[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

CN105525273B - 一种不锈钢用碳化硅阻氢渗透涂层及其制备方法 - Google Patents

一种不锈钢用碳化硅阻氢渗透涂层及其制备方法 Download PDF

Info

Publication number
CN105525273B
CN105525273B CN201510872933.4A CN201510872933A CN105525273B CN 105525273 B CN105525273 B CN 105525273B CN 201510872933 A CN201510872933 A CN 201510872933A CN 105525273 B CN105525273 B CN 105525273B
Authority
CN
China
Prior art keywords
layer
hydrogen
sputtering
coating
sic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510872933.4A
Other languages
English (en)
Other versions
CN105525273A (zh
Inventor
张秀廷
刘雪莲
邓宁
陈步亮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BEIJING TRX SOLAR TECHNOLOGY Co Ltd
Original Assignee
BEIJING TRX SOLAR TECHNOLOGY Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BEIJING TRX SOLAR TECHNOLOGY Co Ltd filed Critical BEIJING TRX SOLAR TECHNOLOGY Co Ltd
Priority to CN201510872933.4A priority Critical patent/CN105525273B/zh
Publication of CN105525273A publication Critical patent/CN105525273A/zh
Application granted granted Critical
Publication of CN105525273B publication Critical patent/CN105525273B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/32Carbides
    • C23C16/325Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • C23C14/165Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/322Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/341Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one carbide layer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明提供一种不锈钢用碳化硅阻氢渗透涂层,包括从不锈钢基体向上逐层布置的过渡层、储H缓冲层、阻氢层;所述过渡层由金属钛层和TiN层组成,所述储H缓冲层为非晶态的SixC1‑x渐变层,1>x≥0.5,所述阻氢层为SiC。本发明还提出所述碳化硅阻氢渗透涂层的制备方法。本发明提出用储H缓冲层与阻H涂层相结合,制备基体/过渡层/储H缓冲层/SiC复合结构的防氢渗透性涂层。在抗辐照的阻H涂层SiC薄膜基础上,采用气相沉积技术制备储H缓冲层SixC1‑x渐变层,利用SixC1‑x渐变层中存在的大量捕捉氢能力极强的C‑和Si‑悬键,优化基体/过渡层/储H缓冲层/SiC复合结构的防氢渗透性能。

Description

一种不锈钢用碳化硅阻氢渗透涂层及其制备方法
技术领域
本发明属于对金属材料的镀覆领域,具体涉及一种溅射有阻氢层的金属材料、及其制备方法。
背景技术
近年来,针对各种基体材料开发氢渗透阻挡涂层又称阻H涂层,试图阻止氢及其同位素的渗透泄漏,国内外已开展了大量研究,主要是开发各种阻氢复合材料和涂层技术。目前常用阻H涂层主要分为以下几类。
氧化物涂层:具有熔点高、化学性质稳定、制备工艺简单及阻H性能良好等优点,是研究最早的防氢渗透涂层。通过基底表面直接氧化或者涂层氧化即可生成,包括Al2O3,Cr2O3,Y2O3,SiO2,Er2O3等。通常单层氧化物阻H涂层多为Cr2O3,Al2O3,而SiO2常和其它涂层复合使用。Y2O3涂层氚的渗透率能下降两个数量级,且多与其它涂层复合使用。日本原子能研究所采用化学密实化涂层技术(CDC)在316不锈钢表面制备Cr2O3-SiO2陶瓷阻氢涂层,氚渗透阻挡因子(PRF)大于100(Takayuki Terai,Toshiaki Yoneoka,Himhisa Tanaka,Tritiumpermeation through austenitic stainless steel with chemically densifiedcoating as a tritium permeation barrier,Journal of Nuclear Materials,1994:212/215:976;)。Levchuk等利用PVD法在Eurofer不锈钢表面获得了厚度为微米级的a-Al2O3涂层结果表明在700~800℃时涂层的PRF为1000(Serra E,Calza Bini A,Cosoli G,Hydrogen permeation measurements on alumina,Journal of the American CeramicSociety,2005,88(1):15)。北京有色金属研究总院李帅等利用MOCVD法在316L不锈钢上分别制备了Al2O3、Y2O3和Cr2O3阻H涂层(无机材料学报,2013年7期李帅,何迪,刘晓鹏,张超,王树茂,于庆河,邱昊辰,蒋利军,316L不锈钢基体氧化铝涂层的氢渗透性能,无机材料学报,2013,28(7)775;),阻氢性能优异。其中Al2O3涂层在600~700℃时对316L不锈钢的氢渗透阻挡因子(PRF)为59~119。Y2O3涂层在550~700℃时PRF为240-410。Cr2O3涂层在550~600℃时PRF为24~117。
Ti基陶瓷涂层具良好的耐腐蚀性和较高的阻H效果。这类涂层主要包括氮化钛、碳化钛和两者的复合或混合涂层,各种钛基陶瓷涂层均可以采用CVD或PVD的方法制备,研究结果表明,Ti基陶瓷涂层在低温下具有很好的阻H性能。山常起等利用PVD法在316L不锈钢基底上制备了厚度为2~5微米的TiC+TiN涂层(C.Q.Shang,A.J.Wu,Y.J.Li,The behaviourof diffusion and permeation of tritium through 316L stainless steel withcoating of TiC and TiN+TiC,Journal of Nuclear Materials,1992,191-194:221;),接着利用化学热处理在TiC表面制备了一层CH4阻氢渗透涂层。测试结果表明氢在涂层中的渗透率降低了4-6个数量级。但TiC、TiN和TiC/TiN在450℃温度以上发生氧化难以克服。姚振宇等在TiN+TiC梯度涂层表面增加了一层抗氧化性较高的涂层(SiO2或TiN)以防止TiN+TiC梯度涂层在使用过程中失效(姚振宇,聚变堆包层材料不同涂层的防氚渗透性能研究,中国原子能科学研究院硕士毕业论文,2001)。用PVD法在316L不锈钢基底上制备TiN+TiC+TiN和TiN+TiC+SiO2涂层。涂层厚度分别为2微米和3微米。两种涂层渗透率相对于基底材料分别降低了4~5和4~6个数量级。
硅化物涂层主要集中于SiC涂层。SiC是目前研究最多的硅化物阻H渗透涂层,且在工业上已得到应用,原因在于其有极高的硬度和耐磨性能,可以作为超硬涂层使用。SiC高温时首先与氧反应生成一层非常薄的致密SiO2钝化膜,使SiC具有良好的抗高温氧化性能,能够阻止SiC继续氧化。制备SiC涂层通常采用CVD和PVD法。王佩璇等利用离子束辅助沉积法和离子注入法在316L不锈钢上沉积了厚度为2微米的SiC涂层(王佩璇,王宇,史宝贵,不锈钢表面沉积SiC作为氢渗透阻挡层的研究,金属学报,1999,35(6):654;)。涂层使不锈钢基底的的氢渗透率降低了近5个数量级。Chikada等人用射频磁控溅射法在316和F82H不锈钢基底上制备了SiC阻H涂层(Chikada T,Suzuki A,Terai T,Deuterium permeation andthermal behaviors of amorphous silicon carbide coatings on steels,Fu-sionEngineering and Design,2011,86(9):2192),研究了SiC涂层的阻H性能和热稳定性。研究结果表明,制备的SiC薄膜为非晶态。在450~550℃范围内,PRF为1000左右。当温度超过600℃时,阻H效果会有所下降,原因是温度过高SiC内部产生微裂纹导致H渗透加剧。中国工程物理研究院采用Er2O3/SiC复合涂层提高316L不锈钢的防H渗透性能,厚度为300nm膜层能够在500℃条件下PRF达到500(姚振宇,严辉,谭利文,韩华,用SiC薄膜作防氚渗透阻挡层的研究,Nuclear Fusion andPlasma Physics,2002,22:65;)。
铝化物复合涂层主要包括A1/Fe+Al2O3和AlN涂层,通过在基材金属表面附近造成一个含铝的浓度梯度,形成一个铝基金属间化合物层,由基体金属的铝含量到表面铝含量可以梯度变化为30%-80%Al。由于基体与涂层材料之间热膨胀系数的差异,导致铝化物涂层容易脱落,这是目前面临的技术难题。在冷热变化过程中,热膨胀系数差别越大,产生的应力也就越大。此冷热过程反复循环,应力的作用便会累积并不断增强,有可能产生裂纹,直至涂层脱落。制备A1/Fe+Al2O3阻H涂层的方法有热浸镀、火焰喷涂、真空等离子体喷涂、离子注入、化学气相沉积、磁控溅射、热等静压和包埋渗铝等。Kalin等将Crl8Nil0Ti奥氏体不锈钢放入10%Al+90%Li熔体中在600~800℃温度范围内渗铝5~100h,所得到的涂层具有复杂的金属间化合物多相结构,如FeAl3,FeAl,Fe3Al与NiAl,AlCr2及a-Fe等,厚度因温度和时间不同而异。研究结果表明,两面渗铝的阻挡效果最好,PRF分别为2000和2700(B.A.Kalin,V.L.Yakushin,E.P.Fomina,Tritium barrier development for austenitiestainless steel byits aluminizing in a lithium melt,Fusion Engineering andDesign 1998,41:119;)。Fazio等利用大气等离子喷涂法制备了Fe-Cr-Al涂层,基底分别选用了MANETII和F82H2mod钢。涂层具备一定的阻H渗透能力,但是涂层与基底之间存在较大的残余应力,使得涂层在使用过程中容易发生剥落(Fazio C,Stein-Fechner K,Serra E,Investigation on the suitability of plasma sprayed Fe-Cr-Al coatings astritium permeation barrier,J Nuclear Material 1999,273:233)。陈银等利用PECVD技术(银陈,陈长安,张鹏程,PECVD制备Al-Al2O3复合阻氢涂层的研究,表面技术,2008,37(3):41;)经过真空热氧化处理后能获得均匀、致密、稳定的Al-Al2O3复合薄膜,但存在少量碳化物杂质。薄膜在450℃以下阻氘性能明显,阻H因子能达到244。
新型阻H材料:近年来,石墨烯和BN的阻H性能引起了广泛关注,涌现了大量以BN和石墨烯为基础的阻H材料体系。Tamura等用magnetically enhanced plasma-ion-plating在316L不锈钢基底上获得BN涂层,涂层厚度为1.5微米,在316L不锈钢表面镀制BN涂层后,能够有效降低不锈钢的H渗透速率,300~500℃范围在内,BN的PRF值为100(M.Tamuraa,M.Nomab,M.Yamashitac,Characteristic change of hydrogen permeation instainless steel plate by BN coating,Surface and Coatings Technology,2014,260:148;)。
尽管阻H涂层研究在材料体系设计、性能优化及机理等方面已取得诸多进展,并在工程实际上也已有应用。然而,最新研究发现,对于“纤瘦”的氢原子而言,阻H性能优异的涂层——刚玉中原子间隙如此之大,以至于氢原子可在其中随性“游走”,并在金属基体一侧形成很多微小的坑。随着坑的不断“长大”,氢原子会有足够的空间重新结合形成氢分子并对氧化膜产生压力。当坑的直径大到某一临界尺寸时,氧化膜就会被撑得发生塑性变形,并向外鼓出形成气泡,破坏阻H涂层的效果(D.G.Xie,Z.J.Wang,J.Sun,J.Li,E.Ma,Z.W.Shan,In situ study of the initiation of hydrogen bubbles at the aluminium metal/oxide interface,Nature Materials,2015,10.1038:4336)。此外,最新研究还表明,氢可以较为容易地穿越石墨烯和BN等二维材料,且升温和加入催化剂可显著加速这一过程,这意味着传统观点认为的氢无法穿透不含缺陷的石墨烯等二维材料的阻H思路也行不通。
(Algara-Siller,G.O.Lehtinen,F.C.Wang,R.R.Nair,U.Kaiser,H.A.Wu,A.K.Geim,I.V.Grigorieva,Square ice in graphene nanocapillaries,Nature,2015,519(7544):443)
同时,近年来,作为清洁、高效能源的氢能技术开发与研究已取得明显进展,为解决防氢渗透问题提供了重要参考。总之,这些新的认知和发现对很多与涉氢应用相关的未解之谜提供了重要的参考。因此,开展防氢渗透复合涂层的性能调控及机理研究,指导防氢渗透材料体系设计与相关技术开发,优化阻H涂层的性能、提高阻H涂层的可控性,已成为涉氢应用领域的研究热点。
发明内容
为克服现有技术的上述缺陷,本发明的目的是提供一种由基体/过渡层/储H缓冲层/SiC复合结构构成的阻氢渗透涂层。
本发明的另一目的是提出所述阻氢渗透涂层的制备方法。
实现本发明目的的技术方案为:
一种不锈钢用碳化硅阻氢渗透涂层,包括从不锈钢基体向上逐层布置的过渡层、储H缓冲层、阻氢层;所述过渡层由金属钛层和TiN层组成,所述渐变层为非晶态的SixC1-x,1>x≥0.5,所述阻氢层为SiC。
其中,所述过渡层由Ti层和TiN层组成,其中Ti层厚100~300nm、TiN层厚200~500nm,所述储H缓冲层为非晶态的SixC1-x渐变层,1>x≥0.5,厚度1~4μm,所述阻氢层厚度为500nm~1μm。
其中,所述不锈钢基体的材质为316L、304和321中的一种。
本发明所述不锈钢用碳化硅阻氢渗透涂层的制备方法,其特征在于,包括以下步骤:
S1使用磁控溅射的方法制备过渡层Ti/TiN,首先以Ti靶为溅射靶材沉积金属Ti层,先预抽真空至10-5~10-3Pa,通入氩气进行直流溅射,电流为5~8A,工作真空为0.3Pa~0.6Pa,加热温度为150~300℃,靶基距为80~100mm;然后采用中频电源或射频电源溅射TiN层;
S2在过渡层上面使用气相沉积法制备储H缓冲层,所述气相沉积法为物理气相沉积法或化学气相沉积法;
S3在储H缓冲层上使用气相沉积法制备SiC阻氢层,所述气相沉积法为物理气相沉积法或化学气相沉积法。
其中,S1中所述过渡层中TiN层的制备方法为:
在金属Ti层上面沉积TiN,先预抽真空至10-5~10-3Pa,通入氩气和氮气,Ar/N2流量比为2-8,采用中频磁控溅射(采用中频电源),电流为5~8A,工作真空为0.3Pa~0.6Pa,加热温度为150~300℃,靶基距为80~100mm。
或,S1中TiN层的制备方法为:先预抽真空至10-5~10-3Pa,通入氩气和氮气,Ar/N2流量比为2-8,溅射功率为100~200W(采用射频电源),工作真空为0.3Pa~2Pa,加热温度为150~300℃,靶基距为80~100mm,厚度为200~500nm。
其中,S2中储H缓冲层的制备方法为:
采用纯硅靶材,先预抽真空至10-5~10-3Pa,然后通入Ar和C2H2混合气体进行中频磁控溅射,Ar/C2H2流量比为2~20,溅射电流为4~10A,溅射气压为0.3Pa~0.6Pa,加热温度为150~300℃,靶基距80-100mm。
优选地,在渐变层镀制的过程中,通入的Ar流量不变,梯度增加溅射电流从4A至10A,或者梯度减少C2H2的气体流量,使Ar/C2H2流量比从2至20,共设置2~5个梯度,各梯度溅射电流保持10~20min,获得一个单层控制总厚度在1~4μm。
或,S2中所述储H缓冲层的制备方法为:
先驱体原料为甲基三氯硅烷,载气为H2,稀释气体是氩气,沉积温度1100~1300℃,MTS+H2流量从0.35L/min梯度上升到0.8L/min,稀释气Ar流量160L/h,稀释气H2流量从1L/min梯度上升到4L/min,共设置2~5个梯度,各梯度MTS+H2流量保持10~20min。
稀释气体为CVD中的工作气体,不参与反应。和MTS一起的氢气是载气,载气的作用是以一定的流速载带气体样品或经气化后的样品气体一起进入真空室,所以充当载气的氢气是同MTS一起进入,而充当稀释气体的氢气是从另外一个进气口进入。
其中,S3中所述SiC阻氢层的制备方法为:
采用纯硅靶材,先预抽真空至10-5~10-3Pa;然后通入Ar和C2H2混合气体进行中频磁控溅射,Ar/C2H2流量比为2~20,溅射电流为4~10A,溅射气压为0.3Pa~0.6Pa,加热温度为150~300℃,靶基距80~100mm。
或,S3中所述SiC阻氢层的制备方法为:
采用SiC靶材,先预抽真空至10-5~10-3Pa;然后通入Ar,溅射功率为120~160W,溅射气压为0.3Pa~0.6Pa,加热温度为300~600℃,靶基距80~100mm。
本发明的有益效果在于:
SiC是目前研究最多的硅化物阻H渗透涂层,且在工业上已得到应用,原因在于其有极高的硬度和耐磨性能,可以作为超硬涂层使用。SiC高温时首先与氧反应生成一层非常薄的致密SiO2钝化膜,使SiC具有良好的抗高温氧化性能,能够阻止SiC继续氧化。此外,非晶态SixC1-x薄膜中含有大量的C-和Si-悬挂键,能够起到储H的作用。二者结合,不仅起到阻H渗透的作用,更能够把穿过SiC阻H层的部分H进一步固定,且是化学键的结合,这样的结合更强,能够起到防氢渗透的效果。
基于阻H涂层在实际应用中面临的一系列挑战,在前期工作中我们有针对性地进行了预探索。不仅从理论方面研究SiC薄膜的低温生长机理、结构与氚的滞留、扩散与渗透的关系及其机制。同时,结合基体的表面处理与缓冲层,在远远低于316L不锈钢的回火温度下、在形状复杂的基体表面得到了厚度均匀、结合牢固的SiC薄膜,结构测试表明SiC薄膜具有优异的抗辐照、防氚渗透性能。
本发明提出用储H缓冲层与阻H涂层相结合,制备基体/过渡层/储H缓冲层/SiC复合结构的防氢渗透性涂层。在抗辐照的阻H涂层SiC薄膜基础上,采用气相沉积技术制备储H缓冲层SixC1-x渐变层,利用SixC1-x渐变层中存在的大量捕捉氢能力极强的C-和Si-悬键,优化基体/过渡层/储H缓冲层/SiC复合结构的防氢渗透性能、提高其可控性。
附图说明
图1为本发明的涂层结构图。
具体实施方式
以下具体实施方式用于说明本发明,但不应理解为对本发明的限制。
磁控溅射的设备为TRX-750真空磁控溅射设备,北京天瑞星光热技术开发有限公司制。化学气相沉积的设备型号为NEE-4000(M)电子束蒸发系统,那诺中国有限公司产。
实施例中,如无特别说明,所用技术手段为本领域常规的技术手段。
实施例1:
选择在奥氏体不锈钢316L的基体上镀制过渡层Ti/TiN,采用中频磁控溅射的方法制备,首先镀制金属Ti,设置本底真空1×10-3Pa,工作气压0.6Pa,氩气流量120sccm,Ti靶电流8A,电压550V,靶基距为80mm,时间10min,制得得钛层厚度为200nm左右。金属Ti的基础上沉积TiN,本底真空1×10-3Pa,工作气压0.6Pa,氩气流量120sccm,氮气流量15sccm,Ti靶电流8A,电压530V,靶基距为80mm,时间20min,厚度为350nm左右。
采用CVD法制备储H缓冲层,具体参数如下:
先驱体原料为MTS,载气为H2(其纯度99.8%),稀释气体是氩气,沉积温度1100℃,MTS+H2流量从第一梯度0.35L/min,第二梯度0.45L/min,第三梯度0.6L/min,第四梯度0.8L/min,上升到0.8L/min,每个梯度停留15min,Ar(稀释)流量160L/h,H2(稀释)流量从1L/min梯度上升到4L/min,控制得到的渐变层厚度1.5μm。
采用化学气相沉积法制备SiC阻氢层:采用三氯甲基硅烷(MTS)为原料,工艺条件为:温度1100℃,MTS+H2流量0.3L/min、H2(稀释)流量0.5L/min、Ar流量0.8L/min;炉压3kPa,制得SiC阻氢层厚度1μm。
本实施例制得的阻氢渗透涂层结构如图1,从不锈钢基体向上逐层布置的过渡层、储H缓冲层、阻氢层,经过测试,本复合涂层在500~600℃范围内PRF为1500。
实施例2:
选择在奥氏体不锈钢316L的基体上镀制过渡层Ti/TiN,采用中频磁控溅射的方法制备,首先镀制金属Ti,本底真空1×10-3Pa,工作气压0.3Pa,氩气流量90sccm,Ti靶电流8A,电压560V,靶基距为80mm,时间10min,厚度约为200nm。金属Ti的基础上沉积TiN,本底真空1×10-3Pa,工作气压0.3Pa,氩气流量90sccm,氮气流量15sccm,Ti靶电流8A,电压540V,靶基距为80mm,时间20min,厚度为350nm。
采用PVD法制备储H缓冲层,具体参数如下:
采用纯硅靶材,先预抽真空至1×10-3Pa;然后通入Ar和C2H2混合气体进行中频磁控溅射,Ar/C2H2流量比为5,在渐变层镀制的过程中,通入的Ar和C2H2混合气体流量不变,分五个梯度、每个梯度增加1A,Si靶的电流从4A增加至8A,每个梯度电流获得一个单层,溅射气压为0.6Pa,加热温度为250℃,靶基距80mm,控制渐变层厚度在1.2μm。
采用射频磁控溅射法制备SiC阻氢层:
采用SiC靶材,先预抽真空至1×10-3Pa;然后通入Ar,溅射功率为120W,溅射气压为0.3Pa,加热温度为300℃,靶基距80mm,总厚度控制在800nm。
复合涂层经过测试,在500~600℃范围内,PRF为1500左右。
实施例3:
在304不锈钢的基体上镀制过渡层Ti/TiN:采用中频磁控溅射的方法:首先镀制金属Ti,设置本底真空1×10-3Pa,工作气压0.3Pa,氩气流量90sccm,Ti靶电流8A,电压560V,靶基距为80mm,时间10min,Ti层厚度为200nm。然后在金属Ti的基础上用射频电源磁控溅射沉积TiN层:本底真空1×10-3Pa,工作气压0.3Pa,氩气流量90sccm,氮气流量15sccm,溅射功率为100~200W,靶基距为80mm,时间25min,TiN层厚度为450nm。
采用PVD法制备储H缓冲层,具体参数如下:
先驱体原料为MTS,载气为H2(其纯度99.8%),稀释气体是氩气,沉积温度1150℃,MTS+H2流量从第一梯度0.4L/min,第二梯度0.5L/min,第三梯度0.6L/min,第四梯度0.7L/min,每个梯度停留10min,Ar(稀释)流量160L/h,H2(稀释)流量从1L/min梯度上升到4L/min,控制得到的渐变层厚度1.1μm。
采用射频磁控溅射法制备SiC阻氢层:
采用SiC靶材,先预抽真空至1×10-3Pa;然后通入Ar,溅射功率为120W,溅射气压为0.3Pa,加热温度为300℃,靶基距80mm,总厚度为700nm。
其他操作同实施例2。
复合涂层经过测试,在500~600℃范围内,PRF为1500左右。
实施例4:
采用PVD法制备储H缓冲层,具体参数如下:
采用纯硅靶材,先预抽真空至10-4Pa,然后通入Ar和C2H2混合气体进行中频磁控溅射,Ar/C2H2流量比为5(第一个梯度),溅射电流为10A,溅射气压为0.5Pa,加热温度为300℃,靶基距80mm。Ar流量不变,梯度减少C2H2的气体流量,使Ar/C2H2流量比从5变至10,共设置4个梯度,各梯度的Ar/C2H2流量比为5,6,8,10,每个梯度C2H2气体流量保持20min,获得4个单层,渐变层厚度为1.6μm。
其他操作同实施例2。
复合涂层经过测试,在500~600℃范围内,PRF为1400左右。
以上的实施例仅仅是对本发明的具体实施方式进行描述,并非对本发明的范围进行限定,本领域技术人员在现有技术的基础上还可做多种修改和变化,在不脱离本发明设计精神的前提下,本领域普通工程技术人员对本发明的技术方案作出的各种变型和改进,均应落入本发明的权利要求书确定的保护范围内。

Claims (9)

1.一种不锈钢用碳化硅阻氢渗透涂层,其特征在于,包括从不锈钢基体向上逐层布置的过渡层、储H缓冲层、阻氢层;所述过渡层由金属钛层和TiN层组成,所述储H缓冲层为非晶态的SixC1-x,1>x≥0.5,所述阻氢层为SiC;
其中,所述过渡层由Ti层和TiN层组成,其中Ti层厚100~300nm、TiN层厚200~500nm,所述储H缓冲层为非晶态的SixC1-x渐变层,1>x≥0.5,厚度1~4μm,所述阻氢层厚度为500nm~1μm。
2.根据权利要求1所述的不锈钢用碳化硅阻氢渗透涂层,其特征在于,所述不锈钢基体的材质为316L、304和321中的一种。
3.权利要求1或2所述不锈钢用碳化硅阻氢渗透涂层的制备方法,其特征在于,包括以下步骤:
S1使用磁控溅射的方法制备过渡层Ti/TiN,首先以Ti靶为溅射靶材沉积金属Ti层,先预抽真空至10-5~10-3Pa,通入氩气进行直流溅射,电流为5~8A,工作真空为0.3Pa~0.6Pa,加热温度为150~300℃,靶基距为80~100mm;然后采用中频电源或射频电源溅射TiN层;
S2在过渡层上面使用气相沉积法制备储H缓冲层,所述气相沉积法为物理气相沉积法或化学气相沉积法;
S3在储H缓冲层上使用气相沉积法制备SiC阻氢层,所述气相沉积法为物理气相沉积法或化学气相沉积法。
4.根据权利要求3所述的制备方法,其特征在于,所述过渡层中TiN层的制备方法为:
在金属Ti层上面沉积TiN,先预抽真空至10-5~10-3Pa,通入氩气和氮气,Ar/N2流量比为2~8,采用中频磁控溅射,电流为5~8A,工作真空为0.3Pa~0.6Pa,加热温度为150~300℃,靶基距为80~100mm;
或,所述过渡层的制备方法中,TiN层的制备方法为:先预抽真空至10-5~10-3Pa,通入氩气和氮气,Ar/N2流量比为2~8,溅射功率为100~200W,工作真空为0.3Pa~2Pa,加热温度为150~300℃,靶基距为80~100mm,厚度为200~500nm。
5.根据权利要求3或4所述的制备方法,其特征在于,所述储H缓冲层的制备方法为:
采用纯硅靶材,先预抽真空至10-5~10-3Pa,然后通入Ar和C2H2混合气体进行中频磁控溅射,Ar/C2H2流量比为2~20,溅射电流为4~10A,溅射气压为0.3Pa~0.6Pa,加热温度为150~300℃,靶基距80~100mm。
6.根据权利要求5所述的制备方法,其特征在于,在储H缓冲层镀制的过程中,通入的Ar流量不变,溅射电流从4A梯度增加至10A;或梯度减少C2H2的气体流量,使Ar/C2H2流量比从2至20,共设置2~5个梯度,各梯度的溅射电流或C2H2气体流量保持10~20min,获得2~5个单层。
7.根据权利要求3或4所述的制备方法,其特征在于,所述储H缓冲层的制备方法为:
先驱体原料为甲基三氯硅烷,载气为H2,稀释气体是氩气,沉积温度1100~1300℃,MTS+H2流量从0.35L/min梯度上升到0.8L/min,共设置2~5个梯度,各梯度MTS+H2流量保持10~20min,稀释气Ar流量160L/h,稀释气H2流量从1L/min梯度上升到4L/min。
8.根据权利要求3或4所述的制备方法,其特征在于,所述SiC阻氢层的制备方法为:
采用纯硅靶材,先预抽真空至10-5~10-3Pa;然后通入Ar和C2H2混合气体进行中频磁控溅射,Ar/C2H2流量比为2~20,溅射电流为4~10A,溅射气压为0.3Pa~0.6Pa,加热温度为150~300℃,靶基距80~100mm。
9.根据权利要求3或4所述的制备方法,其特征在于,所述SiC阻氢层的制备方法为:
采用SiC靶材,先预抽真空至10-5~10-3Pa,然后通入Ar,溅射功率为120~160W,溅射气压为0.3Pa~0.6Pa,加热温度为300~600℃,靶基距80~100mm。
CN201510872933.4A 2015-12-02 2015-12-02 一种不锈钢用碳化硅阻氢渗透涂层及其制备方法 Active CN105525273B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510872933.4A CN105525273B (zh) 2015-12-02 2015-12-02 一种不锈钢用碳化硅阻氢渗透涂层及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510872933.4A CN105525273B (zh) 2015-12-02 2015-12-02 一种不锈钢用碳化硅阻氢渗透涂层及其制备方法

Publications (2)

Publication Number Publication Date
CN105525273A CN105525273A (zh) 2016-04-27
CN105525273B true CN105525273B (zh) 2018-01-02

Family

ID=55767789

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510872933.4A Active CN105525273B (zh) 2015-12-02 2015-12-02 一种不锈钢用碳化硅阻氢渗透涂层及其制备方法

Country Status (1)

Country Link
CN (1) CN105525273B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106283052B (zh) * 2016-08-23 2019-01-25 北京航空航天大学 一种二维材料调控硅碳复合结构阻氢涂层及其制备方法
CN107217281B (zh) * 2017-05-26 2018-10-16 华中科技大学 一种复合阻氚涂层及其制备方法
CN109699114A (zh) * 2019-02-18 2019-04-30 中国科学院合肥物质科学研究院 一种多层复合中子靶及其制备方法
CN112647055B (zh) * 2020-11-13 2021-09-24 中国科学院金属研究所 在单晶硅或多晶硅上制备碳化硅复合涂层的化学气相沉积方法
CN114657509A (zh) * 2022-03-25 2022-06-24 西安交通大学 一种耐液态铅铋合金腐蚀的陶瓷-金属多层复合涂层及其制备方法
CN116005108A (zh) * 2022-11-29 2023-04-25 星弧涂层新材料科技(苏州)股份有限公司 复合阻氢涂层加工方法及复合阻氢涂层

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104004992A (zh) * 2014-05-27 2014-08-27 江苏科技大学 不锈钢氢渗透阻挡复合膜及其制备方法
CN104561891A (zh) * 2015-01-30 2015-04-29 四川大学 双成分梯度阻氢渗透涂层及其制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002336665A (ja) * 2001-05-14 2002-11-26 Japan Steel Works Ltd:The 水素透過膜
JP2005066427A (ja) * 2003-08-21 2005-03-17 Ishikawajima Harima Heavy Ind Co Ltd 水素分離シート及びその製造方法
US8652589B2 (en) * 2008-01-25 2014-02-18 Oerlikon Trading Ag, Truebbach Permeation barrier layer
EP2550378A4 (en) * 2010-03-22 2014-02-19 T3 Scient Llc HYDROGEN SELECTIVE PROTECTIVE COATING, COATED ARTICLE, AND PROCESS

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104004992A (zh) * 2014-05-27 2014-08-27 江苏科技大学 不锈钢氢渗透阻挡复合膜及其制备方法
CN104561891A (zh) * 2015-01-30 2015-04-29 四川大学 双成分梯度阻氢渗透涂层及其制备方法

Also Published As

Publication number Publication date
CN105525273A (zh) 2016-04-27

Similar Documents

Publication Publication Date Title
CN105525273B (zh) 一种不锈钢用碳化硅阻氢渗透涂层及其制备方法
Kim et al. Adhesion property and high-temperature oxidation behavior of Cr-coated Zircaloy-4 cladding tube prepared by 3D laser coating
CN102400099B (zh) 核裂变堆燃料包壳表面CrAlSiN梯度涂层制备工艺
Wang et al. Preparation and ablation properties of Hf (Ta) C co-deposition coating for carbon/carbon composites
CN109666911B (zh) 核用锆合金包壳表面耐高温腐蚀的高熵合金涂层及其制备方法
Chen et al. Thermal stability of air plasma spray and solution precursor plasma spray thermal barrier coatings
CN109852943B (zh) 核用锆合金表面CrN涂层的制备方法及产品
Zhang et al. Optimizing process and the properties of the sprayed Fe-based metallic glassy coating by plasma spraying
CN102719783B (zh) 一种合金表面原位氧化反应形成保护膜的制备方法
CN109972098A (zh) 一种包壳材料表面CrN厚涂层的制备方法
Li et al. Deuterium permeation of amorphous alumina coating on 316L prepared by MOCVD
Chikada et al. Deuterium permeation and thermal behaviors of amorphous silicon carbide coatings on steels
Li et al. Performances of Cr2O3–hydrogen isotopes permeation barriers
Luo et al. Preparation technologies and performance studies of tritium permeation barriers for future nuclear fusion reactors
Kim et al. Cr diffusion coating to improve the corrosion resistance of an ODS steel in super-critical carbon dioxide environment
CN108330452A (zh) Max相涂层的制备方法
Xiao et al. Hydrogen permeation barriers and preparation techniques: A review
Sharma et al. Microstructure, mechanical and erosion wear analysis of post heat treated iron alloy based coating with varying chromium
Wang et al. Microstructure and self-healing properties of multi-layered NiCoCrAlY/TAZ/YSZ thermal barrier coatings fabricated by atmospheric plasma spraying
He et al. Effects of deposition temperature on the microstructure, mechanical properties, high temperature corrosion and oxidation properties of AlCrNbTiZr high entropy alloy coatings
Peng et al. Study on the interface reaction behavior of NiCrAlY coating on titanium alloy
CN109338303B (zh) 一种用于锆合金防护的非晶与纳米晶复合涂层及其制备方法
CN108165944B (zh) 一种超厚Ti2AlC涂层的制备方法
Zhang et al. Preparation and characterization of Er2O3 films on CLAM steel via sol-gel method
Li et al. Effect of surface condition during pre-oxidation treatment on isothermal oxidation behavior of MCrAlY bond coat prepared by EB-PVD

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant