleration and clutch synchronization performance in neutral for a hybrid powertrain system |
US8138703B2 (en) | 2007-11-04 | 2012-03-20 | GM Global Technology Operations LLC | Method and apparatus for constraining output torque in a hybrid powertrain system |
US8630776B2 (en) | 2007-11-04 | 2014-01-14 | GM Global Technology Operations LLC | Method for controlling an engine of a hybrid powertrain in a fuel enrichment mode |
US8135532B2 (en) | 2007-11-04 | 2012-03-13 | GM Global Technology Operations LLC | Method for controlling output power of an energy storage device in a powertrain system |
US8214114B2 (en) | 2007-11-04 | 2012-07-03 | GM Global Technology Operations LLC | Control of engine torque for traction and stability control events for a hybrid powertrain system |
US8594867B2 (en) | 2007-11-04 | 2013-11-26 | GM Global Technology Operations LLC | System architecture for a blended braking system in a hybrid powertrain system |
US8214093B2 (en) | 2007-11-04 | 2012-07-03 | GM Global Technology Operations LLC | Method and apparatus to prioritize transmission output torque and input acceleration for a hybrid powertrain system |
US8285462B2 (en) | 2007-11-05 | 2012-10-09 | GM Global Technology Operations LLC | Method and apparatus to determine a preferred output torque in mode and fixed gear operation with clutch torque constraints for a hybrid powertrain system |
US8229633B2 (en) | 2007-11-05 | 2012-07-24 | GM Global Technology Operations LLC | Method for operating a powertrain system to control engine stabilization |
US8160761B2 (en) | 2007-11-05 | 2012-04-17 | GM Global Technology Operations LLC | Method for predicting an operator torque request of a hybrid powertrain system |
US8121768B2 (en) | 2007-11-05 | 2012-02-21 | GM Global Technology Operations LLC | Method for controlling a hybrid powertrain system based upon hydraulic pressure and clutch reactive torque capacity |
US8249766B2 (en) | 2007-11-05 | 2012-08-21 | GM Global Technology Operations LLC | Method of determining output torque limits of a hybrid transmission operating in a fixed gear operating range state |
US8135519B2 (en) | 2007-11-05 | 2012-03-13 | GM Global Technology Operations LLC | Method and apparatus to determine a preferred output torque for operating a hybrid transmission in a fixed gear operating range state |
US8285432B2 (en) | 2007-11-05 | 2012-10-09 | GM Global Technology Operations LLC | Method and apparatus for developing a control architecture for coordinating shift execution and engine torque control |
US8112207B2 (en) | 2007-11-05 | 2012-02-07 | GM Global Technology Operations LLC | Method and apparatus to determine a preferred output torque for operating a hybrid transmission in a continuously variable mode |
US8219303B2 (en) | 2007-11-05 | 2012-07-10 | GM Global Technology Operations LLC | Method for operating an internal combustion engine for a hybrid powertrain system |
US8155815B2 (en) | 2007-11-05 | 2012-04-10 | Gm Global Technology Operation Llc | Method and apparatus for securing output torque in a distributed control module system for a powertrain system |
US8321100B2 (en) | 2007-11-05 | 2012-11-27 | GM Global Technology Operations LLC | Method and apparatus for dynamic output torque limiting for a hybrid powertrain system |
US8099204B2 (en) | 2007-11-05 | 2012-01-17 | GM Global Technology Operatons LLC | Method for controlling electric boost in a hybrid powertrain |
US8448731B2 (en) | 2007-11-05 | 2013-05-28 | GM Global Technology Operations LLC | Method and apparatus for determination of fast actuating engine torque for a hybrid powertrain system |
US8070647B2 (en) | 2007-11-05 | 2011-12-06 | GM Global Technology Operations LLC | Method and apparatus for adapting engine operation in a hybrid powertrain system for active driveline damping |
US8073601B2 (en) | 2007-11-05 | 2011-12-06 | GM Global Technology Operations LLC | Method for preferential selection of mode and gear and input speed based on multiple engine state fueling costs for a hybrid powertrain system |
US8165777B2 (en) | 2007-11-05 | 2012-04-24 | GM Global Technology Operations LLC | Method to compensate for transmission spin loss for a hybrid powertrain system |
US8179127B2 (en) | 2007-11-06 | 2012-05-15 | GM Global Technology Operations LLC | Method and apparatus to monitor position of a rotatable shaft |
US8281885B2 (en) | 2007-11-06 | 2012-10-09 | GM Global Technology Operations LLC | Method and apparatus to monitor rotational speeds in an electro-mechanical transmission |
US8277363B2 (en) | 2007-11-07 | 2012-10-02 | GM Global Technology Operations LLC | Method and apparatus to control temperature of an exhaust aftertreatment system for a hybrid powertrain |
US8267837B2 (en) | 2007-11-07 | 2012-09-18 | GM Global Technology Operations LLC | Method and apparatus to control engine temperature for a hybrid powertrain |
US8271173B2 (en) | 2007-11-07 | 2012-09-18 | GM Global Technology Operations LLC | Method and apparatus for controlling a hybrid powertrain system |
US8195349B2 (en) | 2007-11-07 | 2012-06-05 | GM Global Technology Operations LLC | Method for predicting a speed output of a hybrid powertrain system |
US8073610B2 (en) | 2007-11-07 | 2011-12-06 | GM Global Technology Operations LLC | Method and apparatus to control warm-up of an exhaust aftertreatment system for a hybrid powertrain |
US8433486B2 (en) | 2007-11-07 | 2013-04-30 | GM Global Technology Operations LLC | Method and apparatus to determine a preferred operating point for an engine of a powertrain system using an iterative search |
US8209097B2 (en) | 2007-11-07 | 2012-06-26 | GM Global Technology Operations LLC | Method and control architecture to determine motor torque split in fixed gear operation for a hybrid powertrain system |
DE102010014971B4 (de) | 2010-04-14 | 2016-05-04 | Audi Ag | Verfahren zum Betreiben eines Kraftfahrzeugs mit zumindest zwei Antrieben sowie Kraftfahrzeug mit zumindest zwei Antrieben |
DE102010021996A1 (de) * | 2010-05-29 | 2011-12-01 | Audi Ag | Verfahren zum Betreiben zweier Antriebe sowie Kraftfahrzeug mit zwei Antrieben, die auf voneinander entkoppelte Räder arbeiten |
DE102011112608B4 (de) * | 2010-09-15 | 2019-12-19 | GM Global Technology Operations LLC (n. d. Ges. d. Staates Delaware) | Prozedur zum Steuern von Drehzahlbeschränkungen |
US8897941B2 (en) * | 2011-07-29 | 2014-11-25 | Chrysler Group Llc | Motor operation control system for an electrically variable transmission |
US8827865B2 (en) | 2011-08-31 | 2014-09-09 | GM Global Technology Operations LLC | Control system for a hybrid powertrain system |
US8801567B2 (en) | 2012-02-17 | 2014-08-12 | GM Global Technology Operations LLC | Method and apparatus for executing an asynchronous clutch-to-clutch shift in a hybrid transmission |
US8892284B2 (en) * | 2012-07-12 | 2014-11-18 | GM Global Technology Operations LLC | Method and apparatus to determine extrema for controlling a multi-mode powertrain system |
FR3003620B1 (fr) * | 2013-03-19 | 2015-03-06 | Renault Sas | Procede et dispositif de synchronisation d'un pignon fou de boite de vitesse sur son arbre |
US9637109B1 (en) | 2016-01-27 | 2017-05-02 | Ford Global Technologies, Llc | Hybrid electric vehicle |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5844342A (en) * | 1996-07-02 | 1998-12-01 | Toyota Jidosha Kabushiki Kaisha | Power output apparatus and method of controlling the same |
US7154236B1 (en) * | 2006-02-13 | 2006-12-26 | Gm Global Technology Operations, Inc. | Control system for hybrid powertrain |
Family Cites Families (202)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7356398B2 (en) | 2003-10-14 | 2008-04-08 | General Motors Corporation | Synchronous shift control in an electrically variable transmission |
US6868318B1 (en) | 2003-10-14 | 2005-03-15 | General Motors Corporation | Method for adjusting battery power limits in a hybrid electric vehicle to provide consistent launch characteristics |
US7127337B2 (en) | 2003-10-14 | 2006-10-24 | General Motors Corporation | Silent operating mode for reducing emissions of a hybrid electric vehicle |
US6832148B1 (en) | 2003-10-14 | 2004-12-14 | General Motors Corporation | Automatic engine stop and restart mode for reducing emissions of a hybrid electric vehicle |
US7200476B2 (en) | 2003-10-14 | 2007-04-03 | General Motors Corporation | Optimal selection of input torque considering battery utilization for a hybrid electric vehicle |
US7110869B2 (en) | 2003-10-14 | 2006-09-19 | General Motors Corporation | Hybrid transmission member speed determination, sensor diagnostics and fault recovery |
US6957137B2 (en) | 2003-10-14 | 2005-10-18 | General Motors Corporation | Real-time operating parameter selection in a vehicular transmission |
US6910493B2 (en) | 2003-10-14 | 2005-06-28 | General Motors Corporation | Control apparatus, method and diagnostic for hydraulic fill and drain |
US7219000B2 (en) | 2003-10-14 | 2007-05-15 | General Motors Corporation | Speed control for an electrically variable transmission |
US6946818B2 (en) | 2003-10-14 | 2005-09-20 | General Motors Corporation | Method of determining battery power limits for an energy storage system of a hybrid electric vehicle |
US7130734B2 (en) | 2003-10-14 | 2006-10-31 | General Motors Corporation | Two clutch fixed-ratio exit control for multi-mode hybrid drive |
US7110871B2 (en) | 2003-10-14 | 2006-09-19 | General Motors Corporation | Method for determining preferred input operating points for a vehicle transmission |
US7449891B2 (en) | 2003-10-14 | 2008-11-11 | General Motors Corporation | Managing service life of a battery |
US7076356B2 (en) | 2004-02-14 | 2006-07-11 | General Motors Corporation | Optimal selection of input torque with stability of power flow for a hybrid electric vehicle |
US7301304B2 (en) | 2004-02-14 | 2007-11-27 | General Motors Corporation | Energy storage system state of charge diagnostic |
US7324885B2 (en) | 2004-02-14 | 2008-01-29 | General Motors Corporation | Shift through neutral control in an electrically variable transmission |
US7010406B2 (en) | 2004-02-14 | 2006-03-07 | General Motors Corporation | Shift inhibit control for multi-mode hybrid drive |
US7222013B2 (en) | 2004-02-14 | 2007-05-22 | General Motors Corporation | Throttle phase out control |
US7277781B2 (en) | 2004-05-14 | 2007-10-02 | General Motors Corporation | Method of undervoltage protection during engine cranking |
US7214165B2 (en) | 2004-05-14 | 2007-05-08 | General Motors Corporation | Method of automatically flushing debris from an electrically-operated hydraulic valve |
US7368886B2 (en) | 2004-05-14 | 2008-05-06 | General Motors Corporation | Method of testing motor torque integrity in a hybrid electric vehicle |
US7131708B2 (en) | 2004-05-14 | 2006-11-07 | General Motors Corporation | Coordinated regenerative and engine retard braking for a hybrid vehicle |
US7163487B2 (en) | 2004-05-14 | 2007-01-16 | General Motors Corporation | Engine retard operation scheduling and management in a hybrid vehicle |
US7369930B2 (en) | 2004-05-14 | 2008-05-06 | General Motors Corporation | Method and apparatus to control hydraulic pressure in an electrically variable transmission |
US7236871B2 (en) | 2004-05-14 | 2007-06-26 | General Motors Corporation | Acceleration limiting for a vehicle |
US7160224B2 (en) | 2004-05-14 | 2007-01-09 | General Motors Corporation | Single motor recovery for an electrically variable transmission |
US7222014B2 (en) | 2004-05-14 | 2007-05-22 | General Motors Corporation | Method for automatic traction control in a hybrid electric vehicle |
US7587442B2 (en) | 2004-05-14 | 2009-09-08 | Gm Global Technology Operations, Inc. | Method of determining the derivative of an input signal |
US7217221B2 (en) | 2004-05-14 | 2007-05-15 | General Motors Corporation | Method for active engine stop of a hybrid electric vehicle |
US7028657B2 (en) | 2004-05-14 | 2006-04-18 | General Motors Corporation | Multi-stage compression ignition engine start |
US6976388B2 (en) | 2004-05-14 | 2005-12-20 | General Motors Corporation | Diagnostic method for a torque control of an electrically variable transmission |
US7653474B2 (en) | 2004-05-14 | 2010-01-26 | Gm Global Technology Operations, Inc. | Method of determining engine output power in a hybrid electric vehicle |
US7103463B2 (en) | 2004-05-15 | 2006-09-05 | General Motors Corporation | Hydraulic clutch state diagnostic and control |
US7090613B2 (en) | 2004-05-15 | 2006-08-15 | General Motors Corporation | Method of providing electric motor torque reserve in a hybrid electric vehicle |
US7149618B2 (en) | 2004-05-15 | 2006-12-12 | General Motors Corporation | Cost structure method including fuel economy and engine emission considerations |
US7024299B2 (en) | 2004-05-15 | 2006-04-04 | General Motors Corporation | Method for dynamically determining peak output torque within battery constraints in a hybrid transmission including a parallel hybrid split |
US7305873B2 (en) | 2004-05-15 | 2007-12-11 | General Motors Corporation | Method for dynamically determining peak output torque in an electrically variable transmission |
US7601092B2 (en) | 2005-12-23 | 2009-10-13 | Gm Global Technology Operations, Inc. | Vehicle propulsion system |
US20070191181A1 (en) | 2006-02-13 | 2007-08-16 | Burns Robert D | Method and apparatus for controlling vehicle rollback |
US7315774B2 (en) | 2006-03-22 | 2008-01-01 | Gm Global Technology Operations, Inc. | Jerk management using multivariable active driveline damping |
US7739016B2 (en) | 2006-03-22 | 2010-06-15 | Gm Global Technology Operations, Inc. | Parameter state estimation |
US7577507B2 (en) | 2006-03-22 | 2009-08-18 | Gm Global Technology Operations, Inc. | Driveline lash estimation and clunk management using multivariable active driveline damping |
US8010263B2 (en) | 2006-03-22 | 2011-08-30 | GM Global Technology Operations LLC | Method and apparatus for multivariate active driveline damping |
US7908063B2 (en) | 2006-05-03 | 2011-03-15 | GM Global Technology Operations LLC | Synchronous shift execution for hybrid transmission |
US7556120B2 (en) | 2006-05-25 | 2009-07-07 | Gm Global Technology Operations, Inc. | Method and apparatus to control hydraulic pressure in an electro-mechanical transmission |
US7706949B2 (en) | 2006-05-25 | 2010-04-27 | Gm Global Technology Operations, Inc. | Method and apparatus to control an electro-mechanical transmission during shifting event |
US7730984B2 (en) | 2006-06-07 | 2010-06-08 | Gm Global Technology Operations, Inc. | Method and apparatus for control of a hybrid electric vehicle to achieve a target life objective for an energy storage device |
US7550946B2 (en) | 2006-06-07 | 2009-06-23 | Gm Global Technology Operations, Inc. | Method and apparatus for real-time life estimation of an electric energy storage device in a hybrid electric vehicle |
US7538520B2 (en) | 2006-06-07 | 2009-05-26 | Gm Global Technology Operations, Inc. | Method and apparatus for quantifying quiescent period temperature effects upon an electric energy storage device |
US8091667B2 (en) | 2006-06-07 | 2012-01-10 | GM Global Technology Operations LLC | Method for operating a hybrid electric powertrain based on predictive effects upon an electrical energy storage device |
US7639018B2 (en) | 2006-06-07 | 2009-12-29 | Gm Global Technology Operations, Inc. | Method and apparatus for predicting change in an operating state of an electric energy storage device |
US7647205B2 (en) | 2006-06-07 | 2010-01-12 | Gm Global Technology Operations, Inc. | Method and apparatus for management of an electric energy storage device to achieve a target life objective |
US7638980B2 (en) | 2006-06-07 | 2009-12-29 | Gm Global Technology Operations, Inc. | Method and apparatus for determining the effect of temperature upon life expectancy of an electric energy storage device in a hybrid electric vehicle |
US7598712B2 (en) | 2006-06-07 | 2009-10-06 | Gm Global Technology Operations, Inc. | Method and apparatus for real-time life estimation of an electric energy storage device |
US7585249B2 (en) | 2006-06-30 | 2009-09-08 | Gm Global Technology Operations, Inc. | Apparatus and method to control transmission torque output during a gear-to-gear shift |
US7568402B2 (en) | 2006-08-04 | 2009-08-04 | Gm Global Technology Operations, Inc. | Method and apparatus for fault-tolerant transmission gear selector lever position determination |
US7497803B2 (en) | 2006-08-04 | 2009-03-03 | Gm Global Technology Operations, Inc. | Method and apparatus to control an electro-hydraulic transmission during shifting event |
US7568990B2 (en) | 2006-08-04 | 2009-08-04 | Gm Global Technology Operations, Inc. | Method and apparatus to control operation of a hydraulic control circuit for an electro-mechanical transmission |
US7537542B2 (en) | 2006-09-11 | 2009-05-26 | Gm Global Technology Operations, Inc. | Control system architecture for a hybrid powertrain |
US7544151B2 (en) | 2006-09-13 | 2009-06-09 | Gm Global Technology Operations, Inc. | Method and apparatus to monitor operation of an auxiliary hydraulic pump in a transmission |
US7556578B2 (en) | 2006-10-26 | 2009-07-07 | Gm Global Technology Operations, Inc. | Method and apparatus to control operation of a hydraulic control circuit for an electro-mechanical transmission |
US7641582B2 (en) | 2006-11-17 | 2010-01-05 | Gm Global Technology Operations, Inc. | Control architecture and method for two-dimensional optimization of input torque and motor torque in fixed gear for a hybrid powertrain system |
US7691026B2 (en) | 2006-11-17 | 2010-04-06 | Gm Global Technology Operations, Inc. | Control architecture for optimization and control of a hybrid powertrain system |
US7853386B2 (en) | 2006-11-17 | 2010-12-14 | Gm Global Technology Operations, Inc. | Control architecture and method for two-dimensional optimization of input speed and input torque in mode for a hybrid powertrain system |
US7568994B2 (en) | 2006-11-17 | 2009-08-04 | Gm Global Technology Operations, Inc. | Control architecture for selection of optimal mode or gear and input speed for a hybrid powertrain system |
US7670252B2 (en) | 2006-11-17 | 2010-03-02 | Gm Global Technology Operations, Inc. | Method and apparatus for controlling an electro-mechanical transmission during a shift execution |
US7648440B2 (en) | 2007-01-24 | 2010-01-19 | Gm Global Technology Operations, Inc. | Method and apparatus to control operation of an electro-mechanical transmission |
US7670254B2 (en) | 2007-01-24 | 2010-03-02 | Gm Global Technology Operations, Inc. | Method and apparatus to monitor devices of a hydraulic circuit of an electro-mechanical transmission |
US7529637B2 (en) | 2007-01-31 | 2009-05-05 | Gm Global Technology Operations, Inc. | Method and apparatus to determine pressure in an unfired cylinder |
US7555411B2 (en) | 2007-01-31 | 2009-06-30 | Gm Global Technology Operations, Inc. | Method and apparatus to monitor a temperature sensing device |
US7670253B2 (en) | 2007-03-20 | 2010-03-02 | Gm Global Technology Operations, Inc. | Clutch control for hybrid transmission |
US7865287B2 (en) | 2007-03-29 | 2011-01-04 | Gm Global Technology Operations, Inc. | Method and apparatus for controlling power flow in a hybrid powertrain system |
US7987934B2 (en) | 2007-03-29 | 2011-08-02 | GM Global Technology Operations LLC | Method for controlling engine speed in a hybrid electric vehicle |
US7493206B2 (en) | 2007-04-19 | 2009-02-17 | Gm Global Technology Operations, Inc. | Method and apparatus to determine instantaneous engine power loss for a powertrain system |
US7487030B2 (en) | 2007-04-19 | 2009-02-03 | Gm Global Technology Operations, Inc. | Method and apparatus to optimize engine warm up |
US7463968B2 (en) | 2007-05-03 | 2008-12-09 | Gl Global Technology Operations, Inc. | Method and apparatus to control engine stop for a hybrid powertrain system |
US7996145B2 (en) | 2007-05-03 | 2011-08-09 | GM Global Technology Operations LLC | Method and apparatus to control engine restart for a hybrid powertrain system |
US7999496B2 (en) | 2007-05-03 | 2011-08-16 | GM Global Technology Operations LLC | Method and apparatus to determine rotational position of an electrical machine |
US7835841B2 (en) | 2007-05-03 | 2010-11-16 | Gm Global Technology Operations, Inc. | Method and apparatus to determine rotational position of an internal combustion engine |
US7991519B2 (en) | 2007-05-14 | 2011-08-02 | GM Global Technology Operations LLC | Control architecture and method to evaluate engine off operation of a hybrid powertrain system operating in a continuously variable mode |
US8265813B2 (en) * | 2007-09-11 | 2012-09-11 | GM Global Technology Operations LLC | Method and control architecture for optimization of engine fuel-cutoff selection and engine input torque for a hybrid powertrain system |
US7983823B2 (en) | 2007-09-11 | 2011-07-19 | GM Global Technology Operations LLC | Method and control architecture for selection of optimal engine input torque for a powertrain system |
US7988591B2 (en) * | 2007-09-11 | 2011-08-02 | GM Global Technology Operations LLC | Control architecture and method for one-dimensional optimization of input torque and motor torque in fixed gear for a hybrid powertrain system |
US7647154B2 (en) * | 2007-09-26 | 2010-01-12 | Gm Global Technology Operations, Inc. | Method and control architecture for optimization of cylinder deactivation selection and engine input torque for a hybrid powertrain system |
US8062170B2 (en) | 2007-09-28 | 2011-11-22 | GM Global Technology Operations LLC | Thermal protection of an electric drive system |
US8234048B2 (en) | 2007-10-19 | 2012-07-31 | GM Global Technology Operations LLC | Method and system for inhibiting operation in a commanded operating range state for a transmission of a powertrain system |
US8060267B2 (en) | 2007-10-23 | 2011-11-15 | GM Global Technology Operations LLC | Method for controlling power flow within a powertrain system |
US9140337B2 (en) | 2007-10-23 | 2015-09-22 | GM Global Technology Operations LLC | Method for model based clutch control and torque estimation |
US7555374B2 (en) | 2007-10-23 | 2009-06-30 | Gm Global Technology Operations, Inc. | Method for monitoring a motor speed sensor |
US8265821B2 (en) | 2007-10-25 | 2012-09-11 | GM Global Technology Operations LLC | Method for determining a voltage level across an electric circuit of a powertrain |
US8118122B2 (en) | 2007-10-25 | 2012-02-21 | GM Global Technology Operations LLC | Method and system for monitoring signal integrity in a distributed controls system |
US8296027B2 (en) | 2007-10-25 | 2012-10-23 | GM Global Technology Operations LLC | Method and apparatus to control off-going clutch torque during torque phase for a hybrid powertrain system |
US8187145B2 (en) | 2007-10-25 | 2012-05-29 | GM Global Technology Operations LLC | Method and apparatus for clutch torque control in mode and fixed gear for a hybrid powertrain system |
US8335623B2 (en) | 2007-10-25 | 2012-12-18 | GM Global Technology Operations LLC | Method and apparatus for remediation of and recovery from a clutch slip event in a hybrid powertrain system |
US8204702B2 (en) | 2007-10-26 | 2012-06-19 | GM Global Technology Operations LLC | Method for estimating battery life in a hybrid powertrain |
US8560191B2 (en) | 2007-10-26 | 2013-10-15 | GM Global Technology Operations LLC | Method and apparatus to control clutch pressures in an electro-mechanical transmission |
US8167773B2 (en) | 2007-10-26 | 2012-05-01 | GM Global Technology Operations LLC | Method and apparatus to control motor cooling in an electro-mechanical transmission |
US9097337B2 (en) | 2007-10-26 | 2015-08-04 | GM Global Technology Operations LLC | Method and apparatus to control hydraulic line pressure in an electro-mechanical transmission |
US8548703B2 (en) | 2007-10-26 | 2013-10-01 | GM Global Technology Operations LLC | Method and apparatus to determine clutch slippage in an electro-mechanical transmission |
US7985154B2 (en) | 2007-10-26 | 2011-07-26 | GM Global Technology Operations LLC | Method and apparatus to control hydraulic pressure for component lubrication in an electro-mechanical transmission |
US8406945B2 (en) | 2007-10-26 | 2013-03-26 | GM Global Technology Operations LLC | Method and apparatus to control logic valves for hydraulic flow control in an electro-mechanical transmission |
US8303463B2 (en) | 2007-10-26 | 2012-11-06 | GM Global Technology Operations LLC | Method and apparatus to control clutch fill pressure in an electro-mechanical transmission |
US8062174B2 (en) | 2007-10-27 | 2011-11-22 | GM Global Technology Operations LLC | Method and apparatus to control clutch stroke volume in an electro-mechanical transmission |
US8244426B2 (en) | 2007-10-27 | 2012-08-14 | GM Global Technology Operations LLC | Method and apparatus for monitoring processor integrity in a distributed control module system for a powertrain system |
US8428816B2 (en) | 2007-10-27 | 2013-04-23 | GM Global Technology Operations LLC | Method and apparatus for monitoring software and signal integrity in a distributed control module system for a powertrain system |
US8099219B2 (en) | 2007-10-27 | 2012-01-17 | GM Global Technology Operations LLC | Method and apparatus for securing an operating range state mechanical transmission |
US8290681B2 (en) | 2007-10-29 | 2012-10-16 | GM Global Technology Operations LLC | Method and apparatus to produce a smooth input speed profile in mode for a hybrid powertrain system |
US8112194B2 (en) | 2007-10-29 | 2012-02-07 | GM Global Technology Operations LLC | Method and apparatus for monitoring regenerative operation in a hybrid powertrain system |
US8282526B2 (en) | 2007-10-29 | 2012-10-09 | GM Global Technology Operations LLC | Method and apparatus to create a pseudo torque phase during oncoming clutch engagement to prevent clutch slip for a hybrid powertrain system |
US8170762B2 (en) | 2007-10-29 | 2012-05-01 | GM Global Technology Operations LLC | Method and apparatus to control operation of a hydraulic pump for an electro-mechanical transmission |
US8489293B2 (en) | 2007-10-29 | 2013-07-16 | GM Global Technology Operations LLC | Method and apparatus to control input speed profile during inertia speed phase for a hybrid powertrain system |
US8209098B2 (en) | 2007-10-29 | 2012-06-26 | GM Global Technology Operations LLC | Method and apparatus for monitoring a transmission range selector in a hybrid powertrain transmission |
US8095254B2 (en) | 2007-10-29 | 2012-01-10 | GM Global Technology Operations LLC | Method for determining a power constraint for controlling a powertrain system |
US8078371B2 (en) * | 2007-10-31 | 2011-12-13 | GM Global Technology Operations LLC | Method and apparatus to monitor output of an electro-mechanical transmission |
US8035324B2 (en) | 2007-11-01 | 2011-10-11 | GM Global Technology Operations LLC | Method for determining an achievable torque operating region for a transmission |
US8073602B2 (en) | 2007-11-01 | 2011-12-06 | GM Global Technology Operations LLC | System constraints method of controlling operation of an electro-mechanical transmission with an additional constraint range |
US7977896B2 (en) | 2007-11-01 | 2011-07-12 | GM Global Technology Operations LLC | Method of determining torque limit with motor torque and battery power constraints |
US8556011B2 (en) | 2007-11-01 | 2013-10-15 | GM Global Technology Operations LLC | Prediction strategy for thermal management and protection of power electronic hardware |
US8585540B2 (en) | 2007-11-02 | 2013-11-19 | GM Global Technology Operations LLC | Control system for engine torque management for a hybrid powertrain system |
US8121765B2 (en) | 2007-11-02 | 2012-02-21 | GM Global Technology Operations LLC | System constraints method of controlling operation of an electro-mechanical transmission with two external input torque ranges |
US8847426B2 (en) | 2007-11-02 | 2014-09-30 | GM Global Technology Operations LLC | Method for managing electric power in a powertrain system |
US8131437B2 (en) | 2007-11-02 | 2012-03-06 | GM Global Technology Operations LLC | Method for operating a powertrain system to transition between engine states |
US8121767B2 (en) | 2007-11-02 | 2012-02-21 | GM Global Technology Operations LLC | Predicted and immediate output torque control architecture for a hybrid powertrain system |
US8224539B2 (en) | 2007-11-02 | 2012-07-17 | GM Global Technology Operations LLC | Method for altitude-compensated transmission shift scheduling |
US8200403B2 (en) | 2007-11-02 | 2012-06-12 | GM Global Technology Operations LLC | Method for controlling input torque provided to a transmission |
US8287426B2 (en) | 2007-11-02 | 2012-10-16 | GM Global Technology Operations LLC | Method for controlling voltage within a powertrain system |
US8170764B2 (en) | 2007-11-02 | 2012-05-01 | GM Global Technology Operations LLC | Method and apparatus to reprofile input speed during speed during speed phase during constrained conditions for a hybrid powertrain system |
US8133151B2 (en) | 2007-11-02 | 2012-03-13 | GM Global Technology Operations LLC | System constraints method of controlling operation of an electro-mechanical transmission with an additional constraint |
US8825320B2 (en) | 2007-11-02 | 2014-09-02 | GM Global Technology Operations LLC | Method and apparatus for developing a deceleration-based synchronous shift schedule |
US8224514B2 (en) | 2007-11-03 | 2012-07-17 | GM Global Technology Operations LLC | Creation and depletion of short term power capability in a hybrid electric vehicle |
US8285431B2 (en) | 2007-11-03 | 2012-10-09 | GM Global Technology Operations LLC | Optimal selection of hybrid range state and/or input speed with a blended braking system in a hybrid electric vehicle |
US8260511B2 (en) | 2007-11-03 | 2012-09-04 | GM Global Technology Operations LLC | Method for stabilization of mode and fixed gear for a hybrid powertrain system |
US8868252B2 (en) | 2007-11-03 | 2014-10-21 | GM Global Technology Operations LLC | Control architecture and method for two-dimensional optimization of input speed and input power including search windowing |
US8204664B2 (en) | 2007-11-03 | 2012-06-19 | GM Global Technology Operations LLC | Method for controlling regenerative braking in a vehicle |
US8068966B2 (en) | 2007-11-03 | 2011-11-29 | GM Global Technology Operations LLC | Method for monitoring an auxiliary pump for a hybrid powertrain |
US8296021B2 (en) | 2007-11-03 | 2012-10-23 | GM Global Technology Operations LLC | Method for determining constraints on input torque in a hybrid transmission |
US8010247B2 (en) | 2007-11-03 | 2011-08-30 | GM Global Technology Operations LLC | Method for operating an engine in a hybrid powertrain system |
US8135526B2 (en) | 2007-11-03 | 2012-03-13 | GM Global Technology Operations LLC | Method for controlling regenerative braking and friction braking |
US8002667B2 (en) | 2007-11-03 | 2011-08-23 | GM Global Technology Operations LLC | Method for determining input speed acceleration limits in a hybrid transmission |
US8155814B2 (en) | 2007-11-03 | 2012-04-10 | GM Global Technology Operations LLC | Method of operating a vehicle utilizing regenerative braking |
US8406970B2 (en) | 2007-11-03 | 2013-03-26 | GM Global Technology Operations LLC | Method for stabilization of optimal input speed in mode for a hybrid powertrain system |
US8630776B2 (en) | 2007-11-04 | 2014-01-14 | GM Global Technology Operations LLC | Method for controlling an engine of a hybrid powertrain in a fuel enrichment mode |
US8504259B2 (en) | 2007-11-04 | 2013-08-06 | GM Global Technology Operations LLC | Method for determining inertia effects for a hybrid powertrain system |
US9008926B2 (en) | 2007-11-04 | 2015-04-14 | GM Global Technology Operations LLC | Control of engine torque during upshift and downshift torque phase for a hybrid powertrain system |
US8118903B2 (en) | 2007-11-04 | 2012-02-21 | GM Global Technology Operations LLC | Method for preferential selection of modes and gear with inertia effects for a hybrid powertrain system |
US8000866B2 (en) | 2007-11-04 | 2011-08-16 | GM Global Technology Operations LLC | Engine control system for torque management in a hybrid powertrain system |
US8248023B2 (en) | 2007-11-04 | 2012-08-21 | GM Global Technology Operations LLC | Method of externally charging a powertrain |
US7988594B2 (en) | 2007-11-04 | 2011-08-02 | GM Global Technology Operations LLC | Method for load-based stabilization of mode and fixed gear operation of a hybrid powertrain system |
US8002665B2 (en) | 2007-11-04 | 2011-08-23 | GM Global Technology Operations LLC | Method for controlling power actuators in a hybrid powertrain system |
US8067908B2 (en) | 2007-11-04 | 2011-11-29 | GM Global Technology Operations LLC | Method for electric power boosting in a powertrain system |
US8112192B2 (en) | 2007-11-04 | 2012-02-07 | GM Global Technology Operations LLC | Method for managing electric power within a powertrain system |
US8818660B2 (en) | 2007-11-04 | 2014-08-26 | GM Global Technology Operations LLC | Method for managing lash in a driveline |
US8126624B2 (en) | 2007-11-04 | 2012-02-28 | GM Global Technology Operations LLC | Method for selection of optimal mode and gear and input speed for preselect or tap up/down operation |
US8095282B2 (en) | 2007-11-04 | 2012-01-10 | GM Global Technology Operations LLC | Method and apparatus for soft costing input speed and output speed in mode and fixed gear as function of system temperatures for cold and hot operation for a hybrid powertrain system |
US8204656B2 (en) | 2007-11-04 | 2012-06-19 | GM Global Technology Operations LLC | Control architecture for output torque shaping and motor torque determination for a hybrid powertrain system |
US8414449B2 (en) | 2007-11-04 | 2013-04-09 | GM Global Technology Operations LLC | Method and apparatus to perform asynchronous shifts with oncoming slipping clutch torque for a hybrid powertrain system |
US8396634B2 (en) | 2007-11-04 | 2013-03-12 | GM Global Technology Operations LLC | Method and apparatus for maximum and minimum output torque performance by selection of hybrid range state and input speed for a hybrid powertrain system |
US8214120B2 (en) | 2007-11-04 | 2012-07-03 | GM Global Technology Operations LLC | Method to manage a high voltage system in a hybrid powertrain system |
US8121766B2 (en) | 2007-11-04 | 2012-02-21 | GM Global Technology Operations LLC | Method for operating an internal combustion engine to transmit power to a driveline |
US8200383B2 (en) | 2007-11-04 | 2012-06-12 | GM Global Technology Operations LLC | Method for controlling a powertrain system based upon torque machine temperature |
US8494732B2 (en) | 2007-11-04 | 2013-07-23 | GM Global Technology Operations LLC | Method for determining a preferred engine operation in a hybrid powertrain system during blended braking |
US8138703B2 (en) | 2007-11-04 | 2012-03-20 | GM Global Technology Operations LLC | Method and apparatus for constraining output torque in a hybrid powertrain system |
US8112206B2 (en) | 2007-11-04 | 2012-02-07 | GM Global Technology Operations LLC | Method for controlling a powertrain system based upon energy storage device temperature |
US8221285B2 (en) | 2007-11-04 | 2012-07-17 | GM Global Technology Operations LLC | Method and apparatus to offload offgoing clutch torque with asynchronous oncoming clutch torque, engine and motor torque for a hybrid powertrain system |
US8346449B2 (en) | 2007-11-04 | 2013-01-01 | GM Global Technology Operations LLC | Method and apparatus to provide necessary output torque reserve by selection of hybrid range state and input speed for a hybrid powertrain system |
US8897975B2 (en) | 2007-11-04 | 2014-11-25 | GM Global Technology Operations LLC | Method for controlling a powertrain system based on penalty costs |
US8374758B2 (en) | 2007-11-04 | 2013-02-12 | GM Global Technology Operations LLC | Method for developing a trip cost structure to understand input speed trip for a hybrid powertrain system |
US8214093B2 (en) | 2007-11-04 | 2012-07-03 | GM Global Technology Operations LLC | Method and apparatus to prioritize transmission output torque and input acceleration for a hybrid powertrain system |
US8594867B2 (en) | 2007-11-04 | 2013-11-26 | GM Global Technology Operations LLC | System architecture for a blended braking system in a hybrid powertrain system |
US8214114B2 (en) | 2007-11-04 | 2012-07-03 | GM Global Technology Operations LLC | Control of engine torque for traction and stability control events for a hybrid powertrain system |
US8079933B2 (en) | 2007-11-04 | 2011-12-20 | GM Global Technology Operations LLC | Method and apparatus to control engine torque to peak main pressure for a hybrid powertrain system |
US8135532B2 (en) | 2007-11-04 | 2012-03-13 | GM Global Technology Operations LLC | Method for controlling output power of an energy storage device in a powertrain system |
US8145397B2 (en) | 2007-11-04 | 2012-03-27 | GM Global Technology Operations LLC | Optimal selection of blended braking capacity for a hybrid electric vehicle |
US8098041B2 (en) | 2007-11-04 | 2012-01-17 | GM Global Technology Operations LLC | Method of charging a powertrain |
US8092339B2 (en) | 2007-11-04 | 2012-01-10 | GM Global Technology Operations LLC | Method and apparatus to prioritize input acceleration and clutch synchronization performance in neutral for a hybrid powertrain system |
US8285432B2 (en) | 2007-11-05 | 2012-10-09 | GM Global Technology Operations LLC | Method and apparatus for developing a control architecture for coordinating shift execution and engine torque control |
US8135519B2 (en) | 2007-11-05 | 2012-03-13 | GM Global Technology Operations LLC | Method and apparatus to determine a preferred output torque for operating a hybrid transmission in a fixed gear operating range state |
US8073601B2 (en) | 2007-11-05 | 2011-12-06 | GM Global Technology Operations LLC | Method for preferential selection of mode and gear and input speed based on multiple engine state fueling costs for a hybrid powertrain system |
US8121768B2 (en) | 2007-11-05 | 2012-02-21 | GM Global Technology Operations LLC | Method for controlling a hybrid powertrain system based upon hydraulic pressure and clutch reactive torque capacity |
US8321100B2 (en) | 2007-11-05 | 2012-11-27 | GM Global Technology Operations LLC | Method and apparatus for dynamic output torque limiting for a hybrid powertrain system |
US8112207B2 (en) | 2007-11-05 | 2012-02-07 | GM Global Technology Operations LLC | Method and apparatus to determine a preferred output torque for operating a hybrid transmission in a continuously variable mode |
US8285462B2 (en) | 2007-11-05 | 2012-10-09 | GM Global Technology Operations LLC | Method and apparatus to determine a preferred output torque in mode and fixed gear operation with clutch torque constraints for a hybrid powertrain system |
US8160761B2 (en) | 2007-11-05 | 2012-04-17 | GM Global Technology Operations LLC | Method for predicting an operator torque request of a hybrid powertrain system |
US8099204B2 (en) | 2007-11-05 | 2012-01-17 | GM Global Technology Operatons LLC | Method for controlling electric boost in a hybrid powertrain |
US8229633B2 (en) | 2007-11-05 | 2012-07-24 | GM Global Technology Operations LLC | Method for operating a powertrain system to control engine stabilization |
US8219303B2 (en) | 2007-11-05 | 2012-07-10 | GM Global Technology Operations LLC | Method for operating an internal combustion engine for a hybrid powertrain system |
US8070647B2 (en) | 2007-11-05 | 2011-12-06 | GM Global Technology Operations LLC | Method and apparatus for adapting engine operation in a hybrid powertrain system for active driveline damping |
US8448731B2 (en) | 2007-11-05 | 2013-05-28 | GM Global Technology Operations LLC | Method and apparatus for determination of fast actuating engine torque for a hybrid powertrain system |
US8165777B2 (en) | 2007-11-05 | 2012-04-24 | GM Global Technology Operations LLC | Method to compensate for transmission spin loss for a hybrid powertrain system |
US8249766B2 (en) | 2007-11-05 | 2012-08-21 | GM Global Technology Operations LLC | Method of determining output torque limits of a hybrid transmission operating in a fixed gear operating range state |
US8155815B2 (en) | 2007-11-05 | 2012-04-10 | Gm Global Technology Operation Llc | Method and apparatus for securing output torque in a distributed control module system for a powertrain system |
US8281885B2 (en) | 2007-11-06 | 2012-10-09 | GM Global Technology Operations LLC | Method and apparatus to monitor rotational speeds in an electro-mechanical transmission |
US8179127B2 (en) | 2007-11-06 | 2012-05-15 | GM Global Technology Operations LLC | Method and apparatus to monitor position of a rotatable shaft |
US8224544B2 (en) | 2007-11-07 | 2012-07-17 | GM Global Technology Operations LLC | Method and apparatus to control launch of a vehicle having an electro-mechanical transmission |
US8073610B2 (en) | 2007-11-07 | 2011-12-06 | GM Global Technology Operations LLC | Method and apparatus to control warm-up of an exhaust aftertreatment system for a hybrid powertrain |
US8005632B2 (en) | 2007-11-07 | 2011-08-23 | GM Global Technology Operations LLC | Method and apparatus for detecting faults in a current sensing device |
US8433486B2 (en) | 2007-11-07 | 2013-04-30 | GM Global Technology Operations LLC | Method and apparatus to determine a preferred operating point for an engine of a powertrain system using an iterative search |
US8195349B2 (en) | 2007-11-07 | 2012-06-05 | GM Global Technology Operations LLC | Method for predicting a speed output of a hybrid powertrain system |
US8267837B2 (en) | 2007-11-07 | 2012-09-18 | GM Global Technology Operations LLC | Method and apparatus to control engine temperature for a hybrid powertrain |
US8209097B2 (en) | 2007-11-07 | 2012-06-26 | GM Global Technology Operations LLC | Method and control architecture to determine motor torque split in fixed gear operation for a hybrid powertrain system |
US8271173B2 (en) | 2007-11-07 | 2012-09-18 | GM Global Technology Operations LLC | Method and apparatus for controlling a hybrid powertrain system |
US8277363B2 (en) | 2007-11-07 | 2012-10-02 | GM Global Technology Operations LLC | Method and apparatus to control temperature of an exhaust aftertreatment system for a hybrid powertrain |
-
2008
- 2008-09-26 US US12/238,559 patent/US8145375B2/en active Active
- 2008-10-30 EP EP08019059.8A patent/EP2055581B1/en active Active
- 2008-10-31 CN CN2008102463799A patent/CN101474995B/zh active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5844342A (en) * | 1996-07-02 | 1998-12-01 | Toyota Jidosha Kabushiki Kaisha | Power output apparatus and method of controlling the same |
US7154236B1 (en) * | 2006-02-13 | 2006-12-26 | Gm Global Technology Operations, Inc. | Control system for hybrid powertrain |
CN101021263A (zh) * | 2006-02-13 | 2007-08-22 | 通用汽车环球科技运作公司 | 用于混合动力传动系的控制系统 |
Also Published As
Publication number | Publication date |
---|---|
US20090118924A1 (en) | 2009-05-07 |
CN101474995A (zh) | 2009-07-08 |
EP2055581B1 (en) | 2013-08-14 |
EP2055581A3 (en) | 2012-03-21 |
US8145375B2 (en) | 2012-03-27 |
EP2055581A2 (en) | 2009-05-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101474995B (zh) | 确定电-机械动力系统最小最大转矩极限的系统约束方法 | |
CN101474994B (zh) | 用电机转矩约束和电池功率约束确定转矩极限的方法 | |
CN101513872B (zh) | 控制带两外部输入转矩范围电机械变速器的系统约束方法 | |
CN101539197B (zh) | 确定在固定档位工作范围状态运行混合动力变速器中优选输出转矩的方法和装置 | |
CN101508298B (zh) | 确定混合动力系系统固定齿轮运行电动机转矩分配的方法和控制结构 | |
CN101445110B (zh) | 用于确定混合动力变速器输入转矩约束的方法 | |
CN101549688B (zh) | 控制混合动力变速器的方法 | |
CN101480950B (zh) | 控制具有附加约束的电-机变速器的运行的系统约束方法 | |
CN101497338B (zh) | 补偿用于混合动力系系统的变速器旋转损失的方法 | |
CN101445111B (zh) | 混合动力系系统中发动机的操作方法 | |
CN101508289B (zh) | 混合动力系系统牵引和稳定性调节过程的发动机转矩控制 | |
CN101428616B (zh) | 用于管理动力系统中的电功率的方法 | |
US8321100B2 (en) | Method and apparatus for dynamic output torque limiting for a hybrid powertrain system | |
CN101531194B (zh) | 用于监控一电机速度传感器的方法 | |
EP2070794B1 (en) | Method and apparatus to determine a preferred output torque for operating a hybrid transmission in a continuously variable mode | |
CN101469767B (zh) | 确定变速器可实现转矩的操作区间的方法 | |
CN101428612B (zh) | 用于混合动力系统中的混合制动系统的系统结构 | |
CN101445112B (zh) | 操作混合动力传动系统的方法 | |
CN101474999B (zh) | 确定混合制动期间混合动力系统中优选发动机操作的方法 | |
CN101439662B (zh) | 用于监控机电式变速器的转速的方法和装置 | |
CN101450667B (zh) | 混合动力系的操作方法 | |
CN101493143A (zh) | 用于确定混合变速器中输入速度加速度限值的方法 | |
CN101311049A (zh) | 估计混合动力系统的发动机关闭操作的控制结构及方法 | |
CN101531188A (zh) | 运行内燃机以向传动系传输功率的方法 | |
CN101634362A (zh) | 用于海拔补偿的变速器换挡调度方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |