WO2021082728A1 - 光学成像镜头 - Google Patents
光学成像镜头 Download PDFInfo
- Publication number
- WO2021082728A1 WO2021082728A1 PCT/CN2020/113227 CN2020113227W WO2021082728A1 WO 2021082728 A1 WO2021082728 A1 WO 2021082728A1 CN 2020113227 W CN2020113227 W CN 2020113227W WO 2021082728 A1 WO2021082728 A1 WO 2021082728A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- lens
- optical imaging
- imaging lens
- optical
- object side
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B9/00—Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
- G02B9/60—Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having five components only
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/001—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
- G02B13/0015—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
- G02B13/002—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
- G02B13/0045—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
Definitions
- This application relates to the field of optical elements, and more specifically, to an optical imaging lens.
- the screen occupies a relatively large installation space for the mobile phone, which reduces the installation space for other accessories of the mobile phone.
- the installation space of the front camera is also increasingly restricted.
- an optical imaging lens that can balance miniaturization and head size, good manufacturability, and high image quality is needed.
- the present application provides an optical imaging lens that can be applied to portable electronic products and can at least solve or partially solve at least one of the above-mentioned shortcomings in the prior art.
- the present application provides an optical imaging lens, which includes in order from the object side to the image side along the optical axis: a first lens with positive refractive power, the object side surface may be a convex surface, the image side surface may be a concave surface; it has a negative optical focus A second lens with a degree of power; a third lens with a refractive power; a fourth lens with a positive refractive power; and a fifth lens with a negative refractive power.
- the on-axis distance VP from the intersection of the straight line where the edge ray of the optical imaging lens is located and the optical axis to the object side surface of the first lens may satisfy 0 mm ⁇ VP ⁇ 1.5 mm.
- the effective focal length f4 of the fourth lens and the effective focal length f1 of the first lens may satisfy 1.0 ⁇ f4/f1 ⁇ 1.4.
- the effective focal length f2 of the second lens, the effective focal length f5 of the fifth lens, and the total effective focal length f of the optical imaging lens may satisfy 1.4 ⁇ (f5-f2)/f ⁇ 1.8.
- the distance from the object side of the first lens to the imaging surface of the optical imaging lens on the optical axis TTL and half of the diagonal length ImgH of the effective pixel area on the imaging surface can satisfy TTL/ImgH ⁇ 1.3.
- the maximum field of view FOV of the optical imaging lens may satisfy 82° ⁇ FOV ⁇ 87°.
- the entrance pupil diameter EPD of the optical imaging lens and the half diagonal length ImgH of the effective pixel area on the imaging surface of the optical imaging lens may satisfy 0.4 ⁇ EPD/ImgH ⁇ 0.6.
- the radius of curvature R1 of the object side surface of the first lens, the radius of curvature R2 of the image side surface of the first lens, the radius of curvature R3 of the object side surface of the second lens, and the radius of curvature R4 of the image side surface of the second lens may be It satisfies 1.9 ⁇ (R3+R4)/(R1+R2) ⁇ 2.6.
- the total effective focal length f of the optical imaging lens, the radius of curvature R8 of the image side surface of the fourth lens, and the radius of curvature R10 of the image side surface of the fifth lens may satisfy 0.7 ⁇ (R10-R8)/f ⁇ 1.2.
- the separation distance T34 between the third lens and the fourth lens on the optical axis, the central thickness CT4 of the fourth lens on the optical axis, the separation distance T45 between the fourth lens and the fifth lens on the optical axis, and The central thickness CT5 of the fifth lens on the optical axis may satisfy 1.0 ⁇ (T34+CT4)/(T45+CT5) ⁇ 1.3.
- the effective half-aperture DT11 of the object side of the first lens and the half diagonal ImgH of the effective pixel area on the imaging surface of the optical imaging lens may satisfy 2.3 ⁇ 10 ⁇ DT11/ImgH ⁇ 2.8.
- the combined focal length f12 of the first lens and the second lens, the central thickness CT1 of the first lens element on the optical axis, and the central thickness CT2 of the second lens element on the optical axis may satisfy 6.0 ⁇ f12/(CT1 +CT2) ⁇ 6.5.
- the window diameter DW of the optical imaging lens may satisfy 1.5mm ⁇ DW ⁇ 2.0mm.
- the on-axis distance from the intersection point of the object side surface of the fifth lens and the optical axis to the vertex of the effective radius of the object side surface of the fifth lens SAG51 and the intersection point of the image side surface of the fifth lens and the optical axis to the image side surface of the fifth lens satisfies 0.7 ⁇ SAG52/SAG51 ⁇ 0.9.
- This application uses five lenses.
- the above-mentioned optical imaging lens has a small head size and manufacturability. At least one beneficial effect such as good and high image quality.
- Fig. 1 shows a schematic light path diagram of an optical imaging lens according to the present application
- Fig. 2 shows a schematic structural diagram of an optical imaging lens according to Embodiment 1 of the present application
- Figs. 3A to 3D respectively show the axial chromatic aberration curve, astigmatism curve, distortion curve, and chromatic aberration of magnification of the optical imaging lens of Embodiment 1. curve;
- FIGS. 5A to 5D respectively show the axial chromatic aberration curve, astigmatism curve, distortion curve, and chromatic aberration of magnification of the optical imaging lens of Embodiment 2 curve;
- FIGS. 7A to 7D respectively show the axial chromatic aberration curve, astigmatism curve, distortion curve, and magnification chromatic aberration of the optical imaging lens of Embodiment 3 curve;
- FIGS. 9A to 9D respectively show the axial chromatic aberration curve, astigmatism curve, distortion curve, and magnification chromatic aberration of the optical imaging lens of Embodiment 4 curve;
- FIGS. 11A to 11D respectively show the axial chromatic aberration curve, astigmatism curve, distortion curve, and magnification chromatic aberration of the optical imaging lens of Embodiment 5 curve;
- FIGS. 13A to 13D respectively show the axial chromatic aberration curve, astigmatism curve, distortion curve, and chromatic aberration of magnification of the optical imaging lens of Embodiment 6 curve.
- first, second, third, etc. are only used to distinguish one feature from another feature, and do not represent any restriction on the feature. Therefore, without departing from the teachings of the present application, the first lens discussed below may also be referred to as a second lens or a third lens.
- the thickness, size, and shape of the lens have been slightly exaggerated for ease of description.
- the shape of the spherical or aspherical surface shown in the drawings is shown by way of example. That is, the shape of the spherical surface or the aspheric surface is not limited to the shape of the spherical surface or the aspheric surface shown in the drawings.
- the drawings are only examples and are not drawn strictly to scale.
- the paraxial area refers to the area near the optical axis. If the lens surface is convex and the position of the convex surface is not defined, it means that the lens surface is convex at least in the paraxial region; if the lens surface is concave and the position of the concave surface is not defined, it means that the lens surface is at least in the paraxial region. Concave. The surface of each lens closest to the object is called the object side of the lens, and the surface of each lens closest to the imaging surface is called the image side of the lens.
- the optical imaging lens according to the exemplary embodiment of the present application may include, for example, five lenses having optical power, that is, a first lens, a second lens, a third lens, a fourth lens, and a fifth lens.
- the five lenses are arranged in order from the object side to the image side along the optical axis.
- the first lens has positive refractive power
- the object side surface may be convex, and the image side surface may be concave
- the second lens has negative refractive power
- the third lens has positive refractive power or negative refractive power
- the fourth lens has positive refractive power
- the fifth lens has negative refractive power.
- the optical imaging lens of the present application may satisfy the conditional formula 0mm ⁇ VP ⁇ 1.5mm, where VP is the intersection of the line where the edge ray L of the optical imaging lens is located and the optical axis to the first lens The on-axis distance of S1 on the object side of E1.
- Figure 1 schematically shows multiple light paths in a meridian plane, and different light paths have different incident light rays in the object side direction of the object side S1 of the first lens E1, wherein the extension lines of the two edge rays and The optical axis intersects at the same point.
- VP may satisfy 1.01mm ⁇ VP ⁇ 1.11mm.
- the optical imaging lens of the present application may satisfy the conditional expression 1.0 ⁇ f4/f1 ⁇ 1.4, where f4 is the effective focal length of the fourth lens, and f1 is the effective focal length of the first lens. More specifically, f4 and f1 may satisfy 1.10 ⁇ f4/f1 ⁇ 1.35.
- f4 and f1 may satisfy 1.10 ⁇ f4/f1 ⁇ 1.35.
- the optical imaging lens of the present application may satisfy the conditional expression 1.4 ⁇ (f5-f2)/f ⁇ 1.8, where f2 is the effective focal length of the second lens, f5 is the effective focal length of the fifth lens, and f It is the total effective focal length of the optical imaging lens. More specifically, f2, f5, and f may satisfy 1.45 ⁇ (f5-f2)/f ⁇ 1.78.
- the fifth lens and the second lens can have proper refractive power, which helps to balance the aberrations of the optical imaging lens, and at the same time It can reduce the degree of comprehensive deflection of the light by the fifth lens, and also helps reduce the degree of local blur in the internal field of view, and improve the imaging performance of the optical imaging lens.
- the optical imaging lens of the present application may satisfy the conditional formula TTL/ImgH ⁇ 1.3, where TTL is the distance from the object side of the first lens to the imaging surface of the optical imaging lens on the optical axis, and ImgH is the imaging Half of the diagonal of the effective pixel area on the surface. More specifically, TTL and ImgH can satisfy 1.20 ⁇ TTL/ImgH ⁇ 1.29. By controlling the ratio of the total optical length to the image height of the optical imaging lens, it is beneficial to reduce the structural size of the optical imaging lens, so that the optical imaging lens has the characteristics of ultra-thin and miniaturization.
- the optical imaging lens of the present application is suitable for various miniaturized imaging equipment.
- the optical imaging lens of the present application may satisfy the conditional formula 82° ⁇ FOV ⁇ 87°, where FOV is the maximum angle of view of the optical imaging lens. More specifically, FOV can satisfy 83.9° ⁇ FOV ⁇ 85.6°.
- FOV the maximum angle of view of the optical imaging lens.
- the optical imaging lens of the present application may satisfy the conditional formula 0.4 ⁇ EPD/ImgH ⁇ 0.6, where EPD is the entrance pupil diameter of the optical imaging lens, and ImgH is the effective pixel area on the imaging surface of the optical imaging lens. Half of the diagonal. More specifically, EPD and ImgH can satisfy 0.48 ⁇ EPD/ImgH ⁇ 0.53.
- the optical imaging lens of the present application may satisfy the conditional expression 1.9 ⁇ (R3+R4)/(R1+R2) ⁇ 2.6, where R1 is the radius of curvature of the object side surface of the first lens, and R2 is the first lens.
- Matching the radii of curvature of the two mirror surfaces of the first lens with the radii of curvature of the two mirror surfaces of the second lens is beneficial to better correct the chromatic aberration and spherical aberration of the optical imaging lens, thereby improving the imaging quality of the optical imaging lens.
- the optical imaging lens of the present application may satisfy the conditional expression 0.7 ⁇ (R10-R8)/f ⁇ 1.2, where f is the total effective focal length of the optical imaging lens, and R8 is the image side of the fourth lens.
- the radius of curvature, R10 is the radius of curvature of the image side surface of the fifth lens. More specifically, f, R8, and R10 may satisfy 0.8 ⁇ (R10-R8)/f ⁇ 1.1.
- the fourth lens and the fifth lens By controlling the curvature radius of the image side surface of the fourth lens and the curvature radius of the image side surface of the fifth lens to match the total effective focal length, it is beneficial to make the fourth lens and the fifth lens have the desired refractive power, thereby reducing the light
- the deflection angle between the fourth lens and the fifth lens improves the coma of the optical imaging lens, and at the same time reduces the sensitivity of the optical imaging lens.
- the optical imaging lens of the present application may satisfy the conditional formula 1.0 ⁇ (T34+CT4)/(T45+CT5) ⁇ 1.3, where T34 is the distance between the third lens and the fourth lens on the optical axis For distance, CT4 is the center thickness of the fourth lens on the optical axis, T45 is the separation distance between the fourth lens and the fifth lens on the optical axis, and CT5 is the center thickness of the fifth lens on the optical axis. More specifically, T34, CT4, T45, and CT5 may satisfy 1.05 ⁇ (T34+CT4)/(T45+CT5) ⁇ 1.25.
- the field curvature of the optical imaging lens can be effectively corrected, and at the same time, it is beneficial to improve the manufacturability of the optical imaging lens and reduce the optical imaging
- the sensitivity of the lens in turn makes it easy to correct curvature of field after each lens is assembled.
- the optical imaging lens of the present application may satisfy the conditional expression 2.3 ⁇ 10 ⁇ DT11/ImgH ⁇ 2.8, where DT11 is the effective half-aperture of the object side surface of the first lens, and ImgH is the imaging surface of the optical imaging lens Half of the diagonal of the upper effective pixel area. More specifically, DT11 and ImgH can satisfy 2.45 ⁇ 10 ⁇ DT11/ImgH ⁇ 2.65.
- TTL/ImgH ⁇ 1.3 it is beneficial to miniaturize the optical imaging lens and have a large image surface, and is suitable for installation in a miniaturized imaging device.
- the optical imaging lens of the present application may satisfy the conditional expression 6.0 ⁇ f12/(CT1+CT2) ⁇ 6.5.
- f12 is the combined focal length of the first lens and the second lens
- CT1 is the central thickness of the first lens on the optical axis
- CT2 is the central thickness of the second lens on the optical axis.
- f12, CT1, and CT2 may satisfy 6.02 ⁇ f12/(CT1+CT2) ⁇ 6.18.
- the optical imaging lens of the present application may satisfy the conditional formula 1.5mm ⁇ DW ⁇ 2.0mm, where DW is the window diameter of the optical imaging lens.
- the device After the optical imaging lens of this embodiment is installed in the device, the device needs a smaller window to obtain a larger field of view. For example, when the optical imaging lens is installed on a mobile phone, the opening of the mobile phone screen can be made smaller and the screen-to-body ratio of the mobile phone can be increased.
- the optical imaging lens of the present application may satisfy the conditional expression 0.7 ⁇ SAG52/SAG51 ⁇ 0.9, where SAG51 is the intersection of the object side surface of the fifth lens and the optical axis to the effective radius vertex of the object side surface of the fifth lens SAG52 is the on-axis distance from the intersection of the image side surface of the fifth lens and the optical axis to the vertex of the effective radius of the image side surface of the fifth lens. More specifically, SAG51 and SAG52 can satisfy 0.76 ⁇ SAG52/SAG51 ⁇ 0.89.
- the surface shape of the fifth lens can be better controlled, the curvature of the fifth lens can be reduced, and the process of forming the fifth lens can be improved.
- the partial blurring of the optical imaging lens By controlling the ratio of the sagittal heights of the two side surfaces of the fifth lens, the surface shape of the fifth lens can be better controlled, the curvature of the fifth lens can be reduced, and the process of forming the fifth lens can be improved.
- the partial blurring of the optical imaging lens By controlling the ratio of the sagittal heights of the two side surfaces of the fifth lens, the surface shape of the fifth lens can be better controlled, the curvature of the fifth lens can be reduced, and the process of forming the fifth lens can be improved.
- the partial blurring of the optical imaging lens By controlling the ratio of the sagittal heights of the two side surfaces of the fifth lens, the surface shape of the fifth lens can be better controlled, the curvature of the fifth lens can be reduced, and the process of forming the fifth lens can be improved.
- the above-mentioned optical imaging lens may further include at least one diaphragm.
- the diaphragm can be arranged at an appropriate position as required, for example, between the object side and the first lens.
- the above-mentioned optical imaging lens may further include a filter for correcting color deviation and/or a protective glass for protecting the photosensitive element on the imaging surface.
- the optical imaging lens according to the above-mentioned embodiment of the present application may use multiple lenses, for example, the above-mentioned five lenses.
- the volume of the imaging lens can be effectively reduced, the sensitivity of the imaging lens can be reduced, and the performance of the imaging lens can be improved.
- Processability makes the optical imaging lens more conducive to production and processing and can be applied to portable electronic products.
- the optical imaging lens of the present application also has excellent optical performance such as small head size, good manufacturability, and high image quality.
- At least one of the mirror surfaces of each lens is an aspheric mirror surface, that is, at least one of the object side surface of the first lens to the image side surface of the fifth lens is an aspheric mirror surface.
- the characteristic of an aspheric lens is that the curvature changes continuously from the center of the lens to the periphery of the lens. Unlike a spherical lens with a constant curvature from the center of the lens to the periphery of the lens, an aspheric lens has better curvature radius characteristics, and has the advantages of improving distortion and astigmatism. After the aspheric lens is used, the aberrations that occur during imaging can be eliminated as much as possible, thereby improving the imaging quality.
- At least one of the object side surface and the image side surface of each of the first lens, the second lens, the third lens, the fourth lens, and the fifth lens is an aspheric mirror surface.
- the object side surface and the image side surface of each of the first lens, the second lens, the third lens, the fourth lens, and the fifth lens are aspheric mirror surfaces.
- the number of lenses constituting the optical imaging lens can be changed to obtain the various results and advantages described in this specification.
- the optical imaging lens is not limited to including five lenses. If necessary, the optical imaging lens may also include other numbers of lenses.
- FIG. 2 shows a schematic structural diagram of an optical imaging lens according to Embodiment 1 of the present application.
- the optical imaging lens includes in order from the object side to the image side along the optical axis: a stop STO, a first lens E1, a second lens E2, a third lens E3, a fourth lens E4, and a fifth lens E5. And filter E6.
- the first lens E1 has a positive refractive power
- the object side surface S1 is a convex surface
- the image side surface S2 is a concave surface.
- the second lens E2 has a negative refractive power
- the object side surface S3 is a convex surface
- the image side surface S4 is a concave surface.
- the third lens E3 has a positive refractive power
- the object side surface S5 is a convex surface
- the image side surface S6 is a convex surface.
- the fourth lens E4 has a positive refractive power
- the object side surface S7 is a concave surface
- the image side surface S8 is a convex surface.
- the fifth lens E5 has a negative refractive power
- the object side surface S9 is a concave surface
- the image side surface S10 is a concave surface.
- the filter E6 has an object side surface S11 and an image side surface S12.
- the optical imaging lens has an imaging surface S13, and the light from the object sequentially passes through the surfaces S1 to S18 and finally forms an image on the imaging surface S13.
- Table 1 shows the basic parameter table of the optical imaging lens of Embodiment 1, wherein the units of the radius of curvature, thickness/distance, and focal length are all millimeters (mm).
- the value of the total effective focal length f of the optical imaging lens is 3.76 mm
- the value of the on-axis distance TTL from the object side S1 of the first lens E1 to the imaging surface S13 is 4.35 mm
- the effective pixel area on the imaging surface S13 The value of ImgH, which is half of the diagonal length, is 3.48 mm.
- the object side and image side of any one of the first lens E1 to the fifth lens E5 are aspherical surfaces, and the surface shape x of each aspherical lens can be defined by but not limited to the following aspherical formula :
- x is the distance vector height of the aspheric surface from the vertex of the aspheric surface when the height is h along the optical axis direction;
- k is the conic coefficient;
- Ai is the correction coefficient of the i-th order of the aspheric surface.
- Table 2 shows the high-order coefficients A 4 , A 6 , A 8 , A 10 , A 12 , A 14 , A 16 , A 18 and A 20 that can be used for each aspheric mirror surface S1 to S10 in Example 1. .
- FIG. 3A shows the axial chromatic aberration curve of the optical imaging lens of Embodiment 1, which indicates that light rays of different wavelengths deviate from the focal point after passing through the lens.
- 3B shows the astigmatism curve of the optical imaging lens of Example 1, which represents meridional field curvature and sagittal field curvature.
- FIG. 3C shows a distortion curve of the optical imaging lens of Embodiment 1, which represents the distortion magnitude values corresponding to different image heights.
- FIG. 3D shows the chromatic aberration curve of magnification of the optical imaging lens of Embodiment 1, which represents the deviation of different image heights on the imaging surface after light passes through the lens. According to FIGS. 3A to 3D, it can be seen that the optical imaging lens provided in Embodiment 1 can achieve good imaging quality.
- FIG. 4 shows a schematic structural diagram of an optical imaging lens according to Embodiment 2 of the present application.
- the optical imaging lens includes in order from the object side to the image side along the optical axis: a stop STO, a first lens E1, a second lens E2, a third lens E3, a fourth lens E4, and a fifth lens E5. And filter E6.
- the first lens E1 has a positive refractive power
- the object side surface S1 is a convex surface
- the image side surface S2 is a concave surface.
- the second lens E2 has a negative refractive power
- the object side surface S3 is a convex surface
- the image side surface S4 is a concave surface.
- the third lens E3 has a positive refractive power
- the object side surface S5 is a concave surface
- the image side surface S6 is a convex surface.
- the fourth lens E4 has a positive refractive power
- the object side surface S7 is a concave surface
- the image side surface S8 is a convex surface.
- the fifth lens E5 has a negative refractive power
- the object side surface S9 is a convex surface
- the image side surface S10 is a concave surface.
- the filter E6 has an object side surface S11 and an image side surface S12.
- the optical imaging lens has an imaging surface S13, and the light from the object sequentially passes through the surfaces S1 to S18 and finally forms an image on the imaging surface S13.
- the value of the total effective focal length f of the optical imaging lens is 3.76 mm
- the value of the on-axis distance TTL from the object side S1 of the first lens E1 to the imaging surface S13 is 4.35 mm
- the effective pixel area on the imaging surface S13 The value of ImgH, which is half the diagonal length, is 3.53 mm.
- Table 3 shows the basic parameter table of the optical imaging lens of Embodiment 2, wherein the units of the radius of curvature, thickness/distance, and focal length are all millimeters (mm).
- Table 4 shows the coefficients of higher-order terms that can be used for each aspheric mirror surface in Embodiment 2, where each aspheric surface type can be defined by the formula (1) given in Embodiment 1 above.
- FIG. 5A shows the on-axis chromatic aberration curve of the optical imaging lens of Embodiment 2, which indicates that light rays of different wavelengths deviate from the focal point after passing through the lens.
- FIG. 5B shows the astigmatism curve of the optical imaging lens of Example 2, which represents meridional field curvature and sagittal field curvature.
- FIG. 5C shows a distortion curve of the optical imaging lens of Embodiment 2, which represents the distortion magnitude values corresponding to different image heights.
- FIG. 5D shows the chromatic aberration curve of magnification of the optical imaging lens of Embodiment 2, which represents the deviation of different image heights on the imaging surface after light passes through the lens. It can be seen from FIGS. 5A to 5D that the optical imaging lens provided in Embodiment 2 can achieve good imaging quality.
- FIG. 6 shows a schematic structural diagram of an optical imaging lens according to Embodiment 3 of the present application.
- the optical imaging lens includes in order from the object side to the image side along the optical axis: a stop STO, a first lens E1, a second lens E2, a third lens E3, a fourth lens E4, and a fifth lens E5. And filter E6.
- the first lens E1 has a positive refractive power
- the object side surface S1 is a convex surface
- the image side surface S2 is a concave surface.
- the second lens E2 has a negative refractive power
- the object side surface S3 is a convex surface
- the image side surface S4 is a concave surface.
- the third lens E3 has a positive refractive power
- the object side surface S5 is a concave surface
- the image side surface S6 is a convex surface.
- the fourth lens E4 has a positive refractive power
- the object side surface S7 is a concave surface
- the image side surface S8 is a convex surface.
- the fifth lens E5 has a negative refractive power
- the object side surface S9 is a concave surface
- the image side surface S10 is a concave surface.
- the filter E6 has an object side surface S11 and an image side surface S12.
- the optical imaging lens has an imaging surface S13, and the light from the object sequentially passes through the surfaces S1 to S18 and finally forms an image on the imaging surface S13.
- the value of the total effective focal length f of the optical imaging lens is 3.76 mm
- the value of the on-axis distance TTL from the object side S1 of the first lens E1 to the imaging surface S13 is 4.32 mm
- the effective pixel area on the imaging surface S13 The value of ImgH, which is half of the diagonal length, is 3.54 mm.
- Table 5 shows the basic parameter table of the optical imaging lens of Embodiment 3, wherein the units of the radius of curvature, thickness/distance, and focal length are all millimeters (mm).
- Table 6 shows the coefficients of higher-order terms that can be used for each aspheric mirror surface in Embodiment 3, where each aspheric surface type can be defined by the formula (1) given in Embodiment 1 above.
- FIG. 7A shows the axial chromatic aberration curve of the optical imaging lens of Embodiment 3, which indicates that light rays of different wavelengths deviate from the focal point after passing through the lens.
- FIG. 7B shows the astigmatism curve of the optical imaging lens of Example 3, which represents meridional field curvature and sagittal field curvature.
- FIG. 7C shows a distortion curve of the optical imaging lens of Embodiment 3, which represents the distortion magnitude values corresponding to different image heights.
- FIG. 7D shows the chromatic aberration curve of magnification of the optical imaging lens of Example 3, which represents the deviation of different image heights on the imaging surface after light passes through the lens. It can be seen from FIGS. 7A to 7D that the optical imaging lens provided in Embodiment 3 can achieve good imaging quality.
- FIG. 8 shows a schematic structural diagram of an optical imaging lens according to Embodiment 4 of the present application.
- the optical imaging lens includes in order from the object side to the image side along the optical axis: a stop STO, a first lens E1, a second lens E2, a third lens E3, a fourth lens E4, and a fifth lens E5. And filter E6.
- the first lens E1 has a positive refractive power
- the object side surface S1 is a convex surface
- the image side surface S2 is a concave surface.
- the second lens E2 has a negative refractive power
- the object side surface S3 is a convex surface
- the image side surface S4 is a concave surface.
- the third lens E3 has a positive refractive power
- the object side surface S5 is a concave surface
- the image side surface S6 is a convex surface.
- the fourth lens E4 has a positive refractive power
- the object side surface S7 is a concave surface
- the image side surface S8 is a convex surface.
- the fifth lens E5 has a negative refractive power
- the object side surface S9 is a convex surface
- the image side surface S10 is a concave surface.
- the filter E6 has an object side surface S11 and an image side surface S12.
- the optical imaging lens has an imaging surface S13, and the light from the object sequentially passes through the surfaces S1 to S18 and finally forms an image on the imaging surface S13.
- the value of the total effective focal length f of the optical imaging lens is 3.75mm
- the value of the on-axis distance TTL from the object side S1 of the first lens E1 to the imaging surface S13 is 4.29mm
- the effective pixel area on the imaging surface S13 The value of ImgH, which is half of the diagonal length, is 3.54 mm.
- Table 7 shows the basic parameter table of the optical imaging lens of Embodiment 4, wherein the units of the radius of curvature, thickness/distance, and focal length are all millimeters (mm).
- Table 8 shows the coefficients of higher-order terms that can be used for each aspherical mirror surface in Embodiment 4, where each aspherical surface type can be defined by the formula (1) given in Embodiment 1 above.
- FIG. 9A shows an axial chromatic aberration curve of the optical imaging lens of Embodiment 4, which indicates that light rays of different wavelengths deviate from the focal point after passing through the lens.
- 9B shows the astigmatism curve of the optical imaging lens of Example 4, which represents meridional field curvature and sagittal field curvature.
- FIG. 9C shows a distortion curve of the optical imaging lens of Embodiment 4, which represents the distortion magnitude values corresponding to different image heights.
- FIG. 9D shows the chromatic aberration curve of magnification of the optical imaging lens of Embodiment 4, which represents the deviation of different image heights on the imaging surface after light passes through the lens. It can be seen from FIGS. 9A to 9D that the optical imaging lens provided in Embodiment 4 can achieve good imaging quality.
- FIG. 10 shows a schematic structural diagram of an optical imaging lens according to Embodiment 5 of the present application.
- the optical imaging lens includes in order from the object side to the image side along the optical axis: a stop STO, a first lens E1, a second lens E2, a third lens E3, a fourth lens E4, and a fifth lens E5. And filter E6.
- the first lens E1 has a positive refractive power
- the object side surface S1 is a convex surface
- the image side surface S2 is a concave surface.
- the second lens E2 has a negative refractive power
- the object side surface S3 is a convex surface
- the image side surface S4 is a concave surface.
- the third lens E3 has a positive refractive power
- the object side surface S5 is a concave surface
- the image side surface S6 is a convex surface.
- the fourth lens E4 has a positive refractive power
- the object side surface S7 is a concave surface
- the image side surface S8 is a convex surface.
- the fifth lens E5 has a negative refractive power
- the object side surface S9 is a convex surface
- the image side surface S10 is a concave surface.
- the filter E6 has an object side surface S11 and an image side surface S12.
- the optical imaging lens has an imaging surface S13, and the light from the object sequentially passes through the surfaces S1 to S18 and finally forms an image on the imaging surface S13.
- the value of the total effective focal length f of the optical imaging lens is 3.75mm
- the value of the on-axis distance TTL from the object side S1 of the first lens E1 to the imaging surface S13 is 4.29mm
- the effective pixel area on the imaging surface S13 The value of ImgH, which is half of the diagonal length, is 3.54 mm.
- Table 9 shows the basic parameter table of the optical imaging lens of Embodiment 5, wherein the units of the radius of curvature, thickness/distance, and focal length are all millimeters (mm).
- Table 10 shows the coefficients of higher-order terms that can be used for each aspheric mirror surface in Embodiment 5, where each aspheric surface type can be defined by the formula (1) given in Embodiment 1 above.
- FIG. 11A shows the axial chromatic aberration curve of the optical imaging lens of Embodiment 5, which indicates that light rays of different wavelengths deviate from the focal point after passing the lens.
- FIG. 11B shows the astigmatism curve of the optical imaging lens of Example 5, which represents meridional field curvature and sagittal field curvature.
- FIG. 11C shows a distortion curve of the optical imaging lens of Embodiment 5, which represents the distortion magnitude values corresponding to different image heights.
- FIG. 11D shows the chromatic aberration curve of magnification of the optical imaging lens of Example 5, which represents the deviation of different image heights on the imaging surface after light passes through the lens. According to FIGS. 11A to 11D, it can be seen that the optical imaging lens provided in Embodiment 5 can achieve good imaging quality.
- FIG. 12 shows a schematic structural diagram of an optical imaging lens according to Embodiment 6 of the present application.
- the optical imaging lens includes in order from the object side to the image side along the optical axis: a stop STO, a first lens E1, a second lens E2, a third lens E3, a fourth lens E4, and a fifth lens E5. And filter E6.
- the first lens E1 has a positive refractive power
- the object side surface S1 is a convex surface
- the image side surface S2 is a concave surface.
- the second lens E2 has a negative refractive power
- the object side surface S3 is a convex surface
- the image side surface S4 is a concave surface.
- the third lens E3 has a positive refractive power
- the object side surface S5 is a convex surface
- the image side surface S6 is a concave surface.
- the fourth lens E4 has a positive refractive power
- the object side surface S7 is a convex surface
- the image side surface S8 is a convex surface.
- the fifth lens E5 has a negative refractive power
- the object side surface S9 is a concave surface
- the image side surface S10 is a concave surface.
- the filter E6 has an object side surface S11 and an image side surface S12.
- the optical imaging lens has an imaging surface S13, and the light from the object sequentially passes through the surfaces S1 to S18 and finally forms an image on the imaging surface S13.
- Example 6 the value of the total effective focal length f of the optical imaging lens is 3.73mm, the value of the on-axis distance TTL from the object side S1 of the first lens E1 to the imaging surface S13 is 4.35mm, and the effective pixel area on the imaging surface S13 The value of ImgH, which is half of the diagonal length, is 3.48 mm.
- Table 11 shows the basic parameter table of the optical imaging lens of Embodiment 6, wherein the units of the radius of curvature, thickness/distance, and focal length are all millimeters (mm).
- Table 12 shows the coefficients of higher-order terms that can be used for each aspheric mirror surface in Embodiment 6, where each aspheric surface type can be defined by the formula (1) given in Embodiment 1 above.
- FIG. 13A shows the on-axis chromatic aberration curve of the optical imaging lens of Example 6, which indicates that light rays of different wavelengths deviate from the focal point after passing through the lens.
- FIG. 13B shows the astigmatism curve of the optical imaging lens of Example 6, which represents meridional field curvature and sagittal field curvature.
- FIG. 13C shows a distortion curve of the optical imaging lens of Embodiment 6, which represents the distortion magnitude values corresponding to different image heights.
- FIG. 13D shows the chromatic aberration curve of magnification of the optical imaging lens of Example 6, which represents the deviation of different image heights on the imaging surface after light passes through the lens. According to FIGS. 13A to 13D, it can be seen that the optical imaging lens provided in Embodiment 6 can achieve good imaging quality.
- the present application also provides an imaging device, which is provided with an electronic photosensitive element for imaging.
- the electronic photosensitive element may be a Charge Coupled Device (CCD) or a Complementary Metal Oxide Semiconductor (CMOS).
- CMOS Complementary Metal Oxide Semiconductor
- the imaging device may be an independent imaging device such as a digital camera, or an imaging module integrated on a mobile electronic device such as a mobile phone.
- the imaging device is equipped with the optical imaging lens described above.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Lenses (AREA)
Abstract
本申请公开了一种光学成像镜头,其沿光轴由物侧至像侧依序包括:具有正光焦度的第一透镜,其物侧面为凸面,像侧面为凹面;具有负光焦度的第二透镜;具有光焦度的第三透镜;具有正光焦度的第四透镜;以及具有负光焦度的第五透镜;光学成像镜头的边缘光线所在直线与光轴的交点至所述第一透镜的物侧面的轴上距离VP满足0mm<VP<1.5mm。
Description
相关申请的交叉引用
本申请要求于2019年10月29日提交于中国国家知识产权局(CNIPA)的专利申请号为201911035711.1的中国专利申请的优先权和权益,上述中国专利申请通过引用整体并入本文。
本申请涉及光学元件领域,更具体地,涉及一种光学成像镜头。
近年来,随着消费式电子产品的升级换代以及消费式电子产品上图像软件功能、视频软件功能的发展,市场对适用于便携式电子产品的光学成像镜头的需求逐渐增加。例如市场对全面屏手机的需求不断扩大。
全面屏手机中,屏幕占据的手机安装空间较大,使得手机的其余配件的安装空间收到压缩。前置摄像头的安装空间也越来越受到限制。为了满足小型化需求并满足成像要求,需要一种能够兼顾小型化和头部尺寸小、工艺性好、高像质的光学成像镜头。
发明内容
本申请提供了可适用于便携式电子产品的、可至少解决或部分解决现有技术中的上述至少一个缺点的光学成像镜头。
本申请提供了一种光学成像镜头,其沿光轴由物侧至像侧依序包括:具有正光焦度的第一透镜,其物侧面可为凸面,像侧面可为凹面;具有负光焦度的第二透镜;具有光焦度的第三透镜;具有正光焦度的第四透镜;以及具有负光焦度的第五透镜。
在一个实施方式中,光学成像镜头的边缘光线所在直线与光轴的交点至第一透镜的物侧面的轴上距离VP可满足0mm<VP<1.5mm。
在一个实施方式中,第四透镜的有效焦距f4与第一透镜的有效焦距f1可满足1.0<f4/f1<1.4。
在一个实施方式中,第二透镜的有效焦距f2、第五透镜的有效焦距f5以及光学成像镜头的总有效焦距f可满足1.4<(f5-f2)/f<1.8。
在一个实施方式中,第一透镜的物侧面至光学成像镜头的成像面在光轴上的距离TTL与成像面上有效像素区域的对角线长的一半ImgH可满足TTL/ImgH<1.3。
在一个实施方式中,光学成像镜头的最大视场角FOV可满足82°<FOV<87°。
在一个实施方式中,光学成像镜头的入瞳直径EPD与光学成像镜头的成像面上有效像素区域的对角线长的一半ImgH可满足0.4<EPD/ImgH<0.6。
在一个实施方式中,第一透镜的物侧面的曲率半径R1、第一透镜的像侧面的曲率半径R2、第二透镜的物侧面的曲率半径R3以及第二透镜的像侧面的曲率半径R4可满足1.9<(R3+R4)/(R1+R2)<2.6。
在一个实施方式中,光学成像镜头的总有效焦距f、第四透镜的像侧面的曲率半径R8以及第五透镜的像侧面的曲率半径R10可满足0.7<(R10-R8)/f<1.2。
在一个实施方式中,第三透镜与第四透镜在光轴上的间隔距离T34、第四透镜在光轴上的中心厚度CT4、第四透镜与第五透镜在光轴上的间隔距离T45以及第五透镜在光轴上的中心厚度CT5可满足1.0<(T34+CT4)/(T45+CT5)<1.3。
在一个实施方式中,第一透镜的物侧面的有效半口径DT11与光学成像镜头的成像面上有效像素区域的对角线长的一半ImgH可满足2.3<10×DT11/ImgH<2.8。
在一个实施方式中,第一透镜和第二透镜的组合焦距f12、第一透镜子在光轴上的中心厚度CT1以及第二透镜在光轴上的中心厚度CT2可满足6.0<f12/(CT1+CT2)<6.5。
在一个实施方式中,光学成像镜头的窗口直径DW可满足1.5mm<DW<2.0mm。
在一个实施方式中,第五透镜的物侧面和光轴的交点至第五透镜的物侧面的有效半径顶点的轴上距离SAG51与第五透镜的像侧面和光轴的交点至第五透镜的像侧面的有效半径顶点的轴上距离SAG52可满足0.7<SAG52/SAG51<0.9。
本申请采用了五片透镜,通过合理分配各透镜的光焦度、面型、各透镜的中心厚度以及各透镜之间的轴上间距等,使得上述光学成像镜头具有头部尺寸小、工艺性好、像质高等至少一个有益效果。
结合附图,通过以下非限制性实施方式的详细描述,本申请的其他特征、目的和优点将变得更加明显。在附图中:
图1示出了根据本申请的光学成像镜头的示意性光路图;
图2示出了根据本申请实施例1的光学成像镜头的结构示意图;图3A至图3D分别示出了实施例1的光学成像镜头的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图4示出了根据本申请实施例2的光学成像镜头的结构示意图;图5A至图5D分别示出了实施例2的光学成像镜头的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图6示出了根据本申请实施例3的光学成像镜头的结构示意图;图7A至图7D分别示出了实施例3的光学成像镜头的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图8示出了根据本申请实施例4的光学成像镜头的结构示意图;图9A至图9D分别示出了实施例4的光学成像镜头的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图10示出了根据本申请实施例5的光学成像镜头的结构示意图;图11A至图11D分别示出了实施例5的光学成像镜头的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图12示出了根据本申请实施例6的光学成像镜头的结构示意图;图13A至图13D分别示出了实施例6的光学成像镜头的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线。
为了更好地理解本申请,将参考附图对本申请的各个方面做出更详细的说明。应理解,这些详细说明只是对本申请的示例性实施方式的描述,而非以任何方式限制本申请的范围。在说明书全文中,相同的附图标号指代相同的元件。表述“和/或”包括相关联的所列项目中的一个或多个的任何和全部组合。
应注意,在本说明书中,第一、第二、第三等的表述仅用于将一个特征与另一个特征区分开来,而不表示对特征的任何限制。因此,在不背离本申请的教导的情况下,下文中讨论的第一透镜也可被称作第二透镜或第三透镜。
在附图中,为了便于说明,已稍微夸大了透镜的厚度、尺寸和形状。具体来讲,附图中所示的球面或非球面的形状通过示例的方式示出。即,球面或非球面的形状不限于附图中示出的球面或非球面的形状。附图仅为示例而并非严格按比例绘制。
在本文中,近轴区域是指光轴附近的区域。若透镜表面为凸面且未界定该凸面位置时, 则表示该透镜表面至少于近轴区域为凸面;若透镜表面为凹面且未界定该凹面位置时,则表示该透镜表面至少于近轴区域为凹面。每个透镜最靠近被摄物体的表面称为该透镜的物侧面,每个透镜最靠近成像面的表面称为该透镜的像侧面。
还应理解的是,用语“包括”、“包括有”、“具有”、“包含”和/或“包含有”,当在本说明书中使用时表示存在所陈述的特征、元件和/或部件,但不排除存在或附加有一个或多个其它特征、元件、部件和/或它们的组合。此外,当诸如“...中的至少一个”的表述出现在所列特征的列表之后时,修饰整个所列特征,而不是修饰列表中的单独元件。此外,当描述本申请的实施方式时,使用“可”表示“本申请的一个或多个实施方式”。并且,用语“示例性的”旨在指代示例或举例说明。
除非另外限定,否则本文中使用的所有用语(包括技术用语和科学用语)均具有与本申请所属领域普通技术人员的通常理解相同的含义。还应理解的是,用语(例如在常用词典中定义的用语)应被解释为具有与它们在相关技术的上下文中的含义一致的含义,并且将不被以理想化或过度正式意义解释,除非本文中明确如此限定。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本申请。
以下对本申请的特征、原理和其他方面进行详细描述。
根据本申请示例性实施方式的光学成像镜头可包括例如五片具有光焦度的透镜,即,第一透镜、第二透镜、第三透镜、第四透镜和第五透镜。这五片透镜沿着光轴由物侧至像侧依序排列。在第一透镜至第五透镜中,任意相邻两透镜之间均可具有空气间隔。
在示例性实施方式中,第一透镜具有正光焦度,其物侧面可为凸面,像侧面可为凹面;第二透镜具有负光焦度;第三透镜具有正光焦度或负光焦度;第四透镜具有正光焦度;第五透镜具有负光焦度。通过合理的控制镜头的各个组元的光焦度的正负分配和镜片面型曲率,来有效的平衡控制镜头的低阶像差。
在示例性实施方式中,参考图1,本申请的光学成像镜头可满足条件式0mm<VP<1.5mm,其中,VP是光学成像镜头的边缘光线L所在直线与光轴的交点至第一透镜E1的物侧面S1的轴上距离。图1中示意性示出了在一个子午面内的多条光路,不同的光路在第一透镜E1的物侧面S1的物侧方向具有不同的入射光线,其中,两条边缘光线的延长线与光轴交于同一点。更具体地,VP可满足1.01mm<VP<1.11mm。通过控制边缘光线L的延长线的交点在光学成像镜头的物侧端的深度,有利于限制光学成像镜头的开窗尺寸。本申请的光学成像镜头可应用于小开窗需求的设备。
在示例性实施方式中,本申请的光学成像镜头可满足条件式1.0<f4/f1<1.4,其中,f4是第四透镜的有效焦距,f1是第一透镜的有效焦距。更具体地,f4与f1可满足1.10<f4/f1<1.35。通过控制第四透镜的有效焦距和第一透镜的有效焦距的比值,有利于减小光学成像镜头的像差,同时有利于光学成像镜头具有比较平缓的光路,可减缓光线的偏折角,使得光线能够平缓输出,进而有利于降低光学成像镜头的敏感性。
在示例性实施方式中,本申请的光学成像镜头可满足条件式1.4<(f5-f2)/f<1.8,其中,f2是第二透镜的有效焦距,f5是第五透镜的有效焦距,f是光学成像镜头的总有效焦距。更具体地,f2、f5以及f可满足1.45<(f5-f2)/f<1.78。通过使第五透镜的有效焦距及第二透镜的有效焦距与总有效焦距匹配,可以使第五透镜和第二透镜具有合适的光焦度,有助于使光学成像镜头的像差平衡,同时可减小第五透镜对光线的综合偏折程度,此外还有助于减小内视场的局部模糊程度,提升光学成像镜头的成像性能。
在示例性实施方式中,本申请的光学成像镜头可满足条件式TTL/ImgH<1.3,其中,TTL是第一透镜的物侧面至光学成像镜头的成像面在光轴上的距离,ImgH是成像面上有效像素区域的对角线长的一半。更具体地,TTL与ImgH可满足1.20<TTL/ImgH<1.29。通过控制光学成像镜头的光学总长与像高的比值,有利于减小光学成像镜头的结构尺寸,使光学成像镜头具有超薄地小型化的特点。本申请的光学成像镜头适用于各类小型化的摄像设备中。
在示例性实施方式中,本申请的光学成像镜头可满足条件式82°<FOV<87°,其中,FOV是光学成像镜头的最大视场角。更具体地,FOV可满足83.9°<FOV<85.6°。通过控制光学成像镜头的最大视场角,有利于增大光学成像镜头的视野范围,使光学成像系统具有广阔的成像空间,同时有助于减小VP的数值,进而有利于使光学成像镜头的开窗直径减小。
在示例性实施方式中,本申请的光学成像镜头可满足条件式0.4<EPD/ImgH<0.6,其中,EPD是光学成像镜头的入瞳直径,ImgH是光学成像镜头的成像面上有效像素区域的对角线长的一半。更具体地,EPD与ImgH可满足0.48<EPD/ImgH<0.53。通过控制光学成像系统的入瞳直径与像高的比值,有利于提升光学成像镜头的相对孔径,进而增大光学成像镜头的通光量,有利于提升光学成像镜头的照度。
在示例性实施方式中,本申请的光学成像镜头可满足条件式1.9<(R3+R4)/(R1+R2)<2.6,其中,R1是第一透镜的物侧面的曲率半径,R2是第一透镜的像侧面的曲率半径,R3是第二透镜的物侧面的曲率半径,R4是第二透镜的像侧面的曲率半径。更具体地,R1、R2、R3以及R4可满足1.97<(R3+R4)/(R1+R2)<2.54。通过使第一透镜的两镜面的曲率半径与第二透镜的两镜面的曲率半径匹配,有利于更好的校正光学成像镜头的色差和球差,进而提升光学成像镜头的成像质量。
在示例性实施方式中,本申请的光学成像镜头可满足条件式0.7<(R10-R8)/f<1.2,其中,f是光学成像镜头的总有效焦距,R8是第四透镜的像侧面的曲率半径,R10是第五透镜的像侧面的曲率半径。更具体地,f、R8以及R10可满足0.8<(R10-R8)/f<1.1。通过控制第四透镜的像侧面的曲率半径及第五透镜的像侧面的曲率半径与总有效焦距匹配,有利于使第四透镜及第五透镜具有符合期望的光焦度,进而减小光线在第四透镜和第五透镜之间的偏折角度,并改善光学成像镜头的慧差,同时还可降低光学成像镜头的敏感性。
在示例性实施方式中,本申请的光学成像镜头可满足条件式1.0<(T34+CT4)/(T45+CT5)<1.3,其中,T34是第三透镜与第四透镜在光轴上的间隔距离,CT4是第四透镜在光轴上的中心厚度,T45是第四透镜与第五透镜在光轴上的间隔距离,CT5是第五透镜在光轴上的中心厚度。更具体地,T34、CT4、T45以及CT5可满足1.05<(T34+CT4)/(T45+CT5)<1.25。通过控制第三透镜的像侧面至第五透镜的像侧面中各镜面的位置关系,可有效地校正光学成像镜头的场曲,同时有利于提高光学成像镜头的工艺性,并且有利于降低光学成像镜头的敏感性,进而使得各透镜组装后易于校正场曲。
在示例性实施方式中,本申请的光学成像镜头可满足条件式2.3<10×DT11/ImgH<2.8,其中,DT11是第一透镜的物侧面的有效半口径,ImgH是光学成像镜头的成像面上有效像素区域的对角线长的一半。更具体地,DT11与ImgH可满足2.45<10×DT11/ImgH<2.65。通过控制第一透镜的物侧面的有效半口径与像高的比值,有利于控制光学成像镜头的物侧端的尺寸,并可以提升光学成像镜头的物空间的成像范围,进而使得光学成像镜头具有大像面的特点。示例性地,当光学成像镜头同时还满足TTL/ImgH<1.3时,有利于使光学成像镜头小型化并具有大像面,适于安装到小型化的摄像设备中。
在示例性实施方式中,本申请的光学成像镜头可满足条件式6.0<f12/(CT1+CT2)<6.5。 其中,f12是第一透镜和第二透镜的组合焦距,CT1是第一透镜子在光轴上的中心厚度,CT2是第二透镜在光轴上的中心厚度。更具体地,f12、CT1以及CT2可满足6.02<f12/(CT1+CT2)<6.18。通过使第一透镜和第二透镜二者各自的中心厚度及二者的组合焦距匹配,有利于降低第一透镜和第二透镜的敏感性,同时有利于校正光学成像镜头的色球差和像散。
在示例性实施方式中,参考图1,本申请的光学成像镜头可满足条件式1.5mm<DW<2.0mm,其中,DW是光学成像镜头的窗口直径。DW可以通过条件式DW=2×VP×tan(0.5×FOV)计算得出,其中,VP是光学成像镜头的边缘光线所在直线与光轴的交点至第一透镜E1的物侧面S1的轴上距离,FOV是光学成像镜头的最大视场角。更具体地,DW可满足1.90mm<DW<1.99mm。通过限制开窗的窗口直径,有利于减小光学成像镜头的头部尺寸。本实施例的光学成像镜头安装在设备后,设备需要较小的开窗就可获得较大的视野,例如安装在手机上可使手机屏幕的开口较小,增大手机的屏占比。
在示例性实施方式中,本申请的光学成像镜头可满足条件式0.7<SAG52/SAG51<0.9,其中,SAG51是第五透镜的物侧面和光轴的交点至第五透镜的物侧面的有效半径顶点的轴上距离,SAG52是第五透镜的像侧面和光轴的交点至第五透镜的像侧面的有效半径顶点的轴上距离。更具体地,SAG51与SAG52可满足0.76<SAG52/SAG51<0.89。通过控制第五透镜的两个侧面的矢高之比,可较好的控制第五透镜的面型,减小第五透镜的弯曲程度,进而提升第五透镜成型时的工艺性,此外还可改善光学成像镜头的局部模糊的状况。
在示例性实施方式中,上述光学成像镜头还可包括至少一个光阑。光阑可根据需要设置在适当位置处,例如,设置在物侧与第一透镜之间。可选地,上述光学成像镜头还可包括用于校正色彩偏差的滤光片和/或用于保护位于成像面上的感光元件的保护玻璃。
根据本申请的上述实施方式的光学成像镜头可采用多片镜片,例如上文所述的五片。通过合理分配各透镜的光焦度、面型、各透镜的中心厚度以及各透镜之间的轴上间距等,可有效地缩小成像镜头的体积、降低成像镜头的敏感度并提高成像镜头的可加工性,使得光学成像镜头更有利于生产加工并且可适用于便携式电子产品。同时,本申请的光学成像镜头还具备头部尺寸小、工艺性好、高像质等优良光学性能。
在本申请的实施方式中,各透镜的镜面中的至少一个为非球面镜面,即,第一透镜的物侧面至第五透镜的像侧面中的至少一个为非球面镜面。非球面透镜的特点是:从透镜中心到透镜周边,曲率是连续变化的。与从透镜中心到透镜周边具有恒定曲率的球面透镜不同,非球面透镜具有更佳的曲率半径特性,具有改善歪曲像差及改善像散像差的优点。采用非球面透镜后,能够尽可能地消除在成像的时候出现的像差,从而改善成像质量。可选地,第一透镜、第二透镜、第三透镜、第四透镜和第五透镜中的每个透镜的物侧面和像侧面中的至少一个为非球面镜面。可选地,第一透镜、第二透镜、第三透镜、第四透镜和第五透镜中的每个透镜的物侧面和像侧面均为非球面镜面。
然而,本领域的技术人员应当理解,在未背离本申请要求保护的技术方案的情况下,可改变构成光学成像镜头的透镜数量,来获得本说明书中描述的各个结果和优点。例如,虽然在实施方式中以五个透镜为例进行了描述,但是该光学成像镜头不限于包括五个透镜。如果需要,该光学成像镜头还可包括其它数量的透镜。
下面参照附图进一步描述可适用于上述实施方式的光学成像镜头的具体实施例。
实施例1
以下参照图2至图3D描述根据本申请实施例1的光学成像镜头。图2示出了根据本申请实施例1的光学成像镜头的结构示意图。
如图2所示,光学成像镜头沿光轴由物侧至像侧依序包括:光阑STO、第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5和滤光片E6。
第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有负光焦度,其物侧面S3为凸面,像侧面S4为凹面。第三透镜E3具有正光焦度,其物侧面S5为凸面,像侧面S6为凸面。第四透镜E4具有正光焦度,其物侧面S7为凹面,像侧面S8为凸面。第五透镜E5具有负光焦度,其物侧面S9为凹面,像侧面S10为凹面。滤光片E6具有物侧面S11和像侧面S12。光学成像镜头具有成像面S13,来自物体的光依序穿过各表面S1至S18并最终成像在成像面S13上。
表1示出了实施例1的光学成像镜头的基本参数表,其中,曲率半径、厚度/距离和焦距的单位均为毫米(mm)。
表1
在实施例1中,光学成像镜头的总有效焦距f的值是3.76mm,第一透镜E1的物侧面S1至成像面S13的轴上距离TTL的值是4.35mm,成像面S13上有效像素区域对角线长的一半ImgH的值是3.48mm。
在实施例1中,第一透镜E1至第五透镜E5中的任意一个透镜的物侧面和像侧面均为非球面,各非球面透镜的面型x可利用但不限于以下非球面公式进行限定:
其中,x为非球面沿光轴方向在高度为h的位置时,距非球面顶点的距离矢高;c为非球面的近轴曲率,c=1/R(即,近轴曲率c为上表1中曲率半径R的倒数);k为圆锥系数;Ai是非球面第i-th阶的修正系数。下表2给出了可用于实施例1中各非球面镜面S1至S10的高次项系数A
4、A
6、A
8、A
10、A
12、A
14、A
16、A
18和A
20。
面号 | A4 | A6 | A8 | A10 | A12 | A14 | A16 | A18 | A20 |
S1 | 1.5654E-02 | 1.1879E-01 | -9.3538E-01 | 4.8395E+00 | -1.5241E+01 | 2.9909E+01 | -3.5942E+01 | 2.4194E+01 | -7.0174E+00 |
S2 | -2.8477E-01 | -3.6288E-01 | 9.6175E+00 | -5.7412E+01 | 2.2200E+02 | -5.6098E+02 | 8.4800E+02 | -6.8556E+02 | 2.2702E+02 |
S3 | -2.9724E-01 | -2.5888E-01 | 1.0204E+01 | -6.0563E+01 | 2.2395E+02 | -5.4153E+02 | 7.9460E+02 | -6.3043E+02 | 2.0616E+02 |
S4 | -1.4076E-01 | 8.9454E-01 | -5.8018E+00 | 3.4871E+01 | -1.3947E+02 | 3.4691E+02 | -5.2221E+02 | 4.3776E+02 | -1.5702E+02 |
S5 | -3.6510E-01 | 1.4125E+00 | -1.3083E+01 | 7.5650E+01 | -2.8018E+02 | 6.5500E+02 | -9.3599E+02 | 7.4379E+02 | -2.5066E+02 |
S6 | -2.6628E-01 | 6.8883E-01 | -4.7603E+00 | 1.9819E+01 | -5.2257E+01 | 8.6783E+01 | -8.7981E+01 | 4.9656E+01 | -1.1851E+01 |
S7 | -2.2200E-02 | -1.0300E-02 | -2.4615E-01 | 6.3625E-01 | -8.0420E-01 | 5.7983E-01 | -2.4706E-01 | 5.9642E-02 | -6.4000E-03 |
S8 | -1.6087E-01 | 2.1605E-01 | -3.8322E-01 | 4.9884E-01 | -3.9469E-01 | 1.9234E-01 | -5.6960E-02 | 9.4240E-03 | -6.7000E-04 |
S9 | -3.5287E-01 | 1.6206E-01 | 5.9610E-03 | -2.9770E-02 | 1.2204E-02 | -2.5300E-03 | 2.9800E-04 | -1.9000E-05 | 4.8900E-07 |
S10 | -1.8040E-01 | 1.0427E-01 | -3.9030E-02 | 9.3210E-03 | -1.3100E-03 | 7.3400E-05 | 5.3200E-06 | -9.8000E-07 | 3.9800E-08 |
表2
图3A示出了实施例1的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由镜头后的汇聚焦点偏离。图3B示出了实施例1的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图3C示出了实施例1的光学成像镜头的畸变曲线,其表示不同像高对应的畸变大小值。图3D示出了实施例1的光学成像镜头的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图3A至图3D可知,实施例1所给出的光学成像镜头能够实现良好的成像品质。
实施例2
以下参照图4至图5D描述根据本申请实施例2的光学成像镜头。在本实施例及以下实施例中,为简洁起见,将省略部分与实施例1相似的描述。图4示出了根据本申请实施例2的光学成像镜头的结构示意图。
如图4所示,光学成像镜头沿光轴由物侧至像侧依序包括:光阑STO、第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5和滤光片E6。
第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有负光焦度,其物侧面S3为凸面,像侧面S4为凹面。第三透镜E3具有正光焦度,其物侧面S5为凹面,像侧面S6为凸面。第四透镜E4具有正光焦度,其物侧面S7为凹面,像侧面S8为凸面。第五透镜E5具有负光焦度,其物侧面S9为凸面,像侧面S10为凹面。滤光片E6具有物侧面S11和像侧面S12。光学成像镜头具有成像面S13,来自物体的光依序穿过各表面S1至S18并最终成像在成像面S13上。
在实施例2中,光学成像镜头的总有效焦距f的值是3.76mm,第一透镜E1的物侧面S1至成像面S13的轴上距离TTL的值是4.35mm,成像面S13上有效像素区域对角线长的一半ImgH的值是3.53mm。
表3示出了实施例2的光学成像镜头的基本参数表,其中,曲率半径、厚度/距离和焦距的单位均为毫米(mm)。表4示出了可用于实施例2中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
表3
面号 | A4 | A6 | A8 | A10 | A12 | A14 | A16 | A18 | A20 |
S1 | 1.4224E-02 | 1.6575E-01 | -1.3783E+00 | 7.1757E+00 | -2.2565E+01 | 4.3921E+01 | -5.1983E+01 | 3.4309E+01 | -9.7283E+00 |
S2 | -2.4927E-01 | -2.4999E-01 | 7.6261E+00 | -4.7305E+01 | 1.8591E+02 | -4.7118E+02 | 7.1333E+02 | -5.7906E+02 | 1.9299E+02 |
S3 | -2.6958E-01 | -1.6742E-01 | 8.7503E+00 | -5.3929E+01 | 2.0234E+02 | -4.8975E+02 | 7.1832E+02 | -5.7136E+02 | 1.8786E+02 |
S4 | -1.2528E-01 | 7.6095E-01 | -4.7565E+00 | 3.0153E+01 | -1.2674E+02 | 3.2819E+02 | -5.1131E+02 | 4.4205E+02 | -1.6300E+02 |
S5 | -3.5327E-01 | 1.4224E+00 | -1.3840E+01 | 8.2402E+01 | -3.1141E+02 | 7.3952E+02 | -1.0705E+03 | 8.6059E+02 | -2.9337E+02 |
S6 | -2.5811E-01 | 6.2810E-01 | -4.3378E+00 | 1.7974E+01 | -4.6988E+01 | 7.7256E+01 | -7.7492E+01 | 4.3291E+01 | -1.0236E+01 |
S7 | -3.6490E-02 | 6.1514E-02 | -5.4069E-01 | 1.2567E+00 | -1.5639E+00 | 1.1551E+00 | -5.0983E-01 | 1.2505E-01 | -1.3140E-02 |
S8 | -1.9666E-01 | 3.0469E-01 | -5.5365E-01 | 6.8527E-01 | -5.0362E-01 | 2.2562E-01 | -6.1320E-02 | 9.3460E-03 | -6.1000E-04 |
S9 | -3.8558E-01 | 1.8150E-01 | 1.4814E-02 | -4.3710E-02 | 1.8867E-02 | -4.2300E-03 | 5.4300E-04 | -3.8000E-05 | 1.1300E-06 |
S10 | -1.8300E-01 | 1.0002E-01 | -2.9960E-02 | 3.3730E-03 | 7.5600E-04 | -3.5000E-04 | 5.7700E-05 | -4.5000E-06 | 1.4200E-07 |
表4
图5A示出了实施例2的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由镜头后的汇聚焦点偏离。图5B示出了实施例2的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图5C示出了实施例2的光学成像镜头的畸变曲线,其表示不同像高对应的畸变大小值。图5D示出了实施例2的光学成像镜头的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图5A至图5D可知,实施例2所给出的光学成像镜头能够实现良好的成像品质。
实施例3
以下参照图6至图7D描述了根据本申请实施例3的光学成像镜头。图6示出了根据本申请实施例3的光学成像镜头的结构示意图。
如图6所示,光学成像镜头沿光轴由物侧至像侧依序包括:光阑STO、第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5和滤光片E6。
第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有负光焦度,其物侧面S3为凸面,像侧面S4为凹面。第三透镜E3具有正光焦度,其物侧面S5为凹面,像侧面S6为凸面。第四透镜E4具有正光焦度,其物侧面S7为凹面,像侧面S8为凸面。第五透镜E5具有负光焦度,其物侧面S9为凹面,像侧面S10为凹面。滤光片E6具有物侧面S11和像侧面S12。光学成像镜头具有成像面S13,来自物体的光依序穿过各表面S1至S18并最终成像在成像面S13上。
在实施例3中,光学成像镜头的总有效焦距f的值是3.76mm,第一透镜E1的物侧面S1至成像面S13的轴上距离TTL的值是4.32mm,成像面S13上有效像素区域对角线长的一半ImgH的值是3.54mm。
表5示出了实施例3的光学成像镜头的基本参数表,其中,曲率半径、厚度/距离和焦距的单位均为毫米(mm)。表6示出了可用于实施例3中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
表5
面号 | A4 | A6 | A8 | A10 | A12 | A14 | A16 | A18 | A20 |
S1 | 1.7835E-02 | 1.0313E-01 | -7.7317E-01 | 3.9133E+00 | -1.1976E+01 | 2.2674E+01 | -2.6143E+01 | 1.6835E+01 | -4.6983E+00 |
S2 | -2.3282E-01 | 2.2227E-02 | 3.2881E+00 | -1.8342E+01 | 6.7372E+01 | -1.7168E+02 | 2.6936E+02 | -2.2818E+02 | 7.9275E+01 |
S3 | -2.5403E-01 | 1.0151E-01 | 4.5478E+00 | -2.6252E+01 | 9.1573E+01 | -2.1547E+02 | 3.1789E+02 | -2.5862E+02 | 8.7543E+01 |
S4 | -1.1963E-01 | 8.6351E-01 | -5.9977E+00 | 3.7781E+01 | -1.5465E+02 | 3.9197E+02 | -5.9991E+02 | 5.1050E+02 | -1.8560E+02 |
S5 | -3.4006E-01 | 1.2964E+00 | -1.2866E+01 | 7.8338E+01 | -3.0301E+02 | 7.3535E+02 | -1.0865E+03 | 8.9103E+02 | -3.0981E+02 |
S6 | -2.6079E-01 | 6.4237E-01 | -4.4040E+00 | 1.8346E+01 | -4.8287E+01 | 7.9923E+01 | -8.0694E+01 | 4.5408E+01 | -1.0830E+01 |
S7 | -5.4720E-02 | 5.6605E-02 | -5.1573E-01 | 1.2322E+00 | -1.5561E+00 | 1.1570E+00 | -5.1183E-01 | 1.2571E-01 | -1.3250E-02 |
S8 | -2.2924E-01 | 3.6085E-01 | -6.4938E-01 | 8.0308E-01 | -5.9536E-01 | 2.6977E-01 | -7.4060E-02 | 1.1370E-02 | -7.5000E-04 |
S9 | -3.9311E-01 | 1.8748E-01 | 1.9016E-02 | -4.9020E-02 | 2.1157E-02 | -4.7600E-03 | 6.1400E-04 | -4.3000E-05 | 1.2900E-06 |
S10 | -1.7244E-01 | 8.5024E-02 | -1.7750E-02 | -2.5500E-03 | 2.5600E-03 | -7.0000E-04 | 9.8700E-05 | -7.2000E-06 | 2.1700E-07 |
表6
图7A示出了实施例3的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由镜头后的汇聚焦点偏离。图7B示出了实施例3的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图7C示出了实施例3的光学成像镜头的畸变曲线,其表示不同像高对应的畸变大小值。图7D示出了实施例3的光学成像镜头的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图7A至图7D可知,实施例3所给出的光学成像镜头能够实现良好的成像品质。
实施例4
以下参照图8至图9D描述了根据本申请实施例4的光学成像镜头。图8示出了根据本申请实施例4的光学成像镜头的结构示意图。
如图8所示,光学成像镜头沿光轴由物侧至像侧依序包括:光阑STO、第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5和滤光片E6。
第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有负光焦度,其物侧面S3为凸面,像侧面S4为凹面。第三透镜E3具有正光焦度,其物侧面S5为凹面,像侧面S6为凸面。第四透镜E4具有正光焦度,其物侧面S7为凹面,像侧面S8为凸面。第五透镜E5具有负光焦度,其物侧面S9为凸面,像侧面S10为凹面。滤光片E6具有物侧面S11和像侧面S12。光学成像镜头具有成像面S13,来自物体的光依序穿过各表面S1至S18并最终成像在成像面S13上。
在实施例4中,光学成像镜头的总有效焦距f的值是3.75mm,第一透镜E1的物侧面S1至成像面S13的轴上距离TTL的值是4.29mm,成像面S13上有效像素区域对角线长的一半ImgH的值是3.54mm。
表7示出了实施例4的光学成像镜头的基本参数表,其中,曲率半径、厚度/距离和焦距的单位均为毫米(mm)。表8示出了可用于实施例4中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
表7
面号 | A4 | A6 | A8 | A10 | A12 | A14 | A16 | A18 | A20 |
S1 | 2.0504E-02 | 7.4807E-02 | -5.0764E-01 | 2.5746E+00 | -7.7686E+00 | 1.4240E+01 | -1.5617E+01 | 9.3502E+00 | -2.4040E+00 |
S2 | -2.5420E-01 | 3.7943E-01 | -3.2133E-01 | 3.3133E+00 | -1.2402E+01 | 1.1866E+01 | 1.3686E+01 | -3.2768E+01 | 1.6854E+01 |
S3 | -2.8467E-01 | 3.8075E-01 | 2.4821E+00 | -1.5030E+01 | 5.1976E+01 | -1.2598E+02 | 1.9413E+02 | -1.6479E+02 | 5.8067E+01 |
S4 | -1.3355E-01 | 9.4571E-01 | -6.7164E+00 | 4.4826E+01 | -1.9239E+02 | 5.0731E+02 | -8.0289E+02 | 7.0288E+02 | -2.6175E+02 |
S5 | -3.5663E-01 | 1.3012E+00 | -1.3121E+01 | 8.1820E+01 | -3.2528E+02 | 8.1270E+02 | -1.2368E+03 | 1.0453E+03 | -3.7476E+02 |
S6 | -2.7591E-01 | 7.0748E-01 | -4.9507E+00 | 2.1043E+01 | -5.6487E+01 | 9.5491E+01 | -9.8565E+01 | 5.6795E+01 | -1.3910E+01 |
S7 | -7.6220E-02 | 1.4288E-01 | -8.9318E-01 | 2.0891E+00 | -2.6997E+00 | 2.0854E+00 | -9.6047E-01 | 2.4464E-01 | -2.6600E-02 |
S8 | -2.6903E-01 | 4.6974E-01 | -8.8125E-01 | 1.1238E+00 | -8.6631E-01 | 4.1029E-01 | -1.1795E-01 | 1.8961E-02 | -1.3100E-03 |
S9 | -4.0789E-01 | 2.1670E-01 | 1.4000E-03 | -4.5960E-02 | 2.1945E-02 | -5.2100E-03 | 6.9800E-04 | -5.1000E-05 | 1.5500E-06 |
S10 | -1.8482E-01 | 1.0131E-01 | -2.8530E-02 | 1.7190E-03 | 1.5060E-03 | -5.4000E-04 | 8.3800E-05 | -6.5000E-06 | 2.0000E-07 |
表8
图9A示出了实施例4的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由镜头后的汇聚焦点偏离。图9B示出了实施例4的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图9C示出了实施例4的光学成像镜头的畸变曲线,其表示不同像高对应的畸变大小值。图9D示出了实施例4的光学成像镜头的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图9A至图9D可知,实施例4所给出的光学成像镜头能够实现良好的成像品质。
实施例5
以下参照图10至图11D描述了根据本申请实施例5的光学成像镜头。图10示出了根据本申请实施例5的光学成像镜头的结构示意图。
如图10所示,光学成像镜头沿光轴由物侧至像侧依序包括:光阑STO、第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5和滤光片E6。
第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有负光焦度,其物侧面S3为凸面,像侧面S4为凹面。第三透镜E3具有正光焦度,其物侧面S5为凹面,像侧面S6为凸面。第四透镜E4具有正光焦度,其物侧面S7为凹面,像侧面S8为凸面。第五透镜E5具有负光焦度,其物侧面S9为凸面,像侧面S10为凹面。滤光片E6具有物侧面S11和像侧面S12。光学成像镜头具有成像面S13,来自物体的光依序穿过各表面S1至S18并最终成像在成像面S13上。
在实施例5中,光学成像镜头的总有效焦距f的值是3.75mm,第一透镜E1的物侧面S1至成像面S13的轴上距离TTL的值是4.29mm,成像面S13上有效像素区域对角线长的一半ImgH的值是3.54mm。
表9示出了实施例5的光学成像镜头的基本参数表,其中,曲率半径、厚度/距离和焦距的单位均为毫米(mm)。表10示出了可用于实施例5中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
表9
面号 | A4 | A6 | A8 | A10 | A12 | A14 | A16 | A18 | A20 |
S1 | 2.0707E-02 | 8.2572E-02 | -5.9867E-01 | 3.1063E+00 | -9.5526E+00 | 1.7802E+01 | -1.9792E+01 | 1.1979E+01 | -3.0902E+00 |
S2 | -2.5380E-01 | 3.0565E-01 | 4.6676E-01 | -1.0890E+00 | 1.7521E+00 | -1.4328E+01 | 4.1035E+01 | -4.7875E+01 | 2.0391E+01 |
S3 | -2.8407E-01 | 2.9331E-01 | 3.4027E+00 | -2.0128E+01 | 6.8916E+01 | -1.6003E+02 | 2.3517E+02 | -1.9270E+02 | 6.6493E+01 |
S4 | -1.3603E-01 | 9.6318E-01 | -6.8874E+00 | 4.6135E+01 | -1.9857E+02 | 5.2541E+02 | -8.3498E+02 | 7.3444E+02 | -2.7496E+02 |
S5 | -3.5776E-01 | 1.3225E+00 | -1.3560E+01 | 8.5639E+01 | -3.4397E+02 | 8.6686E+02 | -1.3292E+03 | 1.1311E+03 | -4.0808E+02 |
S6 | -2.7944E-01 | 7.5341E-01 | -5.2853E+00 | 2.2480E+01 | -6.0393E+01 | 1.0224E+02 | -1.0575E+02 | 6.1110E+01 | -1.5022E+01 |
S7 | -8.3440E-02 | 1.3805E-01 | -8.3191E-01 | 1.9550E+00 | -2.5536E+00 | 1.9972E+00 | -9.3251E-01 | 2.4125E-01 | -2.6710E-02 |
S8 | -2.7909E-01 | 4.7649E-01 | -8.6258E-01 | 1.0898E+00 | -8.4109E-01 | 4.0047E-01 | -1.1606E-01 | 1.8851E-02 | -1.3200E-03 |
S9 | -4.1943E-01 | 2.5619E-01 | -3.9350E-02 | -2.3980E-02 | 1.4843E-02 | -3.7800E-03 | 5.2200E-04 | -3.8000E-05 | 1.1800E-06 |
S10 | -1.7799E-01 | 9.8454E-02 | -2.8280E-02 | 1.9930E-03 | 1.3600E-03 | -5.0000E-04 | 7.9100E-05 | -6.1000E-06 | 1.9100E-07 |
表10
图11A示出了实施例5的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由 镜头后的汇聚焦点偏离。图11B示出了实施例5的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图11C示出了实施例5的光学成像镜头的畸变曲线,其表示不同像高对应的畸变大小值。图11D示出了实施例5的光学成像镜头的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图11A至图11D可知,实施例5所给出的光学成像镜头能够实现良好的成像品质。
实施例6
以下参照图12至图13D描述了根据本申请实施例6的光学成像镜头。图12示出了根据本申请实施例6的光学成像镜头的结构示意图。
如图12所示,光学成像镜头沿光轴由物侧至像侧依序包括:光阑STO、第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5和滤光片E6。
第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有负光焦度,其物侧面S3为凸面,像侧面S4为凹面。第三透镜E3具有正光焦度,其物侧面S5为凸面,像侧面S6为凹面。第四透镜E4具有正光焦度,其物侧面S7为凸面,像侧面S8为凸面。第五透镜E5具有负光焦度,其物侧面S9为凹面,像侧面S10为凹面。滤光片E6具有物侧面S11和像侧面S12。光学成像镜头具有成像面S13,来自物体的光依序穿过各表面S1至S18并最终成像在成像面S13上。
在实施例6中,光学成像镜头的总有效焦距f的值是3.73mm,第一透镜E1的物侧面S1至成像面S13的轴上距离TTL的值是4.35mm,成像面S13上有效像素区域对角线长的一半ImgH的值是3.48mm。
表11示出了实施例6的光学成像镜头的基本参数表,其中,曲率半径、厚度/距离和焦距的单位均为毫米(mm)。表12示出了可用于实施例6中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
表11
面号 | A4 | A6 | A8 | A10 | A12 | A14 | A16 | A18 | A20 |
S1 | 4.2000E-03 | 1.4620E-01 | -7.6616E-01 | 2.5471E+00 | -4.9645E+00 | 5.5305E+00 | -3.2435E+00 | 7.5679E-01 | -2.2300E-03 |
S2 | -2.5741E-01 | -1.1862E-01 | 6.8390E+00 | -4.2265E+01 | 1.5633E+02 | -3.6663E+02 | 5.1383E+02 | -3.8736E+02 | 1.2020E+02 |
S3 | -3.0259E-01 | 5.0700E-04 | 8.3680E+00 | -5.2822E+01 | 1.8977E+02 | -4.2821E+02 | 5.8255E+02 | -4.3089E+02 | 1.3228E+02 |
S4 | -1.6134E-01 | 2.6231E-01 | 7.7203E-01 | -2.6522E+00 | -6.4196E+00 | 4.6003E+01 | -9.9323E+01 | 1.0046E+02 | -4.0309E+01 |
S5 | -3.8163E-01 | 1.9394E+00 | -1.5850E+01 | 8.0421E+01 | -2.5918E+02 | 5.2860E+02 | -6.6218E+02 | 4.6449E+02 | -1.3906E+02 |
S6 | -2.4219E-01 | 4.5728E-01 | -2.8535E+00 | 1.1168E+01 | -2.8004E+01 | 4.4436E+01 | -4.3132E+01 | 2.3367E+01 | -5.3638E+00 |
S7 | -2.7580E-02 | -8.8460E-02 | -3.1040E-02 | 1.2453E-01 | -4.0910E-02 | -1.2382E-01 | 1.3877E-01 | -5.3830E-02 | 7.2790E-03 |
S8 | 3.1821E-02 | -1.3103E-01 | 1.4982E-01 | -1.1894E-01 | 8.2432E-02 | -3.9480E-02 | 1.1045E-02 | -1.6000E-03 | 9.1800E-05 |
S9 | -4.0623E-01 | 1.8084E-01 | 5.4543E-02 | -7.9260E-02 | 3.3939E-02 | -7.8900E-03 | 1.0670E-03 | -7.9000E-05 | 2.5100E-06 |
S10 | -2.3070E-01 | 1.4581E-01 | -5.8460E-02 | 1.6138E-02 | -3.1400E-03 | 4.1500E-04 | -3.5000E-05 | 1.7600E-06 | -4.1000E-08 |
表12
图13A示出了实施例6的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由镜头后的汇聚焦点偏离。图13B示出了实施例6的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图13C示出了实施例6的光学成像镜头的畸变曲线,其表示不同像高对应的畸变大小值。图13D示出了实施例6的光学成像镜头的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图13A至图13D可知,实施例6所给出的光学成像镜头能够实现良好的成像品质。
综上,实施例1至实施例6分别满足表13中所示的关系。
条件式\实施例 | 1 | 2 | 3 | 4 | 5 | 6 |
VP(mm) | 1.06 | 1.06 | 1.06 | 1.05 | 1.04 | 1.10 |
f4/f1 | 1.15 | 1.13 | 1.26 | 1.31 | 1.31 | 1.24 |
(f5-f2)/f | 1.72 | 1.76 | 1.74 | 1.73 | 1.73 | 1.48 |
TTL/ImgH | 1.25 | 1.23 | 1.22 | 1.21 | 1.21 | 1.25 |
FOV(°) | 84.0 | 85.0 | 85.2 | 85.3 | 85.2 | 84.1 |
EPD/ImgH | 0.51 | 0.50 | 0.50 | 0.49 | 0.49 | 0.52 |
(R3+R4)/(R1+R2) | 1.98 | 2.06 | 2.25 | 2.52 | 2.53 | 2.20 |
(R10-R8)/f | 0.89 | 0.88 | 0.96 | 0.91 | 0.90 | 1.03 |
(T34+CT4)/(T45+CT5) | 1.17 | 1.22 | 1.10 | 1.07 | 1.06 | 1.08 |
10×DT11/ImgH | 2.54 | 2.50 | 2.50 | 2.49 | 2.47 | 2.63 |
f12/(CT1+CT2) | 6.10 | 6.15 | 6.04 | 6.11 | 6.14 | 6.06 |
SAG52/SAG51 | 0.77 | 0.82 | 0.85 | 0.86 | 0.86 | 0.88 |
DW(mm) | 1.92 | 1.95 | 1.95 | 1.94 | 1.91 | 1.98 |
表13
本申请还提供一种成像装置,其设置有电子感光元件以成像,其电子感光元件可以是感光耦合元件(Charge Coupled Device,CCD)或互补性氧化金属半导体元件(Complementary Metal Oxide Semiconductor,CMOS)。成像装置可以是诸如数码相机的独立成像设备,也可以是集成在诸如手机等移动电子设备上的成像模块。该成像装置装配有以上描述的光学成像镜头。
以上描述仅为本申请的较佳实施例以及对所运用技术原理的说明。本领域技术人员应当理解,本申请中所涉及的保护范围,并不限于上述技术特征的特定组合而成的技术方案,同时也应涵盖在不脱离本申请构思的情况下,由上述技术特征或其等同特征进行任意组合而形成的其它技术方案。例如上述特征与本申请中公开的(但不限于)具有类似功能的技术特征进行互相替换而形成的技术方案。
Claims (26)
- 光学成像镜头,其特征在于,沿光轴由物侧至像侧依序包括:具有正光焦度的第一透镜,其物侧面为凸面,像侧面为凹面;具有负光焦度的第二透镜;具有光焦度的第三透镜;具有正光焦度的第四透镜;以及具有负光焦度的第五透镜;所述光学成像镜头的边缘光线所在直线与所述光轴的交点至所述第一透镜的物侧面的轴上距离VP满足0mm<VP<1.5mm。
- 根据权利要求1所述的光学成像镜头,其特征在于,所述第四透镜的有效焦距f4与所述第一透镜的有效焦距f1满足1.0<f4/f1<1.4。
- 根据权利要求1所述的光学成像镜头,其特征在于,所述第二透镜的有效焦距f2、所述第五透镜的有效焦距f5以及所述光学成像镜头的总有效焦距f满足1.4<(f5-f2)/f<1.8。
- 根据权利要求1所述的光学成像镜头,其特征在于,所述第一透镜的物侧面至所述光学成像镜头的成像面在所述光轴上的距离TTL与所述成像面上有效像素区域的对角线长的一半ImgH满足TTL/ImgH<1.3。
- 根据权利要求1所述的光学成像镜头,其特征在于,所述光学成像镜头的最大视场角FOV满足82°<FOV<87°。
- 根据权利要求1所述的光学成像镜头,其特征在于,所述光学成像镜头的入瞳直径EPD与所述光学成像镜头的成像面上有效像素区域的对角线长的一半ImgH满足0.4<EPD/ImgH<0.6。
- 根据权利要求1所述的光学成像镜头,其特征在于,所述第一透镜的物侧面的曲率半径R1、所述第一透镜的像侧面的曲率半径R2、所述第二透镜的物侧面的曲率半径R3以及所述第二透镜的像侧面的曲率半径R4满足1.9<(R3+R4)/(R1+R2)<2.6。
- 根据权利要求1所述的光学成像镜头,其特征在于,所述光学成像镜头的总有效焦距f、所述第四透镜的像侧面的曲率半径R8以及所述第五透镜的像侧面的曲率半径R10满足0.7<(R10-R8)/f<1.2。
- 根据权利要求1所述的光学成像镜头,其特征在于,所述第三透镜与所述第四透镜在所述光轴上的间隔距离T34、所述第四透镜在所述光轴上的中心厚度CT4、所述第四透镜与所述第五透镜在所述光轴上的间隔距离T45以及所述第五透镜在所述光轴上的中心厚度CT5满足1.0<(T34+CT4)/(T45+CT5)<1.3。
- 根据权利要求1所述的光学成像镜头,其特征在于,所述第一透镜的物侧面的有效半口径DT11与所述光学成像镜头的成像面上有效像素区域的对角线长的一半ImgH满足2.3<10×DT11/ImgH<2.8。
- 根据权利要求1所述的光学成像镜头,其特征在于,所述第一透镜和所述第二透镜的组合焦距f12、所述第一透镜子在所述光轴上的中心厚度CT1以及所述第二透镜在所述光轴上的中心厚度CT2满足6.0<f12/(CT1+CT2)<6.5。
- 根据权利要求1所述的光学成像镜头,其特征在于,所述光学成像镜头的窗口直径DW满足1.5mm<DW<2.0mm。
- 根据权利要求1至12中任一项所述的光学成像镜头,其特征在于,所述第五透镜的物侧面和所述光轴的交点至所述第五透镜的物侧面的有效半径顶点的轴上距离SAG51与所述第五透镜的像侧面和所述光轴的交点至所述第五透镜的像侧面的有效半径顶点的轴上距离SAG52满足0.7<SAG52/SAG51<0.9。
- 光学成像镜头,其特征在于,沿光轴由物侧至像侧依序包括:具有正光焦度的第一透镜,其物侧面为凸面,像侧面为凹面;具有负光焦度的第二透镜;具有光焦度的第三透镜;具有正光焦度的第四透镜;以及具有负光焦度的第五透镜;所述光学成像镜头的窗口直径DW满足1.5mm<DW<2.0mm。
- 根据权利要求14所述的光学成像镜头,其特征在于,所述第四透镜的有效焦距f4与所述第一透镜的有效焦距f1满足1.0<f4/f1<1.4。
- 根据权利要求14所述的光学成像镜头,其特征在于,所述第二透镜的有效焦距f2、所述第五透镜的有效焦距f5以及所述光学成像镜头的总有效焦距f满足1.4<(f5-f2)/f<1.8。
- 根据权利要求14所述的光学成像镜头,其特征在于,所述第一透镜的物侧面至所述光学成像镜头的成像面在所述光轴上的距离TTL与所述成像面上有效像素区域的对角线长的一半ImgH满足TTL/ImgH<1.3。
- 根据权利要求14所述的光学成像镜头,其特征在于,所述光学成像镜头的最大视场角FOV满足82°<FOV<87°。
- 根据权利要求14所述的光学成像镜头,其特征在于,所述光学成像镜头的入瞳直径EPD与所述光学成像镜头的成像面上有效像素区域的对角线长的一半ImgH满足0.4<EPD/ImgH<0.6。
- 根据权利要求14所述的光学成像镜头,其特征在于,所述第一透镜的物侧面的曲率半径R1、所述第一透镜的像侧面的曲率半径R2、所述第二透镜的物侧面的曲率半径R3以及所述第二透镜的像侧面的曲率半径R4满足1.9<(R3+R4)/(R1+R2)<2.6。
- 根据权利要求14所述的光学成像镜头,其特征在于,所述光学成像镜头的总有效焦距f、所述第四透镜的像侧面的曲率半径R8以及所述第五透镜的像侧面的曲率半径R10满足0.7<(R10-R8)/f<1.2。
- 根据权利要求14所述的光学成像镜头,其特征在于,所述第三透镜与所述第四透镜在所述光轴上的间隔距离T34、所述第四透镜在所述光轴上的中心厚度CT4、所述第四透镜与所述第五透镜在所述光轴上的间隔距离T45以及所述第五透镜在所述光轴上的中心厚度CT5满足1.0<(T34+CT4)/(T45+CT5)<1.3。
- 根据权利要求14所述的光学成像镜头,其特征在于,所述第一透镜的物侧面的有效半口径DT11与所述光学成像镜头的成像面上有效像素区域的对角线长的一半ImgH满足2.3<10×DT11/ImgH<2.8。
- 根据权利要求14所述的光学成像镜头,其特征在于,所述第一透镜和所述第二透镜的组合焦距f12、所述第一透镜子在所述光轴上的中心厚度CT1以及所述第二透镜在所述光轴上的中心厚度CT2满足6.0<f12/(CT1+CT2)<6.5。
- 根据权利要求24所述的光学成像镜头,其特征在于,所述光学成像镜头的边缘光线所在直线与所述光轴的交点至所述第一透镜的物侧面的轴上距离VP满足0mm<VP<1.5mm。
- 根据权利要求14至25中任一项所述的光学成像镜头,其特征在于,所述第五透镜的物侧面和所述光轴的交点至所述第五透镜的物侧面的有效半径顶点的轴上距离SAG51与所述第五透镜的像侧面和所述光轴的交点至所述第五透镜的像侧面的有效半径顶点的轴上距离SAG52满足0.7<SAG52/SAG51<0.9。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/641,108 US20220334353A1 (en) | 2019-10-29 | 2020-09-03 | Optical Imaging Lens Assembly |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911035711.1A CN110596866B (zh) | 2019-10-29 | 2019-10-29 | 光学成像镜头 |
CN201911035711.1 | 2019-10-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021082728A1 true WO2021082728A1 (zh) | 2021-05-06 |
Family
ID=68851877
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/113227 WO2021082728A1 (zh) | 2019-10-29 | 2020-09-03 | 光学成像镜头 |
Country Status (3)
Country | Link |
---|---|
US (1) | US20220334353A1 (zh) |
CN (1) | CN110596866B (zh) |
WO (1) | WO2021082728A1 (zh) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110596866B (zh) * | 2019-10-29 | 2024-08-20 | 浙江舜宇光学有限公司 | 光学成像镜头 |
CN111198432B (zh) * | 2020-02-24 | 2021-07-30 | 诚瑞光学(常州)股份有限公司 | 摄像光学镜头 |
CN111736321B (zh) * | 2020-08-26 | 2020-12-22 | 诚瑞光学(常州)股份有限公司 | 摄像光学镜头 |
CN111929822B (zh) * | 2020-09-03 | 2021-04-23 | 诚瑞光学(苏州)有限公司 | 摄像光学镜头 |
CN113759520A (zh) * | 2021-09-24 | 2021-12-07 | 诚瑞光学(苏州)有限公司 | 摄像光学镜头 |
CN116243460B (zh) * | 2022-12-19 | 2024-07-09 | 湖北华鑫光电有限公司 | 一种5p 5000万像素镜头 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014160158A (ja) * | 2013-02-20 | 2014-09-04 | Konica Minolta Inc | 撮像レンズ、撮像装置及び携帯端末 |
CN107870407A (zh) * | 2016-09-22 | 2018-04-03 | 新巨科技股份有限公司 | 五片式成像镜片组 |
CN109358414A (zh) * | 2018-12-24 | 2019-02-19 | 浙江舜宇光学有限公司 | 光学成像系统 |
CN209297020U (zh) * | 2018-12-27 | 2019-08-23 | 南昌欧菲精密光学制品有限公司 | 成像组件、摄像模组及移动终端 |
CN110596866A (zh) * | 2019-10-29 | 2019-12-20 | 浙江舜宇光学有限公司 | 光学成像镜头 |
CN111679406A (zh) * | 2020-07-17 | 2020-09-18 | 浙江舜宇光学有限公司 | 光学成像镜头 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI454726B (zh) * | 2012-10-01 | 2014-10-01 | Sintai Optical Shenzhen Co Ltd | 成像鏡頭 |
CN206115010U (zh) * | 2016-09-29 | 2017-04-19 | 广东旭业光电科技股份有限公司 | 一种摄影镜头以及摄影设备 |
CN107608057B (zh) * | 2017-11-07 | 2023-12-01 | 浙江舜宇光学有限公司 | 摄像透镜组 |
CN207336907U (zh) * | 2017-11-08 | 2018-05-08 | 浙江舜宇光学有限公司 | 光学镜头 |
CN108802973B (zh) * | 2018-08-31 | 2024-06-21 | 浙江舜宇光学有限公司 | 影像镜头 |
CN113835198B (zh) * | 2018-12-11 | 2022-09-02 | 浙江舜宇光学有限公司 | 光学成像镜头 |
CN110542998B (zh) * | 2019-10-18 | 2024-08-20 | 浙江舜宇光学有限公司 | 光学成像镜头 |
CN211086763U (zh) * | 2019-10-29 | 2020-07-24 | 浙江舜宇光学有限公司 | 光学成像镜头 |
-
2019
- 2019-10-29 CN CN201911035711.1A patent/CN110596866B/zh active Active
-
2020
- 2020-09-03 US US17/641,108 patent/US20220334353A1/en active Pending
- 2020-09-03 WO PCT/CN2020/113227 patent/WO2021082728A1/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014160158A (ja) * | 2013-02-20 | 2014-09-04 | Konica Minolta Inc | 撮像レンズ、撮像装置及び携帯端末 |
CN107870407A (zh) * | 2016-09-22 | 2018-04-03 | 新巨科技股份有限公司 | 五片式成像镜片组 |
CN109358414A (zh) * | 2018-12-24 | 2019-02-19 | 浙江舜宇光学有限公司 | 光学成像系统 |
CN209297020U (zh) * | 2018-12-27 | 2019-08-23 | 南昌欧菲精密光学制品有限公司 | 成像组件、摄像模组及移动终端 |
CN110596866A (zh) * | 2019-10-29 | 2019-12-20 | 浙江舜宇光学有限公司 | 光学成像镜头 |
CN111679406A (zh) * | 2020-07-17 | 2020-09-18 | 浙江舜宇光学有限公司 | 光学成像镜头 |
Also Published As
Publication number | Publication date |
---|---|
CN110596866B (zh) | 2024-08-20 |
US20220334353A1 (en) | 2022-10-20 |
CN110596866A (zh) | 2019-12-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020093725A1 (zh) | 摄像光学系统 | |
WO2019223263A1 (zh) | 摄像镜头 | |
WO2020019794A1 (zh) | 光学成像镜头 | |
WO2020007080A1 (zh) | 摄像镜头 | |
WO2020001066A1 (zh) | 摄像镜头 | |
WO2020113985A1 (zh) | 光学成像镜片组 | |
WO2021068753A1 (zh) | 光学成像系统 | |
WO2020186759A1 (zh) | 光学成像镜头 | |
WO2020119146A1 (zh) | 光学成像镜头 | |
WO2020119171A1 (zh) | 光学成像镜头 | |
WO2020088022A1 (zh) | 光学成像镜片组 | |
WO2020164236A1 (zh) | 光学成像镜头 | |
WO2020010879A1 (zh) | 光学成像系统 | |
WO2020007069A1 (zh) | 光学成像镜片组 | |
WO2020134026A1 (zh) | 光学成像系统 | |
WO2020191951A1 (zh) | 光学成像镜头 | |
WO2020007081A1 (zh) | 光学成像镜头 | |
WO2021082728A1 (zh) | 光学成像镜头 | |
WO2020151251A1 (zh) | 光学透镜组 | |
WO2020088024A1 (zh) | 光学成像镜头 | |
WO2020134129A1 (zh) | 光学成像系统 | |
WO2020001119A1 (zh) | 摄像镜头 | |
WO2020024635A1 (zh) | 光学成像镜头 | |
WO2020007068A1 (zh) | 光学成像系统 | |
WO2020042765A1 (zh) | 影像镜头 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20883158 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20883158 Country of ref document: EP Kind code of ref document: A1 |