US7538520B2 - Method and apparatus for quantifying quiescent period temperature effects upon an electric energy storage device - Google Patents
Method and apparatus for quantifying quiescent period temperature effects upon an electric energy storage device Download PDFInfo
- Publication number
- US7538520B2 US7538520B2 US11/422,610 US42261006A US7538520B2 US 7538520 B2 US7538520 B2 US 7538520B2 US 42261006 A US42261006 A US 42261006A US 7538520 B2 US7538520 B2 US 7538520B2
- Authority
- US
- United States
- Prior art keywords
- temperature
- energy storage
- storage device
- electrical energy
- quiescent period
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active, expires
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/48—Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/4285—Testing apparatus
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/48—Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
- H01M10/486—Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for measuring temperature
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/36—Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
- G01R31/374—Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC] with means for correcting the measurement for temperature or ageing
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/36—Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
- G01R31/382—Arrangements for monitoring battery or accumulator variables, e.g. SoC
- G01R31/3828—Arrangements for monitoring battery or accumulator variables, e.g. SoC using current integration
- G01R31/3832—Arrangements for monitoring battery or accumulator variables, e.g. SoC using current integration without measurement of battery voltage
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/36—Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
- G01R31/389—Measuring internal impedance, internal conductance or related variables
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- This invention pertains generally to life expectancy of an electrical energy storage device. More particularly, the invention is concerned with the effects that periods of rest have upon such life expectancy.
- hybrid powertrain systems use electrical energy storage devices to supply electrical energy to electrical machines, which are operable to provide motive torque, often in conjunction with an internal combustion engine.
- One such hybrid powertrain architecture comprises a two-mode, compound-split, electro-mechanical transmission which utilizes an input member for receiving power from a prime mover power source and an output member for delivering power from the transmission to a vehicle driveline.
- First and second electric machines i.e. motor/generators, are operatively connected to an energy storage device for interchanging electrical power therebetween.
- a control unit is provided for regulating the electrical power interchange between the energy storage device and the electric machines. The control unit also regulates electrical power interchange between the first and second electric machines.
- Hybrid vehicles and more specifically the battery pack systems utilized therewith, provide vehicle system designers with new challenges and tradeoffs. It has been observed that service life of an electrical energy storage device, e.g. a battery pack system, increases as resting temperature of the battery pack decreases. However, cold operating temperature introduces limits in battery charge/discharge performance until temperature of the pack is increased. A warm battery pack is more able to supply required power to the vehicle propulsion system, but continued warm temperature operation may result in diminished service life.
- an electrical energy storage device e.g. a battery pack system
- Modern hybrid vehicle systems manage various aspects of operation of the hybrid system to effect improved service life of the battery. For example, depth of battery discharge is managed, amp-hour (A-h) throughput is limited, and convection fans are used to cool the battery pack. Ambient environmental conditions in which the vehicle is operated has largely been ignored. However, the ambient environmental conditions may have significant effect upon battery service life. Specifically, same models of hybrid vehicles released into various geographic areas throughout North America would likely not result in the same battery pack life, even if all the vehicles were driven on the same cycle. The vehicle's environment must be considered if a useful estimation of battery life is to be derived. Additionally, customer expectations, competition and government regulations impose standards of performance, including for service life of battery packs, which must be met.
- End of service life of a battery pack may be indicated by ohmic resistance of the battery pack.
- the ohmic resistance of the battery pack is typically flat during much of the service life of the vehicle and battery pack however, thus preventing a reliable estimate of real-time state-of-life (‘SOL’) of the battery pack throughout most of the service life. Instead, ohmic resistance is most useful to indicate incipient end of service life of the battery pack.
- SOL state-of-life
- a battery pack control system that is operable to determine a state-of-life of a monitored battery pack would benefit from a parametric value that is indicative of an effect of temperature of the battery pack during quiescent or stasis periods. Such quiescent periods occur when the battery pack is neither charging nor discharging, e.g. when a hybrid vehicle using the battery pack is shutdown.
- a method to determine an effect of temperature during a quiescent period of an electrical energy storage device operation upon life expectancy of an electrical energy storage device includes determining a weighted average temperature of the electrical energy storage device during the quiescent period.
- the weighted average temperature is based upon an average temperature of the electrical energy storage device during the quiescent period and a temperature of the electrical energy storage device substantially contemporaneous with the start of the quiescent period.
- the method includes determining a resting temperature factor for the electrical energy storage device based upon the weighted average temperature of the electrical energy storage device during the quiescent period.
- FIG. 1 is a schematic diagram of an exemplary architecture for a control system and powertrain, in accordance with the present invention
- FIG. 2 is an algorithmic block diagram, in accordance with the present invention.
- FIGS. 3 and 4 are exemplary data graphs, in accordance with the present invention.
- FIG. 1 shows a control system and an exemplary hybrid powertrain system which has been constructed in accordance with an embodiment of the invention.
- the exemplary hybrid powertrain system comprises a plurality of torque-generative devices operable to supply motive torque to a transmission device, which supplies motive torque to a driveline.
- the torque-generative devices preferably comprise an internal combustion engine 14 and first and second electric machines 56 , 72 operable to convert electrical energy supplied from an electrical storage device (ESD) 74 to motive torque.
- ESD electrical storage device
- ESD electrical storage device
- the exemplary transmission device 10 comprises a two-mode, compound-split electro-mechanical transmission having four fixed gear ratios and two continuously variable operating modes, and includes a plurality of gears operable to transmit the motive torque to an output shaft 64 and driveline through a plurality of torque-transfer devices contained therein.
- Mechanical aspects of exemplary transmission 10 are disclosed in detail in U.S. Pat. No. 6,953,409, entitled “Two-Mode, Compound-Split, Hybrid Electro-Mechanical Transmission having Four Fixed Ratios”, which is incorporated herein by reference.
- the control system comprises a distributed control module architecture interacting via a local area communications network to provide ongoing control to the powertrain system, including the engine 14 , the electrical machines 56 , 72 , and the transmission 10 .
- the exemplary powertrain system been constructed in accordance with an embodiment of the present invention.
- the hybrid transmission 10 receives input torque from torque-generative devices, including the engine 14 and the electrical machines 56 , 72 , as a result of energy conversion from fuel or electrical potential stored in electrical energy storage device (ESD) 74 .
- ESD electrical energy storage device
- the ESD 74 typically comprises one or more batteries. Other electrical energy storage devices that have the ability to store electric power and dispense electric power may be used in place of the batteries without altering the concepts of the present invention.
- the ESD 74 is preferably sized based upon factors including regenerative requirements, application issues related to typical road grade and temperature, and, propulsion requirements such as emissions, power assist and electric range.
- the ESD 74 is high voltage DC-coupled to transmission power inverter module (TPIM) 19 via DC lines referred to as transfer conductor 27 .
- TPIM 19 transfers electrical energy to the first electrical machine 56 by transfer conductors 29 , and the TPIM 19 similarly transfer electrical energy to the second electrical machine 72 by transfer conductors 31 .
- Electrical current is transferable between the electrical machines 56 , 72 and the ESD 74 in accordance with whether the ESD 74 is being charged or discharged.
- TPIM 19 includes the pair of power inverters and respective motor control modules configured to receive motor control commands and control inverter states therefrom for providing motor drive or regeneration functionality.
- the electrical machines 56 , 72 preferably comprise known motors/generator devices.
- the respective inverter receives current from the ESD and provides AC current to the respective motor over transfer conductors 29 and 31 .
- the respective inverter receives AC current from the motor over the respective transfer conductor and provides current to the DC lines 27 .
- the net DC current provided to or from the inverters determines the charge or discharge operating mode of the electrical energy storage device 74 .
- Motor A 56 and Motor B 72 are three-phase AC electrical machines and the inverters comprise complementary three-phase power electronic devices.
- the elements shown in FIG. 1 comprise a subset of an overall vehicle control architecture, and are operable to provide coordinated system control of the powertrain system described herein.
- the control system is operable to gather and synthesize pertinent information and inputs, and execute algorithms to control various actuators to achieve control targets, including such parameters as fuel economy, emissions, performance, driveability, and protection of hardware, including batteries of ESD 74 and motors 56 , 72 .
- the distributed control module architecture of the control system comprises an engine control module (‘ECM’) 23 , transmission control module (‘TCM’) 17 , battery pack control module (‘BPCM’) 21 , and the Transmission Power Inverter Module (‘TPIM’) 19 .
- ECM engine control module
- TCM transmission control module
- BPCM battery pack control module
- TPIM Transmission Power Inverter Module
- a hybrid control module (‘HCP’) 5 provides overarching control and coordination of the aforementioned control modules.
- UI User Interface
- UI 13 operably connected to a plurality of devices through which a vehicle operator typically controls or directs operation of the powertrain, including the transmission 10 .
- Exemplary vehicle operator inputs to the UI 13 include an accelerator pedal, a brake pedal, transmission gear selector, and, vehicle speed cruise control.
- each of the aforementioned control modules communicates with other control modules, sensors, and actuators via a local area network (‘LAN’) communications bus 6 .
- the LAN bus 6 allows for structured communication of control parameters and commands between the various control modules.
- the specific communication protocol utilized is application-specific.
- one communications protocol is the Society of Automotive Engineers standard J1939.
- the LAN bus and appropriate protocols provide for robust messaging and multi-control module interfacing between the aforementioned control modules, and other control modules providing functionality such as antilock brakes, traction control, and vehicle stability.
- the HCP 5 provides overarching control of the hybrid powertrain system, serving to coordinate operation of the ECM 23 , TCM 17 , TPIM 19 , and BPCM 21 . Based upon various input signals from the UI 13 and the powertrain, the HCP 5 generates various commands, including: an engine torque command, clutch torque commands, for various clutches of the hybrid transmission 10 ; and motor torque commands, for the electrical machines A and B, respectively.
- the ECM 23 is operably connected to the engine 14 , and functions to acquire data from a variety of sensors and control a variety of actuators, respectively, of the engine 14 over a plurality of discrete lines collectively shown as aggregate line 35 .
- the ECM 23 receives the engine torque command from the HCP 5 , and generates an axle torque request.
- ECM 23 is shown generally having bi-directional interface with engine 14 via aggregate line 35 .
- Various parameters that are sensed by ECM 23 include engine coolant temperature, engine input speed to the transmission, manifold pressure, ambient air temperature, and ambient pressure.
- Various actuators that may be controlled by the ECM 23 include fuel injectors, ignition modules, and throttle control modules.
- the TCM 17 is operably connected to the transmission 10 and functions to acquire data from a variety of sensors and provide command control signals, i.e. clutch torque commands to the clutches of the transmission.
- the BPCM 21 interacts with various sensors associated with the ESD 74 to derive information about the state of the ESD 74 to the HCP 5 .
- sensors comprise voltage and electrical current sensors, as well as ambient sensors operable to measure operating conditions of the ESD 74 including, e.g., temperature and resistance measured across terminals of the ESD 74 (not shown).
- Sensed parameters include ESD voltage, V BAT , ESD current, I BAT , and ESD temperature, T BAT .
- Derived parameters preferably include ESD current, I BAT , ESD internal, R BAT , as may be measured across terminals of the ESD, ESD state of charge, SOC, and other states of the ESD, including available electrical power, P BAT — MIN and P BAT — MAX .
- the Transmission Power Inverter Module (TPIM) 19 includes the aforementioned power inverters and motor control modules configured to receive motor control commands and control inverter states therefrom to provide motor drive or regeneration functionality.
- the TPIM 19 is operable to generate torque commands for machines A and B based upon input from the HCP 5 , which is driven by operator input through UI 13 and system operating parameters. Motor torques are implemented by the control system, including the TPIM 19 , to control the machines A and B.
- Individual motor speed signals are derived by the TPIM 19 from the motor phase information or conventional rotation sensors.
- the TPIM 19 determines and communicates motor speeds to the HCP 5 .
- Each of the aforementioned control modules of the control system is preferably a general-purpose digital computer generally comprising a microprocessor or central processing unit, read only memory (ROM), random access memory (RAM), electrically programmable read only memory (EPROM), high speed clock, analog to digital (A/D) and digital to analog (D/A) circuitry, and input/output circuitry and devices (I/O) and appropriate signal conditioning and buffer circuitry.
- Each control module has a set of control algorithms, comprising resident program instructions and calibrations stored in ROM and executed to provide the respective functions of each computer. Information transfer between the various computers is preferably accomplished using the aforementioned LAN 6 .
- Algorithms for control and state estimation in each of the control modules are typically executed during preset loop cycles such that each algorithm is executed at least once each loop cycle.
- Algorithms stored in the non-volatile memory devices are executed by one of the central processing units and are operable to monitor inputs from the sensing devices and execute control and diagnostic routines to control operation of the respective device, using preset calibrations.
- Loop cycles are typically executed at regular intervals, for example each 3.125, 6.25, 12.5, 25 and 100 milliseconds during ongoing engine and vehicle operation. Alternatively, algorithms may be executed in response to occurrence of an event.
- the action described hereinafter occurs during active operation of the vehicle, i.e. that period of time when operation of the engine and electrical machines are enabled by the vehicle operator, typically through a ‘key-on’ action.
- Quiescent periods include periods of time when operation of the engine and electrical machines are disabled by the vehicle operator, typically through a ‘key-off’ action.
- the supervisory HCP control module 5 and one or more of the other control modules determine required transmission output torque, T O .
- Selectively operated components of the hybrid transmission 10 are appropriately controlled and manipulated to respond to the operator demand. For example, in the exemplary embodiment shown in FIG.
- the HCP 5 determines how and when the vehicle is to accelerate or decelerate.
- the HCP 5 also monitors the parametric states of the torque-generative devices, and determines the output of the transmission required to effect a desired rate of acceleration or deceleration. Under the direction of the HCP 5 , the transmission 10 operates over a range of output speeds from slow to fast in order to meet the operator demand.
- FIG. 2 a schematic diagram is shown, demonstrating an exemplary method for estimating a state of life of the ESD 74 in real-time, based upon monitored inputs.
- the method is preferably executed as one or more algorithms in one of the controllers of the control system, typically the HCP 5 .
- the estimated state of life of the ESD 74 (‘SOL K ’) is preferably stored as a scalar value in a non-volatile memory location for reference, updating, and for resetting, each occurring at appropriate points during life of the vehicle and the ESD 74 .
- the exemplary method and apparatus to estimate state-of-life (‘SOL’) of the energy storage device in the hybrid control system in real-time is disclosed in detail in U.S. patent application Ser. No. 11/422,652, entitled “Method and Apparatus for Real-Time Life Estimation of an Electric Energy Storage Device”, which is incorporated herein by reference.
- the exemplary method and apparatus to estimate state-of-life comprises an algorithm that monitors in real-time an ESD current I BAT (in amperes), an ESD temperature T BAT , an ESD voltage V BAT , an ESD ohmic resistance R BAT , and a ESD State-of-Charge factor (‘SOC’).
- I BAT , T BAT , V BAT , and R BAT are used to determine a parametric value for ESD current integrated over time 110 , a parametric value for depth of discharge factor 112 , a parametric value for driving temperature factor 114 , and, a parametric value for resting temperature factor T REST 116 .
- Each of the aforementioned factors i.e. the integrated ESD current, depth of discharge, driving temperature factor, and resting temperature factor, are combined, preferably by a summing operation shown in block 120 with a previously determined state of life factor, SOL K , to determine a parametric value for the SOL, i.e. SOL K+1 , which is shown as an output to block 120 .
- the algorithm to determine the state of life factor, SOL K is preferably executed multiple times during each trip (defined as an engine on-off cycle).
- the resting temperature factor T REST preferably comprises a derived parametric value.
- resting temperature factor T REST 116 is determined based upon a time-based temperature of the ESD 74 during quiescent periods of ESD operation.
- Quiescent periods of ESD operation are characterized by ESD power flow that is de minimus whereas active periods of ESD operation are characterized by ESD power flow that is not de minimus. That is to say, quiescent periods of ESD operation are generally characterized by no or minimal current flow into or out of the ESD.
- quiescent periods of ESD operation may be associated with periods of vehicle inactivity (e.g.
- powertrain including electric machines
- accessory loads are off but may include such periods characterized by parasitic current draws as are required for continuing certain controller operations including, for example, the operations associated with the present invention.
- Active periods of ESD operation in contrast may be associated with periods of vehicle activity (e.g. accessory loads are on and/or the powertrain, including electric machines, is operative such as during periods when the vehicle is being driven wherein current flows may be into or out of the ESD).
- the method is preferably executed as one or more algorithms and associated calibrations in one of the aforementioned controllers, preferably the HCP 5 .
- the method and system include determining a temperature of the electrical energy storage device when the device enters the quiescent period, determining an average temperature of the electrical energy storage device during the quiescent period, determining a weighted average temperature of the electrical energy storage device during the quiescent period based upon the average temperature and the shutdown temperature; and, determining a parametric value for the resting temperature factor 116 , based upon the weighted average temperature, which is useable to adjust a life expectancy parameter of the electrical energy storage device. This is discussed in greater detail hereinbelow.
- Determining temperature of the electrical energy storage device when the device enters the quiescent period preferably comprises capturing a value for ESD temperature, T BAT when the vehicle is shutdown by the operator, e.g. at a key-off event.
- Determining an average temperature of the electrical energy storage device during the quiescent period preferably comprises executing an algorithm to monitor ESD temperature, T BAT at regular intervals during the quiescent period, and calculating a running average value. Elapsed time during shutdown is monitored.
- a weighting factor is determined from the shutdown temperature, the average temperature, and the elapsed time.
- the weighting factor preferably comprises a curve having a nonlinear time decay based upon temperature of the system, with the decay factor based upon whether the system is heating or cooling.
- the weighting factor is determined by quantity of parametric measurements of temperature used to calculate the resting temperature factor (block 116 ). For example, when a large quantity of temperature samples are taken indicating a long resting time, the parametric value for resting temperature closely approximates actual temperature, and the resting temperature factor would comprise a time-average value of the resting temperature.
- the weighting factor is applied to the average temperature of the ESD during the quiescent period to determine a weighted average temperature during the quiescent period.
- the resting temperature factor 116 useable for determining the aforementioned life expectancy parameter SOL of the electrical energy storage device, is determined based upon the weighted average temperature, as shown with reference to FIG. 3 .
- FIG. 3 comprises a datagraph having temperature (degrees, C) as the on the X-axis, and parametric values for resting temperature factor 116 on the Y-axis.
- the curve comprises an exponential function having a nominal value, or zero point, at about 25 C. Establishing the nominal value for the resting temperature factor at a nominal temperature value of 25 C is preferable in the exemplary system because life-expectancy testing and data for the exemplary ESD 74 was conducted at an ambient temperature of 25 C.
- a parametric value for nominal resting temperature factor 116 at 25 C is zero, and the parametric value changes for lower and higher resting temperatures. This includes increasing the resting temperature factor 116 when the weighted average temperature during the quiescent period is less than the nominal temperature value of 25 C, and decreasing the resting temperature factor 116 when the weighted average temperature during the quiescent period is greater than the nominal temperature value of 25 C.
- the resting temperature factor 116 increases exponentially with increasing weighted average temperature during the quiescent period, due to resulting decrease in life expectancy of typical ESD resulting at higher ambient and higher ESD operating temperatures.
- the resting temperature factor 116 decreases exponentially with decreasing weighted average temperature during the quiescent period, due to resulting increase in life expectancy of typical ESDs resulting at higher ambient and higher ESD operating temperatures.
- Specific calibration values for resting temperature factors 116 at various temperatures are application-specific, and depend upon design of the specific ESD, the design life-expectancy of the ESD, and operating characteristics of the hybrid system utilizing the ESD.
- the resting temperature factor 116 is an element of the control system for the aforementioned powertrain system.
- an exemplary datagraph is shown for a specific application, comprising an effect of ESD temperature on the resting temperature factor.
- a resting temperature factor is determinable.
- the plotted lines comprise lines of equal effect, i.e. the lines reflect a time/temperature relationship that results in a similar change in ESD life. For example, a short elapsed time at a higher temperature has a similar effect on ESD life as a longer elapsed time at a lower temperature.
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
Abstract
Description
Claims (16)
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/422,610 US7538520B2 (en) | 2006-06-07 | 2006-06-07 | Method and apparatus for quantifying quiescent period temperature effects upon an electric energy storage device |
DE102007026132.4A DE102007026132B4 (en) | 2006-06-07 | 2007-06-05 | Method and apparatus for quantifying effects of temperature in periods of inactivity on an electrical energy storage device |
CN2007101082564A CN101086517B (en) | 2006-06-07 | 2007-06-07 | Method and apparatus for quantifying quiescent period temperature effects upon an electric energy storage device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/422,610 US7538520B2 (en) | 2006-06-07 | 2006-06-07 | Method and apparatus for quantifying quiescent period temperature effects upon an electric energy storage device |
Publications (2)
Publication Number | Publication Date |
---|---|
US20070285063A1 US20070285063A1 (en) | 2007-12-13 |
US7538520B2 true US7538520B2 (en) | 2009-05-26 |
Family
ID=38721340
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/422,610 Active 2027-04-08 US7538520B2 (en) | 2006-06-07 | 2006-06-07 | Method and apparatus for quantifying quiescent period temperature effects upon an electric energy storage device |
Country Status (3)
Country | Link |
---|---|
US (1) | US7538520B2 (en) |
CN (1) | CN101086517B (en) |
DE (1) | DE102007026132B4 (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9296385B2 (en) | 2013-03-14 | 2016-03-29 | Allison Transmission, Inc. | System and method for power management during regeneration mode in hybrid electric vehicles for H-3000 |
US9555800B2 (en) | 2013-03-15 | 2017-01-31 | Allison Transmission, Inc. | Service disconnect interlock system and method for hybrid vehicles |
US9555719B2 (en) | 2013-03-14 | 2017-01-31 | Allison Transmission, Inc. | System and method for optimizing hybrid vehicle battery usage constraints |
US9592822B2 (en) | 2013-03-15 | 2017-03-14 | Allison Transmission, Inc. | System and method for energy rate balancing in hybrid automatic transmissions |
US9714021B2 (en) | 2013-03-14 | 2017-07-25 | Allison Transmission, Inc. | System and method for compensation of turbo lag in hybrid vehicles |
US9738272B2 (en) | 2013-03-14 | 2017-08-22 | Allison Transmission, Inc. | System and method for engine driveline disconnect during regeneration in hybrid vehicles |
US9932029B2 (en) | 2013-03-15 | 2018-04-03 | Allison Transmission, Inc. | System and method for balancing states of charge of energy storage modules in hybrid vehicles |
US10023068B2 (en) | 2015-10-13 | 2018-07-17 | Cummins, Inc. | Systems and methods for battery usage regulation for battery life protection |
Families Citing this family (138)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8010263B2 (en) | 2006-03-22 | 2011-08-30 | GM Global Technology Operations LLC | Method and apparatus for multivariate active driveline damping |
US8091667B2 (en) * | 2006-06-07 | 2012-01-10 | GM Global Technology Operations LLC | Method for operating a hybrid electric powertrain based on predictive effects upon an electrical energy storage device |
US7638980B2 (en) * | 2006-06-07 | 2009-12-29 | Gm Global Technology Operations, Inc. | Method and apparatus for determining the effect of temperature upon life expectancy of an electric energy storage device in a hybrid electric vehicle |
US7987934B2 (en) | 2007-03-29 | 2011-08-02 | GM Global Technology Operations LLC | Method for controlling engine speed in a hybrid electric vehicle |
US7999496B2 (en) | 2007-05-03 | 2011-08-16 | GM Global Technology Operations LLC | Method and apparatus to determine rotational position of an electrical machine |
US7996145B2 (en) | 2007-05-03 | 2011-08-09 | GM Global Technology Operations LLC | Method and apparatus to control engine restart for a hybrid powertrain system |
US7991519B2 (en) | 2007-05-14 | 2011-08-02 | GM Global Technology Operations LLC | Control architecture and method to evaluate engine off operation of a hybrid powertrain system operating in a continuously variable mode |
US8390240B2 (en) | 2007-08-06 | 2013-03-05 | GM Global Technology Operations LLC | Absolute position sensor for field-oriented control of an induction motor |
DE102007038586A1 (en) * | 2007-08-16 | 2009-02-19 | Zf Friedrichshafen Ag | Battery utilizing and service life monitoring method for electric machine of hybrid vehicle, involves charging battery within charge limits, where charge limits are computed and determined based on charging condition and usage of battery |
US8265813B2 (en) * | 2007-09-11 | 2012-09-11 | GM Global Technology Operations LLC | Method and control architecture for optimization of engine fuel-cutoff selection and engine input torque for a hybrid powertrain system |
US7988591B2 (en) * | 2007-09-11 | 2011-08-02 | GM Global Technology Operations LLC | Control architecture and method for one-dimensional optimization of input torque and motor torque in fixed gear for a hybrid powertrain system |
US7983823B2 (en) | 2007-09-11 | 2011-07-19 | GM Global Technology Operations LLC | Method and control architecture for selection of optimal engine input torque for a powertrain system |
US8027771B2 (en) | 2007-09-13 | 2011-09-27 | GM Global Technology Operations LLC | Method and apparatus to monitor an output speed sensor during operation of an electro-mechanical transmission |
US7867135B2 (en) | 2007-09-26 | 2011-01-11 | GM Global Technology Operations LLC | Electro-mechanical transmission control system |
US8062170B2 (en) | 2007-09-28 | 2011-11-22 | GM Global Technology Operations LLC | Thermal protection of an electric drive system |
US8234048B2 (en) | 2007-10-19 | 2012-07-31 | GM Global Technology Operations LLC | Method and system for inhibiting operation in a commanded operating range state for a transmission of a powertrain system |
US9140337B2 (en) | 2007-10-23 | 2015-09-22 | GM Global Technology Operations LLC | Method for model based clutch control and torque estimation |
US8060267B2 (en) | 2007-10-23 | 2011-11-15 | GM Global Technology Operations LLC | Method for controlling power flow within a powertrain system |
US8296027B2 (en) | 2007-10-25 | 2012-10-23 | GM Global Technology Operations LLC | Method and apparatus to control off-going clutch torque during torque phase for a hybrid powertrain system |
US8118122B2 (en) | 2007-10-25 | 2012-02-21 | GM Global Technology Operations LLC | Method and system for monitoring signal integrity in a distributed controls system |
US8265821B2 (en) | 2007-10-25 | 2012-09-11 | GM Global Technology Operations LLC | Method for determining a voltage level across an electric circuit of a powertrain |
US8187145B2 (en) | 2007-10-25 | 2012-05-29 | GM Global Technology Operations LLC | Method and apparatus for clutch torque control in mode and fixed gear for a hybrid powertrain system |
US8335623B2 (en) | 2007-10-25 | 2012-12-18 | GM Global Technology Operations LLC | Method and apparatus for remediation of and recovery from a clutch slip event in a hybrid powertrain system |
US8548703B2 (en) | 2007-10-26 | 2013-10-01 | GM Global Technology Operations LLC | Method and apparatus to determine clutch slippage in an electro-mechanical transmission |
US8303463B2 (en) | 2007-10-26 | 2012-11-06 | GM Global Technology Operations LLC | Method and apparatus to control clutch fill pressure in an electro-mechanical transmission |
US8406945B2 (en) | 2007-10-26 | 2013-03-26 | GM Global Technology Operations LLC | Method and apparatus to control logic valves for hydraulic flow control in an electro-mechanical transmission |
US9097337B2 (en) | 2007-10-26 | 2015-08-04 | GM Global Technology Operations LLC | Method and apparatus to control hydraulic line pressure in an electro-mechanical transmission |
US8204702B2 (en) | 2007-10-26 | 2012-06-19 | GM Global Technology Operations LLC | Method for estimating battery life in a hybrid powertrain |
US7985154B2 (en) | 2007-10-26 | 2011-07-26 | GM Global Technology Operations LLC | Method and apparatus to control hydraulic pressure for component lubrication in an electro-mechanical transmission |
US8560191B2 (en) | 2007-10-26 | 2013-10-15 | GM Global Technology Operations LLC | Method and apparatus to control clutch pressures in an electro-mechanical transmission |
US8167773B2 (en) * | 2007-10-26 | 2012-05-01 | GM Global Technology Operations LLC | Method and apparatus to control motor cooling in an electro-mechanical transmission |
US8062174B2 (en) | 2007-10-27 | 2011-11-22 | GM Global Technology Operations LLC | Method and apparatus to control clutch stroke volume in an electro-mechanical transmission |
US8099219B2 (en) | 2007-10-27 | 2012-01-17 | GM Global Technology Operations LLC | Method and apparatus for securing an operating range state mechanical transmission |
US8428816B2 (en) | 2007-10-27 | 2013-04-23 | GM Global Technology Operations LLC | Method and apparatus for monitoring software and signal integrity in a distributed control module system for a powertrain system |
US8244426B2 (en) | 2007-10-27 | 2012-08-14 | GM Global Technology Operations LLC | Method and apparatus for monitoring processor integrity in a distributed control module system for a powertrain system |
US8489293B2 (en) | 2007-10-29 | 2013-07-16 | GM Global Technology Operations LLC | Method and apparatus to control input speed profile during inertia speed phase for a hybrid powertrain system |
US8209098B2 (en) | 2007-10-29 | 2012-06-26 | GM Global Technology Operations LLC | Method and apparatus for monitoring a transmission range selector in a hybrid powertrain transmission |
US8170762B2 (en) | 2007-10-29 | 2012-05-01 | GM Global Technology Operations LLC | Method and apparatus to control operation of a hydraulic pump for an electro-mechanical transmission |
US8112194B2 (en) | 2007-10-29 | 2012-02-07 | GM Global Technology Operations LLC | Method and apparatus for monitoring regenerative operation in a hybrid powertrain system |
US8282526B2 (en) | 2007-10-29 | 2012-10-09 | GM Global Technology Operations LLC | Method and apparatus to create a pseudo torque phase during oncoming clutch engagement to prevent clutch slip for a hybrid powertrain system |
US8095254B2 (en) | 2007-10-29 | 2012-01-10 | GM Global Technology Operations LLC | Method for determining a power constraint for controlling a powertrain system |
US8290681B2 (en) | 2007-10-29 | 2012-10-16 | GM Global Technology Operations LLC | Method and apparatus to produce a smooth input speed profile in mode for a hybrid powertrain system |
US8078371B2 (en) | 2007-10-31 | 2011-12-13 | GM Global Technology Operations LLC | Method and apparatus to monitor output of an electro-mechanical transmission |
US8073602B2 (en) | 2007-11-01 | 2011-12-06 | GM Global Technology Operations LLC | System constraints method of controlling operation of an electro-mechanical transmission with an additional constraint range |
US7977896B2 (en) | 2007-11-01 | 2011-07-12 | GM Global Technology Operations LLC | Method of determining torque limit with motor torque and battery power constraints |
US8035324B2 (en) | 2007-11-01 | 2011-10-11 | GM Global Technology Operations LLC | Method for determining an achievable torque operating region for a transmission |
US8556011B2 (en) | 2007-11-01 | 2013-10-15 | GM Global Technology Operations LLC | Prediction strategy for thermal management and protection of power electronic hardware |
US8145375B2 (en) | 2007-11-01 | 2012-03-27 | GM Global Technology Operations LLC | System constraints method of determining minimum and maximum torque limits for an electro-mechanical powertrain system |
US8121765B2 (en) | 2007-11-02 | 2012-02-21 | GM Global Technology Operations LLC | System constraints method of controlling operation of an electro-mechanical transmission with two external input torque ranges |
US8200403B2 (en) | 2007-11-02 | 2012-06-12 | GM Global Technology Operations LLC | Method for controlling input torque provided to a transmission |
US8133151B2 (en) | 2007-11-02 | 2012-03-13 | GM Global Technology Operations LLC | System constraints method of controlling operation of an electro-mechanical transmission with an additional constraint |
US8287426B2 (en) | 2007-11-02 | 2012-10-16 | GM Global Technology Operations LLC | Method for controlling voltage within a powertrain system |
US8847426B2 (en) | 2007-11-02 | 2014-09-30 | GM Global Technology Operations LLC | Method for managing electric power in a powertrain system |
US8131437B2 (en) | 2007-11-02 | 2012-03-06 | GM Global Technology Operations LLC | Method for operating a powertrain system to transition between engine states |
US8224539B2 (en) | 2007-11-02 | 2012-07-17 | GM Global Technology Operations LLC | Method for altitude-compensated transmission shift scheduling |
US8121767B2 (en) | 2007-11-02 | 2012-02-21 | GM Global Technology Operations LLC | Predicted and immediate output torque control architecture for a hybrid powertrain system |
US8825320B2 (en) | 2007-11-02 | 2014-09-02 | GM Global Technology Operations LLC | Method and apparatus for developing a deceleration-based synchronous shift schedule |
US8585540B2 (en) | 2007-11-02 | 2013-11-19 | GM Global Technology Operations LLC | Control system for engine torque management for a hybrid powertrain system |
US8010247B2 (en) | 2007-11-03 | 2011-08-30 | GM Global Technology Operations LLC | Method for operating an engine in a hybrid powertrain system |
US8204664B2 (en) | 2007-11-03 | 2012-06-19 | GM Global Technology Operations LLC | Method for controlling regenerative braking in a vehicle |
US8068966B2 (en) | 2007-11-03 | 2011-11-29 | GM Global Technology Operations LLC | Method for monitoring an auxiliary pump for a hybrid powertrain |
US8224514B2 (en) | 2007-11-03 | 2012-07-17 | GM Global Technology Operations LLC | Creation and depletion of short term power capability in a hybrid electric vehicle |
US8406970B2 (en) | 2007-11-03 | 2013-03-26 | GM Global Technology Operations LLC | Method for stabilization of optimal input speed in mode for a hybrid powertrain system |
US8155814B2 (en) | 2007-11-03 | 2012-04-10 | GM Global Technology Operations LLC | Method of operating a vehicle utilizing regenerative braking |
US8002667B2 (en) | 2007-11-03 | 2011-08-23 | GM Global Technology Operations LLC | Method for determining input speed acceleration limits in a hybrid transmission |
US8296021B2 (en) | 2007-11-03 | 2012-10-23 | GM Global Technology Operations LLC | Method for determining constraints on input torque in a hybrid transmission |
US8285431B2 (en) | 2007-11-03 | 2012-10-09 | GM Global Technology Operations LLC | Optimal selection of hybrid range state and/or input speed with a blended braking system in a hybrid electric vehicle |
US8868252B2 (en) | 2007-11-03 | 2014-10-21 | GM Global Technology Operations LLC | Control architecture and method for two-dimensional optimization of input speed and input power including search windowing |
US8135526B2 (en) | 2007-11-03 | 2012-03-13 | GM Global Technology Operations LLC | Method for controlling regenerative braking and friction braking |
US8260511B2 (en) | 2007-11-03 | 2012-09-04 | GM Global Technology Operations LLC | Method for stabilization of mode and fixed gear for a hybrid powertrain system |
US8118903B2 (en) | 2007-11-04 | 2012-02-21 | GM Global Technology Operations LLC | Method for preferential selection of modes and gear with inertia effects for a hybrid powertrain system |
US8214120B2 (en) | 2007-11-04 | 2012-07-03 | GM Global Technology Operations LLC | Method to manage a high voltage system in a hybrid powertrain system |
US7988594B2 (en) | 2007-11-04 | 2011-08-02 | GM Global Technology Operations LLC | Method for load-based stabilization of mode and fixed gear operation of a hybrid powertrain system |
US8135532B2 (en) | 2007-11-04 | 2012-03-13 | GM Global Technology Operations LLC | Method for controlling output power of an energy storage device in a powertrain system |
US8897975B2 (en) | 2007-11-04 | 2014-11-25 | GM Global Technology Operations LLC | Method for controlling a powertrain system based on penalty costs |
US8594867B2 (en) | 2007-11-04 | 2013-11-26 | GM Global Technology Operations LLC | System architecture for a blended braking system in a hybrid powertrain system |
US8504259B2 (en) | 2007-11-04 | 2013-08-06 | GM Global Technology Operations LLC | Method for determining inertia effects for a hybrid powertrain system |
US8374758B2 (en) | 2007-11-04 | 2013-02-12 | GM Global Technology Operations LLC | Method for developing a trip cost structure to understand input speed trip for a hybrid powertrain system |
US8214093B2 (en) | 2007-11-04 | 2012-07-03 | GM Global Technology Operations LLC | Method and apparatus to prioritize transmission output torque and input acceleration for a hybrid powertrain system |
US9008926B2 (en) | 2007-11-04 | 2015-04-14 | GM Global Technology Operations LLC | Control of engine torque during upshift and downshift torque phase for a hybrid powertrain system |
US8112206B2 (en) | 2007-11-04 | 2012-02-07 | GM Global Technology Operations LLC | Method for controlling a powertrain system based upon energy storage device temperature |
US8248023B2 (en) | 2007-11-04 | 2012-08-21 | GM Global Technology Operations LLC | Method of externally charging a powertrain |
US8145397B2 (en) | 2007-11-04 | 2012-03-27 | GM Global Technology Operations LLC | Optimal selection of blended braking capacity for a hybrid electric vehicle |
US8396634B2 (en) | 2007-11-04 | 2013-03-12 | GM Global Technology Operations LLC | Method and apparatus for maximum and minimum output torque performance by selection of hybrid range state and input speed for a hybrid powertrain system |
US8818660B2 (en) | 2007-11-04 | 2014-08-26 | GM Global Technology Operations LLC | Method for managing lash in a driveline |
US8214114B2 (en) | 2007-11-04 | 2012-07-03 | GM Global Technology Operations LLC | Control of engine torque for traction and stability control events for a hybrid powertrain system |
US8079933B2 (en) | 2007-11-04 | 2011-12-20 | GM Global Technology Operations LLC | Method and apparatus to control engine torque to peak main pressure for a hybrid powertrain system |
US8138703B2 (en) | 2007-11-04 | 2012-03-20 | GM Global Technology Operations LLC | Method and apparatus for constraining output torque in a hybrid powertrain system |
US8200383B2 (en) | 2007-11-04 | 2012-06-12 | GM Global Technology Operations LLC | Method for controlling a powertrain system based upon torque machine temperature |
US8221285B2 (en) | 2007-11-04 | 2012-07-17 | GM Global Technology Operations LLC | Method and apparatus to offload offgoing clutch torque with asynchronous oncoming clutch torque, engine and motor torque for a hybrid powertrain system |
US8346449B2 (en) | 2007-11-04 | 2013-01-01 | GM Global Technology Operations LLC | Method and apparatus to provide necessary output torque reserve by selection of hybrid range state and input speed for a hybrid powertrain system |
US8002665B2 (en) | 2007-11-04 | 2011-08-23 | GM Global Technology Operations LLC | Method for controlling power actuators in a hybrid powertrain system |
US8204656B2 (en) | 2007-11-04 | 2012-06-19 | GM Global Technology Operations LLC | Control architecture for output torque shaping and motor torque determination for a hybrid powertrain system |
US8112192B2 (en) | 2007-11-04 | 2012-02-07 | GM Global Technology Operations LLC | Method for managing electric power within a powertrain system |
US8121766B2 (en) | 2007-11-04 | 2012-02-21 | GM Global Technology Operations LLC | Method for operating an internal combustion engine to transmit power to a driveline |
US8630776B2 (en) | 2007-11-04 | 2014-01-14 | GM Global Technology Operations LLC | Method for controlling an engine of a hybrid powertrain in a fuel enrichment mode |
US8494732B2 (en) | 2007-11-04 | 2013-07-23 | GM Global Technology Operations LLC | Method for determining a preferred engine operation in a hybrid powertrain system during blended braking |
US8000866B2 (en) | 2007-11-04 | 2011-08-16 | GM Global Technology Operations LLC | Engine control system for torque management in a hybrid powertrain system |
US8126624B2 (en) | 2007-11-04 | 2012-02-28 | GM Global Technology Operations LLC | Method for selection of optimal mode and gear and input speed for preselect or tap up/down operation |
US8095282B2 (en) | 2007-11-04 | 2012-01-10 | GM Global Technology Operations LLC | Method and apparatus for soft costing input speed and output speed in mode and fixed gear as function of system temperatures for cold and hot operation for a hybrid powertrain system |
US8067908B2 (en) | 2007-11-04 | 2011-11-29 | GM Global Technology Operations LLC | Method for electric power boosting in a powertrain system |
US8414449B2 (en) | 2007-11-04 | 2013-04-09 | GM Global Technology Operations LLC | Method and apparatus to perform asynchronous shifts with oncoming slipping clutch torque for a hybrid powertrain system |
US8092339B2 (en) | 2007-11-04 | 2012-01-10 | GM Global Technology Operations LLC | Method and apparatus to prioritize input acceleration and clutch synchronization performance in neutral for a hybrid powertrain system |
US8098041B2 (en) | 2007-11-04 | 2012-01-17 | GM Global Technology Operations LLC | Method of charging a powertrain |
US8121768B2 (en) | 2007-11-05 | 2012-02-21 | GM Global Technology Operations LLC | Method for controlling a hybrid powertrain system based upon hydraulic pressure and clutch reactive torque capacity |
US8321100B2 (en) | 2007-11-05 | 2012-11-27 | GM Global Technology Operations LLC | Method and apparatus for dynamic output torque limiting for a hybrid powertrain system |
US8249766B2 (en) | 2007-11-05 | 2012-08-21 | GM Global Technology Operations LLC | Method of determining output torque limits of a hybrid transmission operating in a fixed gear operating range state |
US8165777B2 (en) | 2007-11-05 | 2012-04-24 | GM Global Technology Operations LLC | Method to compensate for transmission spin loss for a hybrid powertrain system |
US8112207B2 (en) | 2007-11-05 | 2012-02-07 | GM Global Technology Operations LLC | Method and apparatus to determine a preferred output torque for operating a hybrid transmission in a continuously variable mode |
US8073601B2 (en) | 2007-11-05 | 2011-12-06 | GM Global Technology Operations LLC | Method for preferential selection of mode and gear and input speed based on multiple engine state fueling costs for a hybrid powertrain system |
US8160761B2 (en) | 2007-11-05 | 2012-04-17 | GM Global Technology Operations LLC | Method for predicting an operator torque request of a hybrid powertrain system |
US8229633B2 (en) | 2007-11-05 | 2012-07-24 | GM Global Technology Operations LLC | Method for operating a powertrain system to control engine stabilization |
US8070647B2 (en) | 2007-11-05 | 2011-12-06 | GM Global Technology Operations LLC | Method and apparatus for adapting engine operation in a hybrid powertrain system for active driveline damping |
US8155815B2 (en) | 2007-11-05 | 2012-04-10 | Gm Global Technology Operation Llc | Method and apparatus for securing output torque in a distributed control module system for a powertrain system |
US8135519B2 (en) | 2007-11-05 | 2012-03-13 | GM Global Technology Operations LLC | Method and apparatus to determine a preferred output torque for operating a hybrid transmission in a fixed gear operating range state |
US8219303B2 (en) | 2007-11-05 | 2012-07-10 | GM Global Technology Operations LLC | Method for operating an internal combustion engine for a hybrid powertrain system |
US8448731B2 (en) | 2007-11-05 | 2013-05-28 | GM Global Technology Operations LLC | Method and apparatus for determination of fast actuating engine torque for a hybrid powertrain system |
US8285462B2 (en) | 2007-11-05 | 2012-10-09 | GM Global Technology Operations LLC | Method and apparatus to determine a preferred output torque in mode and fixed gear operation with clutch torque constraints for a hybrid powertrain system |
US8285432B2 (en) | 2007-11-05 | 2012-10-09 | GM Global Technology Operations LLC | Method and apparatus for developing a control architecture for coordinating shift execution and engine torque control |
US8099204B2 (en) | 2007-11-05 | 2012-01-17 | GM Global Technology Operatons LLC | Method for controlling electric boost in a hybrid powertrain |
US8281885B2 (en) | 2007-11-06 | 2012-10-09 | GM Global Technology Operations LLC | Method and apparatus to monitor rotational speeds in an electro-mechanical transmission |
US8179127B2 (en) | 2007-11-06 | 2012-05-15 | GM Global Technology Operations LLC | Method and apparatus to monitor position of a rotatable shaft |
US8267837B2 (en) | 2007-11-07 | 2012-09-18 | GM Global Technology Operations LLC | Method and apparatus to control engine temperature for a hybrid powertrain |
US8195349B2 (en) | 2007-11-07 | 2012-06-05 | GM Global Technology Operations LLC | Method for predicting a speed output of a hybrid powertrain system |
US8224544B2 (en) | 2007-11-07 | 2012-07-17 | GM Global Technology Operations LLC | Method and apparatus to control launch of a vehicle having an electro-mechanical transmission |
US8005632B2 (en) * | 2007-11-07 | 2011-08-23 | GM Global Technology Operations LLC | Method and apparatus for detecting faults in a current sensing device |
US8209097B2 (en) | 2007-11-07 | 2012-06-26 | GM Global Technology Operations LLC | Method and control architecture to determine motor torque split in fixed gear operation for a hybrid powertrain system |
US8277363B2 (en) | 2007-11-07 | 2012-10-02 | GM Global Technology Operations LLC | Method and apparatus to control temperature of an exhaust aftertreatment system for a hybrid powertrain |
US8271173B2 (en) | 2007-11-07 | 2012-09-18 | GM Global Technology Operations LLC | Method and apparatus for controlling a hybrid powertrain system |
US8073610B2 (en) | 2007-11-07 | 2011-12-06 | GM Global Technology Operations LLC | Method and apparatus to control warm-up of an exhaust aftertreatment system for a hybrid powertrain |
US8433486B2 (en) | 2007-11-07 | 2013-04-30 | GM Global Technology Operations LLC | Method and apparatus to determine a preferred operating point for an engine of a powertrain system using an iterative search |
AT508875B1 (en) | 2011-01-21 | 2013-03-15 | Avl List Gmbh | OPERATION OF AN ELECTRIC ENERGY STORAGE FOR A VEHICLE |
US8827865B2 (en) | 2011-08-31 | 2014-09-09 | GM Global Technology Operations LLC | Control system for a hybrid powertrain system |
US8801567B2 (en) | 2012-02-17 | 2014-08-12 | GM Global Technology Operations LLC | Method and apparatus for executing an asynchronous clutch-to-clutch shift in a hybrid transmission |
CN112498172B (en) * | 2020-02-25 | 2022-07-15 | 长城汽车股份有限公司 | Power battery state of charge lower limit control method and device and vehicle |
KR20220047472A (en) * | 2020-10-08 | 2022-04-18 | 주식회사 엘지에너지솔루션 | Method and apparatus for calculating state of health resistance of battery |
DE102021133462B4 (en) * | 2021-12-16 | 2024-10-10 | Webasto SE | battery and battery control methods |
WO2024114969A1 (en) * | 2022-11-30 | 2024-06-06 | Cirrus Logic International Semiconductor Limited | A system for controlling charging of a battery |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4803987A (en) | 1986-06-11 | 1989-02-14 | Intermedics, Inc. | Temperature responsive controller for cardiac pacer |
US5847469A (en) | 1996-02-29 | 1998-12-08 | Toyota Jidosha Kabushiki Kaisha | Hybrid drive system wherein electric motor or engine is selectively used for rearward driving of vehicle |
US6124698A (en) * | 1998-06-09 | 2000-09-26 | Makita Corporation | Battery charger |
US20060012378A1 (en) * | 2004-07-14 | 2006-01-19 | Yurgil James R | Ultracapacitor useful life prediction |
US20060076831A1 (en) | 2002-11-15 | 2006-04-13 | Sprint Communications Company L.P. | Power system including lithium-metal-polymer batteries |
US20070285060A1 (en) | 2006-06-07 | 2007-12-13 | Zettel Andrew M | Method and apparatus for determining the effect of temperature upon life expectancy of an electric energy storage device in a hybrid electric vehicle |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3030569A1 (en) * | 1980-08-13 | 1982-03-11 | Fichtel & Sachs Ag, 8720 Schweinfurt | CENTRAL LOCKING SYSTEM FOR LOCKABLE OPENINGS ON BUILDINGS OR VEHICLES, IN PARTICULAR MOTOR VEHICLES |
US6023151A (en) * | 1998-03-16 | 2000-02-08 | Eveready Battery Company, Inc. | Method and device for enhancing smart battery performance |
CN1120553C (en) * | 1998-10-21 | 2003-09-03 | 钟阳 | Charging method for elongating service life of rechargeable battery |
FR2833711B1 (en) * | 2001-12-14 | 2004-04-02 | Peugeot Citroen Automobiles Sa | SYSTEM FOR DETERMINING THE CHARGING STATE AND THE VOLTAGE OF AN ELECTRICAL ENERGY STORAGE BATTERY, IN PARTICULAR FOR A MOTOR VEHICLE |
DE10328721A1 (en) * | 2003-06-25 | 2005-01-13 | Robert Bosch Gmbh | Method for predicting a residual life of an electrical energy store |
US6953409B2 (en) | 2003-12-19 | 2005-10-11 | General Motors Corporation | Two-mode, compound-split, hybrid electro-mechanical transmission having four fixed ratios |
-
2006
- 2006-06-07 US US11/422,610 patent/US7538520B2/en active Active
-
2007
- 2007-06-05 DE DE102007026132.4A patent/DE102007026132B4/en active Active
- 2007-06-07 CN CN2007101082564A patent/CN101086517B/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4803987A (en) | 1986-06-11 | 1989-02-14 | Intermedics, Inc. | Temperature responsive controller for cardiac pacer |
US5847469A (en) | 1996-02-29 | 1998-12-08 | Toyota Jidosha Kabushiki Kaisha | Hybrid drive system wherein electric motor or engine is selectively used for rearward driving of vehicle |
US6124698A (en) * | 1998-06-09 | 2000-09-26 | Makita Corporation | Battery charger |
US20060076831A1 (en) | 2002-11-15 | 2006-04-13 | Sprint Communications Company L.P. | Power system including lithium-metal-polymer batteries |
US20060012378A1 (en) * | 2004-07-14 | 2006-01-19 | Yurgil James R | Ultracapacitor useful life prediction |
US20070285060A1 (en) | 2006-06-07 | 2007-12-13 | Zettel Andrew M | Method and apparatus for determining the effect of temperature upon life expectancy of an electric energy storage device in a hybrid electric vehicle |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10501067B2 (en) | 2013-03-14 | 2019-12-10 | Allison Transmission, Inc. | System and method for compensation of turbo lag in hybrid vehicles |
US11254298B2 (en) | 2013-03-14 | 2022-02-22 | Allison Transmission, Inc. | System and method for compensation of turbo lag in hybrid vehicles |
US9555719B2 (en) | 2013-03-14 | 2017-01-31 | Allison Transmission, Inc. | System and method for optimizing hybrid vehicle battery usage constraints |
US10562519B2 (en) | 2013-03-14 | 2020-02-18 | Allison Transmission, Inc. | System and method for engine driveline disconnect during regeneration in hybrid vehicles |
US9714021B2 (en) | 2013-03-14 | 2017-07-25 | Allison Transmission, Inc. | System and method for compensation of turbo lag in hybrid vehicles |
US9738272B2 (en) | 2013-03-14 | 2017-08-22 | Allison Transmission, Inc. | System and method for engine driveline disconnect during regeneration in hybrid vehicles |
US9296385B2 (en) | 2013-03-14 | 2016-03-29 | Allison Transmission, Inc. | System and method for power management during regeneration mode in hybrid electric vehicles for H-3000 |
US9932029B2 (en) | 2013-03-15 | 2018-04-03 | Allison Transmission, Inc. | System and method for balancing states of charge of energy storage modules in hybrid vehicles |
US10029672B2 (en) | 2013-03-15 | 2018-07-24 | Allison Transmission, Inc. | System and method for energy rate balancing in hybrid automatic transmissions |
US10166971B2 (en) | 2013-03-15 | 2019-01-01 | Allison Transmission, Inc. | System and method for energy rate balancing in hybrid automatic transmissions |
US10214202B2 (en) | 2013-03-15 | 2019-02-26 | Allison Transmission, Inc. | System and method for energy rate balancing in hybrid automatic transmissions |
US9592822B2 (en) | 2013-03-15 | 2017-03-14 | Allison Transmission, Inc. | System and method for energy rate balancing in hybrid automatic transmissions |
US10773709B2 (en) | 2013-03-15 | 2020-09-15 | Allison Transmission, Inc. | System and method for energy rate balancing in hybrid automatic transmissions |
US9555800B2 (en) | 2013-03-15 | 2017-01-31 | Allison Transmission, Inc. | Service disconnect interlock system and method for hybrid vehicles |
US10023068B2 (en) | 2015-10-13 | 2018-07-17 | Cummins, Inc. | Systems and methods for battery usage regulation for battery life protection |
Also Published As
Publication number | Publication date |
---|---|
DE102007026132A1 (en) | 2007-12-27 |
CN101086517B (en) | 2011-08-03 |
US20070285063A1 (en) | 2007-12-13 |
CN101086517A (en) | 2007-12-12 |
DE102007026132B4 (en) | 2018-10-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7538520B2 (en) | Method and apparatus for quantifying quiescent period temperature effects upon an electric energy storage device | |
US7638980B2 (en) | Method and apparatus for determining the effect of temperature upon life expectancy of an electric energy storage device in a hybrid electric vehicle | |
US7639018B2 (en) | Method and apparatus for predicting change in an operating state of an electric energy storage device | |
US8091667B2 (en) | Method for operating a hybrid electric powertrain based on predictive effects upon an electrical energy storage device | |
US7550946B2 (en) | Method and apparatus for real-time life estimation of an electric energy storage device in a hybrid electric vehicle | |
US7647205B2 (en) | Method and apparatus for management of an electric energy storage device to achieve a target life objective | |
US7598712B2 (en) | Method and apparatus for real-time life estimation of an electric energy storage device | |
US7730984B2 (en) | Method and apparatus for control of a hybrid electric vehicle to achieve a target life objective for an energy storage device | |
US8265821B2 (en) | Method for determining a voltage level across an electric circuit of a powertrain | |
US7449891B2 (en) | Managing service life of a battery | |
US8005632B2 (en) | Method and apparatus for detecting faults in a current sensing device | |
US7301304B2 (en) | Energy storage system state of charge diagnostic | |
US7222014B2 (en) | Method for automatic traction control in a hybrid electric vehicle | |
US7368886B2 (en) | Method of testing motor torque integrity in a hybrid electric vehicle | |
US7236871B2 (en) | Acceleration limiting for a vehicle | |
US8204702B2 (en) | Method for estimating battery life in a hybrid powertrain | |
US8248023B2 (en) | Method of externally charging a powertrain | |
US20230152386A1 (en) | Deterioration diagnosis apparatus of battery and deterioration diagnosis method of battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: GENERAL MOTORS CORPORATION, MICHIGAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ZETTEL, ANDREW M.;HEAP, ANTHONY H.;REEL/FRAME:017738/0025;SIGNING DATES FROM 20060506 TO 20060516 |
|
AS | Assignment |
Owner name: GM GLOBAL TECHNOLOGY OPERATIONS, INC, MICHIGAN Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE CHANGE ASSIGNEE TO;ASSIGNOR:ZETTEL, ANDREW M.;REEL/FRAME:017770/0661 Effective date: 20060516 |
|
AS | Assignment |
Owner name: GM GLOBAL TECHNOLOGY OPERATIONS, INC., MICHIGAN Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE ASSIGNOR PREVIOUSLY RECORDED ON REEL 017770 FRAME 0661;ASSIGNORS:ZETTEL, ANDREW M.;HEAP, ANTHONY H.;REEL/FRAME:017849/0949 Effective date: 20060516 |
|
AS | Assignment |
Owner name: UNITED STATES DEPARTMENT OF THE TREASURY, DISTRICT Free format text: SECURITY AGREEMENT;ASSIGNOR:GM GLOBAL TECHNOLOGY OPERATIONS, INC.;REEL/FRAME:022201/0363 Effective date: 20081231 Owner name: UNITED STATES DEPARTMENT OF THE TREASURY,DISTRICT Free format text: SECURITY AGREEMENT;ASSIGNOR:GM GLOBAL TECHNOLOGY OPERATIONS, INC.;REEL/FRAME:022201/0363 Effective date: 20081231 |
|
AS | Assignment |
Owner name: CITICORP USA, INC. AS AGENT FOR BANK PRIORITY SECU Free format text: SECURITY AGREEMENT;ASSIGNOR:GM GLOBAL TECHNOLOGY OPERATIONS, INC.;REEL/FRAME:022553/0493 Effective date: 20090409 Owner name: CITICORP USA, INC. AS AGENT FOR HEDGE PRIORITY SEC Free format text: SECURITY AGREEMENT;ASSIGNOR:GM GLOBAL TECHNOLOGY OPERATIONS, INC.;REEL/FRAME:022553/0493 Effective date: 20090409 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
AS | Assignment |
Owner name: GM GLOBAL TECHNOLOGY OPERATIONS, INC., MICHIGAN Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:UNITED STATES DEPARTMENT OF THE TREASURY;REEL/FRAME:023124/0519 Effective date: 20090709 Owner name: GM GLOBAL TECHNOLOGY OPERATIONS, INC.,MICHIGAN Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:UNITED STATES DEPARTMENT OF THE TREASURY;REEL/FRAME:023124/0519 Effective date: 20090709 |
|
AS | Assignment |
Owner name: GM GLOBAL TECHNOLOGY OPERATIONS, INC., MICHIGAN Free format text: RELEASE BY SECURED PARTY;ASSIGNORS:CITICORP USA, INC. AS AGENT FOR BANK PRIORITY SECURED PARTIES;CITICORP USA, INC. AS AGENT FOR HEDGE PRIORITY SECURED PARTIES;REEL/FRAME:023127/0402 Effective date: 20090814 Owner name: GM GLOBAL TECHNOLOGY OPERATIONS, INC.,MICHIGAN Free format text: RELEASE BY SECURED PARTY;ASSIGNORS:CITICORP USA, INC. AS AGENT FOR BANK PRIORITY SECURED PARTIES;CITICORP USA, INC. AS AGENT FOR HEDGE PRIORITY SECURED PARTIES;REEL/FRAME:023127/0402 Effective date: 20090814 |
|
AS | Assignment |
Owner name: UNITED STATES DEPARTMENT OF THE TREASURY, DISTRICT Free format text: SECURITY AGREEMENT;ASSIGNOR:GM GLOBAL TECHNOLOGY OPERATIONS, INC.;REEL/FRAME:023156/0142 Effective date: 20090710 Owner name: UNITED STATES DEPARTMENT OF THE TREASURY,DISTRICT Free format text: SECURITY AGREEMENT;ASSIGNOR:GM GLOBAL TECHNOLOGY OPERATIONS, INC.;REEL/FRAME:023156/0142 Effective date: 20090710 |
|
AS | Assignment |
Owner name: UAW RETIREE MEDICAL BENEFITS TRUST, MICHIGAN Free format text: SECURITY AGREEMENT;ASSIGNOR:GM GLOBAL TECHNOLOGY OPERATIONS, INC.;REEL/FRAME:023162/0093 Effective date: 20090710 Owner name: UAW RETIREE MEDICAL BENEFITS TRUST,MICHIGAN Free format text: SECURITY AGREEMENT;ASSIGNOR:GM GLOBAL TECHNOLOGY OPERATIONS, INC.;REEL/FRAME:023162/0093 Effective date: 20090710 |
|
AS | Assignment |
Owner name: GM GLOBAL TECHNOLOGY OPERATIONS, INC., MICHIGAN Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:UNITED STATES DEPARTMENT OF THE TREASURY;REEL/FRAME:025245/0587 Effective date: 20100420 |
|
AS | Assignment |
Owner name: GM GLOBAL TECHNOLOGY OPERATIONS, INC., MICHIGAN Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:UAW RETIREE MEDICAL BENEFITS TRUST;REEL/FRAME:025314/0901 Effective date: 20101026 |
|
AS | Assignment |
Owner name: WILMINGTON TRUST COMPANY, DELAWARE Free format text: SECURITY AGREEMENT;ASSIGNOR:GM GLOBAL TECHNOLOGY OPERATIONS, INC.;REEL/FRAME:025327/0041 Effective date: 20101027 |
|
AS | Assignment |
Owner name: GM GLOBAL TECHNOLOGY OPERATIONS LLC, MICHIGAN Free format text: CHANGE OF NAME;ASSIGNOR:GM GLOBAL TECHNOLOGY OPERATIONS, INC.;REEL/FRAME:025781/0001 Effective date: 20101202 |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
AS | Assignment |
Owner name: GM GLOBAL TECHNOLOGY OPERATIONS LLC, MICHIGAN Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:WILMINGTON TRUST COMPANY;REEL/FRAME:034184/0001 Effective date: 20141017 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1553); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 12 |