CN109358414A - 光学成像系统 - Google Patents
光学成像系统 Download PDFInfo
- Publication number
- CN109358414A CN109358414A CN201811580013.5A CN201811580013A CN109358414A CN 109358414 A CN109358414 A CN 109358414A CN 201811580013 A CN201811580013 A CN 201811580013A CN 109358414 A CN109358414 A CN 109358414A
- Authority
- CN
- China
- Prior art keywords
- lens
- imaging system
- optical imaging
- object side
- image side
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000012634 optical imaging Methods 0.000 title claims abstract description 145
- 230000003287 optical effect Effects 0.000 claims abstract description 92
- 238000003384 imaging method Methods 0.000 claims abstract description 67
- 239000000571 coke Substances 0.000 claims abstract description 28
- 201000009310 astigmatism Diseases 0.000 description 16
- 238000010586 diagram Methods 0.000 description 16
- 238000005452 bending Methods 0.000 description 12
- 239000000463 material Substances 0.000 description 8
- 230000004075 alteration Effects 0.000 description 5
- 230000002159 abnormal effect Effects 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 230000003203 everyday effect Effects 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000009738 saturating Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/001—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
- G02B13/0015—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
- G02B13/002—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
- G02B13/0045—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/18—Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Lenses (AREA)
Abstract
本申请公开了一种光学成像系统,该成像系统沿着光轴由物侧至像侧依序包括:第一透镜、第二透镜、第三透镜、第四透镜和第五透镜。其中,第一透镜具有正光焦度,其物侧面为凸面,像侧面为凹面;第二透镜具有负光焦度,第三透镜具有负光焦度;第四透镜具有正光焦度,其像侧面为凸面;第五透镜具有负光焦度,其物侧面为凹面。第一透镜的物侧面至光学成像系统的成像面在光轴上的距离TTL与光学成像系统的成像面上有效像素区域对角线长的一半ImgH满足1<TTL/ImgH<1.3。
Description
技术领域
本申请涉及一种光学成像系统,更具体地,涉及一种包括五片透镜的光学成像系统。
背景技术
随着近来智能手机事业和平板事业的快速发展,应用于其上的光学成像系统面临着高像素、低成本、超薄化的挑战。而对于大部分中低端机型来说,出于成本控制考虑,五片式的镜头系统仍是其主要选择。
近年来,各大智能终端厂商越来越追求镜头的高分辨率和轻薄化,超大工作像面和短系统总长成为各厂商关注的主要因素。超大工作像面意味着能提供更高的图像分辨率,短系统总长意味着镜头可以更加轻薄化,然而在实现降低成本的同时实现超大工作像面和短系统总长极大地提高了光学系统的设计难度。
发明内容
本申请提供了可适用于便携式电子产品的、可至少解决或部分解决现有技术中的上述至少一个缺点的光学成像系统。
一方面,本申请提供了这样一种光学成像系统,该成像系统沿着光轴由物侧至像侧依序包括:第一透镜、第二透镜、第三透镜、第四透镜和第五透镜。其中,第一透镜可具有正光焦度,其物侧面可为凸面,像侧面可为凹面;第二透镜可具有负光焦度,第三透镜可具有负光焦度;第四透镜可具有正光焦度,其像侧面可为凸面;第五透镜可具有负光焦度,其物侧面可为凹面。其中,第一透镜的物侧面至光学成像系统的成像面在光轴上的距离TTL与光学成像系统的成像面上有效像素区域对角线长的一半ImgH可满足1<TTL/ImgH<1.3。
在一个实施方式中,第二透镜的有效焦距f2与第四透镜和第五透镜的组合焦距f45可满足0<f2/f45<1.6。
在一个实施方式中,第五透镜的有效焦距f5与第四透镜的像侧面的曲率半径R8可满足0.2<R8/f5<1。
在一个实施方式中,光学成像系统的总有效焦距f与第一透镜、第二透镜和第三透镜的组合焦距f123可满足0.8<f123/f<1.3。
在一个实施方式中,第一透镜的物侧面的曲率半径R1与第一透镜的像侧面的曲率半径R2可满足0<R1/R2<0.9。
在一个实施方式中,第一透镜的有效焦距f1与第二透镜的有效焦距f2可满足-0.6<f1/f2<0。
在一个实施方式中,第五透镜的物侧面的曲率半径R9与第五透镜的像侧面的曲率半径R10可满足0<|R9+R10|/|R9-R10|<1。
在一个实施方式中,第一透镜在光轴上的中心厚度CT1与第一透镜和第二透镜在光轴上的间隔距离T12可满足0<T12/CT1<0.3。
在一个实施方式中,第四透镜在光轴上的中心厚度CT4与第五透镜在光轴上的中心厚度CT5可满足0<CT5/CT4<0.7。
在一个实施方式中,第一透镜至第五透镜中任意相邻两透镜在光轴上的间隔距离的总和∑AT与第一透镜至第五透镜分别在光轴上的中心厚度的总和∑CT可满足0<∑AT/∑CT<1。
在一个实施方式中,光学成像系统还包括光阑,光阑至第五透镜的像侧面在光轴上的距离SD与第一透镜的物侧面至第五透镜的像侧面在光轴上的轴上距离TD可满足0.5<SD/TD<1.3。
另一方面,本申请提供了这样一种光学成像系统,该成像系统沿着光轴由物侧至像侧依序包括:第一透镜、第二透镜、第三透镜、第四透镜和第五透镜。其中,第一透镜可具有正光焦度,其物侧面可为凸面,像侧面可为凹面;第二透镜可具有负光焦度,第三透镜可具有负光焦度;第四透镜可具有正光焦度,其像侧面可为凸面;第五透镜可具有负光焦度,其物侧面可为凹面。其中,第二透镜的有效焦距f2与所述第四透镜和所述第五透镜的组合焦距f45满足0.36≤f2/f45<1.6。
在一个实施方式中,第五透镜的有效焦距f5与第四透镜的像侧面的曲率半径R8可满足0.68≤R8/f5<1。
在一个实施方式中,第一透镜的物侧面的曲率半径R1与第一透镜的像侧面的曲率半径R2可满足0.2<R1/R2<0.9。
本申请采用了五片透镜,通过合理分配各透镜的光焦度、面型、各透镜的中心厚度以及各透镜之间的轴上间距等,使得上述光学透镜系统具有超薄化、高分辨力、高成像质量等至少一个有益效果。
附图说明
结合附图,通过以下非限制性实施方式的详细描述,本申请的其他特征、目的和优点将变得更加明显。在附图中:
图1示出了根据本申请实施例1的光学成像系统的结构示意图;
图2A至图2D分别示出了实施例1的光学成像系统的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图3示出了根据本申请实施例2的光学成像系统的结构示意图;
图4A至图4D分别示出了实施例2的光学成像系统的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图5示出了根据本申请实施例3的光学成像系统的结构示意图;
图6A至图6D分别示出了实施例3的光学成像系统的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图7示出了根据本申请实施例4的光学成像系统的结构示意图;
图8A至图8D分别示出了实施例4的光学成像系统的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图9示出了根据本申请实施例5的光学成像系统的结构示意图;
图10A至图10D分别示出了实施例5的光学成像系统的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图11示出了根据本申请实施例6的光学成像系统的结构示意图;
图12A至图12D分别示出了实施例6的光学成像系统的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图13示出了根据本申请实施例7的光学成像系统的结构示意图;
图14A至图14D分别示出了实施例7的光学成像系统的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图15示出了根据本申请实施例8的光学成像系统的结构示意图;
图16A至图16D分别示出了实施例8的光学成像系统的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线。
具体实施方式
为了更好地理解本申请,将参考附图对本申请的各个方面做出更详细的说明。应理解,这些详细说明只是对本申请的示例性实施方式的描述,而非以任何方式限制本申请的范围。在说明书全文中,相同的附图标号指代相同的元件。表述“和/或”包括相关联的所列项目中的一个或多个的任何和全部组合。
应注意,在本说明书中,第一、第二、第三等的表述仅用于将一个特征与另一个特征区分开来,而不表示对特征的任何限制。因此,在不背离本申请的教导的情况下,下文中讨论的第一透镜也可被称作第二透镜或第三透镜。
在附图中,为了便于说明,已稍微夸大了透镜的厚度、尺寸和形状。具体来讲,附图中所示的球面或非球面的形状通过示例的方式示出。即,球面或非球面的形状不限于附图中示出的球面或非球面的形状。附图仅为示例而并非严格按比例绘制。
在本文中,近轴区域是指光轴附近的区域。若透镜表面为凸面且未界定该凸面位置时,则表示该透镜表面至少于近轴区域为凸面;若透镜表面为凹面且未界定该凹面位置时,则表示该透镜表面至少于近轴区域为凹面。每个透镜最靠近被摄物体的表面称为该透镜的物侧面,每个透镜最靠近成像面的表面称为该透镜的像侧面。
还应理解的是,用语“包括”、“包括有”、“具有”、“包含”和/或“包含有”,当在本说明书中使用时表示存在所陈述的特征、元件和/或部件,但不排除存在或附加有一个或多个其它特征、元件、部件和/或它们的组合。此外,当诸如“...中的至少一个”的表述出现在所列特征的列表之后时,修饰整个所列特征,而不是修饰列表中的单独元件。此外,当描述本申请的实施方式时,使用“可”表示“本申请的一个或多个实施方式”。并且,用语“示例性的”旨在指代示例或举例说明。
除非另外限定,否则本文中使用的所有用语(包括技术用语和科学用语)均具有与本申请所属领域普通技术人员的通常理解相同的含义。还应理解的是,用语(例如在常用词典中定义的用语)应被解释为具有与它们在相关技术的上下文中的含义一致的含义,并且将不被以理想化或过度正式意义解释,除非本文中明确如此限定。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本申请。
以下对本申请的特征、原理和其他方面进行详细描述。
根据本申请示例性实施方式的光学成像系统可包括例如五片具有光焦度的透镜,即,第一透镜、第二透镜、第三透镜、第四透镜和第五透镜。这五片透镜沿着光轴由物侧至像侧依序排列。在第一透镜至第五透镜中,任意相邻两透镜之间均可具有空气间隔。
在示例性实施方式中,第一透镜可具有正光焦度,其物侧面可为凸面,像侧面可为凹面;第二透镜可具有负光焦度;第三透镜可具有负光焦度;第四透镜可具有正光焦度,其像侧面可为凸面;第五透镜可具有负光焦度,其物侧面可为凹面。合理配置各透镜的面型与光焦度,可以在保证光学系统性能的同时,降低公差敏感性,使光学系统具有量产可行性。
在示例性实施方式中,第二透镜的像侧面可为凹面。
在示例性实施方式中,第五透镜的像侧面可为凹面。
在示例性实施方式中,根据本申请的光学成像系统可满足条件式1<TTL/ImgH<1.3,其中,TTL为第一透镜的物侧面至光学成像系统的成像面在光轴上的距离,ImgH为光学成像系统的成像面上有效像素区域对角线长的一半。更具体地,TTL和ImgH进一步可满足1.09≤TTL/ImgH≤1.22。当TTL/ImgH满足上述条件时,可以同时满足镜头高分辨力与超薄化的要求。
在示例性实施方式中,根据本申请的光学成像系统可满足条件式0<f2/f45<1.6,其中,f2为第二透镜的有效焦距,f45为第四透镜和第五透镜的组合焦距。更具体地,f2和f45进一步可满足0.3<f2/f45<1.5,例如,0.36≤f2/f45≤1.45。当f2/f45满足上述条件时,可以更好地调配第二透镜与第四、第五透镜的光焦度,极大提升光学系统的工作性能。
在示例性实施方式中,根据本申请的光学成像系统可满足条件式0.2<R8/f5<1,其中,f5为第五透镜的有效焦距,R8为第四透镜的像侧面的曲率半径。更具体地,R8和f5进一步可满足0.5<R8/f5<0.9,例如,0.62≤R8/f5≤0.83,再例如,0.68≤R8/f5≤0.83。合理配置镜片面型与光焦度,有利于对光学系统球差与轴向色差进行矫正,提升成像品质。
在示例性实施方式中,根据本申请的光学成像系统可满足条件式0.8<f123/f<1.3,其中,f为光学成像系统的总有效焦距,f123为第一透镜、第二透镜和第三透镜的组合焦距。更具体地,f123和f进一步可满足1.0<f123/f<1.2,例如,1.11≤f123/f≤1.16。合理配置每个透镜的光焦度,有利于保证光学系统结构的紧凑性。
在示例性实施方式中,根据本申请的光学成像系统可满足条件式0<R1/R2<0.9,其中,R1为第一透镜的物侧面的曲率半径,R2为第一透镜的像侧面的曲率半径。更具体地,R1和R2进一步可满足0.2<R1/R2<0.6,例如,0.34≤R1/R2≤0.44。合理配置第一透镜物侧面和像侧面的曲率半径,有利于对轴外像差进行矫正,获得高清晰度的图像。
在示例性实施方式中,根据本申请的光学成像系统可满足条件式-0.6<f1/f2<0,其中,f1为第一透镜的有效焦距,f2为第二透镜的有效焦距。更具体地,f1和f2进一步可满足-0.29≤f1/f2≤-0.08。合理配置第一透镜与第二透镜光焦度,有利于色差消除,同时有助于保证光学系统结构紧凑性。
在示例性实施方式中,根据本申请的光学成像系统可满足条件式0<|R9+R10|/|R9-R10|<1,其中,R9为第五透镜的物侧面的曲率半径,R10为第五透镜的像侧面的曲率半径。更具体地,R9和R10进一步可满足0.04≤|R9+R10|/|R9-R10|≤0.61。满足该条件式,有利于确保镜头的CRA匹配,并有利于矫正镜头的场曲,保证各个视场的成像清晰度。
在示例性实施方式中,根据本申请的光学成像系统可满足条件式0<T12/CT1<0.3,其中,CT1为第一透镜在光轴上的中心厚度,T12为第一透镜和第二透镜在光轴上的间隔距离。更具体地,T12和CT1进一步可满足0.1<T12/CT1<0.2,例如,0.16≤T12/CT1≤0.19。满足该条件式,可以有效降低镜头的厚度和间隔敏感性,满足可加工性的要求。同时,通过配置透镜的轴上间隔距离,有利于实现光学系统的结构紧凑性。
在示例性实施方式中,根据本申请的光学成像系统可满足条件式0<CT5/CT4<0.7,其中,CT4为第四透镜在光轴上的中心厚度,CT5为第五透镜在光轴上的中心厚度。更具体地,CT5和CT4进一步可满足0.2<CT5/CT4<0.6,例如,0.38≤CT5/CT4≤0.53。合理配置透镜的中心厚度,可以有效降低镜头的中心厚度敏感性,并有利于矫正场曲。
在示例性实施方式中,根据本申请的光学成像系统可满足条件式0<∑AT/∑CT<1,其中,∑AT为第一透镜至第五透镜中任意相邻两透镜在光轴上的间隔距离的总和,∑CT为第一透镜至第五透镜分别在光轴上的中心厚度的总和。更具体地,∑AT和∑CT进一步可满足0.3<∑AT/∑CT<0.7,例如,0.42≤∑AT/∑CT≤0.54。合理配置各透镜的中心厚度及轴上间隔距离,有利于保证光学系统结构紧凑性,满足超薄化要求。
在示例性实施方式中,根据本申请的光学成像系统还可包括光阑,光阑可设置在物侧与第一透镜之间。可选地,光阑至第五透镜的像侧面在光轴上的距离SD与第一透镜的物侧面至第五透镜的像侧面在光轴上的轴上距离TD可满足0.5<SD/TD<1.3。更具体地,SD和TD进一步可满足0.92≤SD/TD≤0.93。合理配置光阑位置,有利保证光学系统结构紧凑性,并有利于提升光学系统的成像性能和相对亮度。
可选地,上述光学成像系统还可包括用于校正色彩偏差的滤光片和/或用于保护位于成像面上的感光元件的保护玻璃。
根据本申请的上述实施方式的光学成像系统可采用多片镜片,例如上文所述的五片。通过合理分配各透镜的光焦度、面型、各透镜的中心厚度以及各透镜之间的轴上间距等,可有效地缩小镜头的体积、降低镜头的敏感度并提高镜头的可加工性,使得光学成像系统更有利于生产加工并且可适用于便携式电子产品。通过上述配置的光学成像系统还可具有超薄、高分辨力、低成本、高成像质量等有益效果,能够较好地满足大部分中手机镜头的使用需求。
在本申请的实施方式中,各透镜的镜面中的至少一个为非球面镜面,即,第一透镜、第二透镜、第三透镜、第四透镜和第五透镜中的每个透镜的物侧面和像侧面中的至少一个为非球面镜面。非球面透镜的特点是:从透镜中心到透镜周边,曲率是连续变化的。与从透镜中心到透镜周边具有恒定曲率的球面透镜不同,非球面透镜具有更佳的曲率半径特性,具有改善歪曲像差及改善像散像差的优点。采用非球面透镜后,能够尽可能地消除在成像的时候出现的像差,从而改善成像质量。可选地,第一透镜、第二透镜、第三透镜、第四透镜和第五透镜中的每个透镜的物侧面和像侧面均为非球面镜面。
然而,本领域的技术人员应当理解,在未背离本申请要求保护的技术方案的情况下,可改变构成光学成像镜头的透镜数量,来获得本说明书中描述的各个结果和优点。例如,虽然在实施方式中以五个透镜为例进行了描述,但是该光学成像镜头不限于包括五个透镜。如果需要,该光学成像镜头还可包括其它数量的透镜。
下面参照附图进一步描述可适用于上述实施方式的光学成像系统的具体实施例。
实施例1
以下参照图1至图2D描述根据本申请实施例1的光学成像系统。图1示出了根据本申请实施例1的光学成像系统的结构示意图。
如图1所示,根据本申请示例性实施方式的光学成像系统沿光轴由物侧至像侧依序包括:光阑STO、第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、滤光片E6和成像面S13。
第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有负光焦度,其物侧面S3为凸面,像侧面S4为凹面。第三透镜E3具有负光焦度,其物侧面S5为凹面,像侧面S6为凹面。第四透镜E4具有正光焦度,其物侧面S7为凸面,像侧面S8为凸面。第五透镜E5具有负光焦度,其物侧面S9为凹面,像侧面S10为凹面。滤光片E6具有物侧面S11和像侧面S12。来自物体的光依序穿过各表面S1至S12并最终成像在成像面S13上。
表1示出了实施例1的光学成像系统的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
表1
由表1可知,第一透镜E1至第五透镜E5中的任意一个透镜的物侧面和像侧面均为非球面。在本实施例中,各非球面透镜的面型x可利用但不限于以下非球面公式进行限定:
其中,x为非球面沿光轴方向在高度为h的位置时,距非球面顶点的距离矢高;c为非球面的近轴曲率,c=1/R(即,近轴曲率c为上表1中曲率半径R的倒数);k为圆锥系数;Ai是非球面第i-th阶的修正系数。下表2给出了可用于实施例1中各非球面镜面S1-S10的高次项系数A4、A6、A8、A10、A12、A14、A16、A18和A20。
面号 | A4 | A6 | A8 | A10 | A12 | A14 | A16 | A18 | A20 |
S1 | 3.6417E-02 | -4.2448E-01 | 5.4373E+00 | -4.0933E+01 | 1.9347E+02 | -5.7226E+02 | 1.0274E+03 | -1.0255E+03 | 4.3441E+02 |
S2 | -2.6106E-02 | -6.4863E-01 | 1.3834E+01 | -1.7015E+02 | 1.1730E+03 | -4.8565E+03 | 1.2070E+04 | -1.6696E+04 | 9.9010E+03 |
S3 | -1.2721E-01 | 4.1145E-01 | -1.2113E+00 | -2.4959E+00 | 1.1128E+02 | -7.7726E+02 | 2.6556E+03 | -4.7042E+03 | 3.4472E+03 |
S4 | -2.0337E-02 | 9.2030E-01 | -1.4114E+01 | 2.2102E+02 | -1.9350E+03 | 1.0043E+04 | -3.0460E+04 | 4.9857E+04 | -3.3980E+04 |
S5 | -3.7477E-01 | -4.4904E-02 | 8.4359E+00 | -1.0046E+02 | 5.9999E+02 | -2.0798E+03 | 4.2033E+03 | -4.5762E+03 | 2.0467E+03 |
S6 | -2.8816E-01 | 4.1329E-01 | -1.7663E+00 | 6.1631E+00 | -1.4469E+01 | 2.2928E+01 | -2.2423E+01 | 1.1836E+01 | -2.5586E+00 |
S7 | -1.1311E-01 | 6.8982E-02 | -6.1892E-02 | -1.2649E-01 | 2.7871E-01 | -2.0485E-01 | 7.3907E-02 | -1.3332E-02 | 9.6481E-04 |
S8 | -1.4814E-01 | -1.0524E-01 | 4.5715E-01 | -3.3229E-01 | 6.4683E-02 | 2.7192E-02 | -1.6609E-02 | 3.2463E-03 | -2.2943E-04 |
S9 | -5.1260E-01 | 3.2811E-01 | 3.2926E-01 | -5.0198E-01 | 2.8135E-01 | -8.6623E-02 | 1.5479E-02 | -1.5094E-03 | 6.2270E-05 |
S10 | -4.3265E-01 | 5.6769E-01 | -5.0154E-01 | 3.0244E-01 | -1.2394E-01 | 3.3304E-02 | -5.5490E-03 | 5.1687E-04 | -2.0516E-05 |
表2
表3给出了实施例1中成像面S13上有效像素区域对角线长的一半ImgH、第一透镜E1的物侧面S1至成像面S13在光轴上的距离TTL、最大半视场角HFOV、光学成像系统的光圈数Fno、光学成像系统的总有效焦距f以及各透镜的有效焦距f1至f5。
ImgH(mm) | 3.04 | f1(mm) | 2.68 |
TTL(mm) | 3.50 | f2(mm) | -15.71 |
HFOV(°) | 44.25 | f3(mm) | -22.36 |
Fno | 2.24 | f4(mm) | 1.95 |
f(mm) | 3.02 | f5(mm) | -1.49 |
表3
实施例1中的光学成像系统满足以下关系:
TTL/ImgH=1.15,其中,TTL为第一透镜E1的物侧面S1至成像面S13在光轴上的距离,ImgH为成像面S13上有效像素区域对角线长的一半;
f2/f45=0.90,其中,f2为第二透镜E2的有效焦距,f45为第四透镜E4和第五透镜E5的组合焦距;
R8/f5=0.75,其中,f5为第五透镜E5的有效焦距,R8为第四透镜E4的像侧面S8的曲率半径;
f123/f=1.11,其中,f为光学成像系统的总有效焦距,f123为第一透镜E1、第二透镜E2和第三透镜E3的组合焦距;
R1/R2=0.38,其中,R1为第一透镜E1的物侧面S1的曲率半径,R2为第一透镜E1的像侧面S2的曲率半径;
f1/f2=-0.17,其中,f1为第一透镜E1的有效焦距,f2为第二透镜E2的有效焦距;
|R9+R10|/|R9-R10|=0.10,其中,R9为第五透镜E5的物侧面S9的曲率半径,R10为第五透镜E5的像侧面S10的曲率半径;
T12/CT1=0.16,其中,CT1为第一透镜E1在光轴上的中心厚度,T12为第一透镜E1和第二透镜E2在光轴上的间隔距离;
CT5/CT4=0.44,其中,CT4为第四透镜E4在光轴上的中心厚度,CT5为第五透镜E5在光轴上的中心厚度;
∑AT/∑CT=0.45,其中,∑AT为第一透镜E1至第五透镜E5中任意相邻两透镜在光轴上的间隔距离的总和,∑CT为第一透镜E1至第五透镜E5分别在光轴上的中心厚度的总和;
SD/TD=0.93,其中,SD为光阑STO至第五透镜E5的像侧面S10在光轴上的距离,TD为第一透镜E1的物侧面S1至第五透镜E5的像侧面S10在光轴上的轴上距离。
图2A示出了实施例1的光学成像系统的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图2B示出了实施例1的光学成像系统的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图2C示出了实施例1的光学成像系统的畸变曲线,其表示不同像高处的畸变大小值。图2D示出了实施例1的光学成像系统的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图2A至图2D可知,实施例1所给出的光学成像系统能够实现良好的成像品质。
实施例2
以下参照图3至图4D描述根据本申请实施例2的光学成像系统。在本实施例及以下实施例中,为简洁起见,将省略部分与实施例1相似的描述。图3示出了根据本申请实施例2的光学成像系统的结构示意图。
如图3所示,根据本申请示例性实施方式的光学成像系统沿光轴由物侧至像侧依序包括:光阑STO、第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、滤光片E6和成像面S13。
第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有负光焦度,其物侧面S3为凸面,像侧面S4为凹面。第三透镜E3具有负光焦度,其物侧面S5为凸面,像侧面S6为凹面。第四透镜E4具有正光焦度,其物侧面S7为凸面,像侧面S8为凸面。第五透镜E5具有负光焦度,其物侧面S9为凹面,像侧面S10为凹面。滤光片E6具有物侧面S11和像侧面S12。来自物体的光依序穿过各表面S1至S12并最终成像在成像面S13上。
表4示出了实施例2的光学成像系统的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
表4
由表4可知,在实施例2中,第一透镜E1至第五透镜E5中的任意一个透镜的物侧面和像侧面均为非球面。表5示出了可用于实施例2中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 | A4 | A6 | A8 | A10 | A12 | A14 | A16 | A18 | A20 |
S1 | -1.2038E-04 | 5.2212E-01 | -8.9308E+00 | 8.4319E+01 | -4.6651E+02 | 1.5609E+03 | -3.1104E+03 | 3.3969E+03 | -1.5698E+03 |
S2 | -5.1097E-02 | -6.3632E-02 | -1.0458E+00 | -5.5066E-01 | 6.4401E+01 | -4.4936E+02 | 1.4661E+03 | -2.4450E+03 | 1.6605E+03 |
S3 | -1.7108E-01 | 6.2333E-01 | -5.3046E+00 | 4.3394E+01 | -1.8948E+02 | 4.8715E+02 | -7.2958E+02 | 5.2537E+02 | -8.1135E+01 |
S4 | -8.3414E-02 | 1.1573E+00 | -1.0226E+01 | 1.1186E+02 | -7.9192E+02 | 3.7374E+03 | -1.0995E+04 | 1.8010E+04 | -1.2450E+04 |
S5 | -4.7060E-01 | 1.6408E+00 | -1.5642E+01 | 9.5064E+01 | -3.6082E+02 | 8.4136E+02 | -1.1514E+03 | 8.2242E+02 | -2.3007E+02 |
S6 | -3.4835E-01 | 8.1819E-01 | -4.3695E+00 | 1.6494E+01 | -3.9844E+01 | 6.1535E+01 | -5.7794E+01 | 2.9744E+01 | -6.4083E+00 |
S7 | -8.9332E-02 | 1.2727E-02 | 6.6457E-02 | -2.9777E-01 | 3.9570E-01 | -2.4538E-01 | 7.9977E-02 | -1.3354E-02 | 9.0481E-04 |
S8 | 8.3555E-02 | -7.2162E-01 | 1.4621E+00 | -1.3530E+00 | 7.2766E-01 | -2.4797E-01 | 5.3714E-02 | -6.8009E-03 | 3.8287E-04 |
S9 | -3.0508E-01 | -2.5433E-01 | 1.0561E+00 | -1.0120E+00 | 4.9872E-01 | -1.4433E-01 | 2.4853E-02 | -2.3673E-03 | 9.6321E-05 |
S10 | -2.5480E-01 | 2.8651E-01 | -2.4107E-01 | 1.4443E-01 | -5.9581E-02 | 1.5849E-02 | -2.5400E-03 | 2.2137E-04 | -8.0400E-06 |
表5
表6给出了实施例2中成像面S13上有效像素区域对角线长的一半ImgH、第一透镜E1的物侧面S1至成像面S13在光轴上的距离TTL、最大半视场角HFOV、光学成像系统的光圈数Fno、光学成像系统的总有效焦距f以及各透镜的有效焦距f1至f5。
ImgH(mm) | 3.04 | f1(mm) | 2.76 |
TTL(mm) | 3.50 | f2(mm) | -21.42 |
HFOV(°) | 44.68 | f3(mm) | -18.16 |
Fno | 2.24 | f4(mm) | 1.54 |
f(mm) | 3.03 | f5(mm) | -1.22 |
表6
图4A示出了实施例2的光学成像系统的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图4B示出了实施例2的光学成像系统的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图4C示出了实施例2的光学成像系统的畸变曲线,其表示不同像高处的畸变大小值。图4D示出了实施例2的光学成像系统的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图4A至图4D可知,实施例2所给出的光学成像系统能够实现良好的成像品质。
实施例3
以下参照图5至图6D描述了根据本申请实施例3的光学成像系统。图5示出了根据本申请实施例3的光学成像系统的结构示意图。
如图5所示,根据本申请示例性实施方式的光学成像系统沿光轴由物侧至像侧依序包括:光阑STO、第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、滤光片E6和成像面S13。
第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有负光焦度,其物侧面S3为凸面,像侧面S4为凹面。第三透镜E3具有负光焦度,其物侧面S5为凹面,像侧面S6为凹面。第四透镜E4具有正光焦度,其物侧面S7为凸面,像侧面S8为凸面。第五透镜E5具有负光焦度,其物侧面S9为凹面,像侧面S10为凹面。滤光片E6具有物侧面S11和像侧面S12。来自物体的光依序穿过各表面S1至S12并最终成像在成像面S13上。
表7示出了实施例3的光学成像系统的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
表7
由表7可知,在实施例3中,第一透镜E1至第五透镜E5中的任意一个透镜的物侧面和像侧面均为非球面。表8示出了可用于实施例3中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 | A4 | A6 | A8 | A10 | A12 | A14 | A16 | A18 | A20 |
S1 | 3.5429E-02 | -1.9429E-01 | -5.6130E-01 | 2.4432E+01 | -1.9949E+02 | 8.1858E+02 | -1.8637E+03 | 2.2436E+03 | -1.1201E+03 |
S2 | -5.4552E-02 | 4.3075E-01 | -1.0875E+01 | 1.1125E+02 | -7.0210E+02 | 2.7514E+03 | -6.4714E+03 | 8.3191E+03 | -4.5089E+03 |
S3 | -1.6595E-01 | 1.1453E+00 | -1.6926E+01 | 1.7185E+02 | -1.0462E+03 | 4.0222E+03 | -9.5061E+03 | 1.2553E+04 | -7.0970E+03 |
S4 | -4.9807E-02 | 7.9899E-01 | -8.1259E+00 | 1.1770E+02 | -1.0097E+03 | 5.3650E+03 | -1.6834E+04 | 2.8489E+04 | -2.0025E+04 |
S5 | -5.1036E-01 | 3.2425E+00 | -3.7640E+01 | 2.6571E+02 | -1.1718E+03 | 3.2265E+03 | -5.3806E+03 | 4.9684E+03 | -1.9587E+03 |
S6 | -3.5364E-01 | 1.1290E+00 | -6.9066E+00 | 2.7649E+01 | -6.9722E+01 | 1.1030E+02 | -1.0467E+02 | 5.4031E+01 | -1.1633E+01 |
S7 | -1.0262E-01 | 3.2633E-02 | 7.9226E-02 | -3.3786E-01 | 4.2718E-01 | -2.5703E-01 | 8.1921E-02 | -1.3411E-02 | 8.9136E-04 |
S8 | 3.6331E-02 | -5.6920E-01 | 1.2684E+00 | -1.2438E+00 | 7.0988E-01 | -2.5693E-01 | 5.8662E-02 | -7.7227E-03 | 4.4568E-04 |
S9 | -3.8759E-01 | 1.3496E-01 | 4.1720E-01 | -4.8505E-01 | 2.4872E-01 | -7.2820E-02 | 1.2648E-02 | -1.2210E-03 | 5.0724E-05 |
S10 | -2.5757E-01 | 3.0614E-01 | -2.5273E-01 | 1.3860E-01 | -4.9941E-02 | 1.1123E-02 | -1.3992E-03 | 8.4081E-05 | -1.4688E-06 |
表8
表9给出了实施例3中成像面S13上有效像素区域对角线长的一半ImgH、第一透镜E1的物侧面S1至成像面S13在光轴上的距离TTL、最大半视场角HFOV、光学成像系统的光圈数Fno、光学成像系统的总有效焦距f以及各透镜的有效焦距f1至f5。
ImgH(mm) | 3.04 | f1(mm) | 2.82 |
TTL(mm) | 3.52 | f2(mm) | -26.40 |
HFOV(°) | 44.78 | f3(mm) | -20.01 |
Fno | 2.23 | f4(mm) | 1.63 |
f(mm) | 3.03 | f5(mm) | -1.29 |
表9
图6A示出了实施例3的光学成像系统的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图6B示出了实施例3的光学成像系统的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图6C示出了实施例3的光学成像系统的畸变曲线,其表示不同像高处的畸变大小值。图6D示出了实施例3的光学成像系统的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图6A至图6D可知,实施例3所给出的光学成像系统能够实现良好的成像品质。
实施例4
以下参照图7至图8D描述了根据本申请实施例4的光学成像系统。图7示出了根据本申请实施例4的光学成像系统的结构示意图。
如图7所示,根据本申请示例性实施方式的光学成像系统沿光轴由物侧至像侧依序包括:光阑STO、第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、滤光片E6和成像面S13。
第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有负光焦度,其物侧面S3为凸面,像侧面S4为凹面。第三透镜E3具有负光焦度,其物侧面S5为凸面,像侧面S6为凹面。第四透镜E4具有正光焦度,其物侧面S7为凸面,像侧面S8为凸面。第五透镜E5具有负光焦度,其物侧面S9为凹面,像侧面S10为凹面。滤光片E6具有物侧面S11和像侧面S12。来自物体的光依序穿过各表面S1至S12并最终成像在成像面S13上。
表10示出了实施例4的光学成像系统的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
表10
由表10可知,在实施例4中,第一透镜E1至第五透镜E5中的任意一个透镜的物侧面和像侧面均为非球面。表11示出了可用于实施例4中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 | A4 | A6 | A8 | A10 | A12 | A14 | A16 | A18 | A20 |
S1 | 3.4218E-02 | -1.9701E-01 | 3.4808E-01 | 9.0128E+00 | -8.6350E+01 | 3.6143E+02 | -8.1396E+02 | 9.5708E+02 | -4.6681E+02 |
S2 | 1.8653E-02 | -1.7557E+00 | 2.5714E+01 | -2.4128E+02 | 1.3802E+03 | -4.9087E+03 | 1.0632E+04 | -1.2926E+04 | 6.7832E+03 |
S3 | -1.3022E-01 | 7.0756E-01 | -1.5442E+01 | 2.0775E+02 | -1.5085E+03 | 6.4914E+03 | -1.6432E+04 | 2.2518E+04 | -1.2874E+04 |
S4 | -1.1873E-01 | 2.7956E+00 | -3.9636E+01 | 4.0336E+02 | -2.5318E+03 | 1.0050E+04 | -2.4434E+04 | 3.3201E+04 | -1.9341E+04 |
S5 | -6.0835E-01 | 3.3346E+00 | -3.0846E+01 | 1.7018E+02 | -5.6479E+02 | 1.1036E+03 | -1.1761E+03 | 5.3952E+02 | -2.1188E+01 |
S6 | -2.5486E-01 | -8.9763E-01 | 1.0785E+01 | -5.3220E+01 | 1.4310E+02 | -2.2526E+02 | 2.0789E+02 | -1.0426E+02 | 2.1930E+01 |
S7 | -7.4157E-02 | -1.5446E-02 | 2.0711E-01 | -6.3372E-01 | 7.8661E-01 | -4.9229E-01 | 1.6670E-01 | -2.9296E-02 | 2.1022E-03 |
S8 | -3.4667E-02 | -4.1614E-01 | 1.0108E+00 | -9.3570E-01 | 4.8462E-01 | -1.5772E-01 | 3.2687E-02 | -3.9830E-03 | 2.1755E-04 |
S9 | -5.2069E-01 | 4.1677E-01 | 1.3049E-01 | -2.9854E-01 | 1.6849E-01 | -5.1028E-02 | 9.1580E-03 | -9.2816E-04 | 4.1195E-05 |
S10 | -2.5834E-01 | 2.2304E-01 | -1.0071E-01 | 1.3157E-02 | 8.6698E-03 | -5.4026E-03 | 1.3908E-03 | -1.7584E-04 | 8.8143E-06 |
表11
表12给出了实施例4中成像面S13上有效像素区域对角线长的一半ImgH、第一透镜E1的物侧面S1至成像面S13在光轴上的距离TTL、最大半视场角HFOV、光学成像系统的光圈数Fno、光学成像系统的总有效焦距f以及各透镜的有效焦距f1至f5。
ImgH(mm) | 3.04 | f1(mm) | 2.89 |
TTL(mm) | 3.55 | f2(mm) | -35.70 |
HFOV(°) | 44.50 | f3(mm) | -12.83 |
Fno | 2.25 | f4(mm) | 1.47 |
f(mm) | 3.05 | f5(mm) | -1.23 |
表12
图8A示出了实施例4的光学成像系统的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图8B示出了实施例4的光学成像系统的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图8C示出了实施例4的光学成像系统的畸变曲线,其表示不同像高处的畸变大小值。图8D示出了实施例4的光学成像系统的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图8A至图8D可知,实施例4所给出的光学成像系统能够实现良好的成像品质。
实施例5
以下参照图9至图10D描述了根据本申请实施例5的光学成像系统。图9示出了根据本申请实施例5的光学成像系统的结构示意图。
如图9所示,根据本申请示例性实施方式的光学成像系统沿光轴由物侧至像侧依序包括:光阑STO、第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、滤光片E6和成像面S13。
第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有负光焦度,其物侧面S3为凹面,像侧面S4为凹面。第三透镜E3具有负光焦度,其物侧面S5为凸面,像侧面S6为凹面。第四透镜E4具有正光焦度,其物侧面S7为凹面,像侧面S8为凸面。第五透镜E5具有负光焦度,其物侧面S9为凹面,像侧面S10为凹面。滤光片E6具有物侧面S11和像侧面S12。来自物体的光依序穿过各表面S1至S12并最终成像在成像面S13上。
表13示出了实施例5的光学成像系统的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
表13
由表13可知,在实施例5中,第一透镜E1至第五透镜E5中的任意一个透镜的物侧面和像侧面均为非球面。表14示出了可用于实施例5中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 | A4 | A6 | A8 | A10 | A12 | A14 | A16 | A18 | A20 |
S1 | -2.5136E-02 | 9.2025E-01 | -1.0865E+01 | 7.9443E+01 | -3.6270E+02 | 1.0404E+03 | -1.8197E+03 | 1.7712E+03 | -7.3804E+02 |
S2 | 1.2459E-02 | -8.0508E-01 | 1.2761E+01 | -1.4550E+02 | 1.0148E+03 | -4.3082E+03 | 1.0809E+04 | -1.4789E+04 | 8.5072E+03 |
S3 | -1.3474E-01 | 4.9740E-01 | -8.4340E-01 | -6.0702E+00 | 1.3253E+02 | -8.6063E+02 | 2.6623E+03 | -4.1067E+03 | 2.5500E+03 |
S4 | -3.1771E-02 | 1.5785E-01 | 6.9904E+00 | -6.5742E+01 | 3.9607E+02 | -1.5004E+03 | 3.4337E+03 | -4.3372E+03 | 2.3437E+03 |
S5 | -3.1022E-01 | -6.0784E-01 | 1.1803E+01 | -1.0687E+02 | 5.7267E+02 | -1.8860E+03 | 3.7408E+03 | -4.0953E+03 | 1.8937E+03 |
S6 | -1.7855E-01 | -7.6469E-02 | 3.1503E-01 | -1.2217E+00 | 3.6791E+00 | -8.2406E+00 | 1.2769E+01 | -1.1039E+01 | 3.8717E+00 |
S7 | -6.5130E-03 | -3.8095E-01 | 1.5470E+00 | -4.5416E+00 | 8.4813E+00 | -9.8888E+00 | 6.8109E+00 | -2.4950E+00 | 3.7267E-01 |
S8 | 1.4533E-01 | -4.5664E-01 | 9.3228E-01 | -1.3254E+00 | 1.5285E+00 | -1.2165E+00 | 5.8194E-01 | -1.4957E-01 | 1.5932E-02 |
S9 | -3.8785E-01 | 2.0530E-01 | 1.6447E-01 | -2.2268E-01 | 1.1088E-01 | -3.0588E-02 | 4.9357E-03 | -4.3764E-04 | 1.6512E-05 |
S10 | -3.0813E-01 | 3.0920E-01 | -2.2457E-01 | 1.1680E-01 | -4.2875E-02 | 1.0617E-02 | -1.6664E-03 | 1.4908E-04 | -5.7857E-06 |
表14
表15给出了实施例5中成像面S13上有效像素区域对角线长的一半ImgH、第一透镜E1的物侧面S1至成像面S13在光轴上的距离TTL、最大半视场角HFOV、光学成像系统的光圈数Fno、光学成像系统的总有效焦距f以及各透镜的有效焦距f1至f5。
ImgH(mm) | 3.04 | f1(mm) | 2.70 |
TTL(mm) | 3.53 | f2(mm) | -9.17 |
HFOV(°) | 44.22 | f3(mm) | -2535.95 |
Fno | 2.24 | f4(mm) | 2.35 |
f(mm) | 3.02 | f5(mm) | -1.81 |
表15
图10A示出了实施例5的光学成像系统的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图10B示出了实施例5的光学成像系统的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图10C示出了实施例5的光学成像系统的畸变曲线,其表示不同像高处的畸变大小值。图10D示出了实施例5的光学成像系统的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图10A至图10D可知,实施例5所给出的光学成像系统能够实现良好的成像品质。
实施例6
以下参照图11至图12D描述了根据本申请实施例6的光学成像系统。图11示出了根据本申请实施例6的光学成像系统的结构示意图。
如图11所示,根据本申请示例性实施方式的光学成像系统沿光轴由物侧至像侧依序包括:光阑STO、第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、滤光片E6和成像面S13。
第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有负光焦度,其物侧面S3为凸面,像侧面S4为凹面。第三透镜E3具有负光焦度,其物侧面S5为凹面,像侧面S6为凸面。第四透镜E4具有正光焦度,其物侧面S7为凸面,像侧面S8为凸面。第五透镜E5具有负光焦度,其物侧面S9为凹面,像侧面S10为凹面。滤光片E6具有物侧面S11和像侧面S12。来自物体的光依序穿过各表面S1至S12并最终成像在成像面S13上。
表16示出了实施例6的光学成像系统的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
表16
由表16可知,在实施例6中,第一透镜E1至第五透镜E5中的任意一个透镜的物侧面和像侧面均为非球面。表17示出了可用于实施例6中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 | A4 | A6 | A8 | A10 | A12 | A14 | A16 | A18 | A20 |
S1 | -6.5494E-03 | 4.7409E-01 | -5.1959E+00 | 3.5434E+01 | -1.4981E+02 | 3.9471E+02 | -6.2761E+02 | 5.4752E+02 | -2.0189E+02 |
S2 | -1.9796E-02 | -6.8398E-01 | 9.8025E+00 | -1.0370E+02 | 6.6523E+02 | -2.6217E+03 | 6.2051E+03 | -8.1154E+03 | 4.5056E+03 |
S3 | -1.0210E-01 | -1.5292E-01 | 7.3709E+00 | -8.1327E+01 | 5.4637E+02 | -2.2152E+03 | 5.3065E+03 | -6.9476E+03 | 3.8422E+03 |
S4 | -1.5213E-02 | 8.7474E-01 | -9.2931E+00 | 1.1289E+02 | -7.9091E+02 | 3.4069E+03 | -8.8137E+03 | 1.2560E+04 | -7.5388E+03 |
S5 | -3.5990E-01 | 4.8104E-01 | -3.2830E+00 | 1.7947E+01 | -8.5142E+01 | 3.0127E+02 | -6.9216E+02 | 9.0498E+02 | -5.2329E+02 |
S6 | -2.7579E-01 | 3.6278E-01 | -1.3129E+00 | 4.2665E+00 | -1.0373E+01 | 1.8191E+01 | -1.9618E+01 | 1.1180E+01 | -2.5717E+00 |
S7 | -1.1918E-01 | 7.1256E-02 | -6.3346E-02 | -1.0401E-01 | 2.4785E-01 | -1.8714E-01 | 6.8734E-02 | -1.2570E-02 | 9.1957E-04 |
S8 | -1.3609E-01 | -5.0723E-02 | 2.6125E-01 | -9.0880E-02 | -9.4192E-02 | 8.9045E-02 | -3.0884E-02 | 5.0482E-03 | -3.2495E-04 |
S9 | -4.7480E-01 | 2.9220E-01 | 2.9448E-01 | -4.3238E-01 | 2.3459E-01 | -6.9848E-02 | 1.2059E-02 | -1.1361E-03 | 4.5322E-05 |
S10 | -3.5360E-01 | 4.1898E-01 | -3.3436E-01 | 1.8250E-01 | -6.8074E-02 | 1.6682E-02 | -2.5274E-03 | 2.1295E-04 | -7.6023E-06 |
表17
表18给出了实施例6中成像面S13上有效像素区域对角线长的一半ImgH、第一透镜E1的物侧面S1至成像面S13在光轴上的距离TTL、最大半视场角HFOV、光学成像系统的光圈数Fno、光学成像系统的总有效焦距f以及各透镜的有效焦距f1至f5。
ImgH(mm) | 3.04 | f1(mm) | 2.63 |
TTL(mm) | 3.60 | f2(mm) | -13.00 |
HFOV(°) | 43.49 | f3(mm) | -20.40 |
Fno | 2.24 | f4(mm) | 2.06 |
f(mm) | 3.11 | f5(mm) | -1.59 |
表18
图12A示出了实施例6的光学成像系统的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图12B示出了实施例6的光学成像系统的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图12C示出了实施例6的光学成像系统的畸变曲线,其表示不同像高处的畸变大小值。图12D示出了实施例6的光学成像系统的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图12A至图12D可知,实施例6所给出的光学成像系统能够实现良好的成像品质。
实施例7
以下参照图13至图14D描述了根据本申请实施例7的光学成像系统。图13示出了根据本申请实施例7的光学成像系统的结构示意图。
如图13所示,根据本申请示例性实施方式的光学成像系统沿光轴由物侧至像侧依序包括:光阑STO、第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、滤光片E6和成像面S13。
第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有负光焦度,其物侧面S3为凸面,像侧面S4为凹面。第三透镜E3具有负光焦度,其物侧面S5为凹面,像侧面S6为凹面。第四透镜E4具有正光焦度,其物侧面S7为凸面,像侧面S8为凸面。第五透镜E5具有负光焦度,其物侧面S9为凹面,像侧面S10为凹面。滤光片E6具有物侧面S11和像侧面S12。来自物体的光依序穿过各表面S1至S12并最终成像在成像面S13上。
表19示出了实施例7的光学成像系统的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
表19
由表19可知,在实施例7中,第一透镜E1至第五透镜E5中的任意一个透镜的物侧面和像侧面均为非球面。表20示出了可用于实施例7中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 | A4 | A6 | A8 | A10 | A12 | A14 | A16 | A18 | A20 |
S1 | -9.8348E-03 | 5.3838E-01 | -6.4165E+00 | 4.7169E+01 | -2.1321E+02 | 5.9946E+02 | -1.0199E+03 | 9.6099E+02 | -3.8578E+02 |
S2 | -3.1903E-02 | -4.7120E-01 | 6.7564E+00 | -6.7671E+01 | 4.1299E+02 | -1.5407E+03 | 3.4266E+03 | -4.1872E+03 | 2.1603E+03 |
S3 | -1.0461E-01 | -1.5112E-01 | 6.1281E+00 | -5.7290E+01 | 3.3742E+02 | -1.2285E+03 | 2.6587E+03 | -3.1437E+03 | 1.5628E+03 |
S4 | -1.0311E-02 | 2.8364E-01 | 1.4534E+00 | -9.8207E+00 | 5.5889E+01 | -2.1599E+02 | 5.3147E+02 | -7.5066E+02 | 4.8279E+02 |
S5 | -3.4292E-01 | 7.8323E-01 | -7.5404E+00 | 5.2135E+01 | -2.4002E+02 | 7.1034E+02 | -1.2986E+03 | 1.3368E+03 | -6.0051E+02 |
S6 | -2.6994E-01 | 4.0489E-01 | -1.5994E+00 | 5.3845E+00 | -1.2368E+01 | 1.9015E+01 | -1.7924E+01 | 9.1469E+00 | -1.9273E+00 |
S7 | -1.0648E-01 | 5.0740E-02 | -6.8248E-02 | -1.5861E-03 | 8.7840E-02 | -7.5406E-02 | 2.7945E-02 | -4.9668E-03 | 3.4715E-04 |
S8 | -1.0656E-01 | -3.0019E-02 | 1.6183E-01 | -3.5076E-02 | -7.5165E-02 | 5.8853E-02 | -1.8617E-02 | 2.8182E-03 | -1.6858E-04 |
S9 | -4.3804E-01 | 3.3367E-01 | 7.6476E-02 | -1.9295E-01 | 1.0454E-01 | -2.9361E-02 | 4.6923E-03 | -4.0553E-04 | 1.4763E-05 |
S10 | -2.8242E-01 | 3.0188E-01 | -2.1707E-01 | 1.0690E-01 | -3.6276E-02 | 8.1601E-03 | -1.1411E-03 | 8.8939E-05 | -2.9374E-06 |
表20
表21给出了实施例7中成像面S13上有效像素区域对角线长的一半ImgH、第一透镜E1的物侧面S1至成像面S13在光轴上的距离TTL、最大半视场角HFOV、光学成像系统的光圈数Fno、光学成像系统的总有效焦距f以及各透镜的有效焦距f1至f5。
ImgH(mm) | 3.04 | f1(mm) | 2.64 |
TTL(mm) | 3.70 | f2(mm) | -11.02 |
HFOV(°) | 42.61 | f3(mm) | -19.86 |
Fno | 2.24 | f4(mm) | 2.21 |
f(mm) | 3.20 | f5(mm) | -1.67 |
表21
图14A示出了实施例7的光学成像系统的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图14B示出了实施例7的光学成像系统的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图14C示出了实施例7的光学成像系统的畸变曲线,其表示不同像高处的畸变大小值。图14D示出了实施例7的光学成像系统的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图14A至图14D可知,实施例7所给出的光学成像系统能够实现良好的成像品质。
实施例8
以下参照图15至图16D描述了根据本申请实施例8的光学成像系统。图15示出了根据本申请实施例8的光学成像系统的结构示意图。
如图15所示,根据本申请示例性实施方式的光学成像系统沿光轴由物侧至像侧依序包括:光阑STO、第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、滤光片E6和成像面S13。
第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有负光焦度,其物侧面S3为凸面,像侧面S4为凹面。第三透镜E3具有负光焦度,其物侧面S5为凹面,像侧面S6为凹面。第四透镜E4具有正光焦度,其物侧面S7为凸面,像侧面S8为凸面。第五透镜E5具有负光焦度,其物侧面S9为凹面,像侧面S10为凹面。滤光片E6具有物侧面S11和像侧面S12。来自物体的光依序穿过各表面S1至S12并最终成像在成像面S13上。
表22示出了实施例8的光学成像系统的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
表22
由表22可知,在实施例8中,第一透镜E1至第五透镜E5中的任意一个透镜的物侧面和像侧面均为非球面。表23示出了可用于实施例8中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 | A4 | A6 | A8 | A10 | A12 | A14 | A16 | A18 | A20 |
S1 | -1.1836E-01 | 3.4548E+00 | -4.8586E+01 | 4.1672E+02 | -2.2396E+03 | 7.5745E+03 | -1.5637E+04 | 1.7969E+04 | -8.8058E+03 |
S2 | 1.5428E-01 | -5.0686E+00 | 1.0293E+02 | -1.2863E+03 | 9.7738E+03 | -4.5693E+04 | 1.2812E+05 | -1.9762E+05 | 1.2890E+05 |
S3 | -1.1884E-02 | -4.1521E+00 | 9.8207E+01 | -1.2631E+03 | 9.8283E+03 | -4.6808E+04 | 1.3327E+05 | -2.0833E+05 | 1.3762E+05 |
S4 | -2.2782E-01 | 5.3464E+00 | -8.0139E+01 | 8.0167E+02 | -5.0114E+03 | 1.9791E+04 | -4.7930E+04 | 6.4923E+04 | -3.7694E+04 |
S5 | -4.3779E-01 | 1.1406E+00 | -1.5679E+01 | 1.7712E+02 | -1.2280E+03 | 5.1353E+03 | -1.2751E+04 | 1.7401E+04 | -1.0136E+04 |
S6 | -3.7183E-01 | 1.1004E+00 | -5.6989E+00 | 2.3188E+01 | -6.4259E+01 | 1.1796E+02 | -1.3335E+02 | 8.2455E+01 | -2.1218E+01 |
S7 | -8.2131E-02 | 3.6521E-02 | 2.5376E-02 | -2.0751E-01 | 2.8094E-01 | -1.7173E-01 | 5.4956E-02 | -9.0140E-03 | 6.0090E-04 |
S8 | -1.8931E-01 | 1.1498E-01 | 2.0630E-01 | -3.0592E-01 | 1.8664E-01 | -6.6550E-02 | 1.4803E-02 | -1.9333E-03 | 1.1342E-04 |
S9 | -3.6505E-01 | 1.5922E-01 | 2.5629E-01 | -3.0469E-01 | 1.5053E-01 | -4.1945E-02 | 6.8754E-03 | -6.2108E-04 | 2.3934E-05 |
S10 | -2.4466E-01 | 2.5147E-01 | -1.8756E-01 | 9.9042E-02 | -3.5931E-02 | 8.5092E-03 | -1.2404E-03 | 1.0062E-04 | -3.4723E-06 |
表23
表24给出了实施例8中成像面S13上有效像素区域对角线长的一半ImgH、第一透镜E1的物侧面S1至成像面S13在光轴上的距离TTL、最大半视场角HFOV、光学成像系统的光圈数Fno、光学成像系统的总有效焦距f以及各透镜的有效焦距f1至f5。
ImgH(mm) | 3.04 | f1(mm) | 2.77 |
TTL(mm) | 3.30 | f2(mm) | -20.08 |
HFOV(°) | 46.29 | f3(mm) | -31.61 |
Fno | 2.24 | f4(mm) | 2.26 |
f(mm) | 2.85 | f5(mm) | -1.58 |
表24
图16A示出了实施例8的光学成像系统的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图16B示出了实施例8的光学成像系统的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图16C示出了实施例8的光学成像系统的畸变曲线,其表示不同像高处的畸变大小值。图16D示出了实施例8的光学成像系统的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图16A至图16D可知,实施例8所给出的光学成像系统能够实现良好的成像品质。
综上,实施例1至实施例8分别满足表25中所示的关系。
条件式\实施例 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
TTL/ImgH | 1.15 | 1.15 | 1.16 | 1.17 | 1.16 | 1.18 | 1.22 | 1.09 |
f123/f | 1.11 | 1.11 | 1.11 | 1.15 | 1.15 | 1.11 | 1.12 | 1.16 |
f2/f45 | 0.90 | 1.13 | 1.31 | 0.50 | 0.36 | 0.70 | 0.59 | 1.45 |
R1/R2 | 0.38 | 0.42 | 0.43 | 0.44 | 0.35 | 0.36 | 0.34 | 0.41 |
R8/f5 | 0.75 | 0.72 | 0.72 | 0.68 | 0.62 | 0.75 | 0.78 | 0.83 |
|R9+R10|/|R9-R10| | 0.10 | 0.34 | 0.31 | 0.61 | 0.25 | 0.04 | 0.08 | 0.22 |
∑AT/∑CT | 0.45 | 0.42 | 0.44 | 0.42 | 0.54 | 0.43 | 0.45 | 0.52 |
T12/CT1 | 0.16 | 0.16 | 0.17 | 0.19 | 0.18 | 0.16 | 0.16 | 0.16 |
CT5/CT4 | 0.44 | 0.41 | 0.42 | 0.38 | 0.51 | 0.41 | 0.40 | 0.53 |
f1/f2 | -0.17 | -0.13 | -0.11 | -0.08 | -0.29 | -0.20 | -0.24 | -0.14 |
SD/TD | 0.91 | 0.91 | 0.91 | 0.91 | 0.91 | 0.90 | 0.91 | 0.91 |
表25
本申请还提供一种成像装置,其电子感光元件可以是感光耦合元件(CCD)或互补性氧化金属半导体元件(CMOS)。成像装置可以是诸如数码相机的独立成像设备,也可以是集成在诸如手机等移动电子设备上的成像模块。该成像装置装配有以上描述的光学成像系统。
以上描述仅为本申请的较佳实施例以及对所运用技术原理的说明。本领域技术人员应当理解,本申请中所涉及的发明范围,并不限于上述技术特征的特定组合而成的技术方案,同时也应涵盖在不脱离所述发明构思的情况下,由上述技术特征或其等同特征进行任意组合而形成的其它技术方案。例如上述特征与本申请中公开的(但不限于)具有类似功能的技术特征进行互相替换而形成的技术方案。
Claims (10)
1.光学成像系统,沿着光轴由物侧至像侧依序包括:第一透镜、第二透镜、第三透镜、第四透镜和第五透镜,其特征在于,
所述第一透镜具有正光焦度,其物侧面为凸面,像侧面为凹面;
所述第二透镜具有负光焦度,
所述第三透镜具有负光焦度;
所述第四透镜具有正光焦度,其像侧面为凸面;
所述第五透镜具有负光焦度,其物侧面为凹面;以及
所述第一透镜的物侧面至所述光学成像系统的成像面在所述光轴上的距离TTL与所述光学成像系统的成像面上有效像素区域对角线长的一半ImgH满足1<TTL/ImgH<1.3。
2.根据权利要求1所述的光学成像系统,其特征在于,所述第二透镜的有效焦距f2与所述第四透镜和所述第五透镜的组合焦距f45满足0<f2/f45<1.6。
3.根据权利要求1所述的光学成像系统,其特征在于,所述第五透镜的有效焦距f5与所述第四透镜的像侧面的曲率半径R8满足0.2<R8/f5<1。
4.根据权利要求1所述的光学成像系统,其特征在于,所述光学成像系统的总有效焦距f与所述第一透镜、所述第二透镜和所述第三透镜的组合焦距f123满足0.8<f123/f<1.3。
5.根据权利要求1所述的光学成像系统,其特征在于,所述第一透镜的物侧面的曲率半径R1与所述第一透镜的像侧面的曲率半径R2满足0<R1/R2<0.9。
6.根据权利要求1所述的光学成像系统,其特征在于,所述第一透镜的有效焦距f1与所述第二透镜的有效焦距f2满足-0.6<f1/f2<0。
7.根据权利要求1所述的光学成像系统,其特征在于,所述第五透镜的物侧面的曲率半径R9与所述第五透镜的像侧面的曲率半径R10满足0<|R9+R10|/|R9-R10|<1。
8.根据权利要求1所述的光学成像系统,其特征在于,所述第一透镜在所述光轴上的中心厚度CT1与所述第一透镜和所述第二透镜在所述光轴上的间隔距离T12满足0<T12/CT1<0.3。
9.根据权利要求1所述的光学成像系统,其特征在于,所述第四透镜在所述光轴上的中心厚度CT4与所述第五透镜在所述光轴上的中心厚度CT5满足0<CT5/CT4<0.7。
10.光学成像系统,沿着光轴由物侧至像侧依序包括:第一透镜、第二透镜、第三透镜、第四透镜和第五透镜,其特征在于,
所述第一透镜具有正光焦度,其物侧面为凸面,像侧面为凹面;
所述第二透镜具有负光焦度,
所述第三透镜具有负光焦度;
所述第四透镜具有正光焦度,其像侧面为凸面;
所述第五透镜具有负光焦度,其物侧面为凹面;以及
所述第二透镜的有效焦距f2与所述第四透镜和所述第五透镜的组合焦距f45满足0.36≤f2/f45<1.6。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811580013.5A CN109358414B (zh) | 2018-12-24 | 2018-12-24 | 光学成像系统 |
CN202111481907.0A CN114236754B (zh) | 2018-12-24 | 2018-12-24 | 光学成像系统 |
PCT/CN2019/102148 WO2020134129A1 (zh) | 2018-12-24 | 2019-08-23 | 光学成像系统 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811580013.5A CN109358414B (zh) | 2018-12-24 | 2018-12-24 | 光学成像系统 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111481907.0A Division CN114236754B (zh) | 2018-12-24 | 2018-12-24 | 光学成像系统 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN109358414A true CN109358414A (zh) | 2019-02-19 |
CN109358414B CN109358414B (zh) | 2024-02-23 |
Family
ID=65329271
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201811580013.5A Active CN109358414B (zh) | 2018-12-24 | 2018-12-24 | 光学成像系统 |
CN202111481907.0A Active CN114236754B (zh) | 2018-12-24 | 2018-12-24 | 光学成像系统 |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111481907.0A Active CN114236754B (zh) | 2018-12-24 | 2018-12-24 | 光学成像系统 |
Country Status (2)
Country | Link |
---|---|
CN (2) | CN109358414B (zh) |
WO (1) | WO2020134129A1 (zh) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110515178A (zh) * | 2019-08-14 | 2019-11-29 | 瑞声通讯科技(常州)有限公司 | 摄像光学镜头 |
CN110531492A (zh) * | 2019-08-19 | 2019-12-03 | 瑞声通讯科技(常州)有限公司 | 摄像光学镜头 |
CN110596859A (zh) * | 2019-08-19 | 2019-12-20 | 瑞声通讯科技(常州)有限公司 | 摄像光学镜头 |
CN111142238A (zh) * | 2020-02-20 | 2020-05-12 | 浙江舜宇光学有限公司 | 光学成像镜头 |
WO2020134129A1 (zh) * | 2018-12-24 | 2020-07-02 | 浙江舜宇光学有限公司 | 光学成像系统 |
WO2021031283A1 (zh) * | 2019-08-19 | 2021-02-25 | 诚瑞光学(常州)股份有限公司 | 摄像光学镜头 |
WO2021082728A1 (zh) * | 2019-10-29 | 2021-05-06 | 浙江舜宇光学有限公司 | 光学成像镜头 |
WO2021127824A1 (zh) * | 2019-12-23 | 2021-07-01 | 诚瑞光学(常州)股份有限公司 | 摄像光学镜头 |
CN114326029A (zh) * | 2022-01-10 | 2022-04-12 | 浙江舜宇光学有限公司 | 光学成像镜头 |
CN114755805A (zh) * | 2022-05-09 | 2022-07-15 | 浙江舜宇光学有限公司 | 光学成像系统 |
US11487089B2 (en) | 2020-01-16 | 2022-11-01 | Largan Precision Co., Ltd. | Image capturing optical lens assembly including five lenses of +−++− or +−−+− refractive powers, imaging apparatus and electronic device |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113866959B (zh) * | 2021-11-09 | 2024-09-20 | 辽宁中蓝光电科技有限公司 | 一种超广角光学镜头 |
CN117631224B (zh) * | 2024-01-26 | 2024-05-17 | 江西联益光学有限公司 | 光学镜头 |
Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030090811A1 (en) * | 2001-01-10 | 2003-05-15 | Asahi Kogaku Kogyo Kabushiki Kaisha | Camera-attachment lens system |
US20120069455A1 (en) * | 2010-09-16 | 2012-03-22 | Largan Precision Co., Ltd. | Optical imaging lens system |
CN102778741A (zh) * | 2011-05-11 | 2012-11-14 | 大立光电股份有限公司 | 影像拾取光学镜头组 |
CN103217781A (zh) * | 2012-01-20 | 2013-07-24 | 大立光电股份有限公司 | 影像撷取光学系统组 |
CN203825277U (zh) * | 2013-04-27 | 2014-09-10 | 株式会社光学逻辑 | 摄像镜头 |
CN204331129U (zh) * | 2013-12-24 | 2015-05-13 | 富士胶片株式会社 | 摄像透镜及包括摄像透镜的摄像装置 |
CN106569314A (zh) * | 2015-10-13 | 2017-04-19 | 三星电机株式会社 | 光学成像系统 |
CN107085284A (zh) * | 2017-06-13 | 2017-08-22 | 浙江舜宇光学有限公司 | 摄像镜头 |
CN107797245A (zh) * | 2017-11-17 | 2018-03-13 | 瑞声声学科技(深圳)有限公司 | 摄像光学镜头 |
US20180164546A1 (en) * | 2016-12-11 | 2018-06-14 | Zhejiang Sunny Optics Co., Ltd. | Image Pickup Optical Lens System |
CN108802967A (zh) * | 2018-04-18 | 2018-11-13 | 南昌欧菲精密光学制品有限公司 | 光学成像系统及电子装置 |
CN108802973A (zh) * | 2018-08-31 | 2018-11-13 | 浙江舜宇光学有限公司 | 影像镜头 |
CN209471293U (zh) * | 2018-12-24 | 2019-10-08 | 浙江舜宇光学有限公司 | 光学成像系统 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105988185B (zh) * | 2015-04-10 | 2018-11-30 | 浙江舜宇光学有限公司 | 摄像镜头 |
CN106980167B (zh) * | 2016-01-15 | 2019-07-23 | 新巨科技股份有限公司 | 成像镜片组 |
CN107870407B (zh) * | 2016-09-22 | 2021-01-05 | 新巨科技股份有限公司 | 五片式成像镜片组 |
CN107219614B (zh) * | 2017-08-07 | 2022-09-06 | 浙江舜宇光学有限公司 | 光学成像镜头 |
CN107741629A (zh) * | 2017-11-17 | 2018-02-27 | 瑞声声学科技(深圳)有限公司 | 摄像光学镜头 |
CN108008524B (zh) * | 2017-11-17 | 2020-06-09 | 瑞声通讯科技(常州)有限公司 | 摄像光学镜头 |
CN108398770B (zh) * | 2018-06-05 | 2021-01-26 | 浙江舜宇光学有限公司 | 光学成像镜头 |
CN109358414B (zh) * | 2018-12-24 | 2024-02-23 | 浙江舜宇光学有限公司 | 光学成像系统 |
-
2018
- 2018-12-24 CN CN201811580013.5A patent/CN109358414B/zh active Active
- 2018-12-24 CN CN202111481907.0A patent/CN114236754B/zh active Active
-
2019
- 2019-08-23 WO PCT/CN2019/102148 patent/WO2020134129A1/zh active Application Filing
Patent Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030090811A1 (en) * | 2001-01-10 | 2003-05-15 | Asahi Kogaku Kogyo Kabushiki Kaisha | Camera-attachment lens system |
US20120069455A1 (en) * | 2010-09-16 | 2012-03-22 | Largan Precision Co., Ltd. | Optical imaging lens system |
CN102778741A (zh) * | 2011-05-11 | 2012-11-14 | 大立光电股份有限公司 | 影像拾取光学镜头组 |
CN103217781A (zh) * | 2012-01-20 | 2013-07-24 | 大立光电股份有限公司 | 影像撷取光学系统组 |
CN203825277U (zh) * | 2013-04-27 | 2014-09-10 | 株式会社光学逻辑 | 摄像镜头 |
CN204331129U (zh) * | 2013-12-24 | 2015-05-13 | 富士胶片株式会社 | 摄像透镜及包括摄像透镜的摄像装置 |
CN106569314A (zh) * | 2015-10-13 | 2017-04-19 | 三星电机株式会社 | 光学成像系统 |
US20180164546A1 (en) * | 2016-12-11 | 2018-06-14 | Zhejiang Sunny Optics Co., Ltd. | Image Pickup Optical Lens System |
CN107085284A (zh) * | 2017-06-13 | 2017-08-22 | 浙江舜宇光学有限公司 | 摄像镜头 |
CN107797245A (zh) * | 2017-11-17 | 2018-03-13 | 瑞声声学科技(深圳)有限公司 | 摄像光学镜头 |
CN108802967A (zh) * | 2018-04-18 | 2018-11-13 | 南昌欧菲精密光学制品有限公司 | 光学成像系统及电子装置 |
CN108802973A (zh) * | 2018-08-31 | 2018-11-13 | 浙江舜宇光学有限公司 | 影像镜头 |
CN209471293U (zh) * | 2018-12-24 | 2019-10-08 | 浙江舜宇光学有限公司 | 光学成像系统 |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020134129A1 (zh) * | 2018-12-24 | 2020-07-02 | 浙江舜宇光学有限公司 | 光学成像系统 |
CN110515178A (zh) * | 2019-08-14 | 2019-11-29 | 瑞声通讯科技(常州)有限公司 | 摄像光学镜头 |
US11480772B2 (en) * | 2019-08-19 | 2022-10-25 | Aac Optics Solutions Pte. Ltd. | Camera optical lens including five lenses of +−−+− refractive powers |
CN110531492A (zh) * | 2019-08-19 | 2019-12-03 | 瑞声通讯科技(常州)有限公司 | 摄像光学镜头 |
CN110596859A (zh) * | 2019-08-19 | 2019-12-20 | 瑞声通讯科技(常州)有限公司 | 摄像光学镜头 |
WO2021031238A1 (zh) * | 2019-08-19 | 2021-02-25 | 诚瑞光学(常州)股份有限公司 | 摄像光学镜头 |
US20210055522A1 (en) * | 2019-08-19 | 2021-02-25 | Aac Optics Solutions Pte. Ltd. | Camera optical lens |
WO2021031283A1 (zh) * | 2019-08-19 | 2021-02-25 | 诚瑞光学(常州)股份有限公司 | 摄像光学镜头 |
WO2021082728A1 (zh) * | 2019-10-29 | 2021-05-06 | 浙江舜宇光学有限公司 | 光学成像镜头 |
WO2021127824A1 (zh) * | 2019-12-23 | 2021-07-01 | 诚瑞光学(常州)股份有限公司 | 摄像光学镜头 |
US11487089B2 (en) | 2020-01-16 | 2022-11-01 | Largan Precision Co., Ltd. | Image capturing optical lens assembly including five lenses of +−++− or +−−+− refractive powers, imaging apparatus and electronic device |
CN111142238A (zh) * | 2020-02-20 | 2020-05-12 | 浙江舜宇光学有限公司 | 光学成像镜头 |
CN114326029A (zh) * | 2022-01-10 | 2022-04-12 | 浙江舜宇光学有限公司 | 光学成像镜头 |
CN114326029B (zh) * | 2022-01-10 | 2024-03-19 | 浙江舜宇光学有限公司 | 光学成像镜头 |
CN114755805A (zh) * | 2022-05-09 | 2022-07-15 | 浙江舜宇光学有限公司 | 光学成像系统 |
CN114755805B (zh) * | 2022-05-09 | 2023-12-26 | 浙江舜宇光学有限公司 | 光学成像系统 |
Also Published As
Publication number | Publication date |
---|---|
CN114236754B (zh) | 2023-12-29 |
CN114236754A (zh) | 2022-03-25 |
WO2020134129A1 (zh) | 2020-07-02 |
CN109358414B (zh) | 2024-02-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108535843B (zh) | 光学成像系统 | |
CN109358414A (zh) | 光学成像系统 | |
CN109782418A (zh) | 光学成像镜头 | |
CN109031629A (zh) | 摄像光学系统 | |
CN108873253A (zh) | 摄像镜头 | |
CN109507787A (zh) | 光学成像镜头 | |
CN108983401A (zh) | 光学透镜组 | |
CN109270662A (zh) | 光学成像镜头 | |
CN109407284A (zh) | 光学成像系统 | |
CN109100854A (zh) | 摄像镜头 | |
CN109752826A (zh) | 光学成像镜头 | |
CN209044159U (zh) | 摄像光学系统 | |
CN208506350U (zh) | 摄像镜头 | |
CN109283665A (zh) | 成像镜头 | |
CN109298511A (zh) | 光学成像系统 | |
CN108761737A (zh) | 光学成像系统 | |
CN106997089B (zh) | 光学镜片组 | |
CN109116520A (zh) | 光学成像镜头 | |
CN110286474A (zh) | 光学成像系统 | |
CN108490588A (zh) | 光学成像镜头 | |
CN108279483A (zh) | 摄像镜头组 | |
CN109613683A (zh) | 光学成像镜头 | |
CN109752825A (zh) | 光学成像镜片组 | |
CN108398770A (zh) | 光学成像镜头 | |
CN109828346A (zh) | 光学成像镜头 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |