[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

CN105363359A - 一种交联型荷正电含氯聚合物过滤膜及其制备方法 - Google Patents

一种交联型荷正电含氯聚合物过滤膜及其制备方法 Download PDF

Info

Publication number
CN105363359A
CN105363359A CN201410733614.0A CN201410733614A CN105363359A CN 105363359 A CN105363359 A CN 105363359A CN 201410733614 A CN201410733614 A CN 201410733614A CN 105363359 A CN105363359 A CN 105363359A
Authority
CN
China
Prior art keywords
chlorine
containing polymer
membrane
positively charged
tertiary amine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410733614.0A
Other languages
English (en)
Other versions
CN105363359B (zh
Inventor
朱宝库
方立峰
崔月
杜世媛
姚之侃
许云秋
朱利平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN201410733614.0A priority Critical patent/CN105363359B/zh
Publication of CN105363359A publication Critical patent/CN105363359A/zh
Application granted granted Critical
Publication of CN105363359B publication Critical patent/CN105363359B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

本发明公开了一种交联型荷正电含氯聚合物过滤膜及其制备方法。所述过滤膜包含有含叔胺侧链的含氯聚合物,或者包含有含叔胺侧链的含氯聚合物与其他含氯聚合物的共混物。所述交联型荷正电含氯聚合物过滤膜的制备方法主要包括以下具体步骤:(1)经原位原子转移自由基聚合法将叔胺单体的接枝到含氯共聚物;(2)将(1)中得到的含叔胺侧链的含氯聚合物溶液,直接作为制膜液或者加入其他含氯聚合物并搅拌形成均匀的制膜液,经非溶剂诱导相分离形成固态前体膜;(3)将固态前体膜进行热处理,得到交联型荷正电含氯聚合物过滤膜。所制备的交联型荷正电含氯聚合物过滤膜,具有耐溶剂、强度高、荷正电、孔径与截留性能可控、高效率低成本等特点。

Description

一种交联型荷正电含氯聚合物过滤膜及其制备方法
技术领域
本发明属于膜技术领域,特别涉及一种交联型荷正电含氯聚合物过滤膜及其制备方法。
背景技术
膜分离技术是一种新型高效的分离技术,广泛应用于水处理,能源,生物医学,食品等领域。根据分离尺寸的差异,过滤膜可以分为微滤膜,超滤膜,纳滤膜,反渗透膜等,依次除去水中细菌/病毒,大分子有机物,小分子有机物/高价盐离子,一价盐离子等。过滤膜在实际的应用过程中,会因为膜材料本身的疏水性,极易非特异性地吸附有机物,造成过滤膜污染并降低膜使用寿命。特别是在分离荷正电物质时,比如聚季铵盐,溶菌酶,维多利亚蓝B等有机物,采用常规的过滤膜进行分离时,不仅会因为疏水相互作用而导致膜污染,还会因正负电荷的相互吸引而导致更严重的膜污染,因为一般膜材料具有荷负电性。因此实现聚合物过滤膜亲水化及荷正电化对荷正电物质分离具有重要意义。
在目前的膜改性领域中,表面改性和共混改性是两种常用的改性手段。表面改性主要包括表面化学改性,表面接枝和表面涂覆等,即通过物理或者化学手段,在聚合物膜表面引入极性基团或聚合物链,提高表面极性,在表面形成水合层以减少污染物与疏水膜表面的接触,从而有效减少膜污染。中国专利CN1865325B公开了一种采用强酸/强碱处理聚氯乙烯中空纤维膜提高多孔膜抗污染性的方法。中国专利CN101792510B介绍了一种使用表面引发原子转移自由基聚合法对疏水的膜材料进行改性的方法,在膜材料表面引入甲基丙烯酸聚乙二醇单甲醚酯等单体,实现膜的亲水化。尽管这些手段都能有效的实现膜改性,提高过滤膜的抗污染性能,但是表面改性往往是在成膜后进行的二次改性,实现步骤较为繁琐不利于工业化大规模生产。共混改性则是另外一种常用的聚合物膜改性手段,即通过在配置制膜液过程中额外的添加第三或更多组分形成多元制膜液,后经聚合物膜成型过程,既实现过滤膜制备又实现过滤膜改性。由于这种方法实现了膜制备与改性的有效统一,因此工业上常用共混改性的方法制备改性聚合物膜。中国专利CN101195084B公开了一种通过聚氯乙烯和氯乙烯-醋酸乙烯酯-马来酸酐)等共混制备了亲水化的聚氯乙烯合金超滤膜。中国专利CN101229489B公开了一种通过聚氯乙烯与聚乙烯缩丁醛、顺丁烯二酸酐三元共混方法,提高共混微滤膜亲水性。由于共混改性中,低分子量水溶性聚合物或者两亲共聚物的加入,会诱使共混过滤膜在成型过程的发生瞬时相分离而在断面产生大孔结构,从而降低过滤膜的强度。
聚合物交联是在一种提高聚合物强度的有效方法。通过交联反应,聚合物大分子链之间发生化学缠结,使聚合物不溶解,不熔融,可以不同程度的提高聚合物的力学性能,耐热稳定性、耐磨性、耐溶剂性及抗蠕变性等。因此,对聚合物共混过滤膜采用聚合物交联的方法提高过滤膜力学性能是一种有效的方法。值得注意的是,聚合物交联过程只能发生在过滤膜成型以后。但是如果聚合物交联发生在制膜过程中,则会影响过滤膜的制备。现在主要的过滤膜制备方法包括熔融拉伸法,非溶剂诱导相分离法,热诱导相分离法等。无论哪种方法,在形成固态过滤膜的过程中都有一个液体状态:熔融拉伸法是熔体,后两者是溶液。显然,交联聚合物无法形成均匀的熔体或者溶液,因而无法制备过滤膜。因此,如何在制膜过程中聚合物不发生交联,而在成膜后聚合物又发生交联是一个制备交联型聚合物膜需要解决的问题。
含氯聚合物,特别是聚氯乙烯,由于其价格低廉,力学性能好,良好的化学稳定性等优点,常被用作过滤膜材料,广泛应用于水处理,生物医用等领域。与其他诸如聚乙烯,聚偏氟乙烯等膜材料一样,含氯聚合物材料也具有疏水性及表面荷负电性。相较于其他膜材料,含氯聚合物其结构具有其特殊性。一方面,由于其合成过程及热致脱氯等原因在聚合物主链上产生一定数量的活性氯,主要包括烯丙基氯和叔碳氯。已经有研究表明,通过原子转移自由基聚合的方法,可以对含氯聚合物实现化学接枝改性。中国专利CN101293183B公开的方法中,以原子转移自由基聚合的方法制备的改性聚氯乙烯聚合物为共混添加剂与聚氯乙烯进行共混,对聚氯乙烯过滤膜进行亲水化改性。侧链亲水化的改性聚氯乙烯聚合物与聚氯乙烯共混能够实现亲水物质在成膜以及使用过程中高保留率及表面富集。但该方法中,首先需要对改性聚氯乙烯聚合物进行分离提纯。这一步骤极大的增加了共混过滤膜的生产成本。以该专利CN101293183B中实施例1为例,每沉淀1g反应液需要至少10倍体积的沉淀剂(甲醇水溶液,甲醇/水=3/7(v/v))。又因为反应液中固含量在40%左右,所以提纯1g两亲性接枝共聚物需要至少25倍的沉淀剂。如果为进一步提高反应产物纯度,还需要反复溶解沉淀过程,则需要浪费更多的溶剂和沉淀剂。这种大量损耗溶剂和沉淀剂的过程,显然不利于降低生产成本和提高生产效率。另一方面,含氯聚合物中的碳氯键具有一定的化学活性,特别是与叔胺发生季铵化交联反应的能力。而现有技术中,未见利用含氯聚合物与叔胺基团的反应制备具有交联结构的高强度耐溶剂含氯聚氯过滤膜,同时又赋予过滤膜表面荷正电性。
发明内容
针对现有技术的不足,本发明所要解决的技术问题是提供一种交联型荷正电含氯聚合物过滤膜及其制备方法。不同于现有技术,本发明提供的交联型荷正电含氯聚合物过滤膜,在提高过滤膜高性能的同时,解决了现有技术存在的一些问题:
(1)本发明提供的交联型荷正电含氯聚合物过滤膜,采用原位原子转移自由基聚合法合成的梳状含氯聚合物(第二种含氯聚合物),不仅能有效改善含氯聚合物过滤膜性能,还避免了对改性聚合物的提纯,实现了材料改性与制膜液配置一体化,减少制膜步骤,极大降低生产成本。
(2)本发明提供的交联型荷正电含氯聚合物过滤膜,采用具有自交联特征的含叔胺侧链的含氯聚合物(第二种含氯聚合物)。在合成过程中,控制接枝反应温度,能有效防止含叔胺侧链的含氯聚合物发生交联;而对前体膜仅需要通过热处理(较高温度),无需额外添加交联剂而自身交联,巧妙的从普通共混膜到交联共混膜转变,有效提高过滤膜的强度及耐溶剂性。
(3)本发明提供的交联型荷正电含氯聚合物过滤膜,采用已经工业化生产且价格低廉的第一含氯聚合物和叔胺单体,所获得的过滤膜成本大大降低。
(4)本发明提供的交联型荷正电含氯聚合物过滤膜制备方法,固态前体膜经热处理以后,在过滤膜中产生大量的季铵盐结构,赋予含氯聚合物过滤膜荷正电性,不仅可以有效地抗荷正电物质吸附及污染,还能实现对荷正电物质的分离。
(5)本发明提供的交联型荷正电含氯聚合物过滤膜制备方法,首先可以通过对固体前体膜成膜条件控制,实现对过滤膜结构的一次调控;另外通过控制热处理方法、热处理温度、热处理时间等因素,可以对过滤膜进行第二次孔结构调控。对于同一材料体系,经不同的处理方法,实现微滤、超滤、纳滤等不同功能的交联型荷正电含氯聚合物过滤膜的制备。
(6)本发明提供的交联型荷正电含氯聚合物过滤膜制备方法,可以制备平板自支撑膜、中空纤维自支撑膜、平板复合膜、中空纤维复合膜等,具有广泛应用价值。
为解决本发明的技术问题,本发明采用如下的技术方案:
一种交联型荷正电含氯聚合物过滤膜,其特征在于:所述过滤膜包含第一种含氯聚合物与第二种含氯聚合物的共混物,或者第二种含氯聚合物,其中,所述第一种含氯聚合物,其结构式如下:
式中:
R1=H、CH3或Cl;
R2=H、CH3或Cl;
m+n=500~2000,优选800~1900;
所述第二种含氯聚合物的结构式如下:
式中:x+y=500~2000,优选800~1900;
x/y=1/100~1/1000;
z=10~500,优选50~200;
R3=H、CH3或Cl;
R4=H或CH3
R5=含叔胺基团;
R6=Cl或Br;
所述第二种含氯聚合物具有自交联特征;所述过滤膜表面具有荷正电性。
本发明中所述的交联型荷正电含氯聚合物过滤膜包含第一种含氯聚合物与第二种含氯聚合物的共混物,或者第二种含氯聚合物,是指所述过滤膜仅包含第一种含氯聚合物与第二种含氯聚合物的共混物,也可以包含其他进一步改善过滤膜结构,提高过滤膜强度和亲水性等添加剂,比如聚乙二醇,聚乙烯吡咯烷酮,二氧化钛等。也可以是,所述过滤膜仅包含第二种含氯聚合物,也可以包含其他进一步改善过滤膜结构,提高过滤膜强度和亲水性等添加剂,比如聚乙二醇,聚乙烯吡咯烷酮,二氧化钛等。
第二种含氯聚合物在主链中含有碳氯键,在侧链中含有叔胺基团。申请人在研究中发现,这两种基团在不需要另外添加催化剂的条件下,在较高的温度下具有相互反应的能力,因此第二种含氯聚合物具有自交联特征。由于第一种含氯聚合物中没有叔胺基团,因此第一种含氯聚合物不具有自交联特征。而第一种含氯聚合物与第二种含氯聚合物的共混物,也可能发生第一种含氯聚合物侧链上的叔胺基团与第二种含氯聚合物上的碳氯键发生反应,因而这种共混物也具有自交联特征。因为碳氯键与叔胺基团反应的产物为季铵盐,所以经自交联后产物中带有季铵盐基团,因而过滤膜表面具有更强的荷正电性。虽然含叔胺基团的聚合物过滤膜也会提供一定的荷正电性,但当pH≥8过滤膜表面会显示荷负电性,因此在该pH范围下该膜已经不适合荷正电物质分离。而季铵化过程会使含氯聚合物过滤膜在pH≤11的范围均表现为荷正电性。本发明大大拓宽了这种过滤膜的使用范围。
作为优选,所述第二种含氯聚合物是通过第一种含氯聚合物经原位原子转移自由基聚合法接枝叔胺单体制得。
由于第一含氯聚合物在制备及保存过程中,会发生脱氯等副反应,产生诸如烯丙基氯和叔碳氯等结构缺陷。这些特殊结构赋予了含氯聚合物作为原子转移自由基聚合引发剂的能力。原子转移自由基聚合最早由王锦山和KrzysztofMatyjaszewski在1995年发现的,是一种新型的活性聚合方法。利用金属-配体形成的氧化还原体系,保持自由基在聚合物过程中的活性,从而使单体不断发生聚合。其中卤代烷烃是一种常用的原子转移自由基聚合引发剂。在第一种含氯聚合物中,连接在伯碳上的氯原子,由于碳氯键键能较大,引发原子转移自由基聚合的能力很弱。而烯丙基氯和叔碳氯等结构,则较容易发生原子转移自由基聚合。
优选的,本发明所述的叔胺单体选自甲基丙烯酸二甲氨基乙酯、甲基丙烯酸二乙氨基乙酯、丙烯酸二甲氨基乙酯、二甲氨基丙基甲基丙烯酰胺、二甲氨基丙基丙烯酰胺、4-乙烯基吡啶、2-乙烯基吡啶、1-乙烯基咪唑中的任意一种或任意多种;本发明所述的第一种含氯聚合物选自聚氯乙烯、聚偏氯乙烯、含氯乙烯共聚物、含偏氯乙烯共聚物、氯化聚乙烯、氯化聚氯乙烯、含氯聚丙烯中的任意一种或任意多种。
本发明所述的第二种含氯聚合物可以是聚氯乙烯接枝聚甲基丙烯酸二甲氨基乙酯、聚偏氯乙烯接枝聚甲基丙烯酸二乙氨基乙酯、含氯乙烯共聚物接枝聚丙烯酸二甲氨基乙酯、含偏氯乙烯共聚物接枝二甲氨基丙基甲基丙烯酰胺、氯化聚乙烯接枝聚二甲氨基丙基丙烯酰胺、氯化聚氯乙烯接枝聚4-乙烯基吡啶、含氯聚丙烯接枝2-乙烯基吡啶、聚氯乙烯接枝1-乙烯基咪唑等。
本发明所述的第二种含氯聚合物,以聚氯乙烯接枝聚甲基丙烯酸二甲氨基乙酯为例,首先它可以是一种膜材料,该聚合物溶液经非溶剂诱导相分离形成过滤膜。其次,它还可以是一种制膜添加剂,它不作为过滤膜的主要成分,一方面可以进一步降低生产成本,另一方面又可以赋予共混过滤膜这种材料的属性:叔胺基团的特性。叔胺基团具有一定的荷正电性和络合能力,同时又具有一定的反应性,即季铵化能力。在本发明中,利用了第二种含氯聚合物包含的叔胺基团的可季铵化的能力,通过聚氯乙烯接枝聚甲基丙烯酸二甲氨基乙酯主链上的碳氯键与叔胺侧链(聚甲基丙烯酸二甲氨基乙酯)反应形成季铵盐结构,从而赋予过滤膜更强的荷正电性。
本发明还提供一种交联型荷正电含氯聚合物复合过滤膜,所述的复合过滤膜包含支撑层和功能层,所述的支撑层选自聚对苯二甲酸乙二醇酯、聚对苯二甲酸丙二醇酯、聚对苯二甲酰对苯二胺、聚酰亚胺,玻璃纤维中的一种,所述的功能层为前述的交联型荷正电含氯聚合物过滤膜。
本发明所述的交联型荷正电含氯聚合物过滤膜,不仅可以是自支撑的平板膜、自支撑的中空纤维膜,还可以是具有支撑层的复合过滤平板膜和具有编织管增强的中空纤维膜。
本发明还提供一种交联型荷正电含氯聚合物过滤膜的制备方法,包括如下步骤:
(1)将第一种含氯聚合物溶解于溶剂,经原位原子转移自由基聚合法进行叔胺单体的接枝聚合,得到第二种含氯聚合物溶液;
所述第一种含氯聚合物,其结构式如下:
式中:
R1=H、CH3或Cl;
R2=H、CH3或Cl;
m+n=500~2000,优选800~1900;
所述第二种含氯聚合物,其结构式如下:
式中:x+y=500~2000,优选800~1900;
x/y=1/100~1/1000;
z=10~500,优选50~200;
R3=H、CH3或Cl;
R4=H或CH3
R5=含叔胺基团;
R6=Cl或Br。
由于第一种含氯聚合物中含有烯丙基氯和叔碳氯等特殊结构,这些碳氯键容易发生断裂,引发原子转移自由基聚合。通过该反应,能将具有功能化的单体(叔胺单体)接枝到第一种含氯聚合物主链,形成具有含叔胺侧链的含氯聚合物(该聚合物为梳状结构),即第二种含氯聚合物。相较与无规共聚物,嵌段共聚物等,发明人通过研究证明梳状共聚物在共混过滤膜体系中具有更强的稳定性,包括过滤膜制备和过滤膜使用过程。
本发明中所采用的原位原子转移自由基聚合法,是指叔胺单体经原子转移自由基聚合接枝到第一含氯聚合物上以后不提纯所制得的第二种含氯聚合物,将反应后的溶液直接使用。其目的主要是为了在获得改性含氯聚合物过滤膜的前提下,减少制备过程,提高生产效率。由于原子转移自由基聚合中用到的未反应单体,金属/配体等具有水溶性,在非溶剂诱导相分离制膜过程中均会完全流入凝固浴,而不影响过滤膜本身的性能。
步骤(1)中所述的溶剂可选自N’N-二甲基甲酰胺,N’N-二甲基乙酰胺,N-甲基吡咯烷酮中的一种;原位原子转移自由基聚合催化剂为氯化亚铜,溴化亚铜中的一种;原位原子转移自由基聚合配体为五甲基二乙烯三胺,1,1,4,7,10,10-六甲基三乙烯四胺,三(2-二甲氨基乙基)胺中的一种。
作为优选,步骤(1)所述的接枝聚合反应温度为30~65℃,反应时间为10分钟~24小时,更优选的接枝聚合温度为40~60℃,反应时间为1~12小时。
(2)将步骤(1)中得到的第二种含氯聚合物溶液,直接作为制膜液经非溶剂诱导相分离形成固态前体膜;
步骤(2)是制备一种仅包含第二种含氯聚合物的交联型荷正电含氯聚合物过滤膜,但不排除包括其他进一步提高过滤膜结构,强度,亲水性等添加剂,比如聚乙二醇,聚乙烯吡咯烷酮,二氧化钛等。
或者
(2)将步骤(1)中得到的第二种含氯聚合物溶液,加入第一种含氯聚合物并搅拌形成均匀的制膜液,经非溶剂诱导相分离形成固态前体膜;
步骤(2)是制备一种包含第一种含氯聚合物和第二种含氯聚合物的共混物的交联型荷正电含氯聚合物过滤膜但不排除包括其他进一步提高过滤膜结构,强度,亲水性等添加剂,比如聚乙二醇,聚乙烯吡咯烷酮,二氧化钛等。
(3)将固态前体膜进行热处理,得到交联型荷正电含氯聚合物过滤膜。
步骤(3)是制备交联型荷正电含氯聚合物过滤膜的关键步骤。步骤(2)制得的固态前体膜与步骤(3)得到的交联型荷正电含氯聚合物过滤膜有本质差别。热处理过程使第二种含氯聚合物中的叔胺基团与第二种含氯聚合物中的碳氯键或者第二种含氯聚合物中的叔胺基团与第一种含氯聚合物中的碳氯键发生交联反应,生成季铵盐,赋予了过滤膜更强的荷正电性,更高的荷正电性更有利于抗荷正电物质吸附,更有利于荷正电物质分离。此外,虽然含叔胺基团的聚合物过滤膜在pH<8的范围也会提供一定的荷正电性,但当pH≥8过滤膜表面会显示荷负电性,因此在该pH范围下该膜已经不适合荷正电物质分离。而季铵化过程会使含氯聚合物过滤膜在pH≤11的范围均表现为荷正电性。本发明大大拓宽了这种过滤膜的使用范围。
作为优选,步骤(3)所述热处理方法是干膜直接热处理,或者将膜经甘油或甘油-水溶液或甘油-乙二醇溶液处理过后再热处理中的一种。
热处理方法的不同直接决定了所得交联型荷正电含氯聚合物过滤膜性能差异。固态前体膜干燥,会使含氯聚合物过滤膜致密化,起到缩孔作用,表现为过滤膜通量降低,截留率提高,所得过滤膜表现纳滤性质。过滤膜通量达到10Lm-2h-1bar-1以上,对有机染料(维多利亚蓝B,分子量506,荷正电)截留率达到95%以上。而经甘油或甘油-水溶液或甘油-乙二醇溶液处理后再热处理,则尽量避免了干燥过程中含氯聚合物过滤膜致密化,过滤膜还能保持固态前体膜超滤性质。纯水通量200Lm-2h-1bar-1以上,对溶菌酶(分子量14000,等电点11.0~11.3)截留达到95%以上。这两种膜较未经荷正点化处理含氯聚合物过滤膜,能有效抵抗维多利亚蓝B和溶菌酶的吸附及污染。
所述的甘油-水溶液,甘油的体积分数为20~95%;所述甘油-乙二醇溶液,甘油的体积分数为5~95%。
作为优选,步骤(3)所述的热处理温度为70~130℃,热处理时间为30分钟~12小时;更优选的热处理聚合温度为80~120℃,反应时间为2~8小时。
热处理温度和热处理时间会影响碳氯键与叔胺反应的反应程度,一般来说热处理温度越高,热处理时间越长,反应程度越高,从而导致通量降低,截留率提高,表面荷电性增加及强度增加。另外,热处理温度在70~100℃时,可以采用甘油或甘油-水溶液或甘油-乙二醇溶液预处理固态前体膜。而热处理温度在100℃以上时宜采用甘油或甘油-乙二醇溶液预处理前体膜。
热处理温度与接枝反应的温度差异是本发明一个重要技术特色。在较低的接枝反应温度下,将叔胺单体接枝到含氯聚合物上,而不发生交联反应并形成均一稳定溶液。而成为固态前体膜后,采用较高的温度进行热处理,激发叔胺基团与碳氯键的反应,形成交联的聚合物过滤膜。
作为优选,步骤(1)所述的叔胺单体选自甲基丙烯酸二甲氨基乙酯、甲基丙烯酸二乙氨基乙酯、丙烯酸二甲氨基乙酯、二甲氨基丙基甲基丙烯酰胺、二甲氨基丙基丙烯酰胺、4-乙烯基吡啶、2-乙烯基吡啶、1-乙烯基咪唑中的任意一种或任意多种;作为优选,步骤(1)和步骤(2)所述的第二种含氯聚合物选自聚氯乙烯、聚偏氯乙烯、含氯乙烯共聚物、含偏氯乙烯共聚物、氯化聚乙烯、氯化聚氯乙烯、含氯聚丙烯中的任意一种或任意多种。
本发明所述的第二种含氯聚合物可以是聚氯乙烯接枝聚甲基丙烯酸二甲氨基乙酯,聚偏氯乙烯接枝聚甲基丙烯酸二乙氨基乙酯,含氯乙烯共聚物接枝聚丙烯酸二甲氨基乙酯,含偏氯乙烯共聚物接枝二甲氨基丙基甲基丙烯酰胺,氯化聚乙烯接枝聚二甲氨基丙基丙烯酰胺,氯化聚氯乙烯接枝聚4-乙烯基吡啶,含氯聚丙烯接枝2-乙烯基吡啶,聚氯乙烯接枝1-乙烯基咪唑等。
由于上述技术方案的应用,本发明与现有技术相比具有的有益效果:
(1)本发明提供的交联型荷正电含氯聚合物过滤膜,采用原位原子转移自由基聚合法合成的梳状含氯聚合物(第二种含氯聚合物),不仅能有效改善含氯聚合物过滤膜性能,还避免了对改性聚合物的提纯,实现了材料改性与制膜液配置一体化,减少制膜步骤,极大降低生产成本。
(2)本发明提供的交联型荷正电含氯聚合物过滤膜,采用具有自交联特征的含叔胺侧链的含氯聚合物(第二种含氯聚合物)。在合成过程中,控制接枝反应温度,能有效防止含叔胺侧链的含氯聚合物发生交联;而对前体膜仅需要通过热处理(较高温度),无需额外添加交联剂而自身交联,巧妙的从普通共混膜到交联共混膜转变,有效提高过滤膜的强度及耐溶剂性。
(3)本发明提供的交联型荷正电含氯聚合物过滤膜,采用已经工业化生产且价格低廉的第一含氯聚合物和叔胺单体,所获得的过滤膜成本大大降低。
(4)本发明提供的交联型荷正电含氯聚合物过滤膜制备方法,固态前体膜经热处理以后,在过滤膜中产生大量的季铵盐结构,赋予含氯聚合物过滤膜荷正电性,不仅可以有效地抗荷正电物质吸附及污染,还能实现对荷正电物质的分离。
(5)本发明提供的交联型荷正电含氯聚合物过滤膜制备方法,首先可以通过对固体前体膜成膜条件控制,实现对过滤膜结构的一次调控;另外通过控制热处理方法、热处理温度、热处理时间等因素,可以对过滤膜进行第二次孔结构调控。对于同一材料体系,经不同的处理方法,实现微滤,超滤,纳滤等不同功能的交联型荷正电含氯聚合物过滤膜的制备。
(6)本发明提供的交联型荷正电含氯聚合物过滤膜制备方法,可以制备平板自支撑膜,中空纤维自支撑膜,平板复合膜,中空纤维复合膜等,具有广泛应用价值。
附图说明
图1是交联型荷正电含氯聚合物平板过滤膜上表面电镜照片;
图2是交联型荷正电含氯聚合物平板过滤膜断面电镜照片;
图3是交联型荷正电含氯聚合物平板过滤膜表面zeta电位随pH变化关系;
图4是交联型荷正电含氯聚合物中空纤维过滤膜外表面电镜照片;
图5是交联型荷正电含氯聚合物中空纤维过滤膜断面电镜照片;
图6是交联型荷正电含氯聚合物中空纤维复合过滤膜断面电镜照片。
具体实施方式
下面结合实施例详细说明本发明。
本发明涉及一种交联型荷正电含氯聚合物过滤膜,其特征在于:所述过滤膜包含第一种含氯聚合物与第二种含氯聚合物的共混物,或者第二种含氯聚合物,其中,
所述第一种含氯聚合物,其结构式如下:
式中:
R1=H、CH3或Cl;
R2=H、CH3或Cl;
m+n=500~2000,优选800~1900;
所述第二种含氯聚合物的结构式如下:
式中:x+y=500~2000,优选800~1900;
x/y=1/100~1/1000;
z=10~500,优选50~200;
R3=H、CH3或Cl;
R4=H或CH3
R5=含叔胺基团;
R6=Cl或Br;
所述第二种含氯聚合物具有自交联特征;所述过滤膜表面具有荷正电性;所述第二种含氯聚合物是通过第一种含氯聚合物经原位原子转移自由基聚合法接枝叔胺单体制得。
作为优选,所述的叔胺单体选自甲基丙烯酸二甲氨基乙酯、甲基丙烯酸二乙氨基乙酯、丙烯酸二甲氨基乙酯、二甲氨基丙基甲基丙烯酰胺、二甲氨基丙基丙烯酰胺、4-乙烯基吡啶、2-乙烯基吡啶、1-乙烯基咪唑中的任意一种或任意多种;作为优选,所述的第一种含氯聚合物选自聚氯乙烯、聚偏氯乙烯、含氯乙烯共聚物、含偏氯乙烯共聚物、氯化聚乙烯、氯化聚氯乙烯、含氯聚丙烯中的任意一种或任意多种。
本发明涉及一种交联型荷正电含氯聚合物复合过滤膜,其特征在于:所述的复合过滤膜包含支撑层和功能层,所述的支撑层选自聚对苯二甲酸乙二醇酯、聚对苯二甲酸丙二醇酯、聚对苯二甲酰对苯二胺、聚酰亚胺,玻璃纤维中的一种,所述的功能层选自权利要求1-3任一项所述的交联型荷正电含氯聚合物过滤膜。
本发明涉及一种交联型荷正电含氯聚合物过滤膜的制备方法,其特征在于包括如下步骤:
(1)将第一种含氯聚合物溶解于溶剂,经原位原子转移自由基聚合法进行叔胺单体的接枝聚合,得到第二种含氯聚合物溶液;
(2)将步骤(1)中得到的第二种含氯聚合物溶液,直接作为制膜液经非溶剂诱导相分离形成固态前体膜;
或者,
(2)在步骤(1)中得到的第二种含氯聚合物溶液,加入第一种含氯聚合物并搅拌形成均匀的制膜液,经非溶剂诱导相分离形成固态前体膜;
(3)将固态前体膜进行热处理,得到交联型荷正电含氯聚合物过滤膜。
作为优选,步骤(1)所述的接枝聚合反应温度为30~65℃,反应时间为10分钟~24小时;更优选的接枝聚合温度为40~60℃,反应时间为1~12小时。
作为优选,所述第一种含氯聚合物,其结构式如下:
式中:
R1=H、CH3或Cl;
R2=H、CH3或Cl;
m+n=500~2000,优选800~1900;
作为优选,所述第二种含氯聚合物,其结构式如下:
式中:x+y=500~2000,优选800~1900;
x/y=1/100~1/1000;
z=10~500,优选50~200;
R3=H、CH3或Cl;
R4=H或CH3
R5=含叔胺基团;
R6=Cl或Br。
作为优选,步骤(1)所述的叔胺单体选自甲基丙烯酸二甲氨基乙酯、甲基丙烯酸二乙氨基乙酯、丙烯酸二甲氨基乙酯、二甲氨基丙基甲基丙烯酰胺、二甲氨基丙基丙烯酰胺、4-乙烯基吡啶、2-乙烯基吡啶、1-乙烯基咪唑中的任意一种或任意多种;作为优选,步骤(1)和步骤(2)所述的第二种含氯聚合物选自聚氯乙烯、聚偏氯乙烯、含氯乙烯共聚物、含偏氯乙烯共聚物、氯化聚乙烯、氯化聚氯乙烯、含氯聚丙烯中的任意一种或任意多种。
作为优选,步骤(3)所述热处理方法是干膜直接热处理,或者将膜经甘油或甘油-水溶液或甘油-乙二醇溶液处理过后再热处理中的一种。
作为优选,步骤(3)所述的热处理温度为70~130℃,热处理时间为30分钟~12小时,更优选的热处理聚合温度为80~120℃,反应时间为2~8小时。性能测试:1)溶解性测试,将含氯聚合物过滤膜在交联前后用常用试剂(水,乙醇,二甲基甲酰胺(DMF),二甲基乙酰胺(DMAc)和N-甲基吡咯烷酮(NMP))溶解,判断膜在溶剂中的溶解情况。2)膜力学性能测试,使用万能材料测试机对交联前后膜力学性能进行测试,拉伸速率为20mm/min。3)膜过滤分离性能测试,水通量通过带搅拌的过滤池测定,测试压力为0.1MPa;膜截留性能是以溶菌酶或维多利亚蓝B为模型分子,在0.1MPa下,测定进料液和出料液的溶菌酶或维多利亚蓝B浓度(用紫外-可见分光光度计依据吸光度与溶菌酶或维多利亚蓝B浓度之间的线性关系确定),计算膜的截留率(截留率(%)=(1-出料液浓度/进料液浓度)×100)。4)含氯聚合物过滤膜表面溶菌酶和维多利亚蓝B静态吸附实验。将面积为1.5cm2的过滤膜膜片分别在2mL0.5gL-1的溶菌酶溶液和20ppm的维多利亚蓝溶液中浸泡8小时,测定浸泡前后溶液中溶菌酶和维多利亚蓝浓度,并最终确定膜片上污染物的吸附量。5)膜结构表征,含氯聚合物过滤微结构通过场发射扫描电镜观察。6)Zeta电位仪表征膜表面荷电性(1mmolL-1KCl溶液,25℃)。7)对比相似分子量聚乙二醇和聚季铵盐的截留率(采用总有机碳法测定测定截留前后溶液中溶质的含量(截留率(%)=(1-出料液浓度/进料液浓度)×100))。
以下实施例对本发明做更详细的描述,但所述实施例并不构成对本发明的限制:
实施例1
1)通过原位原子转移自由基聚合的方法形成含氯聚合物制膜液。将10g聚氯乙烯(第一种含氯聚合物)在室温下溶解在85gN’N-二甲基乙酰胺中,向溶液通入氮气30分钟除去溶液中的氧气,后在氮气保护下加入15.0g甲基丙烯酸二甲氨基乙酯,44.1mg五甲基二乙烯三胺和25.2mg氯化亚铜,后该反应液置于65℃中反应12小时。待反应结束后,向体系内通入空气终止反应,形成第二种含氯聚合物溶液。2)在搅拌状态下,向溶液中继续加入5g聚氯乙烯,以及5g聚乙二醇和0.5g聚乙烯吡咯烷酮,在60℃下搅拌24小时。添加剂聚乙二醇,分子量为200g/mol,聚乙烯吡咯烷酮,分子量30,000g/mol。将上述制膜液在玻璃板上铺展形成平板液膜,浸入30℃水中凝固,形成固态前体膜,后将该膜浸泡了水中除去溶剂等可溶性的小分子。3)将得到的固体前体膜晾干后再进行热处理,处理温度为120℃,处理时间为2小时,得到最终的交联型荷正电含氯聚合物过滤膜。
第一种含氯聚合物结构式为:
式中:
R1=R2=H;
m+n=2000;
第二种含氯聚合物结构式为:
式中:x+y=2000;
x/y=1/1000;
z=500;
R3=H;
R4=CH3
R5=COOCH2CH2N(CH3)2
R6=Cl。
测试结果与讨论:1)溶解性测试结果如表1,表明含氯聚合物过滤膜经热处理以后,过滤膜耐溶剂(DMF、DMAc和NMP)能力大大增强;2)膜力学性能测试结果如表2,表明含氯聚合物过滤膜经热处理以后,过滤膜力学性能提高;3)膜过滤分离性能测试结果如表2;4)表面吸附实验结果表明,表面溶菌酶的吸附量<2.0μgcm-2,表明维多利亚蓝的吸附量<1.0μgcm-2;5)膜结构表征,结果如附图1和附图2。6)表征表面荷电性结果如附图3,表明过滤膜表面具有明显的荷正电性(pH≤11范围内均显示荷正电)。7)对比相似分子量聚乙二醇和聚季铵盐的截留率,结果表明(如表3),荷正电含氯聚合物过滤膜对荷正电物质的截留率大大提高。
对比实施例1
1)将10g聚氯乙烯(第一种含氯聚合物)在室温下溶解在85gN’N-二甲基乙酰胺中,向溶液通入氮气30分钟除去溶液中的氧气,将该溶液置于65℃油浴中12小时。2)在搅拌状态下,向溶液中继续加入5gPVC,以及5g聚乙二醇和0.5g聚乙烯吡咯烷酮,在60℃下搅拌24小时。添加剂聚乙二醇,分子量为200g/mol,聚乙烯吡咯烷酮,分子量30,000g/mol。将上述制膜液在玻璃板上铺展形成平板液膜,浸入30℃水中凝固,形成固态前体膜,后将该膜浸泡了水中除去溶剂等可溶性的小分子。3)将得到的固体前体膜晾干后再进行热处理,处理温度为120℃,处理时间为2小时,得到最终的交联型荷正电含氯聚合物过滤膜。比较实施例1与对比实施例1耐溶剂性和表面荷电性:
将对比实施例1所得膜溶于DMF,DMAc和NMP等溶剂,发现膜溶解;测试对比实施例1所得膜所得膜表面荷电性,发现为荷负电,等电点位置为pH5.5。由于对比实施例1中没有采用原位原子转移自由基聚合法,含氯聚合物过滤膜在经非溶剂诱导相分离过程中,叔胺单体完全流失,没有将叔胺基团引入含氯聚合物过滤膜,因此热处理过程没法使过滤膜交联并季铵化,导致过滤膜耐溶剂差和表面荷电性为负电。
对比实施例2
1)通过原位原子转移自由基聚合的方法形成含氯聚合物制膜液。将10g聚氯乙烯(第一种含氯聚合物)在室温下溶解在85gN’N-二甲基乙酰胺中,向溶液通入氮气30分钟除去溶液中的氧气,后在氮气保护下加入15.0g甲基丙烯酸二甲氨基乙酯,44.1mg五甲基二乙烯三胺和25.2mg氯化亚铜,后该反应液置于65℃中反应12小时。待反应结束后,向体系内通入空气终止反应,在10倍体积的沉淀剂(甲醇水溶液,甲醇/水=3/7(v/v))中沉淀分离,得到第二种含氯聚合物。2)将提纯的得到的20g第二种含氯共聚物以及85gN’N-二甲基乙酰胺和5g聚氯乙烯,以及5g聚乙二醇和0.5g聚乙烯吡咯烷酮,在60℃下搅拌24小时。添加剂聚乙二醇,分子量为200g/mol,聚乙烯吡咯烷酮,分子量30,000g/mol。将上述制膜液在玻璃板上铺展形成平板液膜,浸入30℃水中凝固,形成固态前体膜,后将该膜浸泡了水中除去溶剂等可溶性的小分子。3)将得到的固体前体膜晾干后再进行热处理,处理温度为120℃,处理时间为2小时,得到最终的交联型荷正电含氯聚合物过滤膜。
比较实施例1与对比实施例2消耗的溶剂及沉淀剂的量及所得过滤膜的性能:
比较实施例1与对比实施例2所得的交联型荷正电含氯聚合物过滤膜有相似的性能,包括耐溶剂性,力学强度,表面荷正电性,过滤分离等。但是较实施例1,整个过程对比实施例2中多消耗大约1000mL的沉淀剂和85g的N’N-二甲基乙酰胺。如果采用对第二种含氯聚合物多次溶解沉淀,则会消耗更多的沉淀剂和溶剂。这些还不包括对聚合物干燥所消耗的电能等。
对比实施例3
1)通过原位原子转移自由基聚合的方法形成含氯聚合物制膜液。将10g聚氯乙烯(第一种含氯聚合物)在室温下溶解在85gN’N-二甲基乙酰胺中,向溶液通入氮气30分钟除去溶液中的氧气,后在氮气保护下加入15.0g甲基丙烯酸二甲氨基乙酯,44.1mg五甲基二乙烯三胺和25.2mg氯化亚铜,后该反应液置于65℃中反应12小时。待反应结束后,向体系内通入空气终止反应,形成第二种含氯聚合物溶液。2)在搅拌状态下,向溶液中继续加入5gPVC,以及5g聚乙二醇和0.5g聚乙烯吡咯烷酮,在60℃下搅拌24小时。聚氯乙烯的分子量为80,000g/mol,添加剂聚乙二醇,分子量为200g/mol,聚乙烯吡咯烷酮,分子量30,000g/mol,将上述制膜液在玻璃板上铺展形成平板液膜,浸入30℃水中凝固,形成固态前体膜,后将该膜浸泡了水中除去溶剂等可溶性的小分子。3)将得到的固体前体膜晾干,得到过滤膜。
比较实施例1与对比实施例3耐溶剂性和表面荷电性:
将对比实施例1所得膜溶于DMF,DMAc和NMP等溶剂,发现膜溶解;测试对比实施例1所得膜所得膜表面荷电性,发现为荷正电,等电点位置为pH8.0。由于对比实施例2没有对固体前体膜进行进一步热处理,因此聚合物过滤膜没有交联并季铵化,导致过滤膜耐溶剂性差。表面荷电性虽有提高,但是在pH≥8的条件下,表面仍显示为负电荷。
实施例2
1)同实施例1步骤1。2)将上述制膜液涂覆在无纺布上,浸入30℃水中凝固,形成带支撑固态前体膜,后将该膜浸泡了水中除去溶剂等可溶性的小分子。3)将所形成的固体膜晾干后,进行热处理,处理温度为120℃,处理时间为2小时,得到交联型荷正电含氯聚合物复合过滤膜
测试结果与讨论:1)溶解性测试结果如表1,表明含氯聚合物过滤膜经热处理以后,过滤膜耐溶剂(DMF、DMAc和NMP)能力大大增强;2)膜过滤分离性能测试结果如表2。
实施例3
1)通过原位原子转移自由基聚合的方法形成含氯聚合物制膜液。将15g聚偏氯乙烯(第一种含氯聚合物)在室温下溶解在85gN’N-二甲基甲酰胺中,向溶液通入氮气30分钟除去溶液中的氧气,后在氮气保护下加入20.0g甲基丙烯酸二乙氨基乙酯,74.7mg1,1,4,7,10,10-六甲基三乙烯四胺和46.5mg溴化亚铜,后该反应液置于30℃中反应24小时。待反应结束后,向体系内通入空气终止反应。2)在搅拌状态下,向溶液中继续加入20g聚乙二醇和6g聚乙烯吡咯烷酮,在60℃下搅拌24小时。添加剂聚乙二醇,分子量为200g/mol,聚乙烯吡咯烷酮,分子量30,000g/mol。将上述制膜液通过喷丝头经过5cm空气间隙喷入30℃水中凝固,形成固态前体膜,后将该膜浸泡了水中除去溶剂等可溶性的小分子。3)将所形成的固体膜经甘油-水(甘油体积分数20%)混合溶液浸泡后,进行热处理,处理温度为80℃,处理时间为12小时,得到最终的交联型荷正电含氯聚合物中空纤维过滤膜。
第一种含氯聚合物结构式为:
式中:
R1=R2=Cl;
m+n=1300;
第二种含氯聚合物结构式为:
式中:x+y=1300;
x/y=1/1000;
z=200;
R3=H;
R4=CH3
R5=COOCH2CH2N(CH2CH3)2
R6=Br。
测试结果与讨论:1)溶解性测试结果如表1,表明含氯聚合物过滤膜经热处理以后,过滤膜耐溶剂(DMF、DMAc和NMP)能力大大增强;2)膜力学性能测试结果如表2,表明含氯聚合物过滤膜经热处理以后,过滤膜力学性能提高;3)膜过滤分离性能测试结果如表2;4)中空纤维外表面和断面结构表征,结果如附图4和附图5。
实施例4
1)同实施例3步骤1。2)将上述制膜液通过喷丝头将液膜喷到编织管上,经过5cm空气间隙喷入30℃水中凝固,形成带支撑中空纤维固态前体膜,后将该膜浸泡了水中除去溶剂等可溶性的小分子。3)将所形成的固体膜经甘油-水(甘油体积分数95%)混合溶液浸泡后,进行热处理,处理温度为80℃,处理时间为12小时,得到最终的交联型荷正电含氯聚合物中空纤维复合过滤膜。
测试结果与讨论:1)溶解性测试结果如表1,表明含氯聚合物过滤膜经热处理以后,过滤膜耐溶剂(DMF、DMAc和NMP)能力大大增强;2)膜过滤分离性能测试结果如表2;3)中空纤维复合膜断面结构表征,结果如附图6。
实施例5
1)通过原位原子转移自由基聚合的方法形成含氯聚合物制膜液。将10g氯化聚氯乙烯在室温下溶解在85gN’N-二甲基甲酰胺中,向溶液通入氮气30分钟除去溶液中的氧气,后在氮气保护下加入10.0g丙烯酸二甲氨基乙酯,95.3mg三(2-二甲氨基乙基)胺和41.0mg氯化亚铜,后该反应液置于55℃中反应10分钟。待反应结束后,向体系内通入空气终止反应。2)在搅拌状态下,向溶液中继续加入5g氯化聚氯乙烯,10g聚乙二醇和1g聚乙烯吡咯烷酮,在60℃下搅拌24小时。添加剂聚乙二醇,分子量为200g/mol,聚乙烯吡咯烷酮,分子量30,000g/mol。将上述制膜液在平整钢板上铺展形成平板液膜,浸入30℃水凝固浴中凝固,形成固态前体膜,后将该膜浸泡了水中除去溶剂等可溶性的小分子。3)将所形成的固体膜经甘油-乙二醇(甘油体积分数5%)混合溶液浸泡后,进行热处理,处理温度为130℃,处理时间为30分钟,得到交联型荷正电含氯聚合物过滤膜。
第二种含氯聚合物结构式为:
式中:x+y=500;
x/y=1/100;
z=10;
R3=H或Cl;
R4=H;
R5=COOCH2CH2N(CH3)2
R6=Cl。
测试结果与讨论:1)溶解性测试结果如表1,表明含氯聚合物过滤膜经热处理以后,过滤膜耐溶剂(DMF、DMAc和NMP)能力大大增强;2)膜力学性能测试结果如表2,表明含氯聚合物过滤膜经热处理以后,过滤膜力学性能提高;3)膜过滤分离性能测试结果如表2。
实施例6
1)和2)同实施例5步骤1和步骤2。3)将所形成的固体膜干燥后,进行热处理,处理温度为120℃,处理时间为2小时,得到交联型荷正电含氯聚合物过滤膜。
测试结果与讨论:1)溶解性测试结果如表1,表明含氯聚合物过滤膜经热处理以后,过滤膜耐溶剂(DMF、DMAc和NMP)能力大大增强;2)膜力学性能测试结果如表2,表明含氯聚合物过滤膜经热处理以后,过滤膜力学性能提高;3)膜过滤分离性能测试结果如表2。
实施例7
1)通过原位原子转移自由基聚合的方法形成含氯聚合物制膜液。将10g聚氯丙烯(第一种含氯聚合物)在室温下溶解在85gN-甲基吡咯烷酮中,向溶液通入氮气30分钟除去溶液中的氧气,后在氮气保护下加入15.0g二甲氨基丙基甲基丙烯酰胺,81.1mg五甲基二乙烯三胺和67.4mg溴化亚铜,后该反应液置于65℃中反应12小时。待反应结束后,向体系内通入空气终止反应。2)在搅拌状态下,向溶液中继续加入5g聚氯丙烯,20g聚乙二醇和4g聚乙烯吡咯烷酮,在60℃下搅拌24小时添加剂聚乙二醇,分子量为200g/mol,聚乙烯吡咯烷酮,分子量30,000g/mol。将上述制膜液通过喷丝头经过5cm空气间隙喷入30℃水中凝固,形成固态前体膜,后将该膜浸泡了水中除去溶剂等可溶性的小分子。3)将所形成的固体膜经甘油混合溶液浸泡后,进行热处理,处理温度为70℃,处理时间为12小时,得到交联型荷正电含氯聚合物中空纤维过滤膜。
第二种含氯聚合物结构式为:
式中:x+y=1300;
x/y=1/1000;
z=200;
R3=CH3
R4=CH3
R5=CONCH2CH2CH2N(CH3)2
R6=Br。
测试结果与讨论:1)溶解性测试结果如表1,表明含氯聚合物过滤膜经热处理以后,过滤膜耐溶剂(DMF、DMAc和NMP)能力大大增强;2)膜力学性能测试结果如表2,表明含氯聚合物过滤膜经热处理以后,过滤膜力学性能提高;3)膜过滤分离性能测试结果如表2。
实施例8
1)通过原位原子转移自由基聚合的方法形成含氯聚合物制膜液。将15g含氯乙烯共聚物在室温下溶解在85gN-甲基吡咯烷酮中,向溶液通入氮气30分钟除去溶液中的氧气,后在氮气保护下加入9.0g二甲氨基丙基丙烯酰胺,131.2mg1,1,4,7,10,10-六甲基三乙烯四胺和56.4mg氯化亚铜,后该反应液置于40℃中反应24小时。待反应结束后,向体系内通入空气终止反应。2)在搅拌状态下,向溶液中继续加入10g聚乙二醇和4g聚乙烯吡咯烷酮,在60℃下搅拌24小时。添加剂聚乙二醇,分子量为200g/mol,聚乙烯吡咯烷酮,分子量30,000g/mol。将上述制膜液在无纺布上铺展形成平板液膜,浸入30℃水混合溶液中凝固,形成固态前体膜,后将该膜浸泡了水中除去溶剂等可溶性的小分子。3)将所形成的固体膜干燥后,进行热处理,处理温度为80℃,处理时间为8小时,得到交联型荷正电含氯聚合物复合平板过滤膜。
第二种含氯聚合物结构式为:
式中:x+y=800;
x/y=1/500;
z=50;
R3=H或Cl;
R4=H;
R5=CONCH2CH2CH2N(CH3)2
R6=Cl。
测试结果与讨论:1)溶解性测试结果如表1,表明含氯聚合物过滤膜经热处理以后,过滤膜耐溶剂(DMF、DMAc和NMP)能力大大增强;2)膜过滤分离性能测试结果如表2。
实施例9
1)通过原位原子转移自由基聚合的方法形成含氯聚合物制膜液。将15g含偏氯乙烯共聚物在室温下溶解在85gN-甲基吡咯烷酮中,向溶液通入氮气30分钟除去溶液中的氧气,后在氮气保护下加入10g4-乙烯基吡啶,131.2mg1,1,4,7,10,10-六甲基三乙烯四胺和56.4mg氯化亚铜,后该反应液置于60℃中反应24小时。待反应结束后,向体系内通入空气终止反应。其余步骤同实施例9。
第二种含氯聚合物结构式为:
式中:x+y=800;
x/y=1/500;
z=50;
R3=H或Cl;
R4=H;
R6=Cl。
测试结果与讨论:1)溶解性测试结果如表1,表明含氯聚合物过滤膜经热处理以后,过滤膜耐溶剂(DMF、DMAc和NMP)能力大大增强;2)膜过滤分离性能测试结果如表2。
实施例10
1)通过原位原子转移自由基聚合的方法形成含氯聚合物制膜液。将15g氯化聚氯乙烯在室温下溶解在85gN-甲基吡咯烷酮中,向溶液通入氮气30分钟除去溶液中的氧气,后在氮气保护下加入10g2-乙烯基吡啶,131.2mg1,1,4,7,10,10-六甲基三乙烯四胺和56.4mg氯化亚铜,后该反应液置于60℃中反应24小时。待反应结束后,向体系内通入空气终止反应。其余步骤同实施例9。
第二种含氯聚合物结构式为:
式中:x+y=800;
x/y=1/500;
z=50;
R3=H或Cl;
R4=H;
R6=Cl。
测试结果与讨论:1)溶解性测试结果如表1,表明含氯聚合物过滤膜经热处理以后,过滤膜耐溶剂(DMF、DMAc和NMP)能力大大增强;2)膜过滤分离性能测试结果如表2。
实施例11
1)通过原位原子转移自由基聚合的方法形成含氯聚合物制膜液。将15g氯化聚乙烯在室温下溶解在85gN-甲基吡咯烷酮中,向溶液通入氮气30分钟除去溶液中的氧气,后在氮气保护下加入10gN-乙烯基咪唑,131.2mg1,1,4,7,10,10-六甲基三乙烯四胺和56.4mg氯化亚铜,后该反应液置于60℃中反应24小时。待反应结束后,向体系内通入空气终止反应。其余步骤同实施例9。
第二种含氯聚合物结构式为:
式中:x+y=800;
x/y=1/500;
z=50;
R3=H或Cl;
R4=H;
R6=Cl。
测试结果与讨论:1)溶解性测试结果如表1,表明含氯聚合物过滤膜经热处理以后,过滤膜耐溶剂(DMF、DMAc和NMP)能力大大增强;2)膜过滤分离性能测试结果如表2。
附表1溶解性测试结果
-不溶解,+溶解
附表2力学性能和过滤分离性能测试结果
附表3交联型荷正电含氯聚合物过滤膜对聚乙二醇和聚季铵盐的截留率差异
截留物质 分子量 截留率(%)
聚乙二醇 2000 80.9
聚季铵盐 2000 >99.5

Claims (10)

1.一种交联型荷正电含氯聚合物过滤膜,其特征在于:所述过滤膜包含第一种含氯聚合物与第二种含氯聚合物的共混物,或者包含第二种含氯聚合物,其中,
所述第一种含氯聚合物,其结构式如下:
式中:
R1=H、CH3或Cl;
R2=H、CH3或Cl;
m+n=500~2000,优选m+n=800~1900;
所述第二种含氯聚合物的结构式如下:
式中:x+y=500~2000,优选x+y=800~1900;
x/y=1/100~1/1000;
z=10~500,优选z=50~200;
R3=H、CH3或Cl;
R4=H或CH3
R5=含叔胺基团;
R6=Cl或Br;
所述第二种含氯聚合物具有自交联特征;
所述过滤膜表面具有荷正电性。
2.根据权利要求1所述的交联型荷正电含氯聚合物过滤膜,其特征在于,所述第二种含氯聚合物是由第一种含氯聚合物经原位原子转移自由基聚合法接枝叔胺单体制得。
3.根据权利要求2所述的交联型荷正电含氯聚合物过滤膜,其特征在于,所述的叔胺单体选自甲基丙烯酸二甲氨基乙酯、甲基丙烯酸二乙氨基乙酯、丙烯酸二甲氨基乙酯、二甲氨基丙基甲基丙烯酰胺、二甲氨基丙基丙烯酰胺、4-乙烯基吡啶、2-乙烯基吡啶、1-乙烯基咪唑中的任意一种或任意多种;所述的第一种含氯聚合物选自聚氯乙烯、聚偏氯乙烯、含氯乙烯共聚物、含偏氯乙烯共聚物、氯化聚乙烯、氯化聚氯乙烯、含氯聚丙烯中的任意一种或任意多种。
4.一种交联型荷正电含氯聚合物复合过滤膜,其特征在于:所述的复合过滤膜包含支撑层和功能层,所述的支撑层选自聚对苯二甲酸乙二醇酯、聚对苯二甲酸丙二醇酯、聚对苯二甲酰对苯二胺、聚酰亚胺,玻璃纤维中的一种,所述的功能层选自权利要求1-3任一项所述的交联型荷正电含氯聚合物过滤膜。
5.一种交联型荷正电含氯聚合物过滤膜的制备方法,其特征在于包括如下步骤:
(1)将第一种含氯聚合物溶解于溶剂,经原位原子转移自由基聚合法进行叔胺单体的接枝聚合,得到第二种含氯聚合物溶液;
(2)将步骤(1)中得到的第二种含氯聚合物溶液直接作为制膜液经非溶剂诱导相分离形成固态前体膜;
(3)将所述的固态前体膜进行热处理,得到交联型荷正电含氯聚合物过滤膜;
所述第一种含氯聚合物,其结构式如下:
式中:
R1=H、CH3或Cl;
R2=H、CH3或Cl;
m+n=500~2000,优选m+n=800~1900;
所述第二种含氯聚合物,其结构式如下:
式中:x+y=500~2000,优选x+y=800~1900;
x/y=1/100~1/1000;
z=10~500,优选z=50~200;
R3=H、CH3或Cl;
R4=H或CH3
R5=含叔胺基团;
R6=Cl或Br。
6.一种交联型荷正电含氯聚合物过滤膜的制备方法,其特征在于包括如下步骤:
(1)将第一种含氯聚合物溶解于溶剂,经原位原子转移自由基聚合法进行叔胺单体的接枝聚合,得到第二种含氯聚合物溶液;
(2)在步骤(1)中得到的第二种含氯聚合物溶液,加入第一种含氯聚合物并搅拌形成均匀的制膜液,经非溶剂诱导相分离形成固态前体膜;
(3)将所述的固态前体膜进行热处理,得到交联型荷正电含氯聚合物过滤膜;
所述第一种含氯聚合物,其结构式如下:
式中:
R1=H、CH3或Cl;
R2=H、CH3或Cl;
m+n=500~2000,优选m+n=800~1900;
所述第二种含氯聚合物,其结构式如下:
式中:x+y=500~2000,优选x+y=800~1900;
x/y=1/100~1/1000;
z=10~500,优选50~200;
R3=H、CH3或Cl;
R4=H或CH3
R5=含叔胺基团;
R6=Cl或Br。
7.根据权利要求5或6所述的交联型荷正电含氯聚合物过滤膜的制备方法,其特征在于,步骤(1)所述的接枝聚合反应温度为30~65℃,反应时间为10分钟~24小时。
8.根据权利要求5或6所述的交联型荷正电含氯聚合物过滤膜的制备方法,其特征在于,步骤(1)所述的叔胺单体选自甲基丙烯酸二甲氨基乙酯、甲基丙烯酸二乙氨基乙酯、丙烯酸二甲氨基乙酯、二甲氨基丙基甲基丙烯酰胺、二甲氨基丙基丙烯酰胺、4-乙烯基吡啶、2-乙烯基吡啶、1-乙烯基咪唑中的任意一种或任意多种;步骤(1)和步骤(2)所述的第二种含氯聚合物选自聚氯乙烯、聚偏氯乙烯、含氯乙烯共聚物、含偏氯乙烯共聚物、氯化聚乙烯、氯化聚氯乙烯、含氯聚丙烯中的任意一种或任意多种。
9.根据权利要求5或6所述的交联型荷正电含氯聚合物过滤膜的制备方法,其特征在于,步骤(3)所述热处理方法是干膜直接热处理,或者将膜经甘油或甘油-水溶液或甘油-乙二醇溶液处理过后再热处理。
10.根据权利要求5或6所述的交联型荷正电含氯聚合物过滤膜的制备方法,其特征在于,步骤(3)所述的热处理温度为70~130℃,热处理时间为30分钟~12小时。
CN201410733614.0A 2014-08-31 2014-12-04 一种交联型荷正电含氯聚合物过滤膜及其制备方法 Active CN105363359B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410733614.0A CN105363359B (zh) 2014-08-31 2014-12-04 一种交联型荷正电含氯聚合物过滤膜及其制备方法

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN2014104376502 2014-08-31
CN201410437650.2A CN104190265A (zh) 2014-08-31 2014-08-31 一种具有稳定分离层的低压高通量含氯聚合物纳滤膜及其制备方法
CN201410733614.0A CN105363359B (zh) 2014-08-31 2014-12-04 一种交联型荷正电含氯聚合物过滤膜及其制备方法

Publications (2)

Publication Number Publication Date
CN105363359A true CN105363359A (zh) 2016-03-02
CN105363359B CN105363359B (zh) 2017-06-30

Family

ID=52075717

Family Applications (8)

Application Number Title Priority Date Filing Date
CN201410437650.2A Pending CN104190265A (zh) 2014-08-31 2014-08-31 一种具有稳定分离层的低压高通量含氯聚合物纳滤膜及其制备方法
CN201410733611.7A Active CN105363353B (zh) 2014-08-31 2014-12-04 一种荷电型含氯聚合物纳滤膜及其制备方法
CN201410730312.8A Active CN105709619B (zh) 2014-08-31 2014-12-04 一种荷正电纳滤膜及其制备方法
CN201410733614.0A Active CN105363359B (zh) 2014-08-31 2014-12-04 一种交联型荷正电含氯聚合物过滤膜及其制备方法
CN202011363839.3A Pending CN112403286A (zh) 2014-08-31 2014-12-04 一种基于叔胺型两亲共聚物的荷正电纳滤膜及其制备方法
CN201410734310.6A Pending CN105642129A (zh) 2014-08-31 2014-12-04 一种基于叔胺型两亲共聚物的荷正电纳滤膜及其制备方法
CN201410734459.4A Active CN105709608B (zh) 2014-08-31 2014-12-04 一种具有高抗污染性的含氯聚合物基中空纤维过滤膜及其制备方法
CN201410730313.2A Active CN105363350B (zh) 2014-08-31 2014-12-04 一种非对称的含氯聚合物基荷电型中空纤维过滤膜及其制备方法

Family Applications Before (3)

Application Number Title Priority Date Filing Date
CN201410437650.2A Pending CN104190265A (zh) 2014-08-31 2014-08-31 一种具有稳定分离层的低压高通量含氯聚合物纳滤膜及其制备方法
CN201410733611.7A Active CN105363353B (zh) 2014-08-31 2014-12-04 一种荷电型含氯聚合物纳滤膜及其制备方法
CN201410730312.8A Active CN105709619B (zh) 2014-08-31 2014-12-04 一种荷正电纳滤膜及其制备方法

Family Applications After (4)

Application Number Title Priority Date Filing Date
CN202011363839.3A Pending CN112403286A (zh) 2014-08-31 2014-12-04 一种基于叔胺型两亲共聚物的荷正电纳滤膜及其制备方法
CN201410734310.6A Pending CN105642129A (zh) 2014-08-31 2014-12-04 一种基于叔胺型两亲共聚物的荷正电纳滤膜及其制备方法
CN201410734459.4A Active CN105709608B (zh) 2014-08-31 2014-12-04 一种具有高抗污染性的含氯聚合物基中空纤维过滤膜及其制备方法
CN201410730313.2A Active CN105363350B (zh) 2014-08-31 2014-12-04 一种非对称的含氯聚合物基荷电型中空纤维过滤膜及其制备方法

Country Status (1)

Country Link
CN (8) CN104190265A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107261863A (zh) * 2017-06-22 2017-10-20 曲靖师范学院 一种抗污染聚氯乙烯膜的制备方法
CN110052172A (zh) * 2019-03-17 2019-07-26 浙江工业大学 一种交联型耐热耐溶剂均孔膜的制备方法及相关嵌段共聚物
CN112870984A (zh) * 2021-01-14 2021-06-01 海南立昇净水科技实业有限公司 一种抗菌抗污染过滤膜的制备方法
CN114854153A (zh) * 2022-06-13 2022-08-05 中国第一汽车股份有限公司 一种用于汽车仪表面板的抗菌搪塑表皮及其制备方法和应用

Families Citing this family (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201403432D0 (en) * 2014-02-27 2014-04-16 Univ Leuven Kath Improved method for synthesis of composite membranes
CN105727770A (zh) * 2014-12-08 2016-07-06 中国石油天然气股份有限公司 含氟抗污染超滤膜的制备方法、含氟抗污染超滤膜及应用
CN106179002B (zh) * 2016-08-09 2019-03-05 中北大学 一种聚砜侧链接枝聚叔胺微滤膜
CN106178973B (zh) * 2016-08-24 2018-10-09 杭州易膜环保科技有限公司 一种用于净水系统的节能型纳滤膜及其制备方法
CN108568221B (zh) * 2017-03-08 2021-07-06 海南立昇净水科技实业有限公司 一种基于层间共价作用增强的荷负电型含氯聚合物基复合膜及其制备方法
US10723893B2 (en) 2017-03-08 2020-07-28 Industrial Technology Research Institute Composite structure
CN108579474B (zh) * 2017-03-08 2020-12-01 海南立昇净水科技实业有限公司 一种基于层间共价作用增强的荷负电型含氟聚合物基复合膜及其制备方法
CN106914155B (zh) * 2017-04-10 2019-06-04 浙江工业大学 一种氯甲基化聚砜制备荷正电纳滤膜的方法
CN109289552A (zh) * 2017-07-25 2019-02-01 中国石油化工股份有限公司 反渗透膜及其制备方法和应用
CN109304103B (zh) * 2017-07-28 2021-11-02 中国科学院宁波材料技术与工程研究所 一种疏松型大通量海水淡化膜及其制备方法与应用
CN107362700B (zh) * 2017-08-03 2019-11-05 南京工业大学 一种染料中间体的纳滤分离方法
CN107652211B (zh) * 2017-09-22 2020-03-24 南昌航空大学 一种超支化磺酸钠小分子电子传输层的制备方法
CN107551833B (zh) * 2017-10-10 2019-10-29 重庆云天化瀚恩新材料开发有限公司 一种双改性中空纤维超滤膜及其制备方法
CN109692585A (zh) * 2017-10-20 2019-04-30 中国石油化工股份有限公司 纳滤膜及其制备方法和应用
CN108043227B (zh) * 2017-11-22 2021-03-30 北京新源国能科技集团股份有限公司 一种聚偏氟乙烯基纳滤膜的制备方法
JP6598333B2 (ja) * 2017-12-25 2019-10-30 エレテン株式会社 殺菌性高分子ナノファイバー集合体及びこれを用いた乾式衛生用紙
CN108295676A (zh) * 2018-01-29 2018-07-20 浙江大学 一种表面含混合电荷层的耐污染分离膜及其制备方法
CN108310984A (zh) * 2018-03-07 2018-07-24 南京工业大学 一种耐污染亲水性pvdf改性膜及其制备方法
CN110314561A (zh) * 2018-03-29 2019-10-11 东华大学 一种聚合物膜材料及其制备方法
CN110394074A (zh) * 2018-04-25 2019-11-01 中国石油化工股份有限公司 复合纳滤膜及其制备方法和应用
CN110394065B (zh) * 2018-04-25 2022-10-21 中国石油化工股份有限公司 复合纳滤膜及其制备方法和应用
CN110548398B (zh) * 2018-06-04 2021-11-26 宁波蓝盾新材料科技有限公司 一种交联型两性离子基团修饰的正渗透膜及其制备方法
CN110548415B (zh) * 2018-06-04 2021-11-16 宁波蓝盾新材料科技有限公司 一种大通量荷正电聚酰胺杂化正渗透膜及其制备方法
CN108939948B (zh) * 2018-08-08 2021-03-16 吉林大学 一种改性聚芳醚类超滤膜及其制备方法与应用
CN109173737A (zh) * 2018-08-29 2019-01-11 浙江工业大学 一种新型高选择性荷正电纳滤复合膜的制备方法
CN110894251B (zh) * 2018-09-12 2021-11-16 黄山徽梦高分子科技有限公司 一种叔胺衍生物型含氯两亲聚合物及其由该聚合物制备的分离膜
JP6484748B1 (ja) * 2018-09-20 2019-03-13 日東電工株式会社 分離膜
CN109589809B (zh) * 2018-12-27 2021-06-29 山东天维膜技术有限公司 一种具有多重交联结构的阳离子交换膜的制备方法
CN109603585A (zh) * 2018-12-29 2019-04-12 安徽智泓净化科技股份有限公司 一种季铵盐改性聚酰胺反渗透膜的制备方法
CN111434375A (zh) * 2019-01-11 2020-07-21 清华大学 表面带正电的聚酰胺反渗透膜及其制备方法和应用
CN109745874A (zh) * 2019-03-15 2019-05-14 福州大学 一种氯甲基聚醚酮抗污染超滤膜的制备方法
EP3756754A1 (en) * 2019-06-27 2020-12-30 3M Innovative Properties Company Reactive additives in membrane preparation
CN110193291B (zh) * 2019-06-27 2021-08-10 新乡学院 复合纳滤膜及其制备方法
CN110201545B (zh) * 2019-06-28 2021-09-03 万华化学集团股份有限公司 一种抗菌高通量纳滤膜的制备方法
CN110294845A (zh) * 2019-07-03 2019-10-01 中国科学院长春应用化学研究所 一种叔胺型聚芳醚砜(酮)聚合物树脂及其制备方法和阴离子交换膜
CN111792742B (zh) * 2019-09-29 2022-05-17 中国科学院生态环境研究中心 一种多级协同过滤强化纳滤膜抗污染能力的方法
CN110681264B (zh) * 2019-11-20 2021-10-15 哈尔滨工业大学(威海) 一种两亲性三元共聚物改性超滤膜的制备方法
CN111054096B (zh) * 2020-01-07 2024-07-12 广州振清环保技术有限公司 一种功能型多元共聚高分子油水分离剂及其制备方法和应用
CN111420560B (zh) * 2020-04-20 2022-04-12 贵州省材料产业技术研究院 一种低压荷正电纳滤膜制备方法及其制品和应用
US20230182087A1 (en) 2020-04-28 2023-06-15 Katholieke Universiteit Leuven Thin-Film Composite Membranes Synthesized by Multi-Step Coating Methods
CN111569676B (zh) * 2020-06-02 2021-07-27 四川大学 超滤膜、纳滤膜及其制备和超滤-纳滤可逆转换的方法
CN112029103A (zh) * 2020-08-05 2020-12-04 杭州晟聚环保科技有限公司 一种酸碱离子改性聚合物及其多孔膜的制备
CN112221354B (zh) * 2020-09-15 2021-10-26 浙江大学 基于迈克尔加成反应的抗菌抗污染微孔膜及其制备方法
CN112237853B (zh) * 2020-09-15 2022-05-10 浙江大学 一种抗菌抗污染微孔膜及其制备方法
CN112246109B (zh) * 2020-09-30 2022-09-20 武汉工程大学 一种有机物选择性纳滤复合膜及其制备方法和应用
CN114345150B (zh) * 2020-10-13 2023-02-10 浙江大学 净水纳滤膜的制备方法
CN114832626B (zh) * 2021-02-01 2023-04-11 中国石油化工股份有限公司 一种复合纳滤膜及制备方法和应用
CN113083032B (zh) * 2021-04-26 2022-10-28 贵州省材料产业技术研究院 一种荷正电共混超滤膜及其制备方法
CN115382402B (zh) * 2021-05-24 2024-02-02 天津工业大学 一种复合膜材料的制备方法
CN113750816B (zh) * 2021-09-14 2023-04-25 湖北工业大学 一种分离性能可调控的高通量、耐污染超滤膜及其制备方法和应用
CN113856486B (zh) * 2021-09-22 2023-05-23 浙江大学 一种基于有机-无机纳米粒子的荷电复合纳滤膜及其制备方法
CN113908703B (zh) * 2021-09-22 2023-01-10 浙江大学 一种基于聚合物纳米粒子的荷电纳滤膜及其制备方法
CN114082311A (zh) * 2021-10-22 2022-02-25 宁波方太厨具有限公司 用于去除卤乙酸的中空纤维超滤膜的制备方法
CN114653223B (zh) * 2022-03-15 2024-04-12 天津大学 一种渗透蒸发脱盐异质膜及其制备方法和应用
CN115414791B (zh) * 2022-08-15 2024-04-19 华中科技大学 一种表面季铵化改性纳滤膜及制备与盐湖镁锂分离的应用
CN115445458A (zh) * 2022-09-16 2022-12-09 北京碧水源膜科技有限公司 一种镁锂分离用纳滤膜及其制备方法
CN115845640B (zh) * 2022-12-22 2024-07-16 昆明理工大学 一种荷正电复合纳滤膜及其制备方法和应用
CN116459689A (zh) * 2023-04-04 2023-07-21 赛普(杭州)过滤科技有限公司 一种聚醚砜超滤膜及其制备方法、应用以及超滤设备
CN117339029B (zh) * 2023-12-05 2024-02-13 山东瑞安泰医疗技术有限公司 一种超声定位抗污覆膜胆道支架的制备方法
CN118320651B (zh) * 2024-05-29 2024-11-05 泰州禾益新材料科技有限公司 一种双单体聚合的聚酰胺纳滤膜的制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1230971A1 (en) * 2001-02-12 2002-08-14 Saehan Industries, Inc. Composite polyamide reverse osmosis membrane and method for producing the same
CN1970136A (zh) * 2006-10-27 2007-05-30 中国科学技术大学 有机-无机杂化阴离子交换膜的制备方法
CN101733024A (zh) * 2010-01-05 2010-06-16 浙江大学 一种荷正电复合纳滤膜及其制备方法
CN101766962A (zh) * 2010-01-05 2010-07-07 浙江大学 一种荷正电纳滤膜的制备方法
CN102210979A (zh) * 2011-06-17 2011-10-12 海南立昇净水科技实业有限公司 荷正电型聚氯乙烯中空纤维纳滤膜及其制备方法

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7001518B1 (en) * 2000-11-28 2006-02-21 Hydranautics Low pressure reverse osmosis and nanofiltration membranes and method for the production thereof
CN1168529C (zh) * 2002-03-18 2004-09-29 杜润红 一种纳滤复合膜及其制造方法
US7604746B2 (en) * 2004-04-27 2009-10-20 Mcmaster University Pervaporation composite membranes
CN1872400A (zh) * 2005-05-30 2006-12-06 天津膜天膜工程技术有限公司 中空纤维纳滤复合膜的制备方法
CN100450597C (zh) * 2005-12-27 2009-01-14 天津工业大学 一种复合纳滤膜及其制备方法
CN101264428B (zh) * 2008-04-25 2010-10-13 浙江大学 两亲性共聚物改性聚偏氟乙烯超滤膜的方法
CN101485960B (zh) * 2009-01-09 2011-08-17 清华大学 聚偏氟乙烯多孔膜表面互穿聚合物网络的改性方法
JP5895838B2 (ja) * 2010-08-11 2016-03-30 東レ株式会社 分離膜エレメントおよび複合半透膜の製造方法
US9120062B2 (en) * 2012-04-20 2015-09-01 Basf Se High performance positively charged composite membranes and their use in nanofiltration processes
CN102755844B (zh) * 2012-07-24 2014-08-13 浙江大学 一种表面离子化改性聚砜超滤膜的制备方法
WO2014016347A1 (de) * 2012-07-25 2014-01-30 Lanxess Deutschland Gmbh Nanofiltrationsmembran mit einer schicht aus polymer- und oxidpartikeln
CN102836644B (zh) * 2012-09-06 2014-07-30 浙江大学 浸没沉淀相转化/界面交联同步制备中空纤维复合纳滤膜的方法
CN103055715B (zh) * 2013-02-04 2015-01-28 北京科泰兴达高新技术有限公司 一种复合纳滤膜及其制备方法
CN103240004B (zh) * 2013-05-15 2015-04-15 北京碧水源膜科技有限公司 一种荷电纳滤膜及其制备方法
CN103285744B (zh) * 2013-05-20 2015-01-07 燕山大学 γ-二乙烯三胺丙基甲基二甲氧基硅烷–二乙烯三胺五乙酸/聚偏氟乙烯交换膜的制备方法
CN103272502B (zh) * 2013-06-24 2015-07-08 南京大学 一种荷负电微滤复合膜的制造方法及应用
CN103464013B (zh) * 2013-07-25 2014-11-05 烟台绿水赋膜材料有限公司 一种高性能杂化分离膜及其制备方法
CN103386255B (zh) * 2013-08-15 2015-08-05 中国科学院长春应用化学研究所 一种超滤膜或纳滤膜及其制备方法
CN103464012B (zh) * 2013-09-27 2015-05-20 中国石油大学(华东) 一种无机盐致孔剂用于耐有机溶剂聚酰亚胺纳滤膜的制备方法
CN103521091A (zh) * 2013-10-25 2014-01-22 滁州品创生物科技有限公司 一种复合中空纤维膜

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1230971A1 (en) * 2001-02-12 2002-08-14 Saehan Industries, Inc. Composite polyamide reverse osmosis membrane and method for producing the same
CN1970136A (zh) * 2006-10-27 2007-05-30 中国科学技术大学 有机-无机杂化阴离子交换膜的制备方法
CN101733024A (zh) * 2010-01-05 2010-06-16 浙江大学 一种荷正电复合纳滤膜及其制备方法
CN101766962A (zh) * 2010-01-05 2010-07-07 浙江大学 一种荷正电纳滤膜的制备方法
CN102210979A (zh) * 2011-06-17 2011-10-12 海南立昇净水科技实业有限公司 荷正电型聚氯乙烯中空纤维纳滤膜及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
张浩勤等: "新型荷正电纳滤膜的制备与表征", 《高校化学工程学报》 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107261863A (zh) * 2017-06-22 2017-10-20 曲靖师范学院 一种抗污染聚氯乙烯膜的制备方法
CN107261863B (zh) * 2017-06-22 2020-08-25 曲靖师范学院 一种抗污染聚氯乙烯膜的制备方法
CN110052172A (zh) * 2019-03-17 2019-07-26 浙江工业大学 一种交联型耐热耐溶剂均孔膜的制备方法及相关嵌段共聚物
CN110052172B (zh) * 2019-03-17 2021-08-24 浙江工业大学 一种交联型耐热耐溶剂均孔膜的制备方法及相关嵌段共聚物
CN112870984A (zh) * 2021-01-14 2021-06-01 海南立昇净水科技实业有限公司 一种抗菌抗污染过滤膜的制备方法
CN112870984B (zh) * 2021-01-14 2022-07-12 海南立昇净水科技实业有限公司 一种抗菌抗污染过滤膜的制备方法
CN114854153A (zh) * 2022-06-13 2022-08-05 中国第一汽车股份有限公司 一种用于汽车仪表面板的抗菌搪塑表皮及其制备方法和应用
CN114854153B (zh) * 2022-06-13 2023-10-24 中国第一汽车股份有限公司 一种用于汽车仪表面板的抗菌搪塑表皮及其制备方法和应用

Also Published As

Publication number Publication date
CN105709619B (zh) 2019-04-30
CN105363350B (zh) 2018-01-30
CN105363353B (zh) 2018-03-20
CN105363359B (zh) 2017-06-30
CN112403286A (zh) 2021-02-26
CN105642129A (zh) 2016-06-08
CN105363353A (zh) 2016-03-02
CN105709608A (zh) 2016-06-29
CN105363350A (zh) 2016-03-02
CN104190265A (zh) 2014-12-10
CN105709619A (zh) 2016-06-29
CN105709608B (zh) 2019-04-26

Similar Documents

Publication Publication Date Title
CN105363359B (zh) 一种交联型荷正电含氯聚合物过滤膜及其制备方法
US9193815B2 (en) Polymer membrane for water treatment and method for manufacture of same
US20080214687A1 (en) Cross Linking Treatment of Polymer Membranes
US20110147308A1 (en) Charged Porous Polymeric Membranes and Their Preparation
CN103055714A (zh) 一步法制备亲水荷电分离膜的方法、其产品及其用途
CN105148750B (zh) 一种聚酰胺复合膜表面改性的方法
Bhalani et al. Selective grafting of morphologically modified poly (vinylidene fluoride) ultrafiltration membrane by poly (acrylic acid) for inducing antifouling property
CN111659267A (zh) 一种耐污染改性的多孔膜及其制备方法
Wang et al. Improving the hydrophilicity and antifouling performance of PVDF membranes via PEI amination and further poly (methyl vinyl ether-alt-maleic anhydride) modification
EP1773477A1 (en) Hydrophilic membranes
JP2011156519A (ja) 高分子水処理膜、水処理方法及び高分子水処理膜のメンテナンス方法
CN112516817A (zh) 一种聚偏氟乙烯疏松纳滤膜及其制备方法和应用
Niu et al. Modification of a polyethersulfone membrane with a block copolymer brush of poly (2-methacryloyloxyethyl phosphorylcholine-co-glycidyl methacrylate) and a branched polypeptide chain of Arg–Glu–Asp–Val
Ndlwana et al. Heterogeneous functionalization of polyethersulfone: a new approach for pH-responsive microfiltration membranes with enhanced antifouling properties
AU2006261581B2 (en) Cross linking treatment of polymer membranes
KR20140113113A (ko) 양전하성 폴리불화비닐덴계 다공성 분리막 및 그 제조방법
CN111821865B (zh) 一种具有分离功能的复合膜及其气相沉积制备方法
EP3946701B1 (en) Method for the manufacture of a membrane system
CN113244781B (zh) 一种抗黄化复合反渗透膜及其制备方法
Wang et al. Metal cation removal by P (VC-r-AA) copolymer ultrafiltration membranes
US20050006302A1 (en) Process for the preparation of porous membrane
US10752716B2 (en) Copolymers and terpolymers based on chlorotrifluoroethylene and vinyl chloride and uses thereof
KR102056871B1 (ko) 양전하성 폴리불화비닐덴계 다공성 분리막 및 그 제조방법
CN113578062B (zh) 持久亲水均孔超滤膜的制备方法
CN114028957B (zh) 一种抗污染反渗透膜的制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant