[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

CN100566008C - 聚合物离子电解质 - Google Patents

聚合物离子电解质 Download PDF

Info

Publication number
CN100566008C
CN100566008C CNB200680015084XA CN200680015084A CN100566008C CN 100566008 C CN100566008 C CN 100566008C CN B200680015084X A CNB200680015084X A CN B200680015084XA CN 200680015084 A CN200680015084 A CN 200680015084A CN 100566008 C CN100566008 C CN 100566008C
Authority
CN
China
Prior art keywords
replacement
unsubstituted
gel
polymer ions
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB200680015084XA
Other languages
English (en)
Other versions
CN101171717A (zh
Inventor
R·R·辛
I·R·尚克兰
M·R·保恩萨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honeywell International Inc
Original Assignee
Honeywell International Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honeywell International Inc filed Critical Honeywell International Inc
Publication of CN101171717A publication Critical patent/CN101171717A/zh
Application granted granted Critical
Publication of CN100566008C publication Critical patent/CN100566008C/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/06Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom containing only hydrogen and carbon atoms in addition to the ring nitrogen atom
    • C07D213/16Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom containing only hydrogen and carbon atoms in addition to the ring nitrogen atom containing only one pyridine ring
    • C07D213/18Salts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/122Ionic conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1023Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having only carbon, e.g. polyarylenes, polystyrenes or polybutadiene-styrenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1041Polymer electrolyte composites, mixtures or blends
    • H01M8/1046Mixtures of at least one polymer and at least one additive
    • H01M8/1048Ion-conducting additives, e.g. ion-conducting particles, heteropolyacids, metal phosphate or polybenzimidazole with phosphoric acid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1069Polymeric electrolyte materials characterised by the manufacturing processes
    • H01M8/1072Polymeric electrolyte materials characterised by the manufacturing processes by chemical reactions, e.g. in situ polymerisation or in situ crosslinking
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0045Room temperature molten salts comprising at least one organic ion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0085Immobilising or gelification of electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Inorganic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Dispersion Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Secondary Cells (AREA)
  • Conductive Materials (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

离子液体的聚合物离子凝胶,该离子液体熔点低于约100℃并且通过杂环胺与每摩尔胺氮约2.8-约3.2mol无水氟化氢反应形成。还披露了具有包含离子液体和聚合物离子凝胶的非水电解质的电化学器件。

Description

聚合物离子电解质
发明背景
本发明涉及离子液体(ionic liquids)和它们的制备方法。特别地,本发明涉及在相对低的温度下为液体的离子液体。根据本发明的离子液体化合物在低于约100℃的温度下为液体,并且优选在低于约60℃下为液体,并且更优选在环境温度或环境温度附近为液体。本发明进一步涉及聚合物离子电解质(polymeric ionic electrolytes)和它们的制备方法。特别地,本发明涉及通过加入某些聚合物来胶凝本发明的离子液体。根据本发明的聚合物化合物在约0℃-约200℃的温度下为凝胶状,并且在环境温度下或环境温度附近具有大于5毫西门子/cm的电导率。
当前对于使用离子液体作为溶剂用于广泛范围的应用中有极大的兴趣。离子液体是全部由离子组成、具有可忽略的蒸汽压的低熔点盐。通过在广泛范围的可能的阳离子和阴离子中仔细选择,可以制备在低温下为液体的离子液体。还可以控制许多其他的溶剂性能,例如极性和决定液体作为溶剂用于给定的最终应用的适合性的其他因素。
传统的有机溶剂处于有害化学物质列表的前列,因为它们通常是大量使用的挥发性液体并且产生难以容忍的有害蒸汽。另一方面,离子液体是非挥发的、非易燃的并且高度稳定的溶剂,并且因此迅速地上升为有希望的传统挥发性有机溶剂的替代物。
离子液体不仅可用作工业溶剂,而且它们也适合于例如作为用于制备化学的高极性溶剂和作为催化剂。离子液体可忽略的蒸汽压有助于通过分馏将产品分离。它们还在电化学例如在电池组、燃料电池和光电器件以及在电沉积工艺中具有特殊应用。
国际申请No.PCT/GB00/01090披露了作为锌、锡和铁卤化物的特定季铵盐的离子液体。据报道,所披露的离子液体在60℃以下是液体并且制备廉价。据报道,所述锌和锡以及铁卤化物的季铵盐与较早的现有技术离子液体(三氯化铝的季铵盐)相比水敏感性更低。
Hagiwara等,J.Fluorine Chem.,99,1(1999)和J.Electrochem. Soc.,149,D1(2002)近来披露了几种离子液体,其包含以1∶2.3的特定摩尔比与氟化氢组合的多种咪唑鎓氟化物。相反,现有技术的盐导电性极小并且全部是粘性液体。仍然需要具有更大流动性用于溶剂应用并且具有更适用于电化学应用的导电性的离子液体。
目前对于使用聚合物凝胶作为电解质用于广泛范围的应用中也有极大的兴趣。聚合物凝胶是低挥发性的、高度粘性的材料,其几乎全部由聚合物组成,具有可忽略的汽压。
常规电解质处于有害化学物质列表的前列,因为它们通常是大量使用的挥发性液体并且产生在消费者应用中难以容忍的有害溢出物(spills)。另一方面,离子凝胶是非挥发的、非易燃的并且高度稳定的材料,并且因此迅速地上升为有希望的传统液体电解质的替代物。它们还在电化学例如在超级电容器、电池组、燃料电池和光电器件以及在电沉积工艺中具有特殊应用。
Yoshida等,Sci.Tech.J.38,39-45(2002年6月)披露了通过将纤维素材料和交联剂加入到LiBF4于碳酸亚乙酯和碳酸二乙酯的混合物中的电解质溶液中而形成的聚合物电解质凝胶。该披露内容表明这些凝胶的电导率小于3毫西门子/cm。因此还需要具有更高电导率的聚合物凝胶。
发明概述
这些需要由本发明满足。现已发现,由杂环胺使用约3摩尔氟化氢/每摩尔胺氮形成的离子液体的导电性比锌、锡和铁卤化物的季铵盐大许多数量级。更特别地,已经发现当将杂环胺与每摩尔胺氮约2.8-3.2mol的氟化氢/混合时,获得具有所希望的盐状性质、将形成高度导电的聚合物凝胶的离子液体。
因此,根据本发明的一个方面,提供了熔点低于约100℃的离子液体,其通过杂环胺与每摩尔胺氮约2.8-约3.2mol的无水氟化氢反应形成,向其中加入数量为有效胶凝该离子液体的聚丙烯酸或其I族金属盐。
适用于本发明的离子液体根据本发明可以由单一杂环胺的盐组成,或者由两种或多种杂环胺的盐组成。单一的杂环化合物可以包含多个胺氮原子,每一个胺氮原子都被转化成盐。
将本发明的离子液体与聚丙烯酸或其I族金属盐混合制得了导电性比Yoshida等披露的聚合物电解质凝胶大许多数量级的聚合物离子凝胶。更特别地,当将本发明的离子液体与有效胶凝该离子液体的数量的聚丙烯酸或其的盐组合时,不仅解决了现有技术的缺点,而且获得了具有理想的凝胶状流变性能的聚合物离子凝胶。同样理想的是,本发明的离子液体具有非常高的电导率。根据本发明的优选聚合物离子凝胶包含约2-约50wt%的聚合物。
为了本发明的目的,聚丙烯酸被定义为包括丙烯酸与其他乙烯基单体的共聚物,这些乙烯基单体包括丙烯酸烷基酯例如丙烯酸甲酯、丙烯酸乙酯等;烷基支化的丙烯酸,例如甲基丙烯酸和其酯,例如甲基丙烯酸甲酯、甲基丙烯酸乙酯等;卤乙烯例如氯乙烯、偏二氯乙烯等;和其他乙烯基单体例如乙酸乙烯酯、乙烯醇、乙烯基醚、马来酸酐、丙烯腈、苯乙烯等。聚丙烯酸被定义为包括与前述的两种或多种共聚的丙烯酸。根据本发明合适的I族金属盐包括锂、钠和钾。
本发明的聚合物离子凝胶同样特别适合用作电化学器件例如电化学电容器、光电器件、电势测量(petentiometric)和电压测量(voltametric)电化学传感器、电池组、燃料电池和电沉积器件中的非水电解质(non-aqueous electrolytes)。本发明因此包括这类电化学器件,其中正电极和负电极与作为非水电解质的基本上由根据本发明的聚合物离子凝胶组成的非水电解质凝胶导电接触。
优选实施方案详述
单独或者当将两种或多种一起混合时充当离子液体的本发明的离子液体通过形成杂环胺与氟化氢的盐制备。适用于本发明的杂环胺可以是芳族的,例如吡咯、咪唑、嘌呤、吡唑、吡啶、哒嗪、吡嗪、喹啉、喹喔啉、嘧啶等,或者它们可以是非-芳族的,例如完全饱和的吡咯烷、吡咯烷酮、哌嗪、哌啶等,和非-芳族但不饱和的吡咯啉等。
适用于本发明的杂环胺包括含有5-7个环成员的单环化合物,其中1-3个环成员是杂原子,至少一个杂原子是氮。其他合适的杂原子环成员包括氧、硫等。优选包含1-3个氮原子的单环杂环胺,更优选其中所有环杂原子都是氮原子的结构。
适用于本发明的杂环胺还包括包含1-3个杂原子具有8-14个环成员的多环的稠合2或3环结构,其中至少一个杂原子是氮。优选包含8-10个环成员的多环的两环稠合结构。同样,环结构可以包括其他杂原子例如氧、硫等。优选包含1-3个氮原子的多环稠环结构,最优选其中所有环杂原子都是氮的结构。
适用于本发明的杂环胺包括直接连接在一起的相同或不同的单环或者多环稠环结构的二聚物和三聚物,例如双吡啶。优选二聚物。与直接连接在一起相反,二聚物和三聚物的环结构可以通过合适的双官能配体连接。
适用于本发明的杂环胺还可以是环取代的。可以存在单个环取代基,或者可以使用至多3个相同或不同的取代基。环取代基可以连接在碳原子或合适的氮原子上。
合适的环取代基的例子包括,但不限于,卤素(包括氯、溴、氟和碘)、氨基、氰基、羟基、硝基、酮基、苯基、1-3个碳原子低级烷基、2-4个碳原子烯烃或炔烃、3-6个碳原子环烷基或环烯烃、1-4个碳原子醛、-R1C(=O)R2、-R1OR2、-R1OC(=O)R2、-R1C(=O)OR2等,其中R1是键、1-3个碳原子低级烷基、2-3个碳原子烯烃或苯基,并且R2是氢、1-3个碳原子低级烷基、2-3个碳原子烯烃或苯基。该R1和R2低级烷基、烯烃和苯基可以进一步任选地被一个或多个卤素、氨基、氰基、羟基、硝基、苯基、1-3个碳原子低级烷基和1-3个碳原子低级烷氧基取代。优选的取代基包括CaHbBrcCldFeIfNgOh,其中a为1-3,b、e为0-9,c、d、f、g和h各自为0-2,并且b-h的总和为1-9,包括端值。当存在多于一个取代基时,取代基可以相同或不同。
根据本发明的杂环胺盐具有低于约100℃的熔点。为本发明的目的,“熔点”通过差示扫描量热法测量。在本发明的杂环胺盐当中,优选熔点小于约60℃的那些,甚至更优选熔点低于室温的杂环胺盐。为本发明的目的,室温被定义为25℃。当在室温下使用振簧式粘度计测量时,根据本发明的杂环胺盐还具有约1-约100,000厘泊的粘度。优选粘度小于10,000厘泊。
通过使用适合在腐蚀性气氛例如在氟化氢中测量电导率的常用电导计进行测量,根据本发明的离子液体具有约1-约600毫西门子/cm(mS/cm)并且优选大于约20毫西门子/cm的比电导率。
本发明范围内的特定杂环胺化合物的例子包括吡啶和取代的吡啶化合物,例如α-甲基吡啶(2-甲基吡啶)、2-氨基-3-甲基吡啶、烟酸、烟酰胺(维生素B)、2-氨基吡啶、β-甲基吡啶(3-甲基吡啶)、3-氰基吡啶、4-氰基吡啶、4-二甲氨基吡啶、1,3-二(4-吡啶基)丙烷、4-乙基吡啶、γ-甲基吡啶(4-甲基吡啶)、2,6-二甲基吡啶、3,5-二甲基吡啶、混合的甲基吡啶、混合的烷基吡啶、4-苯基丙基吡啶、多烷基吡啶、吡哆素(维生素B6)、3-吡啶基甲醇、2-乙烯基吡啶、4-乙烯基吡啶等。
同样适用于本发明的非-吡啶杂环胺的例子包括哌啶和取代的哌啶化合物例如2-乙醇哌啶、1,3-二(4-哌啶基)丙烷等;吡咯和取代的吡咯;吡咯烷和取代的吡咯烷;吡咯烷酮和取代的吡咯烷酮例如N-甲基吡咯烷酮;咪唑啉和取代的咪唑啉;噁唑和取代的噁唑;噻唑和取代的噻唑;吡唑和取代的吡唑;吡咯啉和取代的吡咯啉;嘧啶和取代的嘧啶;嘌呤和取代的嘌呤;喹啉和异喹啉以及取代的喹啉和异喹啉;等等。
可以简单地通过如下方式制备根据本发明的离子液体:在带有搅拌器、密封连接至无水HF供给源-通常是另一个密封容器-的金属或塑料密封容器例如高压釜中,将一种或多种杂环胺与化学计量数量的无水氟化氢,即每摩尔胺氮约2.8-约3.2mol无水氟化氢/一起混合。容器应该带有夹套以除去热量,因为盐形成是高度放热的。所述容器和它们之间的连接是密封的以保护无水HF的环境暴露。无水HF还可以以Olah试剂的形式传送,其制备披露于美国专利No.5,073,674中。
通常不使用额外的溶剂,尽管在一些情形中可以有利地在离子液体,特别是根据本发明的离子液体溶剂中进行反应。由于盐产品可忽略的蒸汽压,因此过量的试剂通过蒸馏可容易地除去。
然后可以使用任选的非离子液体溶剂将本发明的离子液体溶解并且进一步将本发明的离子液体的粘度稀释,例如用于电化学应用如燃料电池、电化学电容器、非水可再充电电池例如锂电池、光电电池等中。所述溶剂优选是极性的并且包括常用溶剂例如碳酸亚丙酯、乙腈等。
根据本发明的离子液体包括两种或多种本发明离子液体化合物的混合物。这类离子液体可以通过从相应的杂环胺混合物开始而制备,或者可以单独制备每一离子液体化合物并且然后组合以形成离子液体混合物。
根据本发明的聚合物离子凝胶通过伴随着混合将有效数量的一种或多种聚丙烯酸或其盐加入到本发明的离子液体中直到形成均匀的均质凝胶而制备。取决于离子液体和聚合物的选择,混合在混合物充分流动以允许彻底混合的温度下进行,通常为约0℃-约60℃,并且优选在环境温度下进行。优选的方法仅仅是将加入聚合物作为离子液体制备工艺的附加工序,更优选在离子液体形成放出的热消散之前,以使得不需要外部热源来形成凝胶。
约2-约50wt%的聚合物数量是优选的,约5-20wt%的数量是更优选的。适用于本发明的聚丙烯酸具有约1000-约500,000的重均分子量。可以使用I族金属盐例如锂、钠和钾聚丙烯酸盐,以及上面列出的丙烯酸和丙烯酸盐的乙烯基共聚物,即丙烯酸烷基酯、烷基支化的丙烯酸和其酯、卤乙烯、乙酸乙烯酯、乙烯醇、乙烯基醚、马来酸酐、丙烯腈、苯乙烯、它们的组合等。
通过差示扫描量热法测量,根据本发明的聚合物离子凝胶具有低于约150℃的熔点。在本发明的聚合物离子凝胶当中,优选熔点小于约100℃的那些。
当在20℃下采用振簧式粘度计测量时,根据本发明的聚合物离子凝胶具有大于约10厘泊的粘度。优选在20℃下大于约100厘泊的粘度,甚至更优选在20℃下大于约500厘泊的粘度。对于本发明的离子液体,可以使用任选的非离子液体溶剂以将本发明的聚合物离子凝胶溶解并且进一步将本发明聚合物离子凝胶的粘度稀释。向其中加入溶剂的聚合物离子凝胶可以基于本发明的不含溶剂的离子液体,或者基于本发明的包含相同或不同溶剂的离子液体。
根据本发明的离子液体与由其制备的聚合物离子凝胶之间的电导率差异被最小化,使得通过使用适用于在腐蚀性气氛中测量电导率的常用电导计测量,根据本发明的聚合物离子凝胶具有约1-约600毫西门子/cm(mS/cm)的比电导率,并且优选大于约20毫西门子/cm。
根据本发明的离子液体可用于广泛范围的目的;例如,该液体可用于实施例如制备化学中的化学反应的应用,其中需要极性但非水的溶剂或者具有可忽略的蒸汽压的溶剂。根据本发明的离子液体还可以被用作热储存液体。它们可进一步用作惰性介质,例如用于溶解离子物种,如单独的或者与其他金属离子络合之后的过渡金属络合物,用作催化剂或者用作化学试剂。
可使用本发明的离子液体其中需要极性非水溶剂的溶剂体系应用包括纤维素回收、催化裂化反应例如聚乙烯回收、手性催化、偶联反应例如Heck反应、磺化反应、硝化反应、氧化反应、亲核取代反应、烯烃聚合反应、锕系元素提取、烷基化反应、加氢甲酰基化反应、二聚反应、氢化反应、Diels-Alder反应、复分解反应、芳基化反应、Friedel-Crafts反应等。
本发明的离子液体和聚合物离子凝胶特别适合作为电化学器件例如电化学电容器、光电器件、电势和电压电化学传感器、电池、燃料电池和电沉积器件中的非水电解质。本发明因此包括其中正电极和负电极与基本由本发明的离子液体或由其制备的聚合物离子凝胶组成的非水电解质导电接触的这类电化学器件。可以存在其他常规的电解质添加剂。另外,这些器件基本是常规的并且不需要进一步描述。本领域普通技术人员将理解如何使用本发明的离子液体作为用于这类器件的非水电解质。根据本发明的聚合物离子凝胶也可用作热储存流体。
实施例
在下面的非限定性实施例中阐述了本发明的一些优选实施方案。
实施例1-与氟化氢形成吡啶盐
伴随着搅拌将约60g无水氟化氢缓慢加入到包含于高压釜中的约55g吡啶中,使得吡啶与HF摩尔比为1∶3。当反应热退去并且混合物冷却后,该高压釜含有115g在180℃沸腾的液体,比吡啶的沸点高90℃并且比氟化氢的沸点高160℃。该液体不能分离成组分。材料的分析证实该新化合物的结构为离子液体[吡啶·H+][H2F3]-(或吡啶·3HF)。该纯的离子液体的电导率经测量为98mS/cm。和与玻璃反应的Olah试剂不同,该液体不腐蚀硼硅酸盐玻璃。
将该离子液体溶于碳酸亚丙酯中,在其中其可以以任何比例溶解,并且测量电导率。电导率作为离子液体浓度的函数从0平稳地变到98mS/cm。
还将该离子液体溶于乙腈中,同样在其中其可以以任何比例溶解,并且测量电导率。电导率同样平稳变化,在约80wt%离子液体浓度下,达到104mS/cm的最大值。
实施例2-HF吡啶盐的胶凝
重复实施例1,但在从高压釜中取出离子液体之前伴随着搅拌加入聚丙烯酸钠(mol wt 50,000)。溶液变得粘稠并且在15wt%聚丙烯酸钠该液体凝胶变得太粘稠而难以搅拌。测量电导率,仍然达到78mS/cm。随着渐增的聚合物含量进行电导率测量,并且其作为聚合物浓度的函数从78mS/cm平稳地变到98mS/cm。
实施例3-与聚丙烯酸钾形成凝胶
采用聚丙烯酸钾作为聚合物重复实施例2。结果相同,凝胶的形成速率显著增加。凝胶电导率在20%聚合物为74mS/cm。
实施例4-与聚丙烯酸形成凝胶
采用聚丙烯酸作为聚合物重复实施例2。结果相同。凝胶电导率在23%聚合物为76mS/cm。
实施例5-与氟化氢形成α-甲基吡啶盐
伴随着搅拌将约60g无水氟化氢缓慢加入到包含于高压釜中的约69g α-甲基吡啶中,使得甲基吡啶与HF摩尔比为1∶3。当反应热退去并且混合物冷却后,该高压釜含有129g在200℃沸腾的液体,比α-甲基吡啶的沸点高80℃并且比氟化氢的沸点高180℃。该液体不能分离成组分。材料的分析证实该新化合物的结构为离子液体[α-甲基吡啶·H+][H2F3]-(或α-甲基吡啶·3HF)。该纯的离子液体的电导率经测量为73mS/cm。和与玻璃反应的Olah试剂不同,该液体不腐蚀硼硅酸盐玻璃。
前述实施例说明了可以制备的用于广泛种类的溶剂应用并且作为多种电化学器件用的非水电解质的各种根据本发明的化合物。本领域技术人员基于从前述实施例中可明显看出的性能将明显看出,根据本发明的化合物可用于广泛范围的其他应用,并且本发明包括没有被实施例具体阐述但可以通过应用所阐述的原理而获得的各种化合物。

Claims (17)

1.一种包含熔点小于100℃的离子液体的聚合物离子凝胶,其通过至少一种杂环胺与每摩尔胺氮2.8-3.2mol的无水氟化氢和数量为有效形成所述离子液体的凝胶的聚丙烯酸反应而形成。
2.根据权利要求1的聚合物离子凝胶,其中所述离子液体由一种杂环胺离子化合物组成。
3.根据权利要求1的聚合物离子凝胶,其中所述离子液体由两种或多种杂环胺化合物组成。
4.权利要求1的聚合物离子凝胶,其具有1-600毫西门子/cm的比电导率。
5.权利要求1的聚合物离子凝胶,其中所述杂环胺是包含5-7个环成员的单环化合物,其中1-3个环成员是选自氮、氧和硫的杂原子,其中至少一个所述杂原子是氮。
6.权利要求5的聚合物离子凝胶,其中所述杂环胺选自:取代和未取代的吡咯、取代和未取代的吡唑、取代和未取代的吡啶、取代和未取代的吡嗪、取代和未取代的嘧啶、取代和未取代的哒嗪、取代和未取代的噻唑、取代和未取代的噁唑、取代和未取代的三唑、取代和未取代的吡咯烷、取代和未取代的吡咯烷酮、取代和未取代的哌嗪、取代和未取代的哌啶,以及取代和未取代的吡咯啉。
7.权利要求6的聚合物离子凝胶,其中所述杂环胺是吡啶或甲基吡啶。
8.权利要求1的聚合物离子凝胶,其中所述杂环胺是包含8-14个环成员的多环稠环结构,其中1-3个环成员是选自氮、氧和硫的杂原子,其中至少一个所述杂原子是氮。
9.权利要求8的聚合物离子凝胶,其中所述杂环胺选自:取代和未取代的咪唑、取代和未取代的喹啉、取代和未取代的喹喔啉、取代和未取代的嘌呤,以及取代和未取代的异喹啉。
10.权利要求1的聚合物离子凝胶,其包含2-50wt%的聚合物。
11.权利要求1的聚合物离子凝胶,其中所述聚丙烯酸是聚丙烯酸的I族金属盐。
12.权利要求1的聚合物离子凝胶,其中所述聚丙烯酸包括与一种或多种选自以下物质的乙烯基共聚单体共聚的丙烯酸或其I族金属盐:丙烯酸烷基酯、烷基支化的丙烯酸、烷基支化的丙烯酸烷基酯、烷基支化的丙烯酸I族金属盐、卤乙烯、乙酸乙烯酯、乙烯醇、乙烯基醚、马来酸酐、丙烯腈和苯乙烯。
13.权利要求1的聚合物离子凝胶,其具有小于150℃的熔点。
14.一种包括正电极和负电极的电化学器件,这两个电极都与包含权利要求1的聚合物离子凝胶的非水电解质导电接触。
15.权利要求14的电化学器件,其中该器件是电化学电容器、光电器件、电池组或燃料电池。
16.权利要求14的电化学器件,其中该器件是电势测量或电压测量电化学传感器。
17.权利要求14的电化学器件,其中该器件是电沉积器件。
CNB200680015084XA 2005-03-04 2006-02-28 聚合物离子电解质 Expired - Fee Related CN100566008C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/072,915 2005-03-04
US11/072,915 US7955738B2 (en) 2004-03-05 2005-03-04 Polymer ionic electrolytes

Publications (2)

Publication Number Publication Date
CN101171717A CN101171717A (zh) 2008-04-30
CN100566008C true CN100566008C (zh) 2009-12-02

Family

ID=36481247

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB200680015084XA Expired - Fee Related CN100566008C (zh) 2005-03-04 2006-02-28 聚合物离子电解质

Country Status (7)

Country Link
US (1) US7955738B2 (zh)
EP (2) EP1854164B1 (zh)
JP (1) JP5085338B2 (zh)
CN (1) CN100566008C (zh)
DE (1) DE602006015616D1 (zh)
ES (1) ES2347072T3 (zh)
WO (1) WO2006096370A1 (zh)

Families Citing this family (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7313926B2 (en) * 2005-01-18 2008-01-01 Rexorce Thermionics, Inc. High efficiency absorption heat pump and methods of use
US8715521B2 (en) 2005-02-04 2014-05-06 E I Du Pont De Nemours And Company Absorption cycle utilizing ionic liquid as working fluid
JP4840640B2 (ja) * 2005-06-07 2011-12-21 日産自動車株式会社 イオン伝導体及びこれを用いたエネルギーデバイス
AR058054A1 (es) * 2005-09-22 2008-01-23 Du Pont Utilizacion de liquidos ionicos para la separacion de hidrofluorocarburos
FR2892646B1 (fr) * 2005-10-28 2008-06-06 Novalyst Discovery Soc Par Act Systeme catalytique heterogene et son utilisation.
US20070129568A1 (en) * 2005-12-06 2007-06-07 Ngimat, Co. Ionic liquids
US8506839B2 (en) 2005-12-14 2013-08-13 E I Du Pont De Nemours And Company Absorption cycle utilizing ionic liquids and water as working fluids
US20100134956A1 (en) * 2006-09-29 2010-06-03 Nippon Chemi-Con Corporation Solid electrolytic capacitor and method of manufacturing the same
WO2008057574A1 (en) 2006-11-08 2008-05-15 E. I. Du Pont De Nemours And Company Process for the separation of tetrafluoroethylene from carbon dioxide using ionic liquids
DE102006054951A1 (de) * 2006-11-22 2008-05-29 Volkswagen Ag Ionische Flüssigkeiten sowie deren Verwendung
JP2009269974A (ja) * 2008-05-02 2009-11-19 Three M Innovative Properties Co ゲル状組成物とその製造方法、およびそれを用いた衝撃吸収材
US8616323B1 (en) 2009-03-11 2013-12-31 Echogen Power Systems Hybrid power systems
US9014791B2 (en) 2009-04-17 2015-04-21 Echogen Power Systems, Llc System and method for managing thermal issues in gas turbine engines
BRPI1011938B1 (pt) 2009-06-22 2020-12-01 Echogen Power Systems, Inc sistema e método para gerenciar problemas térmicos em um ou mais processos industriais.
WO2011017476A1 (en) 2009-08-04 2011-02-10 Echogen Power Systems Inc. Heat pump with integral solar collector
US8096128B2 (en) 2009-09-17 2012-01-17 Echogen Power Systems Heat engine and heat to electricity systems and methods
US8813497B2 (en) 2009-09-17 2014-08-26 Echogen Power Systems, Llc Automated mass management control
US8869531B2 (en) 2009-09-17 2014-10-28 Echogen Power Systems, Llc Heat engines with cascade cycles
US8613195B2 (en) 2009-09-17 2013-12-24 Echogen Power Systems, Llc Heat engine and heat to electricity systems and methods with working fluid mass management control
US20110076572A1 (en) * 2009-09-25 2011-03-31 Khalil Amine Non-aqueous electrolytes for electrochemical cells
CN101768349B (zh) * 2010-01-25 2012-08-15 北京理工大学 一种离子液体基聚合物电解质
US9093722B2 (en) 2010-09-30 2015-07-28 Uchicago Argonne, Llc Functionalized ionic liquid electrolytes for lithium ion batteries
US8857186B2 (en) 2010-11-29 2014-10-14 Echogen Power Systems, L.L.C. Heat engine cycles for high ambient conditions
US8616001B2 (en) 2010-11-29 2013-12-31 Echogen Power Systems, Llc Driven starter pump and start sequence
US8783034B2 (en) 2011-11-07 2014-07-22 Echogen Power Systems, Llc Hot day cycle
JP6046058B2 (ja) * 2011-03-04 2016-12-14 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア 可逆的なイオン及び分子検出又は移動用ナノポアデバイス
US9073937B2 (en) 2011-06-16 2015-07-07 Board Of Trustees Of The University Of Alabama Organic photovoltaic-battery hybrid device
US9062898B2 (en) 2011-10-03 2015-06-23 Echogen Power Systems, Llc Carbon dioxide refrigeration cycle
KR101889137B1 (ko) * 2012-04-10 2018-08-16 스미또모 가가꾸 가부시키가이샤 수지의 용도, 수지 조성물, 비수전해액 이차 전지용 세퍼레이터 및 그의 제조 방법, 및 비수전해액 이차 전지
KR101417305B1 (ko) * 2012-07-23 2014-07-08 포항공과대학교 산학협력단 이온성 액체가 화학적으로 결합된 고분자 전해질막 및 이를 이용한 연료전지
CA2882290A1 (en) 2012-08-20 2014-02-27 Echogen Power Systems, L.L.C. Supercritical working fluid circuit with a turbo pump and a start pump in series configuration
US9118226B2 (en) 2012-10-12 2015-08-25 Echogen Power Systems, Llc Heat engine system with a supercritical working fluid and processes thereof
US9341084B2 (en) 2012-10-12 2016-05-17 Echogen Power Systems, Llc Supercritical carbon dioxide power cycle for waste heat recovery
WO2014117068A1 (en) 2013-01-28 2014-07-31 Echogen Power Systems, L.L.C. Methods for reducing wear on components of a heat engine system at startup
CA2899163C (en) 2013-01-28 2021-08-10 Echogen Power Systems, L.L.C. Process for controlling a power turbine throttle valve during a supercritical carbon dioxide rankine cycle
BR112015021396A2 (pt) 2013-03-04 2017-08-22 Echogen Power Systems Llc Sistemas de motor de calor com circuitos de dióxido de carbono supercrítico de alto potência útil
KR102163733B1 (ko) 2013-11-29 2020-10-12 삼성전자주식회사 리튬 전지용 고분자 전해질 및 이를 포함하는 리튬 전지
US10570777B2 (en) 2014-11-03 2020-02-25 Echogen Power Systems, Llc Active thrust management of a turbopump within a supercritical working fluid circuit in a heat engine system
CN106046237B (zh) * 2016-05-30 2017-12-26 山东大学 碳纤维纸和聚丙烯酸钠的复合导电凝胶片及其制法与应用
CN108172399A (zh) * 2017-12-19 2018-06-15 湖南艾华集团股份有限公司 热固化的凝胶离子液体电解质及其制备方法、铝电解电容器
CN108037161A (zh) * 2017-12-26 2018-05-15 南方科技大学 一种基于氟化咪唑离子凝胶的二氧化碳气体传感器及其制备方法和用途
US11187112B2 (en) 2018-06-27 2021-11-30 Echogen Power Systems Llc Systems and methods for generating electricity via a pumped thermal energy storage system
CN108987811B (zh) * 2018-07-19 2020-07-10 辽宁九夷锂能股份有限公司 一种全离子液体电解液及含有该电解液的锂电池
US20210403647A1 (en) * 2018-10-29 2021-12-30 PolyJoule, Inc. Triazine-based polymer
BR112021009208A2 (pt) 2018-12-18 2021-08-03 Toray Industries, Inc. nanopartícula de óxido de cério, métodos de decomposição de um ácido nucleico e de decomposição de um polipeptídeo, método para produzir uma nanopartícula de óxido de cério, agentes oxidante, antifúngico e antivírus e antioxidante
CN109764979B (zh) * 2018-12-18 2020-08-28 钛深科技(深圳)有限公司 离子纸、离电子式柔性压力传感器及其制备方法
CN109897133B (zh) * 2019-03-28 2021-03-26 南京林业大学 一种具有温度和光响应性的离子凝胶及其制备方法和应用
US11435120B2 (en) 2020-05-05 2022-09-06 Echogen Power Systems (Delaware), Inc. Split expansion heat pump cycle
CN112500673B (zh) * 2020-11-26 2022-02-08 山东大学 含有亲锂金属离子的聚合物固态电解质及制备方法与应用
AU2021397292A1 (en) 2020-12-09 2023-07-06 Supercritical Storage Company, Inc. Three reservoir electric thermal energy storage system
CN113061266B (zh) * 2021-03-22 2022-07-26 北京大学 一种基于多重非共价交联作用的高强度离子凝胶

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1489560A (zh) * 2001-02-02 2004-04-14 氟化合物的制备

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5792502A (en) 1980-11-28 1982-06-09 Asahi Glass Co Ltd Method for storage and transportation of hydrofluoric acid
US5073674A (en) * 1990-04-20 1991-12-17 Olah George A Environmentally safe catalytic alkyation using liquid onium poly (hydrogen fluorides)
US5763728A (en) * 1993-12-29 1998-06-09 Uop Recovery and recycle of HF-amine complex in HF alkylation
US5965054A (en) * 1997-08-12 1999-10-12 Covalent Associates, Inc. Nonaqueous electrolyte for electrical storage devices
US6096922A (en) * 1999-11-01 2000-08-01 Air Products And Chemicals, Inc. Process for the synthesis of dialkyl, diaryl, and arylalkyl aminosulfur trifluorides
CA2402870A1 (en) * 2000-03-10 2001-09-20 S. C. Johnson & Son, Inc. Fragranced hydrogel air freshener kits
JP4453174B2 (ja) * 2000-08-24 2010-04-21 三菱化学株式会社 電気二重層キャパシタ
EP1235294A3 (en) 2001-02-22 2005-06-22 Fuji Photo Film Co., Ltd. Electrolyte composition, method for producing the same and non-aqueous electrolyte secondary cell
AU2003244261A1 (en) 2002-06-19 2004-01-06 Ube Industries, Ltd. Polyelectrolyte membrane and production method therefor
JP4374980B2 (ja) 2002-12-25 2009-12-02 ダイキン工業株式会社 含フッ素エーテル鎖を含む含フッ素ポリマーからなる固体電解質
WO2005007675A2 (en) 2003-07-09 2005-01-27 The Scripps Research Institute TRIAZOLE ϵ-AMINO ACIDS
TW200602323A (en) 2004-03-05 2006-01-16 Honeywell Int Inc Ionic liquids of heterocyclic amines

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1489560A (zh) * 2001-02-02 2004-04-14 氟化合物的制备

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
锂电池离子液体电解质的研究进展. 余碧涛等.化工进展,第23卷第11期. 2004
锂电池离子液体电解质的研究进展. 余碧涛等.化工进展,第23卷第11期. 2004 *
锂离子电池新型电解质锂盐的研究进展. 余碧涛等.电池,第34卷第6期. 2004
锂离子电池新型电解质锂盐的研究进展. 余碧涛等.电池,第34卷第6期. 2004 *

Also Published As

Publication number Publication date
US20050196676A1 (en) 2005-09-08
CN101171717A (zh) 2008-04-30
EP1854164B1 (en) 2010-07-21
JP2008532246A (ja) 2008-08-14
US7955738B2 (en) 2011-06-07
JP5085338B2 (ja) 2012-11-28
DE602006015616D1 (de) 2010-09-02
EP2175512A1 (en) 2010-04-14
WO2006096370A1 (en) 2006-09-14
ES2347072T3 (es) 2010-10-25
EP1854164A1 (en) 2007-11-14

Similar Documents

Publication Publication Date Title
CN100566008C (zh) 聚合物离子电解质
KR101214059B1 (ko) 헤테로 시클릭 아민의 이온성 액체
Javed et al. An approach to classification and hi-tech applications of room-temperature ionic liquids (RTILs): A review
Ganesan Ion transport in polymeric ionic liquids: recent developments and open questions
Hu et al. Novel room temperature molten salt electrolyte based on LiTFSI and acetamide for lithium batteries
Noda et al. Highly conductive polymer electrolytes prepared by in situ polymerization of vinyl monomers in room temperature molten salts
Sun et al. Room-temperature molten salts based on the quaternary ammonium ion
Kido et al. Li+ ion transport in polymer electrolytes based on a glyme-Li salt solvate ionic liquid
Ding et al. Conductivity, viscosity, and their correlation of a super-concentrated aqueous electrolyte
Henderson et al. Phase behavior of ionic liquid− LiX mixtures: Pyrrolidinium cations and TFSI-anions
Hwang et al. Electrolytes toward High‐Voltage Na3V2 (PO4) 2F3 Positive Electrode Durable against Temperature Variation
Sanchez-Ramirez et al. A Comparison among Viscosity, Density, Conductivity, and Electrochemical Windows of N-n-Butyl-N-methylpyrrolidinium and Triethyl-n-pentylphosphonium Bis (fluorosulfonyl imide) Ionic Liquids and Their Analogues Containing Bis (trifluoromethylsulfonyl) Imide Anion
Forero-Saboya et al. Water-in-bisalt electrolyte with record salt concentration and widened electrochemical stability window
TW201134830A (en) Electrolyte formulations
CN109563351A (zh) 一种含有有机/金属杂化聚合物和离子液体的复合物、使用该复合物的电致变色器件以及它们的制造方法
CN103261330A (zh) 离子性的凝胶化剂、凝胶、凝胶的制造方法及交联剂
KR20190040193A (ko) 비-수성 레독스 플로우 배터리
Cai et al. Density, viscosity, and conductivity of [VAIM][TFSI] in mixtures for lithium-ion battery electrolytes
Gabryelczyk et al. Tailoring the Properties of Gel Polymer Electrolytes for Sodium‐Ion Batteries Using Ionic Liquids: A Review
Ohno Ionic liquids
Matsumoto et al. Li/LiCoO2 cell performance using ionic liquids composed of N, N-diethyl-N-methyl-N-(2-methoxyethyl) ammonium-effect of anionic structure
Chervakov et al. Ionic liquids for promising ion-conducting polymer materials of electrochemical devices
Lu et al. Eutectic Impetus for Single-Cation Conduction in Unadorned Sulfonated Ionomers
CN104193685A (zh) 一种硫氰酸根功能化离子液体电解液的制备方法
Pozo-Gonzalo Oxygen reduction reaction in ionic liquids: an overview

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20091202

Termination date: 20170228